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The article undertakes a nonparametric analysis of the high-frequency movements in stock market volatil-
ity using very finely sampled data on the VIX volatility index compiled from options data by the CBOE.
We derive theoretically the link between pathwise properties of the latent spot volatility and the VIX in-
dex, such as presence of continuous martingale and/or jumps, and further show how to make statistical
inference about them from the observed data. Our empirical results suggest that volatility is a pure jump
process with jumps of infinite variation and activity close to that of a continuous martingale. Additional
empirical work shows that jumps in volatility and price level in most cases occur together, are strongly
dependent, and have opposite sign. The latter suggests that jumps are an important channel for generating
leverage effect.
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1. INTRODUCTION

Jumps are intrinsically a continuous time concept that can
be defined only relative to a theoretical stochastic process sat-
isfying mild regularity conditions. Models for such processes
are convenient paradigms that should, of course, provide close
approximations to the dynamics of discretely observed data.
Models without jumps, that is, models with continuous sam-
ple paths, are especially convenient because then asset prices
respond in a locally linear manner, hedging arguments work,
and convenient, easy to manipulate closed-form expressions
for the reduced forms of economic models are available. In
the presence of jumps, however, markets are fundamentally
incomplete and the analysis far less tractable. A fairly com-
plete discussions of the complications induced by jumps is Cont
and Tankov (2004), chapter 10, pp. 319–351. Technical issues
aside, jumps are important because they represent a signifi-
cant source of non-diversifiable risk as discussed at length in
Bollerslev, Law, and Tauchen (2008) and the references therein.
Policy makers must make decisions in real time during times of
jump-inducing chaotic conditions in financial markets, and it is
thereby economically important to develop a statistical under-
standing of the time series behavior of jumps.

There is currently fairly compelling empirical evidence for
jumps in the level of financial prices. The most convincing
evidence comes from recent nonparametric work using high-
frequency data as in Barndorff-Nielsen and Shephard (2007)
and Ait-Sahalia and Jacod (2009a) among others. Preceding
that evidence are the findings from parametric studies using
daily data such as Chernov et al. (2003), Andersen, Benzoni,
and Lund (2002), and Eraker, Johannes, and Polson (2003),
which are strongly suggestive but arguably not overwhelming
evidence for price jumps in the daily record.

A very prominent model that underlies much empirical work
for continuous time processes with jumps is the setup of Duffie,
Pan, and Singleton (2000), which we call here the affine double-
jump model. Since the double-jump model is in the affine class,
just as in Heston (1993), it admits reduced form solutions for as-
set prices and derivatives that are closed form in the sense that

they can be readily computed on modern computing equipment
using straightforward numerical techniques for Fourier series
and ordinary differential equations. The double-jump model
presumes rare jumps, for example, compound Poisson process,
for both asset prices and their variances. It has been applied em-
pirically by Broadie, Chernov, and Johannes (2007), Chernov
et al. (2003), Eraker, Johannes, and Polson (2003), and Eraker
(2004) among others (see also empirical work by Wu 2010 who
allows for the jumps to be of infinite activity). It is especially
useful for specification and estimation of continuous time mod-
els that use data on both the underlying security and deriva-
tives written on it. These studies generally find evidence for
both jumps in the price level and its volatility.

In this article we aim to understand better the nature of
changes, both small and big, in the market volatility, which
have important implications for volatility modeling, develop-
ing hedging strategies and specification of market risk premia.
In particular we answer the following questions. Is the market
volatility moving through occasional and relatively infrequent
changes like in a model driven by a compound Poisson process,
or it involves a lot of small moves, which over short intervals
look like Gaussian as in the Heston (1993) model? Are there
“sufficiently big” moves in the volatility to justify inclusion of
jumps in its modeling? Are volatility and price jumps related?

To date, the answers to these questions come predominantly
through estimation of parametric models built around the affine
double-jump model (the recent nonparametric results of Bandi
and Reno 2008, 2009 are an exception). However, these ques-
tions are intrinsically nonparametric and importantly they are
related with the properties of the observed paths of the volatil-
ity for which we do not need long-span asymptotics. Therefore,
the persistence in volatility, for example, how many autore-
gressive factors are needed for its modeling, is a completely
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separate issue from the type of changes through which the
volatility evolves over time. Here we are interested in the lat-
ter. Goodness-of-fit type tests for parametric volatility models
would inevitably be joint type hypothesis and therefore they
should always be interpreted with caution when making con-
clusions about pathwise properties of volatility. Here, we sepa-
rate the pathwise properties of volatility from its long-span ones
(like persistence) by using high-frequency data and resorting to
fill-in asymptotics. The analysis is fully nonparametric and thus
the evidence we provide here is robust.

Our estimation is based on inferring from the data the value
of a generalized activity index (Ait-Sahalia and Jacod 2009a
and Todorov and Tauchen 2010a), which is a generalization
of the classical Blumenthal–Getoor index of Blumenthal and
Getoor (1961). The generalized activity index is defined for an
arbitrary stochastic process unlike the Blumenthal–Getoor in-
dex which is defined for jump processes only. It lies in the inter-
val [0,2] and measures the vibrancy of the process. The index
divides the stochastic processes used in the volatility modeling
into equivalence classes. For example, the compound Poisson
jump process, which is a building block in the affine double-
jump model has an activity level of 0. On the other extreme is
the Brownian motion (and any diffusion process), whose ac-
tivity is 2. Values of the index in (0,1) correspond to jump
processes of finite variation, that is, processes whose trajecto-
ries over finite intervals are finite. Values of the index in (1,2)

correspond to jump processes of infinite variation, that is, their
trajectories over finite intervals have infinite length.

We estimate the activity index of high-frequency data on the
VIX volatility index computed by the Chicago Board of Op-
tions Exchange (CBOE), which is based on close-to-maturity
S&P 500 index options, and then make inferences about activ-
ity level of the unobserved market volatility. Our estimation of
the activity is based on constructing from the high-frequency
data an activity signature function, a diagnostic tool proposed
in Todorov and Tauchen (2010a). The latter provides also evi-
dence whether the “big” moves in volatility should be modeled
as jumps. Finally, to explore the link between the discontinu-
ities on market level and market volatility we use cojumping
statistics proposed in Jacod and Todorov (2009).

The nonparametric evidence regarding the types of moves
in the market volatility provides empirical information on the
plausibility of the various parametric volatility models that have
been proposed in the literature. The set of parametric models
includes the double-jump model discussed above along with
many others reviewed in Section 3 below. In some of these
models volatility is continuous, and in others it is a pure jump
process. Of course there are also models with both continuous
and jump components. The various parametric models have dif-
ferent implications for the activity level of the VIX index, the
presence of jumps in it and their relationship with the ones in
the price level. We find that our nonparametric evidence identi-
fies with reasonable accuracy the most plausible class of para-
metric models and rules out many others.

There are certain advantages and also some notable pit-
falls entailed with using the VIX data. High-frequency data, of
course, provide far more information about jumps, both large
and small, than do daily data, which is a major plus. Further-
more, since the VIX index is computed from quoted options

prices, which are highly sensitive to volatility, it provides far
more information on volatility than does the financial price se-
ries itself. Some care is needed, however, because the VIX in-
dex is not a direct measure of volatility, but rather it is actually
the forward price, and thus a risk-neutral expectation, of future
variance. The issues are discussed in more detail below. Finally,
volatility is known to be a long memory process, and this inter-
acts with the VIX index in some subtle ways regarding traded
securities, semimartingales, and lack of arbitrage. As discussed
below, it turns out that use of the general activity index permits
us to separate jumps from long memory, and therefore we can
make statements about the characteristics of volatility jumps
without having to account for the long memory.

Turning to our main empirical findings, we can summarize
them as follows. First, we find that market volatility is a very
vibrant process—it involves many small changes as well as oc-
casional big moves. The presence of big moves justifies the use
of jumps in volatility modeling. In terms of modeling the small
moves in volatility we find some evidence against using Brown-
ian motion because it is somewhat more “active” than what the
data implies for the volatility. On the other hand, the “activity”
of the small volatility changes cannot be captured by a com-
pound Poisson process or even a process of finite variation like a
Lévy subordinator (i.e., a jump process with nonnegative incre-
ments as in the non-Gaussian OU model of Barndorff-Nielsen
and Shephard 2001). The reason for this is that a finite variation
jump process would imply too “little” activity in volatility than
what is observed. We conclude that a model for the volatility
that can reconcile the empirical evidence is a pure jump model,
where the driving jump process is far more active than a process
of finite variation, but on the other hand not as active as a con-
tinuous martingale (though the jump activity that we estimate
from the data is nevertheless relatively close to that of a con-
tinuous martingale). This is to be contrasted with our findings
about the market level where we find that we need a continuous
martingale to capture the small changes and jumps to capture
the big ones.

