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Econometrica, Vol. 59, No. 2 (March, 1991), 371-396 

QUADRATURE-BASED METHODS FOR OBTAINING 
APPROXIMATE SOLUTIONS TO NONLINEAR ASSET 

PRICING MODELS' 

BY GEORGE TAUCHEN AND ROBERT HUSSEY 

The paper develops a discrete state space solution method for a class of nonlinear 
rational expectations models. The method works by using numerical quadrature rules to 
approximate the integral operators that arise in stochastic intertemporal models. The 
method is particularly useful for approximating asset pricing models and has potential 
applications in other problems as well. An empirical application uses the method to study 
the relationship between the risk premium and the conditional variability of the equity 
return under an ARCH endowment process. 

KEYWORDS: Nonlinear rational expectations model, numerical integration, risk premi- 
ums. 

1. INTRODUCTION 

NONLINEAR DYNAMIC RATIONAL EXPECTATIONS MODELS rarely admit explicit 
solutions. Techniques like the method of undetermined coefficients or forward- 
looking expansions, which often work well for linear models, rarely provide 
explicit solutions for nonlinear models. The lack of explicit solutions compli- 
cates the tasks of analyzing the dynamic properties of such models and generat- 
ing simulated realizations for applied policy work and other purposes. 

This paper develops a discrete state-space approximation method for a 
specific class of nonlinear rational expectations models. The class of models is 
distinguished by two features: First, the solution functions for the endogenous 
variables are functions of at most a finite number of lags of an exogenous 
stationary state vector. Second, the expectational equations of the model take 
the form of integral equations, or more precisely, Fredholm equations of the 
second type. 

The key component of the method is a technique, based on numerical 
quadrature, for forming a discrete approximation to a general time series 
conditional density. More specifically, the technique provides a means for 
calibrating a Markov chain, with a discrete state space, whose probability 
distribution closely approximates the distribution of a given time series. The 
quality of the approximation can be expected to get better as the discrete state 
space is made sufficiently finer. The term "discrete" is used here in reference to 
the range space of the random variables and not to the time index; time is 
always discrete in our analysis. 

The discretization technique is primarily useful for taking a discrete approxi- 
mation to the conditional density of the strictly exogenous variables of a model. 
The specification of this conditional density could be based on a variety of 

1Financial support under NSF Grants SES-8520244 and SES-8810357 is acknowledged. We thank 
the co-editor and referees of earlier drafts for many, many helpful comments that substantially 
improved the manuscript. 
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372 GEORGE TAUCHEN AND ROBERT HUSSEY 

factors depending upon the application. For instance, it could be specified 
a priori by a researcher interested in exploring the time series properties of a 
particular model under various assumptions about the dynamics of the driving 
variables. On the other hand, in the interest of obtaining realistic calibration, 
the conditional density might be estimated directly from data using either a 
parametric or nonparametric procedure. In Section 5 below, we present an 
application where the conditional density is obtained via estimation of an 
ARCH model. 

Asset pricing models without endogenous state variables (Mehra and Prescott 
(1985), Donaldson and Mehra (1984)) are particularly well suited for approxi- 
mate solution via discrete methods.2 For these models, once the state space is 
made discrete, then solution of the expectational equations only involves matrix 
inversion. Thus a discrete state space approach essentially maps the "difficult" 
problem of solving expectational equations into linear "approximating" prob- 
lems requiring only matrix inversion. This paper goes beyond the just-cited work 
by identifying and making explicit the mapping from the continuous problem to 
the discrete linear problem and by providing an efficient method based on 
numerical quadrature for calibrating the discrete state-space economy. 

The general form that describes the class of models considered in this paper 
can be explained most easily when the dynamics of the M-dimensional driving 
process {(y} are characterized by a conditional density, f(yt+1 yt), that depends 
upon at most one lag. For simplicity we write the conditional density as f(y I x), 
where y represents the value "one period hence" and x represents the 
conditioning value. In this case, the equations of the economic models in this 
class can be written in the form of the integral equation 

(1.1) v(x) = ir(y, x) v(y)f(Ylx) dy + g(x) 

where qf(y, x) and g(x) are functions of x and y that depend upon the specific 
structure of the economic model, and where v(x) is the solution function of the 
model. The function v may be vector valued, and then the integral in (1.1) is 
taken elementwise. Equation (1.1) is a general form of the basic equations of 
the utility-based asset pricing model, though it encompasses other models as 
well. In particular, (1.1) is of the form analyzed by Lucas and Stokey (1987) and 
is an important component of the model of Eichenbaum and Singleton (1986). 

2An endogenous state variable is an endogenous variable of a model whose solution function 
depends upon the entire infinite past of the exogenous process. For example, in the capital growth 
model described in Taylor and Uhlig (1990), the decision rule expresses the optimal choice of the 
current capital stock as a nonlinear function of the lagged capital stock and the exogenous 
technology shock. After using recursive back substitution through the decision rule to express the 
current capital stock as a function of the exogenous technology shock only, the dependence extends 
into the infinite past. With such infinite dependence, discretization of the state space will not reduce 
the Euler equation to the solution of a finite system of equations in a finite number of unknowns. 
This reduction, on the other hand, does occur for the asset pricing models that motivate this paper. 
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QUADRATURE-BASED METHODS 373 

The best way to discuss numerical approximation of integral equations is to 
employ an operator-theoretic notation. Write (1.1) as 

v = T[v] +g 

where T[ ] is the operator defined by the integral term in (1.1). Under regularity 
conditions, the operator [I - T]1 exists, where I denotes the identity operator, 
and the exact solution is 

v = [I- T]'lg. 

An approximate solution is obtained using TN in place of T, 

VI= [I-TN] 1gS 

where TN is "close" to T for large N and [I - TN] is "easy" to invert. In some 
cases, the function g is of the form g = T[go] in which case the approximate 
solution is taken as [I- TN]'-TN[g0]. 

The solution method developed in this paper is based on Nystrom's method, 
also called the "quadrature" method, which is a powerful method for the 
numerical treatment of integral equations (Atkinson (1976, pp. 88-92), Baker 
(1978, Chapt. 4), Cryer (1982, pp. 324-332), Wouk (1979, pp. 149-157)). The 
idea is to use a numerical quadrature rule to approximate the integral operator 
T, and then inversion of the operator [I - TN] is equivalent to the straightfor- 
ward problem of inverting a matrix. 

This paper extends that literature by showing how to use the quadrature 
method for the purpose of calibrating the Markov chain approximation to 
f(ylx). The use of quadrature to calibrate the Markov chain represents a major 
extension of Tauchen (1986a, 1986b). Those papers used a simple equispaced 
grid with the transition probabilities being the areas under a homogeneous error 
density for a linear VAR. That approach works well in small problems, but it 
cannot handle large problems efficiently nor can it handle problems with 
complex dynamics, including, among other things, conditional heteroskedastic- 
ity. In this paper, the grid points and transition probabilities are determined by 
f(ylx) in conjunction with a numerical quadrature rule, and the method can 
handle large problems and more elaborate dynamics than those of a linear 
VAR.3 

A discrete approximation to a general time series law of motion f(ylx) has 
applications beyond approximating the asset pricing models that motivate this 
paper. Some of these applications are already underway. As part of a larger 
study of monetary velocity in cash-in-advance models, Hodrick, Kockerlakota, 
and Lucas (1989) use the technique of this paper to calibrate a Markov chain 
model for bivariate money growth and consumption growth. They find that with 
sixteen states of nature the Markov chain can adequLately approximate a 

3We have coded the Markov chain approximation technique and the asset pricing solution 
method in both Gauss and Fortran, and the source code is available upon request. 
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374 GEORGE TAUCHEN AND ROBERT HUSSEY 

VAR(1) model fitted to annual data. Another application is that of Boudoukh 
and Whitelaw (1988), who use the quadrature technique and related ideas to 
study the pricing of mortgage-backed securities and American options. Though 
their securities have a particularly complicated path-dependent cash flow, in test 
cases they get very close approximations to exact solutions with state spaces as 
small as three points. Some other applications are Ghysels and Hall (1990a, 
1990b), who extend the approach to solve and test models with nonnested Euler 
equations, and Kocherlakota (1989), who uses the method as part of a study of 
the plausibility of the parameter values in commonly used representative agent 
models. Burnside (1989) uses versions of the method to approximate predicted 
population moments for method of moments estimation of financial models. 

The Markov chain technique should be useful in any solution algorithm that 
requires a discretization of the law of motion of the exogenous driving processes 
of the model. These algorithms are designed for models that are not subsumed 
by (1.1) because, among other reasons, the underlying operators are nonlinear. 
Hussey (1989), for example, uses the technique to calibrate a Markov chain for 
the technology shock as part of a solution strategy for a model with non- 
quadratic adjustment costs. His algorithm combines the ideas of this paper with 
those of Coleman (1989). The algorithm differs from Tauchen (1990) in that it 
iterates on the Euler equations instead of the value function. Other solution 
methods that could potentially use the quadrature discretization technique are 
those of Baxter, Crucini, and Rouwenhorst (1990) and Christiano (1990). Taylor 
and Uhlig (1990) contains a complete summary of current work in the general 
area of solution strategies for nonlinear equilibrium models. 

The remainder of the paper is organized as follows. Section 2 introduces 
more notation and also presents a motivating example. Section 3 presents the 
details of the approximation method, while Section 4 contains the theoretical 
results. Section 5 contains applications and related material. Section 6 contains 
the concluding remarks. 