Second, using both high-frequency data on the VIX index
as well as the S&P 500 index, we find strong evidence that the
jumps in the volatility and the price level occur at the same time.
We also find that these jumps exhibit strong negative depen-
dence. These findings suggest that the underlying risks behind
the occurrence of stock market discontinuities and the spikes in
market volatility (and the corresponding risk premia) are simi-
lar if not the same. Therefore plausible equilibrium-based mod-
els for the market risk premia should be able to generate en-
dogenously such links between volatility and jump risk (and
their compensation).

The article is organized as follows. In Section 2 we define the
measures of stochastic volatility and in particular the VIX in-
dex, data on which is used in the empirical part. In Section 3 we
present some popular stochastic volatility models and analyze
their implications for the VIX index. Section 4 introduces our
measure of activity of a continuous-time process and proposes
methods for its inference from discrete observations. Section 5
applies the estimation technique to simulated data and Section 6
contains the empirical part. Finally Section 7 concludes.
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2. THE VIX INDEX

Let {St}t≥0 denote the log of a financial price evolving in con-
tinuous time. We are interested in the high frequency dynamics
of the so-called volatility index (VIX) pertaining to St. The VIX
index is computed by the CBOE for the S&P 500 index using
written options on it, but the methodology for its computation
can be applied to other assets as well. Theoretically, the VIX in-
dex is based on a portfolio of out-of-the-money options written
on St over a continuum of strike prices whose value equals that
of a variance swap; see, for example, Britten-Jones and Neu-
berger (2000), Jiang and Tian (2005), and Carr and Wu (2009).
The latter is defined as a forward contract on the total quadratic
variation of the log-price of the underlying asset over a fixed
interval into the future. Following Protter (2004), pp. 66–76, let
[S,S] denote the quadratic variation process associated with St.
Hence the VIX index is given by

vt ≡ EQ([S,S]t+N − [S,S]t|Ft), (2.1)

where N > 0 is fixed, {Ft} is the filtration on the probabil-
ity space on which {St}t≥0 is defined, and the expectation is
taken under the risk-neutral distribution Q. Note that in prac-
tice the volatility index is typically quoted in terms of annual-
ized volatility, which is easier to interpret, but the form (2.1)
is much simpler to work with theoretically so we stick with
that. The quadratic variation process [S,S] is adapted, increas-
ing, càdlàg (i.e., with paths that are a.s. right continuous with
left limits), and it can be split into continuous and discontinu-
ous components

[S,S]t = [S,S]c
t + [S,S]d

t , (2.2)

corresponding, respectively, to the quadratic variation of the
continuous and discontinuous parts of the price process St. We
make a standard assumption in finance and impose absolute
continuity of [S,S]c

t , that is,

[S,S]c
t =

∫ t

0
σ 2

s ds, (2.3)

where σ 2
t is the spot variance of St, also referred to as the in-

stantaneous variance by Andersen et al. (2009). The spot vari-
ance σ 2

t is the instantaneous increment to the quadratic vari-
ation of the continuous martingale component of St. Thus the
VIX can be written as

vt = EQ

(∫ t+N

t
σ 2

s ds
∣∣Ft

)
+ EQ([S,S]d

t+N − [S,S]d
t |Ft). (2.4)

The first term is the familiar risk-neutral expectation of the for-
ward integrated variance while the second is the risk-neutral
expected contribution of the price jumps.

In practice, to generate an empirical measure of vt in
(2.4) the CBOE uses a portfolio of short-maturity out-of-the-
money options on the S&P 500 Index over a discrete grid of
strike prices. The details of the computation are available at
http://www.cboe.com/micro/vix/vixwhite.pdf . In practice, there
are two very small errors in replicating the price of a variance
swap, which is the value on the right-hand side of (2.4). The first
comes from the fact that a finite number of options is used in
the calculation of the VIX index, while the theoretical variance
swap rate is equal to the price of continuum portfolio of options.

The second error arises when there are jumps in St. It is equal
to −2

∫ t+N
t

∫
R0

(ex − 1 − x − x2/2)dt νQ
t (dx), where dt νQ

t (dx)
is the risk-neutral measure of the jumps. Nonetheless, the mea-
surement is considered to be very accurate, as documented by
extensive theoretical and Monte Carlo analysis in Jiang and
Tian (2005) and Carr and Wu (2009), and the second error does
not influence any of our subsequent results; see Theorem 1 and
its proof. Hence in what follows, we treat the CBOE measured
VIX as coinciding directly to vt.

It is always important to keep in mind the distinction between
the observed VIX and the unobserved spot variance. The ob-
served VIX is the CBOE measurement of vt in (2.4). We use
these observations to make inferences about important charac-
teristics of the random process {σ 2

t }t≥0 for the spot variance.
The inference is complicated because the VIX is forward look-
ing, and its increments are generated by movements in variables
that influence the conditional expectations on the right-hand
side of (2.4). Furthermore, we only observe discretely-sampled
observations on the VIX index which also complicates estima-
tion and inference.

To the extent possible, we follow the convention of using the
term “variance” for quantities that are squares and measures of
variance and the term “volatility” to refer to measures of stan-
dard deviation. Variance measures are easier to work with math-
ematically because they add, while volatility measures are eas-
ier to interpret because they are expressed in the same units as
the data itself.

As indicated by the many papers reprinted in Shephard
(2005b) and the references therein, the dynamics of the spot
variance σ 2

t are extremely important for modeling financial se-
ries. However, the spot variance itself is not directly observed.
Our plan here is to adduce nonparametric evidence from high-
frequency VIX data on the empirical plausibility of various
models for the spot variance. The spot variance itself can also
be split into continuous and discontinuous parts

σ 2
t = σ 2

c,t + σ 2
d,t. (2.5)

Note that a jump discontinuity σ 2
d,t −σ 2

d,t− influences the entire

trajectory E(σ 2
t+s|Ft), s ≥ 0, and thereby (in general) induces a

jump discontinuity in vt.
Historically, stochastic volatility models have assumed that

the spot variance is continuous, that is, σ 2
t ≡ σ 2

c,t. However,
more recently there has been interest in pure jump stochas-
tic volatility models, σ 2

t ≡ σ 2
d,t; see, for example, Barndorff-

Nielsen and Shephard (2001). Of course, the models can be
combined, as in the double-jump model of Duffie, Pan, and Sin-
gleton (2000). Two recent comprehensive reviews of stochas-
tic volatility are Shephard (2005a) and Andersen and Benzoni
(2007). In the subsequent section we highlight the more rele-
vant models and their implications for the VIX index.

3. PARAMETRIC MODELS FOR
THE SPOT VARIANCE

Our objective is to use nonparametric-type evidence from
high frequency VIX and returns data to cast light on the em-
pirical plausibility of the various parametric volatility models
for the spot variance σ 2

t that have been proposed in the liter-
ature. We briefly review the extant parametric models in this

http://www.cboe.com/micro/vix/vixwhite.pdf
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section and then proceed to the nonparametric analysis in the
application section farther below. We leave unspecified whether
the model pertains to the risk-neutral distribution or the objec-
tive distribution, because common practice is to assume a risk
premium structure that preserves the basic form of the model
across the two distributions. We also suppress here for sim-
plicity the presence of price jumps, since we are considering
parametric spot volatility models, and, for example, allowing
for price jumps with intensity that is linear in the spot volatility
factors will simply lead to affine transformations of the expres-
sions for the VIX index below.

The most widely used model in finance is probably the affine
jump diffusion model written in its most general form as

Affine Jump Diffusion

dσ 2
t = ρ(σ 2

t − ψ0)dt + ψ1σt dBt + dLt, ρ < 0,ψ > 0,

(3.1)

where Lt is a Lévy process of finite variation with nonnegative
jumps. The model has been widely used in both equilibrium
and reduced-form asset pricing modeling, important examples
include Merton (1976), Duffie, Pan, and Singleton (2000), and
Duffie, Filipović, and Schachermayer (2003). In this case VIX
index vt is simply an affine function of the volatility process.