2. EXAMPLE: ASSET PRICING EQUATIONS 

Consider a representative agent/exchange economy asset pricing model in 
the style of Lucas (1978) and Mehra and Prescott (1985). Let there be I assets 
and let pi, denote the ex-dividend price in period t of the ith asset. The ith 
asset yields the stochastic dividend stream {di, t+ 1, di,t+2,... }, i = 1, 2,.. ., I. The 
first order conditions for the agent's intertemporal utility maximization problem 
imply that the asset prices follow the expectational equation 

(2.1) Pit= Et[(pi,t+l + d1,t+1)mrst(Ct, Ct+1)] (i = 1,2, ..., I) 

where EJ[ ] is the conditional expectations operator given information available 
to the agent through period t, ct is the agent's consumption in period t, and 
mrst(ct, Ct +1) is the agent's marginal rate of substitution between consumption 
in periods t and t + 1. The subscript t on mrs reflects possible dependence of 
the marginal rate of substitution on variables dated period t or earlier due to 
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nonseparabilities in the agent's intertemporal utility function. One should note 
that, in general, under time nonseparable preferences, mrst(ct, ct +1) may de- 
pend upon expectations as of time t and t + 1 of functions of future consump- 
tion from time t + 2 out to some finite horizon. However, this dependence is not 
made explicit here as it needlessly complicates the notation. In implementing 
the discrete method of Section 3, one computes these expectations directly from 
the Markov chain model for the state vector by applying, as need be, the law of 
iterated expectations. 

Following Mehra and Prescott (1985), we rewrite the basic asset pricing 
equation (2.1) to express it in terms of growth rates, which will be taken to be 
stationary and Markovian. Specifically, define the consumption growth and 
dividend growth variables, q,=c,/c,_l and hj,=dj,1dj, -. In addition as- 
sume the agent's intertemporal utility function is homogeneous, so that 

mrSt(ct,ct+1)=mt(qt+1) depends only on the growth variables, i.e., on qt+, 
and possibly on qt, qt_ ,..., but not on consumption levels directly. Then 
letting v,t denote the ith asset's price dividend ratio, the asset pricing equation 
(2.1) can be rewritten as 

(2.2) vt =E4E(1 +vi,t+,)h,,t+lmt(qt+)] (i = 1,2,...,I). 

Consumption growth and dividend growth are assumed to be functions of a 
finite-memory stationary stochastic process. Specifically, consumption growth is 
qt = '1(py), and the vector of dividend growth variables is ht = '2(Yt), where 91 
and S02 are functions on RM, and yt is an M x 1 strictly stationary process. 
Letting xt- = (y.-1 y/-2 ..* Yt'-L)' we write the conditional density of yt given 
its past as f(ytIxt_t) or simply f(ylx). Generally, the functions (Pl and S02 will 
be elementary functions.4 Also, the dimension of yt might exceed that of (qth'). 
This would be the case, for example, in a Monte Carlo study where the modeller 
allowed for additional variables in yt that were observed by agents but not by 
the econometrician. 

To write the integral equation corresponding to (2.2), we move the time index 
back one period and view things from the perspective of period t - 1 instead of 
period t, which gives 

(2.3) vi t- i = Et_ 1 [(l + vit)hitmt- t(qt)] - 

The integral form for the asset pricing equation is 

(2.4) vi(x) = f[1 + vi(y, x-)]hif(y)m( y, x)f( ylx) dy, 

where the notation is: 

x: an M L vector whose elements correspond to 

{Yt-1, Yt-2 ... * Yt-L); 

With suitable modifications, one can apply the technique to the original setup of Lucas (1978) 
which assumes stationarity of dividend levels. In this case, yt would be the vector of dividends and 
(P1(y) = E,Y1, (P2(y) =y, y E DM. 
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vj(x): price dividend ratio on asset i as a function of the state of the system; 
x an M (L - 1) vector whose elements correspond to 

(yt-1, Yt-2, .., Yt-L+1}; 

y: an M vector whose elements correspond to yt; 
hi(y): dividend growth on the ith asset; 
m(y, x): marginal rate of substitution between consumption in periods t - 1 

and t; 
f(yIx): conditional density of yt given the system's history. 

The notation becomes simpler by letting q/i(y, x) = hi(y)m(y, x), which is the 
product of dividend growth and the marginal rate of substitution. Then (2.4) 
becomes 

(2.5) ui(x) = f[1 + uv(y, x )]&(y, x)f(yIx) dy (i = 1,2, ... ,1). 

Subsequent sections analyze the properties of the quadrature method for 
approximating the solutions to equations of the form (2.5). 

3. NUMERICAL APPROXIMATION TO RATIONAL EXPECTATIONS INTEGRAL EQUATIONS 

The theory of Nystrom's method is closely related to the theory of numerical 
quadrature, so a brief overview of quadrature is presented first. 