In most applications of (3.1), for example, the affine double-
jump model of Duffie, Pan, and Singleton (2000), Lt is a com-
pound Poisson process and Bt is present. More recently, an im-
portant special case of the affine jump diffusion (3.1) is the non-
Gaussian OU model of Barndorff-Nielsen and Shephard (2001)
in which the diffusive component is absent:

Non-Gaussian OU

dσ 2
t = ρσ 2

t dt + dLt, ρ < 0, (3.2)

where Lt is a pure jump Lévy process with nonnegative incre-
ments, also called a subordinator. As for (3.1), the VIX index vt
is an affine function of the volatility process under this specifi-
cation.

Exponential-type stochastic volatility models have been also
widely used in financial econometrics:

EXP-OU-�

σ 2
t = exp(α0 + α1ft),

(3.3)
dft = ρft dt + d�t, ρ < 0,

where �t is a generic process. When �t is a Brownian motion,
the model is a continuous-time limit of the discrete EGARCH
model of Nelson (1991). Many papers relevant for this model
are conveniently reprinted in Shephard (2005b). Standard cal-
culations imply that in this case (when �t is a Brownian mo-
tion), the VIX index is

vt =
∫ N

0
exp

(
α0 + α1eρuft + α2

1
1 − e2ρu

4ρ

)
du. (3.4)

Versions of the model (3.3) with �t being a Lévy process with
compound Poisson jumps are estimated in Andersen, Benzoni,
and Lund (2002) and Chernov et al. (2003).

More generally, when �t is an arbitrary Lévy process, using
Sato (1999), theorem 25.17, the formula for the VIX index gen-
eralizes to

vt =
∫ N

0
exp[α0 + α1eρuft + C(u)]du, (3.5)

where C(u) is some function of u determined by the characteris-
tic exponent of the driving Lévy process (and the constants α1,
ρ and N). A very important feature of (3.3) is that the driving
Lévy process can be infinitely active and of infinite variation,
see Haug and Czado (2007), which is unlike (3.2) where the
driving process must be of finite variation.

A common feature of the above models for the volatility
ant their multi-factor extensions is that they are Markovian
(up to augmenting the state space). Given the well-documented
long-range dependence in volatility (Baillie, Bollerslev, and
Mikkelsen 1996; Comte and Renault 1998; Shephard 2005a),
some researchers have alternatively applied models that are
non-Markovian, for example, a fractionally integrated model
such as that of Comte and Renault (1998). The latter is an ex-
ponential stochastic volatility model with �t = Bδ,t, where Bδ,t

is fractionally integrated Brownian motion with fractional in-
tegration parameter 0 < δ < 1

2 . The factor ft has the following
stationary representation

ft =
∫ t

−∞
a(t − s)dBs, (3.6)

where Bt is standard Brownian motion, and the function a(·) is
given by

a(u) = 1

�(1 + δ)

(
uδ + ρeρu

∫ u

0
e−ρxxδ dx

)
. (3.7)

The VIX index for this model takes the following form:

vt =
∫ N

0
exp

(
α0 + α1

∫ t

−∞
a(t + u − s)dBs

+ α2
1

2

∫ u

0
a2(z)dz

)
du. (3.8)

As noted in Comte and Renault (1998), the spot variance σ 2
t in

this model is not a semimartingale. Nevertheless there are no
arbitrage opportunities of the type discussed in Rogers (1997)
because the spot variance is not a traded security. The observed
VIX index, however, is a portfolio of traded securities and it
should be a semimartingale to rule out arbitrage, and this in-
deed is the case for the model-implied VIX index in (3.8); we
illustrate the point below.

4. THE ACTIVITY LEVEL OF VOLATILITY

The volatility models in the previous section have been all
used in various applications, and our aim is to provide non-
parametric evidence on their empirical plausibility using high-
frequency observations on the VIX index. Towards this end, we
now show in this section how to associate with each continuous-
time process an index of its so-called activity and present meth-
ods to estimate the index. Since we actually estimate the activity
index on VIX data, but we are interested in the spot volatility
σ 2

t process, we end this section by deriving results linking the
activity index for the spot variance and the VIX index under
mild regularity conditions.
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4.1 Activity Index

We start with consideration of a measure of activity for an
arbitrary continuous-time process. Intuitively, by activity level
we mean the “degree” of vibrancy of the process, that is, the
“roughness” of its trajectories. Formally, the statistical setup is
as follows. We observe a generic scalar process X over a long
span [0,T]. During each subperiod (t − 1, t], where now t is
an integer, we have high-frequency observations on X with a
sampling interval of length 	n. That is, we observe X at times
t − 1, t − 1 + 	n, . . . , t − 1 + [1/	n]	n during the subpe-
riod. Think of the subperiod as being either a day, week, or
month. Following Ait-Sahalia and Jacod (2009a) and Todorov
and Tauchen (2010a), we can define the activity of X during an
arbitrary interval (t − 1, t] as

βX,t := inf
{

p > 0 : plim
	n→0

Vt(X,p,	n) < ∞
}
, (4.1)

where Vt(X,p,	n) is the power variation of X over the interval
(t − 1, t] given by

Vt(X,p,	n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[1/	n]∑
i=1

|xt,i|pI(|xt,i| ≤ c), p < 2

[1/	n]∑
i=1

|xt,i|p, p ≥ 2,

(4.2)

where xt,i = Xt−1+i	n −Xt−1+(i−1)	n and I(·) is the 0–1 indica-
tor function. The importance of the power variation (4.2) for fi-
nancial econometrics was pointed out in Barndorff-Nielsen and
Shephard (2003, 2004) and followup papers.

The truncation at c > 0 in (4.2) for powers r less that 2 has
no effect asymptotically, because the value of the activity in-
dex βX,t in (4.1) is determined by the “small” price moves (the
sample functions of X are càdlàg, and therefore jumps bigger
in absolute value than a fixed positive number are always finite
over a finite period of time). However, the truncation provides
robustness in finite samples of our estimator of the index, con-
structed from the power variation in the next subsection, to very
extreme price movements. For p > 2 the truncation is unneces-
sary because in that region only the “large” moves matter for
the asymptotic behavior of the power variation. In practice, we
use a very large value of c implying very mild truncation so
that typically up to two of the summands are truncated, and we
check sensitivity of the findings to the choice of c. We are ex-
tremely grateful to an anonymous referee who pointed out the
potential lack of finite sample robustness, which can be fixed
by this simple expedient of truncation.

Our interest is mainly in the case when X is a semimartingale,
because to avoid arbitrage, any traded security, and thus the
VIX index as well, needs to be a semimartingale; see Delbaen
and Schachermayer (1994). For a semimartingale the activ-
ity index takes values in the interval [0,2]. Each semimartin-
gale can be decomposed into drift term along with continuous
and discontinuous local martingale parts (Jacod and Shiryaev
2003). These components of the semimartingale process can be
naturally ranked in terms of their activity in the following order
from least to most active: finite activity (e.g., compound Pois-
son) jumps (activity of 0), infinite activity but finite variation
jumps (activity in [0,1]), drift (activity of 1), infinite variation

jumps (activity of (1,2]), continuous martingales (activity of
2). The activity of the semimartingale is determined by the ac-
tivity of its most active component. Thus, for example, if X is
driven by both a Brownian motion and jumps, the continuous
martingale dominates and the activity of X is equal to that of its
continuous martingale component, which is 2.

Evidently, the jumps are the most interesting component
of a semimartingale in terms of their activity. Our measure
of activity for pure jump Lévy processes coincides with their
so-called (generalized) Blumenthal–Getoor index (Blumenthal
and Getoor 1961 and Ait-Sahalia and Jacod 2009a). This index
is analogous to the parameter α of the α-stable distribution.

If X is not a semimartingale things are different. For example,
when X is the OU process driven by fractional Brownian motion
given in (3.6), then its activity index is determined by its degree
of fractional integration, δ, and is equal to 1

δ+0.5 ; see Corcuera,
Nualart, and Woerner (2006).

Finally, note that activity index is defined over the subinterval
(t −1, t], instead of the whole sample. This approach allows for
the possibility that the process X can change its activity over
time. While the activity of most parametric continuous-time
models, including those for the spot variance of the previous
section, is sometimes presumed constant over long segments
of time, we do not make this assumption apriori. Breaking the
estimation up across a number of subintervals provides some
bootstrap-type indication on sampling fluctuations and more
importantly provides protection against parameter shifts.

4.2 Estimation of Activity Index

The estimators of the activity index are really quite simple to
compute. The key results from Todorov and Tauchen (2010a)
that generate the estimators are as follows. With Vt(X,p, k	n)

denoting the power variation as defined in (4.2) and βX,t the
activity index in (4.1) to be estimated for period t (think of t as
a day or a month), then

(a) (k	n)
1−p/βX,t Vt(X,p, k	n)

P−→ �t(p), 0 < p < βX,t for all k ≥ 1,

(b) Vt(X,p, k	n) (4.3)

P−→
∑

t−1≤s<t

|	Xs|p1
(
(|	Xs| ≤ c ∩ p < 2) ∪ p ≥ 2

)
,

p > βX,t,

as 	n ↓ 0. In (a) the limit on the right depends only on the
power p; the result in (a) holds for any p in the case when X
is continuous (i.e., it does not contain jumps); in (b) the limit
on the right is the sum of the absolute jumps raised to the pth
power (and possibly truncated).

To get estimators of the activity index, evaluate (a) above at
k = 1,2, take the ratio, and note

(	n)
1−p/βX,t Vt(X,p,	n)

/
(2	n)

1−p/βX,t Vt(X,p,2	n)

P−→ 1, p < βX,t.
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Now take the log of this ratio, set it equal to its asymptotic value
of zero, and solve for the implied “β” to get

bX,t(p) = ln(2)p

ln(2) + ln[Vt(X,p,2	n)] − ln[Vt(X,p,	n)] ,
p > 0. (4.4)

The expression bX,t(p) above is termed the activity signature
function (ASF), and we find that essentially all relevant infor-
mation about the activity of the X process is contained in the
ASF for p ∈ (0,4].

As shown in Todorov and Tauchen (2010a), as we sample
more frequently, that is, 	n → 0 on any fixed interval (t − 1, t],
the activity signature function bX,t(p) behaves as follows:

A. bX,t(p) −→ 2, ∀p > 0 if X contains continuous martin-
gale,

B. bX,t(p)
P−→ max(p,2), ∀p > 0 if X contains continuous

martingale plus jumps,

C. bX,t(p)
P−→ max(p, βX,t), ∀p �= βX,t if X is driven by a

pure jump process,

where the convergence is locally uniform in p. The right-hand
sides above describe the asymptotic behavior of the ASF. Intu-
itively, to get the result in A for example, one can apply (4.3)
to write Vt(X,p,2	n) ≈ (2	n)

p/2−1�t(p) and Vt(X,p,	n) ≈
(	n)

p/2−1�t(p). Simple algebra then leads to the flatness at 2
of the asymptotic limit of bX,t(p) in this case. Similar analysis
leads to the limits in the other two cases.

In finite samples the realization of bX,t(p) is a smooth infi-
nitely differentiable function of p. From the asymptotics, we
can thus expect it to display a bend around p ≈ βX,t, the pop-
ulation value, with the sharpness of the bend providing an in-
dication of precision of estimation. On the other hand, the be-
havior of the activity signature function for p > 2 can reveal us
whether there are jumps, large or small, in the process X in the
interval (t − 1, t] even in the case when they are dominated by
a continuous semimartingale.

Todorov and Tauchen (2010a) suggest a graphical method to
use the ASF to get an indication of the value of βX,t and the
presence of jumps. Specifically, let

Bq(p) = qth quantile of {bX,t(p)}t=1,2,...,N, q ∈ (0,1)

(4.5)

denote the qth quantile of the bX,t for each power p. Bq(p)

is called the quantile activity signature function (QASF). The
most informative plots are obtained from the lower and upper
quartiles, B0.25(p), B0.75(p), and the median B0.50(p) over the
range 0 ≤ p ≤ 4. Robust methods such as using quantiles are
crucial because we are dealing with data sets containing ex-
treme observations.

Inspecting graphs can be helpful for a rough indication, but
we can directly estimate the activity index over each subinterval
(t − 1, t] as

β̂X,t = bX,t(p) for some fixed value of p. (4.6)

The estimator (4.6) is consistent for the activity index provided
p < βX,t, and there are several considerations that guide the
choice of p. First, obviously we need to pick p lower than the
lowest possible activity βX,t for the process X. In our case, we

can assume the activity level is at least 1, because the volatility
process is mean-reverting and the drift term has an activity of 1.
This was also illustrated with the different parametric models of
Section 3. Second, it can be shown that for very small powers
the estimator is relatively inefficient and thus higher values of
p are preferred. Based on this discussion, an appropriate choice
for p in (4.6) is in the range 0.50 to just under 1.00. Values
in this range are nearly optimal for the levels of activity our
data suggest, but the formal optimality analysis is technically
very demanding and well beyond the scope of the present arti-
cle (Todorov and Tauchen 2010b).

A significant issue is whether the process contains a Brown-
ian component, and we therefore conduct a test whether β̂X,t is
statistically less than two. We do the test in logs and construct
a one-sided critical region for ln(bX,t(p)) using its asymptotic
distribution under the null, which is normal with estimated stan-
dard error of ÂsySE(ln(bX,t(p))). Details on the asymptotic re-
sult and the calculation of the feasible standard error can be
found in Todorov and Tauchen (2010a).

4.3 Linking VIX and Spot Variance Activity Indexes

We undertake the estimation described above using the high-
frequency VIX data but the interest is on the unobserved spot
variance process. Therefore, for the estimation to be meaningful
it is important to investigate the relationship between the activ-
ity level of the observed VIX index to that of the spot variance,
and it turns out they are the same under very weak regularity
conditions. Indeed, in a Markov setting, which is most often
adopted in parametric volatility modeling, the agreement is es-
tablished by the following theorem:

Theorem 1. For the setting in (2.2)–(2.4) suppose in addition
the following:

A. σ 2
t = G(c)(ft) for some twice differentiable function

G(c) : Rk → R+ with nonvanishing first derivatives on the
support of ft,

B. the compensator of the jumps in {St} under the measure
Q is of the form G(d)(ft)dt ⊗ η(dx) for some twice dif-
ferentiable function G(d) : Rk → R+ and a measure η on
R satisfying

∫
R
(|x|2 ∧ 1)η(dx) < ∞,

C. ft is a vector with independent elements each of which
solves under Q

df (i)
t =

di∑
j=1

g(i)
j

(
f (i)
t−

)
dZ(i)

tj ,

j = 1, . . . ,di, i = 1, . . . , k, (4.7)

where the functions g(i)
j (·) are twice differentiable and

Z(i)
tj are independent Lévy processes.

Assume further that the expectation vt = EQ([S,S]t+N −
[S,S]t|Ft) is well defined. Then, νt = F(ft) for some contin-
uously differentiable function F : Rk → R+. Furthermore, if
∂F
∂fi

(·) �= 0 on the support of ft for i = 1, . . . , k, then we have
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for an arbitrary t > 0

(a)

βσ 2,t ≡ βv,t a.s., (4.8)

where βX,t for an arbitrary semimartingale Xt is defined
in (4.1).

(b) the set of jump times of {σ 2
s }[0,t] coincides with the set

of jump times of {νs}[0,t] almost surely provided F is
monotone in each of its arguments.

The result of the theorem follows essentially from the fact
that under its assumptions, both the spot variance and the as-
sociated VIX index are continuously differentiable functions of
the volatility factors. Section 3 contains particular parametric
examples of this. Such transformations preserve the activity in-
dex, and therefore to determine the volatility activity we need
only determine the activity of the most active volatility factor.

The theorem does not say that the VIX, which is a market-
implied quantity, and the spot variance are the same. Indeed,
their dynamics, including persistence and level, might be quite
different as is often found in empirical work. The theorem does
say, however, that key features of the stochastic processes, that
is, their activity levels and sets of jump times, must agree.

Based on Theorem 1 and the discussion in the previous sec-
tion (see Todorov and Tauchen 2010a for formal results), we
have the following levels of volatility activity for the Markov
models of the previous section:

(a) Affine Jump Diffusion and EXP-OU-Gaussian: βσ 2,t =
βv,t = 2

(b) Non-Gaussian OU: βσ 2,t = βv,t = 1
(c) EXP-OU-Lévy: βσ 2,t = βv,t = max{βL,1}, where βL

is the Blumenthal–Getoor index of the driving Lévy
process.