3.1. Numerical Quadrature 

An N-point quadrature rule for integration of functions g(u), u EE IM, 
against a density w(u) is a set of N abscissa uk E RM and weights wk E RM such 
that 

N 

(3.1) fg(u)wj(u) du E g(uk)wk 
k=1 

with convergence for each function g (under regularity conditions) of the 
approximating sum to the integral as N -* oo. The abscissa uk and weights Wk 
depend only on the density w, and not directly on the function g. 

For a classical N-point Gauss rule along the real line, u e 1R1, the abscissa uk 
and weights Wk are determined by forcing the rule to be exact for all polynomi- 
als of degree less than or equal to 2N - 1. (For details see Davis and 
Rabinowitz (1975).) The weights for a Gauss rule and most other good rules are 
nonnegative and the rules integrate the constant function exactly; i.e., the 
weights sum to unity. Thus a quadrature rule can be viewed as a discrete 
probability model that approximates the density co. Indeed, the Gauss rules are 
discrete approximations to co determined by the method of moments using 
moments up through 2N - 1. Gauss rules are close to minimum norm rules and 
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possess several optimum properties (Davis and Rabinowitz (1975)). They are the 
best that can be done with N points using moments as a criterion, because if 
two probability distributions have the same moments up through 2N, and if one 
of the distributions is a discrete distribution concentrated on N points, then the 
two distributions must coincide (Norton and Arnold (1985)). 

Multivariate quadrature, u e RM, is more complex. Stroud (1971, Ch. 3) 
presents the extension of the one-dimensional Gauss rules, wherein the abscissa 
and weights are determined by forcing the rule to be exact for monomials of a 
given degree. Multivariate quadrature becomes much simpler if the density co 
can, after an affine transformation of variables, be factored into the product of 
M one-dimensional densities. (This is analogous to writing Y = ,u + RZ, Y 
NQ.t, Q), Z N(O, I), RR' = Q.) A multivariate product rule can then be formed 
by combining a set of one-dimensional Gauss rules. A product rule has N= 

HIJ,M=J. points, where Jj is the number of points used along the jth axis. 
Problems of high dimension typically require use of a nonproduct rule, which 

generally entails far fewer points than a full product rule. Stroud (1971, Ch. 7 
and 8) presents a "toolkit" of nonproduct rules that have been found to work 
well in a wide class of applied contexts. For instance, a Spherical Lobatto rule 
for integration against the multivariate normal distribution entails N = 2M+ 1 - 1 
points and will integrate exactly all polynomials of degree five or less. For a 
six-dimensional problem, the Spherical Lobatto rule entails N = 127 points, 
while a full Gauss-Hermite product rule requires N = 36 = 729 points to be 
exact for polynomials of degree five or less. 

3.2. Approximation for First-Order Dynamics 

For ease of exposition, we present numerical approximation for the special 
case where the state variable y, is a first-order vector process with law of motion 
given by conditional density f(ylx), with y,x E RaM. The more general case 
y E0 RM, x E RML, entails extra details and is left to Appendix A. 

The integral equation is 

(3.2) v(x) = [1 + v(y)] q( y, x)f (ylx) dy. 

We assume the solution v(x) exists and consider approximating it. Put 

(3.3) A(y, X) = [1 +V(y)]qI(y, X). 

Define I[A] to be the integral operator given by the right-hand side of (3.2), 

(3.4) I[A](x) = A(y, x)f (ylx) dy. 

Now write (3.4) as 

I[A](x) = A(y,x f(ylx) ( y) dy, 
c)(y) 
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where co(y) is some strictly positive weighting function.5 The integral f[ ]w dy 
will be approximated by the quadrature rule EkE ]Wk. There is great latitude in 
the selection of the weighting function, though clearly one would want to select 
a weighting function such that the resulting discrete sums are very close to exact 
integration against f(ylx). For reasons discussed in Subsection 3.3 below, one 
reasonable choice for the weighting function is w(y) =f(yjO), i.e., the condi- 
tional density given that the process is at the unconditional mean, which is taken 
to be zero without loss of generality. 

Let Yk and Wk, k = 1,2,..., N, denote the abscissa and weights for an 
N-point quadrature rule for the density w(y). This rule may be either a product 
rule or a nonproduct rule. One should choose an efficient rule like a product 
Gauss rule for problems of modest dimension or one of the good nonproduct 
rules as given in Stroud (1971, Ch. 7 and 8) for larger problems. 

The approximation based on this rule to I[A](x) in (3.4) is 

N 

(3.5) INA()=EAyk X) 7rN(X), 
k=i1 

where 

(3.6) ik N(X) = 
( 

Wk (k =1,2,... , N) 
S(X)WJ(Yk) 

and 

N f(-JX) 
S(X)= E wi. 

i=1 I)(Y0 

Observe that the weights 7T-N(X) in (3.6) are obtained by replacing integration 
against co(y) with summation using the quadrature rule, and then normalizing 
so that the weights add to unity. Other treatments of Nystrom's method do not 
utilize the renormalization by s(x), but for our purposes it is essential for the 
Markov chain interpretation given below. 