Note that for the non-Gaussian OU model the volatility activ-
ity is determined by the drift term in (3.2), since the driving
jump process is a Lévy subordinator and thus of finite varia-
tion. On the other hand, for the affine jump diffusion model
(and all models in which Brownian motion is used in the spec-
ification of the stochastic volatility), the volatility activity is
driven by the continuous martingale part which “dominates”
drift and arbitrary jump factors. Thus, the most tractable (and
hence most used) stochastic volatility specifications from the
different classes of models of the previous section, the affine
jump diffusion model and the non-Gaussian model, have very
different implications for the activity level of the stochastic
volatility.

Finally, the relationship between the activity of the spot vari-
ance and the associated VIX index is nontrivial outside of the
Markov setting. For the EXP-OU-FI model, we have βσ 2,t =

1
δ+0.5 while βv,t = 2. As already mentioned, the activity of the
spot variance is driven by the degree of the fractional inte-
gration. The transformation implied by the VIX index restores
the semimartingale property, and, since the model is driven by
Brownian motion, we have that the activity of the VIX index is
2.0 as determined by this most active component. Therefore for
the EXP-OU-FI model, the activity of the VIX index will not
be informative about that of the spot variance. However, this

is not a drawback of our analysis. For this model it is the ac-
tivity of the VIX index that we are most interested in, since it
tells us that the volatility process is modeled via (fractionally
integrated) Brownian motion and not jumps, and this is exactly
what we are after.

5. MONTE CARLO

We now consider the finite sample properties of the estima-
tors and tests developed in the preceding Section 4. Table 1 con-
tains a complete list of the various scenarios considered: affine
jump diffusions with a wide range of jump intensities (Case A),
long memory volatility models (Case B), non-Gaussian OU
models (Case C), and Lévy-driven pure jump models (Case D).
The parameter values for the first two affine jump diffusion
specifications were taken from the estimation results of Eraker,
Johannes, and Polson (2003), while the other two cases are used
as a check for the robustness of the results against various “ex-
treme” scenarios. In case AJD-HJ, we kept the mean of the
jumps the same but increased approximately ten times the jump
intensity. In case AJD-E, we further increased the mean jump
size while keeping the high jump intensity of case AJD-HJ.

For each considered model we calculate the corresponding
value of the VIX index using the expressions in Section 3 and
do all the calculations of Section 4 using the simulated high-
frequency data on it. For the same reasons as in Section 2, we
ignore price jumps and risk premia. The main question that
we seek to answer is whether the transformations involved in
the calculation of the VIX index have any finite sample effect
on our inference for the spot variance activity. For general as-
sessment of finite sample properties of activity estimation and
testing we refer to the web-appendix to Todorov and Tauchen
(2010a).

5.1 Illustrating the Basic Computations
on Simulated Data

We start by summarizing the basic aspects of the computa-
tions associated with the theory of Section 4.1 and display the
outcome on a simulated realizations for a few representative
scenarios from Table 1. In this presentation we let β denote
βX,t for simplicity. In each day we sample 78 times, which cor-
responds to a 5-minute sampling frequency in a standard 6.5
hours trading day, and this also is the frequency of our high-
frequency data that we use in the empirical analysis of the next
section. The interval (t − 1, t] corresponds to 22 trading days,
that is, a calendar month, so the unit of time is thereby 1 = one
month in all calculations that follow. There are 78 × 22 = 1716
high-frequency intervals per month. The use of a month as the
subinterval is a compromise in the tradeoff between the pre-
sumption of constant activity over the subinterval and the as-
sociated reduction in sampling error inference with more data
points per interval.

To begin, compute the power variation Vt(X,p,	n) in (4.2),
where X is the process and the power p ∈ (0,4] ranges over
a fine grid in the tth time interval, here a month, with 	n =
1/(78 × 22). Next compute Vt(X,p,2	n) using the coarser 10-
minute sampling. When computing the power variation over
this coarser frequency and for powers p < 2, we first remove
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Table 1. Parameter setting for the Monte Carlo

Parameters

ψ0 −ρ ψ1 λ μ βσ 2 βν

Case A. Affine Jump Diffusion
AJD-no jumps 0.8136 0.0128 0.0954 2.0 2.0
AJD-LJ 0.5585 0.0250 0.0896 0.0055 1.7980 2.0 2.0
AJD-HJ 0.5585 0.0250 0.0896 0.0500 0.1978 2.0 2.0
AJD-E 0.5585 0.0250 0.0896 0.0500 0.9889 2.0 2.0

Parameters

α0 α1 δ −ρ

Case B. EXP-OU-FI
0.00 1.00 0.40 1.00 1.1 2.0

Parameters

−ρ β λ c

Case C. Non-Gaussian-OU
0.03 0.50 5.00 0.05 1.0 1.0

Parameters

α0 α1 −ρ β λ c

Case D. EXP-OU-Lévy
−0.70 1.00 0.07 1.50 2.50 0.10 1.5 1.5

NOTE: Affine Jump Diffusion model is given in (3.1) with Lévy density of the jump process equal to λ e−x/μ

μ 1{x>0} (compound Poisson
process with exponentially distributed jumps). EXP-OU-FI model is given in (3.3) with driving process being the fractional Brownian motion

Bδ,t . Non-Gaussian-OU model is given in (3.2) with Lévy subordinator having Lévy density given by c e−λx

xβ+1 1{x>0} (tempered stable process).

EXP-OU-Lévy model is given in (3.3) with Lévy density of the pure-jump driving Lévy process equal to c e−λ|x|
|x|β+1 (tempered stable process).

the 5-minute price increments bigger in absolute value than the
truncation level (c = 1.50), and then aggregate to 10-minutes
and compute the power variation from them (without any fur-
ther truncation). Finally, using the power variations over the
two frequencies, we compute the activity signature function
for interval t using (4.4). Since it is impossible to report in
any sensible manner each of the activity functions bX,t(p), a
summary measure based on robust methods needs to bo com-
puted: the quantile activity signature function defined in (4.5)
and the quartiles q = 0.25,0.50,0.75, commonly used in statis-
tics, prove informative.

Recall in presence of jumps

bX,t(p)
P−→ max(β,p),

from the asymptotic analysis. So, in finite samples we expect
the median QASF, B0.50(p), to be close to β for powers p < β ,
close to p for p > β , and curvilinear for p in a neighborhood of
β . The upper and lower QASFs B0.75(p) and B0.25(p) provide
an indication of sampling dispersion.

As a check, we compute the QASFs on simulated realiza-
tions for a few well-known volatility models where the value of
β is given. These simulated realizations follow standard con-
ventions with annualized volatility based on 252 trading days
per year. We simulate the different volatility models over a total
of 4400 days, which corresponds to 200 months. Of course the
activity level, which recall we just denote β here, is the same
for all simulated months, but that need not be the case with ob-
served data.

We start with an affine jump diffusion where the QASFs
are shown in the top left and right-hand rows of Figure 1. In
the top left, jumps are suppressed (Case AJD-no-jumps), the
process is continuous, and the QASFs are flat around β = 2 as
expected. In the top right (Case AJD-E) large rare jumps are
added in to the Brownian diffusion. Now the QASFs are flat
around β = 2 for p ≤ 2, since the continuous component dom-
inates here, while for p > 2 the curves slope upwards to the
asymptotic value p. The sharp break in slope at p = 2 in the
top right plot in Figure 1 is due to the dominance of the large
jumps; this behavior might be unlikely in practice where only
few months can have such big jumps, and the plots therefore
should be regarded as a robustness check.