Given (3.5), the approximation to the solution of (3.2) is obtained by evaluat- 
ing IN[A](x) at each of the quadrature abscissa and then solving the implied 
linear system of equations. For this purpose let 

UNj = VN(YI) (j = 1,2, ... I N), 

where UN: R' R denotes the (yet to be determined) approximate solution 
extended to all y EE IM, and let N] = vN(YJ) denote the values of VN at each of 

5A reviewer noted that (3.4) is already in the form f[ ]dwo with co being the identity function, 
though the induced measure (Lebesgue) is not a finite measure. One reason for using a weighting 
function with finite measure is that it allows the user to incorporate prior information about where 
most of the mass of A(y, )f(YI ) lies and also to incorporate prior information about the 
properties of the functional form of f(yI ), including the existence of moments. As noted in 
Subsection 3.3 below, the user needs to be sure, though, that the tails of f(yI )/co(y) are well 
behaved relative to co(y). 
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the abscissa. In addition put 

(3.7) 'IIk'f(V,V), (37)jk = qf( k, Yi) 

(3.8) 7 N( N 

Evaluating IN(A) in (3.5) at x's equal to each of the quadrature abscissa -1 and 
remembering the definition of A in (3.3) gives 

N 

(3.9) VNj N (j = 1,2, ... , N). N 
k 

I' 
1 

N ~j7 
k=1 

The equations (3.9) comprise a system of N linear equations in the UNj which 
can be solved directly. Their solution provides the values of the approximate 
solution to the integral equation (3.2) at each of the quadrature points. The 
Nystrom extension of the solution to the entire domain of x is 

N 

(3.10) WNX) E 1 +TNJO]k( X)7rk (X,x E RM 
k=1 

The {VNI}X 1 in (3.9) are the solutions to the asset pricing equations if one 
views the law of motion of the state vector as a discrete Markov chain with 
range {Yk} and transition probabilities -rjNk = Pr(y, =YkIt-1 = -;). Thus, the 
approximation implicitly provides a means for taking an arbitrary law of motion 
f(ylx) and calibrating a Markov chain whose law of motion closely approxi- 
mates f(ylx). 

3.3. The Weighting Function 

As noted above, there is great latitude in the selection of the weighting 
function, though taking &w(y) =f(yl0) has proved to work very well in practice. 
This choice is motivated by Drezner (1978) who is concerned with the much 
different but related problem of approximating the probability mass of the 
bivariate normal over rectangles. Another a priori reasonable choice is co(y) = 

f,(y), where f5 is the unconditional or stationary density of the process. The 
density f(y10) places relatively more weight in the central part of the distribu- 
tion and less weight in the tails than does f,(y). In numerical evaluation of the 
accuracy of the approximations, it was found that w(y) =f(yl0) gives much 
better approximations except when the maximum magnitude of the characteris- 
tic roots of the autoregression is close to zero, in which case there is little 
difference between f(y10) and f,(y) and the approximations are essentially 
equivalent. 

The choice f(Y10) works well because it balances two conflicting criteria. On 
the one hand, good approximation requires that the weighting density put a lot 
of weight near the unconditional mean, which is zero. But at the same time, the 
ratio of densities f(ylx)/w&(y) must be well behaved in the y tails; i.e., this 
ratio should not grow too fast in either tail relative to w(y). In particular, 
suppose yt is a univariate normal AR(1) process and suppose w(y) = n(y; 0, 02), 
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the normal density with mean zero and variance 02. So long as 02 is at least as 
large as the variance of f(yIO), then for fixed x, f(ylx)/w(y) is at most 
exp[O(y)] in either tail, while w(y) = exp[-O(1y12)]. But if 02 is less than the 
variance of f(yIO), then for fixed x, f(ylx)/w(y) = exp [O(1 Y 12)] in one tail. In 
other words, the choice &w(y) =f(ylO) puts as much probability mass near the 
origin as possible while keeping the tails of f(yJx)/w(y) heavily damped 
relative to those of w(y). 

The selection w(y) =(y IO) does require that the moments of f(y IO) exist and 
are readily computable if one employs a Gauss quadrature rule. These moments 
are obviously available if f(ylx) is conditionally Gaussian, as is the case when 
{(y} is a Gaussian VAR, an ARCH-N process, or a nonlinear autoregression 
with Gaussian errors. More generally, they are available whenever the error 
density has easily computed moments. In some instances, though, computing 
moments beyond the second and calculating the abscissa and weights of a Gauss 
rule might require extra computational work, as would be the case for the 
seminonparametric (SNP) models of Gallant and Tauchen (1989). In these 
instances, one might elect to use either a different quadrature rule or a different 
weighting function, with the choice of the latter guided by the criteria indicated 
in the previous paragraph. For SNP models, a reasonable choice would be to 
leave w(y) =f(yIO) and use a Gauss-Hermite rule, even though the error 
density is non-Gaussian. Such a rule can be expected to work well given that the 
structure of the SNP model takes the form of a polynomial in y and x times a 
normal density. 