The plots in the second two rows in Figure 1 pertain to a
Brownian long memory stochastic volatility with parameter set-
tings B in Table 1. To contrast the different activity of the spot
variance and the VIX index in this model, we calculate also the
QASFs of the unobservable spot variance. In the second row
left-side are the QASFs for the simulated spot variance process,
which are flat, reflecting continuity of the process, but around a
value well less than 2.0. The reason is that the spot variance is
not a semimartingale so there is no constraint that its QASF as-
ymptotically pass through the point (2,2). The height of the as-
ymptotic value of the activity signature function is determined
by the fractional difference parameter d. Interestingly, for the
second row right-hand side the QASFs for the VIX index asso-
ciated with this spot volatility process are flat lines around 2.0,
which has to be the case asymptotically because the VIX is a
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Figure 1. QASFs for various stochastic volatility models. In each panel the three quantiles that are displayed are the 25th, 50th, and 75th, and
are computed on the basis of 200 months of simulated data. The top left and right panels correspond to the AJD-no jumps and AJD-E, respec-
tively, models. The middle panels correspond to the EXP-OU-FI model. The bottom left and right panels correspond to the Non-Gaussian-OU
and EXP-OU-Lévy, respectively, specifications. All model specifications are given in Table 1. In all cases but the middle right panel, the QASFs
are based on the VIX index. QASFs for the middle-left panel are for the spot variance series. The truncation level in all cases is c = 1.5.

portfolio of traded securities and thereby must be a semimartin-
gale.

Finally, the two plots in the bottom row pertain to mod-
els where volatility is a pure-jump process with no continuous
component. The plot in the lower left of third row, pertains to
the non-Gaussian OU model Case C in Table 1. The value of β

of the driving Lévy process is 0.50, but the bend occurs around
p = 1.0. The reason is that the non-Gaussian OU model has a
drift component, which must have an activity index of 1.0, and
the approach taken here always reveals the index of the domi-
nant component. The plot in the lower right row pertains to the
Lévy-driven OU process, Case D in Table 1 where β = 1.50.
There is a soft bend around the true value of p = 1.50 and the
jumps are quite apparent for p ≥ 2.00. The softness bend around
p = 1.50 indicates that for higher values of the index the plots
are just indicative and will not reveal the actual value with high
precision.

5.2 Assessment of the Activity Estimator

The Monte Carlo assessment of the accuracy of the estimator
(4.6) for each of the cases is shown in Table 2. We computed
the estimator for 5-minute returns for a 6.5 hour day, pooled
over a period of a “month” (comprised of 22 trading days) and
replicated 1000 times. The power parameter is p = 0.95, but the
results are quite insensitive to the choice of p of the range 0.50
to 1.00. Table 2 shows the median and the median absolute de-
viation about the median as measures of central tendency and
variability, respectively. The reported results include no trunca-
tion (NT) and truncation (T) at level c in (4.1).

Results for the affine jump diffusion are in the first four rows
of Table 2. The estimator without truncation (NT) is unbiased
and reasonably accurate, except in the cases AJD-E and AJD-E-
JS, where rather large jumps have been added to the diffusion.
The case AJD-E-JS always contains at least one large jump in
each simulated month. We are very grateful to a referee for
pointing out that such large jumps could impart a finite sam-
ple downward bias. The truncation point c = 1.50 (recall VIX
index is quoted in annualized percentage units) is very mild,
as it eliminates only one or two large moves per period, but as
seen from the table in the (T) column it properly corrects for
the downward bias.

Overall, Table 2 suggests the estimator is quite well behaved,
regardless of whether the jumps are finitely or infinitely ac-
tive and of bounded or unbounded variation. The truncation has
no essential effect in any of the infinite activity cases, and it
is really needed only in finite samples to guard against huge
large rare jumps (which asymptotically do not matter). The dis-
persion measure suggests the estimator is accurate to within a
range between ±0.05 to ±0.10.

5.3 Assessment of the Test for a Brownian Component

We also evaluated the test for a Brownian component over
the same set of replications and summarize the findings in Ta-
ble 3. For the first five cases of an affine jump diffusion, the null
hypothesis is true, so the rejection rates represent the size of the
test. Now it is seen that the truncation (T) is much more impor-
tant for the actual size to agree closely with the nominal size.
In the long memory model, the null is also true but the trunca-
tion is irrelevant for this case. In the last two cases of pure jump
volatility models the test is seen to have very high power.
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Table 2. Small sample behavior of β̂

med(β̂) MAD

Case β NT T NT T

AJD-no jumps 2.00 2.01 2.01 0.081 0.079
AJD-LJ 2.00 2.00 2.01 0.086 0.079
AJD-HJ 2.00 1.98 2.00 0.081 0.081
AJD-E 2.00 1.92 2.00 0.093 0.082
AJD-E-JS 2.00 1.91 2.00 0.080 0.076
EXP-OU-FI 2.00 1.99 1.99 0.088 0.088
NOU 1.00 1.06 1.06 0.010 0.010
EXP-OU-Lévy 1.50 1.69 1.71 0.052 0.052

NOTE: Med is the median function; MAD = med |β̂ − med(β̂)|; NT indicates no truncation; T indicates trun-
cation with c = 1.5; case AJD-E-JS is the same as AJD-E but we keep only simulations in which the estimation
period contains at least one jump. There are 1000 replications of one month’s worth of 5-minute observations. The
estimator β̂ is given in (4.6) for p = 0.95.

6. EMPIRICAL APPLICATION

We use high-frequency data on the VIX index computed
by the CBOE along with S&P 500 index futures returns. The
dataset spans the period from September 22, 2003 until De-
cember 31, 2008, for a total of 1212 trading days which cor-
responds to 64 calendar months. Within each day, we use 5-
minute records of the VIX index and the S&P 500 futures con-
tract from 9.35 till 16.00 (EST) corresponding to 78 price ob-
servations per day.

Table 4 shows simple summary statistics and the top two pan-
els of Figure 2 show plots of the high-frequency series. The
sample moments of the series as shown in Table 4 are not sur-
prising in view of the fact that the VIX is nonnegative, posi-
tively autocorrelated, and right-skewed, together with the fact
that the sample includes the very volatile year 2008. The sta-
tistics on the ratio of the daily realized variance (RV) at the
5-minute and 10-minute levels are a check on possible mi-
crostructure noise, since RV should be invariant to the sampling
frequency in the absence of noise. These statistics suggest that
noise is unlikely to be much of a problem but we need to be just
a little guarded in interpreting the results for the S&P futures
returns.

The paths of both VIX and S&P 500 index series exhibit dis-
continuities. We tested the null hypothesis that in each month
there is at least one jump using the test of Ait-Sahalia and Jacod
(2009b), where we stress our alternative is of no jumps. At the
5% level of significance we can reject the null of the presence
of jumps in only 14 and 23 months, respectively, for the VIX
and the S&P 500 index.

6.1 How Active Are Stock Market Volatility
and Returns?

To address these questions we start by displaying the Quan-
tile Activity Signature Function (QASF) for each series, com-
puted as developed in Todorov and Tauchen (2010a) for the
25th, 50th, and 75th quantiles. The unit interval used in the
computation of the ASFs, as well as the rest of the statistics
based on them, is a calendar month. The QASFs for 5-minute
sampling are shown in the middle panels of Figure 2 with the
VIX on the left and the S&P futures index on the right.

The contrasts between the VIX and the S&P index QASFs
are small but quite noteworthy. The median and 75th QASFs for
the VIX series on the left are just below 2.00 for powers p up to

Table 3. Size and power of the test for a Brownian component

Rejection rates (percent)

NT T

α = 5% α = 10% α = 5% α = 10%

Size
AJD-no jumps 3.6 8.1 3.6 8.1
AJD-LJ 8.8 13.1 4.0 7.9
AJD-HJ 7.4 12.9 4.5 9.2
AJD-E 20.8 29.4 3.7 9.6
AJD-E-JS 21.3 32.7 4.3 9.9
EXP-OU-FI 3.5 10.5 3.5 10.5

Power
NOU 100.0 100.0 100.0 100.0
EXP-OU-Lévy 92.9 97.0 87.9 94.1

NOTE: Case AJD-E-JS is the same as AJD-E but we keep only simulations in which each estimation period
contains at least one jump. The rejection rates are based on 1000 replications of one month’s worth of 5-minute
observations. In the construction of the test p = 0.95. NT indicates no truncation; T indicates truncation with
c = 1.5.
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Table 4. Summary statistics for the data

Statistics VIX index S&P 500 index

Mean 18.26 −2.94
Std 10.52 20.84
Skewness 3.28 −0.89
Kurtosis 15.02 28.47

5-min autocorrelation 0.07 −0.03

quant0.25(RV10/RV5) 0.87 0.82
quant0.50(RV10/RV5) 1.00 0.94
quant0.75(RV10/RV5) 1.13 1.04

NOTE: The mean and standard deviation of the S&P index daily returns are annualized by multiplying by 252,

respectively
√

252, and are reported in percentage terms. The statistics on realized variation (RV) are the quartiles
of the ratios of daily RV at the 10 and 5-minute frequencies.

about 1.90, which would be expected for a pure jump process
with a relatively high activity level around in the range 1.60–
1.90 or so. On the other hand, for the S&P index the QASF
is centered right on 2.00 for powers up to 2.00, which would
be expected of a process comprised of a Bronian diffusion plus
jumps. These indications appear to be consistent over sampling
interval, since the plots in the lower two panels of Figure 2 for
the 10-minute frequency appear similar to the two middle pan-
els.

Visual impressions notwithstand, we need to examine both
the point estimates of the activity levels and the formal test
for the presence or absence of a continuous component. We
do this across the range of powers p = 0.50,0.70,0.95. On
Figure 3 we also plot a scatter of the activity estimates, cor-
responding to p = 0.95, for the two series and all months in the

sample. The left-hand sides of Table 5 show the medians of the
monthly point estimates along with the median absolute devia-
tion about the median (MAD). The estimates indicate that the
activity index for the VIX is in the range 1.73–1.83 and essen-
tially exactly 2.00 for the S&P index; interestingly, the preci-
sion level of ±0.10 is consistent with that found in the Monte
Carlo work for this sampling frequency. The right-hand side
of Table 5 shows the outcomes, that is, the the rejection rates,
for the formal test for the absence of a continuous component,
which is derived in Todorov and Tauchen (2010a) and based on
our estimator of the activity index. The rejection rates are for
three values of p between 0.50 and 1.00. The null hypothesis of
the test is that the underlying process contains continuous mar-
tingale plus possibly jumps, where perforce the index is 2.00.
The alternative is that the underlying process lacks a continu-

Figure 2. Activity estimation results. The left panels correspond to the VIX index and the right ones to the S&P 500 index. The top two
panels plot the high-frequency data. The middle panels report QASFs for 5-minute sampling frequency and the bottom panels for 10-minute
sampling frequency. The QASFs are computed using 64 monthly ASF estimates for the sample period September 2003 till December 2008. The
quantiles that are displayed are the 25th, 50th, and 75th. The truncation level for both series is c = 1.5 The dashed lines in the two left bottom
panels are straight lines at 2.
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Figure 3. Scatterplot of the activity estimates. The estimates of the activity index correspond to p = 0.95 and truncation c = 1.5.

ous martingale and the index is thereby less than 2.00, so the
test is one sided. Small values of the log of the estimator rel-
ative to log(2.00) discredit the null hypothesis. In Table 5, for
the VIX the test rejection indicates no continuous component
in half of the periods at p = 0.70 with similar rejection rates for
the other values of p, while for the S&P 500 index the rejection
rates always lie below the nominal significance level of the test.

Since the truncation level c used in computing bX,t(p) is a
tuning parameter, it is essential to assess the sensitivity of our
key finding regarding the activity level of the VIX index with re-
spect to the choice of the truncation point. Until now in the em-
pirical analysis, as in the Monte Carlo study, we have used very
mild truncation corresponding to removing on average only one
high-frequency increment per month. In Table 6 we report also
estimation results for other choices of c that result in a much
more severe truncation. As seen from the table, our findings re-
garding the volatility activity seem reasonably insensitive to the
choice of c.

To summarize, the evidence suggests that the VIX index is a
pure-jump process without a continuous component and a rela-
tively high activity index. The S&P 500 index itself, in contrast,
is clearly a continuous plus jump process, which is consistent

with findings in other studies regarding the characteristics of fi-
nancial price indices (Todorov and Tauchen 2010a and the ref-
erences therein).

To the extent our evidence can be confirmed by future re-
search, there would be important implications for modeling
of the spot stochastic volatility process {σ 2

t }. First, the ab-
sence of a continuous component suggests that models such
as the CGMY model are potentially plausible volatility mod-
els, and the pricing of volatility derivatives would be substan-
tially model complicated as noted in Cont and Tankov (2004),
section III, pp. 245–494. Second, affine jump diffusions appear
unlikely candidates for volatility, since the contrast between the
top right panel of Figure 1 and the middle-left and bottom-left
panels of Figure 2, together with the results in Table 5, suggest
that this sort of model was unlikely to have generated the data.
The same contrast appears for the other affine jump diffusion
specifications of Table 1, whose QASF plots are not shown for
reasons of space. Third, the pure-jump models of Barndorff-
Nielsen and Shephard (2001) would also be unlikely candi-
dates. The driving Lévy process for these models must have
an activity index less than unity, and the volatility series itself
will have an activity index of at most unity due to the drift,
which dominates, and we estimate activity levels well above

Table 5. Estimates of βX and tests for a Brownian component

Statistics Rejections (%)

p med(β̂) MAD 5% 10%

VIX
0.50 1.73 0.112 57.8 62.5
0.70 1.77 0.105 50.0 60.9
0.95 1.83 0.107 45.3 51.6

S&P 500 index
0.50 2.02 0.141 3.1 6.3
0.70 2.04 0.120 3.1 3.1
0.95 2.06 0.107 1.6 3.1

NOTE: The median, MAD = med |β̂ − med(β̂)|, and the rejection rates for the test are computed using 64
monthly estimates and tests for the sample period September 2003 till December 2008. The truncation used for
both series is c = 1.5.
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Table 6. Robustness of estimated βX for VIX index with respect to truncation level c

Truncation c = 0.5 Truncation c = 1.0 Truncation c = 1.5

p med(β̂) MAD med(β̂) MAD med(β̂) MAD

0.50 1.76 0.111 1.75 0.115 1.73 0.112
0.70 1.81 0.107 1.79 0.113 1.77 0.105
0.95 1.84 0.099 1.84 0.111 1.83 0.107

NOTE: Notation as in Table 5. Truncation c = 0.5 corresponds to 3.57 standard deviations for a 5-minute intraday
change in the VIX index in our sample.

unity. The most plausible class of models would seem to be the
EXP-OU-Lévy discussed in Section 3, since these models can
ensure positivity and accommodate a pure jump model with ac-
tivity indices above unity, as we find in the data.

Finally, we should point out that our conclusions about the
volatility modeling rely on an estimate for the VIX index activ-
ity, which although less than 2, is nevertheless still very close to
it. Therefore, our estimation results can potentially still be gen-
erated from a volatility process with a continuous martingale
in it. However for this to happen, given our robustness checks
of the estimation procedure, the continuous martingale should
have a relatively small contribution in the power variation at
the 5-minute frequency (asymptotically, i.e., as we sample more
frequently, the continuous martingale will eventually dominate
the power variation). This is not the case for most parametric
jump-diffusion volatility models used to date as we illustrated
in our Monte Carlo. Thus, at the very least, our results indi-
cate that jumps play a much more prominent role in volatility
modeling.

6.2 Are Market Volatility and Price Jumps Related?

Having detected the presence of jumps both in the S&P 500
index and the VIX index, a natural question arises about their
dependence. We address this question in this section using the
nonparametric tests developed in Jacod and Todorov (2009).
Before presenting the tests and applying them to our dataset,
we briefly summarize previous findings based on parametric or
semiparametric specifications. As mentioned in the introduc-
tion, the most commonly used model in finance which allows
for jumps both in the price and the stochastic volatility is the
double-jump model of Duffie, Pan, and Singleton (2000). In
their general specification, Duffie, Pan, and Singleton (2000)
allow for independent as well as dependent jumps in the index
and its stochastic volatility. The studies that estimate double-
jump models restrict them to arrive always together; see, for
example, Chernov et al. (2003), Eraker, Johannes, and Polson
(2003). These papers, however find that the correlation between
the jump sizes in the price and volatility is not statistically
different from zero. On the other hand, using high-frequency
data and in the context of a pure jump model for the volatility,
Todorov (2010) finds strong semiparametric evidence for de-
pendent price and volatility jumps although perfect dependence
is rejected.

Determining whether the jumps in the price and volatility ar-
rive together and if so whether they are dependent is crucial
from the perspective of successful risk management and con-
sistent derivative pricing; see, for example, Cont and Kokholm

(2009), as well as for determining the volatility and jump risk
premia. Therefore, here we investigate this important question
in a completely nonparametric framework. In doing so we rely
on the VIX data and Theorem 1(b) linking the jump times of
the VIX and the spot variance.