4. THEORY 

We now examine the convergence properties of the Markov chain model and 
the approximate solution to asset pricing equations. To keep the notation 
simple, we will do this for the case of first order scalar dynamics, f(ylx), with 
y,x E xR. The extension of the results to the vector case y E RM, x E RML, is very 
straightforward and only involves extra bookkeeping of indexes. We will also 
assume that the support of f(ylx) is a subset of a rectangle [a, b] x [a, b] c R , 
with a < b and both a and b finite. This restriction is more substantive than 
assuming y and x are scalars, and in the applications below the support is 
unbounded. Thus we follow the tradition in this area of research of applying 
results deduced for the case of bounded support to models with unbounded 
support. Sloan (1980, p. 56) writes: 

... the Nystrom method has been restricted to the case of finite intervals. 
Yet many of the integral equations that occur in practice have infinite 
integration regions. In many such cases the [method is] often used in 
practice, but as far as I am aware there exist no error analysis or 
convergence theory that would justify [its] use. This is a challenge for the 
theorists . . 

The main task for extending the results to an unbounded domain is to identify 
the appropriate spaces and norms such that the very general Anselone-Moore 
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conditions will hold.6 These conditions are stated and discussed in Atkinson 
(1976, p. 96) and are also stated in the proof of Theorem 4.3 in Appendix B 
below. 

Let CO[a, b] denote the space of continuous functions on [a, b] equipped with 
the usual sup norm, 1I gI = sup {Ig(y)I: y E [a, b]}. A bounded linear operator on 
CO[a, b] is a mapping T: CO[a, b] -> CO[a, b] such that T[cg] = cT[g], g E 

Co[a, b], c E , and I1TIh = sup {IIT[g]JI: llgll < 1} < oo. 
We will be interested in the properties of N-point quadrature rules for 

integration against density to(y) with support on the interval [a, b]. In the 
remainder of this section the notation will make explicit dependence upon N, 
since we wish to take limits as N tends to infinity. 

DEFINITION 4.1: The triangular array {UNk, WNk}k 1 is a quadrature rule if 

(a) yNkE [a, b], 
N 

(b) WNk 1>O, and E WNk =1. 
k=1 

The quadrature rule defines an approximation to integrals against co, 
N 

(4.1) QN(g)= Eg(YNk)WNk, 
k = 1 

and the well-known Quadrature Theorem makes precise the convergence prop- 
erties of QN: 

THEOREM 4.1 (Quadrature Theorem): Let w be a nonnegative weight function 
such that: (i) w(y) vanishes for y outside [a, b], and (ii) fw(y) dy = 1. Then 

QN(g)* fg(y)wj(y)dy forall gECO[a,b], 

if and only if 

QN( gi) |>*fg( y) w ( y) dy, for each gj, 

where {g1}71 is a dense subset of CO[a, b]. 

This is Theorem 7 of Atkinson (1976, p. 21). 

REMARK 4.1: By construction, Gaussian quadrature rules are exact for all 
polynomials of degree 2N - 1. Thus, taking the {gj} in the theorem to be the set 
of polynomials with rational coefficients, which is dense, establishes the conver- 
gence of QN(g) for all g e Co[a, b] when QN is based on a Gauss rule. Gauss 

6Anselone and Sloan (1985) is a promising start of a theory for the case of an infinite domain, but 
their regularity conditions are also too stringent to cover the class of models employed in Section 5 
below. 
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rules thus provide a wide class of rules for which there will be convergence of 
the approximation sum to the integral. As the theorem indicates, though, other 
rules are appropriate as well so long as they are convergent on a dense set. 

The next two theorems concern the convergence properties of the Markov 
chain model that approximates the law of motion f(ylx) and the associated 
approximate solution to the asset pricing equations. Both theorems presuppose 
the availability of a quadrature rule such that QN(g) -* fg(y)W(y) dy for all 
g e Co[a, b]. The Quadrature Theorem provides a general strategy for con- 
structing such rules, and, as Remark 4.1 indicates, Gauss rules are examples of 
such rules. 