First, we investigate whether the jumps in the S&P 500 index
and the VIX index arrive at the same time. For this, following
Jacod and Todorov (2009), we use the following test statistic
defined for two arbitrary processes X and Y observed over the
time interval (t − 1, t) at frequency 	n

Tcj(t) = Vt(X,Y,2,2	n)

Vt(X,Y,2,	n)
, (6.1)

where Vt(X,Y, r,	n) is the following analogue of the realized
power variation in a two-dimensional context

Vt(X,Y, r,	n) =
[1/	n]∑

i=1

∣∣Xt−1+i	n − Xt−1+(i−1)	n

∣∣r

× ∣∣Yt−1+i	n − Yt−1+(i−1)	n

∣∣r
. (6.2)

If there is common arrival of jumps in X and Y over the in-
terval (t − 1, t], then this statistic converges to 1 (as 	n → 0),
while if the jumps in the two series never arrive together the
limiting value of Tcj(t) is “around” 2. The intuition for that
is that when common jumps are present then Vt(X,Y,2,	n)

and Vt(X,Y,2,	n) converge to the same limit (which is∑
s∈[t−1,t) |	Xs|2|	Ys|2). Under the alternative of no common

jumps, as for the univariate results in (4.3), we will need rescal-
ing of Vt(X,Y,2,	n) (which will depend on 	n) in order for it
not to degenerate to zero (or infinity). For more details we refer
to Jacod and Todorov (2009).

We calculated Tcj for each day in our sample. The median
value of Tcj is 1.389, which is relatively close to the value of 1,
corresponding to common arrival of jumps in the price and the
stochastic volatility. More formally, we also conducted a formal
test using Tcj and the testing procedure outlined in Jacod and
Todorov (2009). For 5 percent significance we failed to reject
the null of common arrival of jumps in 838 out of the 1212 days
in the sample.

Another useful statistic that allows us to analyze cojump-
ing in market volatility and market price level is the “realized”
correlation between the squared jumps in those two series. For
two arbitrary processes X and Y observed over the time interval
(t − 1, t) at frequency 	n, the realized correlation is defined as

Rcj(t) = Vt(X,Y,2,	n)√
Vt(X,4,	n)Vt(Y,4,	n)

. (6.3)
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Figure 4. Histogram of daily realized correlation between price and volatility jumps.

A value of zero of this statistic means disjoint arrival of jumps,
while value close to 1 is evidence for a perfect dependence be-
tween the jumps in the two series over the given interval of time.
This comes from the fact that when jumps are present we have
Vt(X,Y,2,	n) ≈ ∑

s∈[t−1,t) |	Xs|2|	Ys|2 and Vt(Z,4,	n) ≈∑
s∈[t−1,t) |	Zs|4 for Z = X,Y (see Jacod and Todorov 2009

for more details).
The histogram of the (daily) realized correlation between the

jumps in the S&P 500 index and the VIX index is plotted on
Figure 4. As seen from the histogram, there is not only over-
whelming evidence for common arrival of jumps, but also for
a strong dependence between the realized jumps in the two se-
ries. This suggests that the jumps in volatility and market level
should be modeled jointly. This result casts also doubt on the
plausibility of empirical findings, based on affine jump diffu-
sion models, for statistically insignificant dependence between
the jump size of volatility and price jumps. Given the strong de-
pendence between price and volatility jumps, we next explore
whether the common jumps in the two series happen in the same
direction. We do this by splitting Vt(X,Y, r,	n) into cojump
variation due to jumps in the same direction and one due to
jumps in the opposite direction which we denote, respectively,
as V+

t (X,Y,2,	n) and V−
t (X,Y,2,	n). The mean and the me-

dian of the ratio V−
t (X,Y,2,	n)

Vt(X,Y,2,	n)
in our sample are, respectively,

0.921 and 0.997. Thus, almost all of the common jump vari-
ation in price and volatility is due to jumps in opposite direc-
tions. This is consistent with models generating dynamic lever-
age effect through jumps, for example, Barndorff-Nielsen and
Shephard (2001) and Todorov and Tauchen (2006), in which a
negative price jump leads to an increase in the future volatility.

7. CONCLUDING REMARKS

This article shows in practical terms how to use high fre-
quency options data (the VIX index) to make nonparametric in-
ferences regarding the activity level of stock market volatility.
The empirical implementation examines volatility dynamics us-
ing 5-minute and 10-minute level data on the VIX index and the

S&P 500 index. The data are noisy and empirical conclusions
are not unambiguously clear cut, but nonetheless we present
initial evidence suggesting a good stochastic volatility model
could be one of the pure jump type whose driving jumps come
from a very active Lévy process. Also, the volatility jumps and
market price jumps occur in most cases at the same time and
exhibit high negative dependence.

Our empirical findings, if futher confirmed, can lead to sev-
eral economically important conclusions. First, on an individ-
ual investor level, the pure jump dynamics of stochastic volatil-
ity would imply that hedging is quite complicated. This is in
contrast with diffusive volatility dynamics in which a derivative
instrument sensitive to the volatility suffices; see, for example,
Liu and Pan (2003). A very active pure jump nature of volatil-
ity would mean that the volatility risk cannot be spanned with
a handful of derivatives instruments. Also, the finding of strong
dependence between the price and volatility jumps additionally
complicates hedging. If volatility and price jumps were inde-
pendent, then the investor could use deep-out-of-the-money put
options to hedge against the price jump risk and at-the-money
options to hedge the volatility risk. Our findings suggest that
volatility and jump risks share common origins and therefore
such separate hedging cannot be expected to work well. Fur-
thermore the two jump risks cannot be spanned with commonly
traded derivative instruments, including variance swaps.

Second, on a macro level our empirical evidence has implica-
tions for the risk premia associated with price jumps and volatil-
ity risk. Typically these risk premia are modeled separately, for
example, price jump risk is modeled as a compensation for
jump size risk only which is independent from the stochastic
volatility. However, our results suggest that (negative) jumps on
the market are associated with increase in the stochastic vari-
ance σ 2

t and therefore at least part of the volatility risk either
coincides or is highly correlated with the price jump risk. Thus,
volatility and price jump risk premia share compensations for
similar risks, and therefore should be modeled jointly.
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8. PROOF OF THEOREM 1

First, using, for example, theorem V.32 in Protter (2004), we
have that the vector ft is a strong Markov process. Therefore,
the probability of fs under Q conditioned on the filtration Ft for
s > t is a function only of ft. Also, using the differentiability as-
sumption on the functions g(i)

j (·), we have that for s ∈ [t, t +N],
fs conditional on Ft is a random function of ft which by theo-
rem V.40 in Protter (2004) is continuously differentiable. There-
fore, EQ(σ 2

s |Ft) is a continuously differentiable function of ft
for s ≥ t and from here we also have the continuous differentia-
bility of EQ([S,S]c

t+N − [S,S]c
t |Ft) in ft.

For the discontinuous part of the quadratic variation, using
the definition of a jump compensator (see Jacod and Shiryaev
2003, theorem II.1.8), we have that

EQ([S,S]d
t+N − [S,S]d

t |Ft)

=
∫

R

x2η(dx)EQ

(∫ t+N

t
G(d)(fs)

∣∣Ft

)
,

and from here repeating the analysis for the continuous
quadratic variation above, we have the continuous differentia-
bility of EQ([S,S]d

t+N − [S,S]d
t |Ft) in ft as well. Hence νt is

continuously differentiable in ft .
Part a. Given the continuous differentiability of νt [and the

nonvanishing first derivatives of F(·)] for an arbitrary ω in the
probability space we have

k(ω)Vt(σ
2, r,	n) ≤ Vt(ν, r,	n)

≤ K(ω)Vt(σ
2, r,	n),

t > 1, r > 0, (8.1)

for some finite constants 0 < k(ω) ≤ K(ω), where we made use
of the fact that the first derivatives of G(c)(·), G(d)(·), and F(·)
are continuous functions of càdlàg processes and hence are lo-
cally bounded. From here, using the definition (4.1), we have
the result in (4.8).

Part b. Given the monotonicity assumption on F and the fact
that the sets of jump times of f (i)

t for i = 1, . . . , k are almost
surely disjoint [because of the independence of the driving Lévy
processes Z(i)

tj ], we have for every x in the support of ft and

y ∈ Rk/{0} that F(x + y) �= F(x).
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