From Section 3, the discrete values of the Markov chain are {MNk} and the 
transition probabilities are of the form NJk = 7Jk(YNj), where 

(4.2) <TN(X) = f 
(YNkx)wNk k 
( & Nk)SN( X) 

with sN(X) = E f = I(MNMIx)wNi/(NM). The function w is a density on [a, b] and 
{YNkI WNk} is an N-point quadrature rule for integration against wo. The consid- 
erations discussed at the end of Section 3 indicated that f(y10) is a good choice 
for the weighting density, though others will work as well and might have to be 
used if f(Y10) vanishes at some points. For g E Co[a, b] define the function eg 
on [a, b] by 

eg(x) = fg(y)f(ylx) dy, 

and define egN by 
N 

egN(x) = k 

k=1 

which are the expectations of g under f( lx) and {7r N(X)}, respectively. 
Under suitable conditions egN-* eg uniformly: 

THEOREM 4.2: Let f(y I x) be a transition probability function on [ a, b] X [ a, b] 
such that f(y I x) is jointly continuous in x and y; let w(y) be a continuous weight 
function on [a, b] such that w(y) > c, for some c > 0 and all y E [a, b], and 
fw(y) dy = 1; let {YNk, WNk} be a quadrature rule such that QN(g) -> fg(y)wo(y) dy 
for all g E Co[a, b]. Then 

IIegN-egII O for each gE Co[a,b]. 

PROOF: Appendix B. 

The theorem provides justification for using the Markov chain model to 
approximate the conditional expectations of interesting nonlinear functions. 
The condition that w be strictly bounded away from zero ensures that the ratio 
in (4.2) is always well defined. The condition could be relaxed, though this 
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would entail added conditions on the zeros of the transition density and the 
weight function to ensure f(yjx)/w(y) is well defined for all y and x. 

We now consider the approximate solution of an asset pricing equation. As in 
Sections 1-3 above, write the asset pricing model as 

(4.3) v(x) = f[I + v(y)]q(y, x)f(ylx) dy, 

or as 

v = T[v] + T[1], 

where 1 is the identity function and T is the integral operator 

(4.4) T[g](x) = fg(y)qi(y,x )f(ylx) dy, g E CO[ a, b]. 

We will be assuming that (I - T)-1 exists and is a bounded linear operator on 
Co[a, b]. The asymptotic result concerns the approximation of the exact solu- 
tion, v = (I - T)1T[1], by the solution VN = (I--TNY1TN[1], where TN is the 
approximating operator defined by the Markov chain model 

N 

(4.5) T[g](X) = X) (X), 
TN[91(X)~ = 

M) 
k1 k=1 

with w7N(X) defined as in (4.2) above. 

THEOREM 4.3: Assume: (i) the same conditions on f(y x) and w(y) as in 
Theorem 4.2; (ii) 0(y, x) is nonnegative and jointly continuous in x and y on 
[a, b] x [a, b]; (iii) the Markov chain model YkN k)} is constructed as in (4.2) 
using a quadrature rule for w such that QN(g) -> Jg(y)w(y) dyfor allg E Co[a, b]; 
and (iv) (I - T)-1 exists as a bounded linear operator on Co[a, b]. Let TN be as in 
(4.5). Then: (1) for sufficiently large N, (I - TN)-1 exists as a bounded linear 
operator on Co[a, b]; and (2) the approximate solution converges to the exact 
solution uniformly: 

IIVN -Vl = |(I- TN) TN[1] - (I- T) 1T[1] |-| . 

PROOF: Appendix B. 

The continuity condition on fr(y, x) will be met in the asset pricing model if 
the marginal utility of within-period consumption is continuous and does not 
vanish on the interval [a, b]. 

REMARK 4.2: As one can see from displays (B.2), (B.3), and (B.4) of Appendix 
B, the rate at which VN ' V is essentially the same as the rate at which the 
quadrature rule converges. Thus, if the Markov chain model is a good approxi- 
mation to f(yIx), then VN can be expected to be an equally good approximation 
of v. 
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TABLE I 

DISCRETE APPROXIMATIONS: AR(1) PROCESSESa 

Abscissa AR Coefficient 

(J) .10 .20 .30 .40 .50 .60 .70 .80 .90 

2 .11 .20 .29 .38 .49 
3 .10 .20 .30 .40 .50 .58 
4 .10 .20 .29 .40 .50 .59 .68 .76 .82 
5 .30 .40 .50 .59 .70 .78 .85 
6 .60 .70 .79 .86 
7 .70 .79 .88 
8 .79 .88 
9 .80 .89 

a Computed by Monte Carlo using realizations of length 100,000; coefficient 
std. dev. equals approximately .001. 

5. APPRAISAL OF THE APPROXIMATIONS AND APPLICATIONS 

5.1. Markov Chains and Asset Pricing 

One direct way to generate evidence on the quality of the quadrature 
approximation is to compare the parameters of linear autoregressive models 
fitted to data simulated from the Markov chain to those of the underlying AR 
model used to calibrate the Markov chain. Tables I through III display the 
coefficients of linear regressions for discrete processes associated with different 
autoregressive models and degrees of fineness of the state space. The regres- 
sions were computed by fitting autoregressive models to Monte Carlo realiza- 
tions of the Markov chains, with each realization of length 100,000. In Tables I 
and II, the underlying continuous processes are univariate AR(1) and AR(2) 
models, respectively, while in Table III the underlying processes are bivariate 
VAR(2) models. In all cases the innovations are independent N(0, .01) variates; 
the choice of .01 for the variance is immaterial since the regressions are 
invariant with respect to equiproportionate scale changes in all variables. The 

TABLE II 

DISCRETE APPROXIMATIONS: AR(2) PROCESSESa 

Abscissa 
AR Coefficients 

(J) .60L- .09L2 1.OOL-.25L2 1.40L-.49L2 1.80L-.81L2 

2 .53 -.06 .74 -.10 
3 .58 -.09 .87 -.20 1.08 -.33 1.23 -.46 
4 .60 -.09 .93 -.22 1.16 -.37 1.32 -.51 
5 .96 -.23 1.22 -.40 1.39 -.55 
6 .98 -.24 1.25 -.41 1.43 -.58 
7 1.28 -.43 1.47 -.59 
8 1.30 -.44 1.50 -.62 
9 1.32 -.45 1.52 -.62 

Computed by Monte Carlo using realizations of length 100,000; coefficient std. 
dev. equals approximately .001. 
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TABLE III 

DISCRETE APPROXIMATIONS: VAR(2) PROCESSESa 

VAR Coefficients 

Abscissa r.60 271 L + -09 .001 L2 r .60 1.091 L [-09 .00 L2 
J J2 L?? 140] .L? -.49 .00 1.40 .00 -.49 

2 2 .51 .20 -.06 .04 .24 .71 -.03 -.01 
.00 .84 .00 -.12 -.01 .84 .01 -.11 

3 3 .55 .25 -.09 .00 .36 .68 -.05 .02 
.00 1.08 .01 -.33 .01 1.09 .01 -.35 

4 4 .58 .26 -.09 .00 .46 .68 -.08 .00 
.00 1.16 .00 -.34 -.01 1.17 .01 -.37 

2 7 .44 .16 -.05 .01 .38 .26 -.04 -.02 
-.01 1.28 .00 -.43 .00 1.28 .00 -.43 

2 8 .45 .15 -.05 .00 .40 .24 -.05 -.03 
.00 1.31 .00 -.47 .01 1.30 -.01 -.44 

2 9 .44 .15 -.05 .00 .42 .23 -.04 -.03 
.00 1.37 .00 -.46 .01 1.32 -.01 -.45 

3 6 .52 .23 -.07 .00 .48 .43 -.08 -.03 
.00 1.25 -.01 -.41 -.02 1.25 .01 -.41 

4 5 .57 .25 -.08 .00 .49 .60 -.08 -.03 
.01 1.22 .00 -.40 -.01 1.22 .00 -.40 

Computed by Monte Carlo using realizations of length 100,000; coefficient std. dev. equals approximately .001. 

leftmost column of each table shows the number of abscissa of the Gauss- 
Hermite quadrature rule used to calibrate the discrete processes. 

The first two tables indicate the importance of the magnitudes of the system's 
eigenvalues for the accuracy of the approximation. For univariate models (Table 
I), the approximation is extremely accurate for very coarse state spaces-as 
coarse as two states of nature-when the eigenvalue is no more than .50 in 
magnitude. Adequate approximation, though, requires successively finer state 
spaces for eigenvalues closer to unity. Comparison of AR(2) to AR(1) models 
(Table II versus Table I) shows that a two-lag system with equal eigenvalues 
requires a few more points to achieve the same degree of approximation as 
would be obtained in a one-lag model with an eigenvalue of the same magni- 
tude. Interestingly, Table III reveals that, for bivariate models, not only the 
magnitudes of the eigenvalues are important for the approximation, but so is 
the degree of the Granger-Sims feedback. Both of the underlying continuous 
VARS in Table III have the same eigenvalues. Nevertheless, the quality of the 
discrete approximations of the coefficients of the first equation differ because 
the feedback from the second variable to the first is much stronger in the model 
on the right side of the table. 

We now examine how well the method works in terms of approximating the 
solutions to the asset pricing models. In particular, we assess the rate of 
convergence of the mean square error from approximating the price dividend 
ratios on assets in Lucas-style exchange economies for various degrees of 
fineness of the discrete state-space models. We expect to achieve reasonably 
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rapid convergence so long as the characteristic roots of the system are not too 
close to unity. As we note in the remarks following Theorem 4.3 above, 
approximate solutions of asset pricing models converge at the same rate as the 
quadrature rule itself, which has been seen to be very good so long as the roots 
are not too close to unity. 

The law of motion for the relevant state vector Yt = (y1tY2t)' is 

LY2t La21 a22 IY2, t-I [82tJ 

where yt = ln(ct/ct_1) and Y2t = ln(dt/dt-1) are logarithmic consumption 
growth and dividend growth, and where elt and 82t are independent normal 
random variables, each with variance .01. The representative agent's per-period 
utility function is of the CRR form u(c) = c(l -Y)/(l - y) and the agent's 
subjective discount factor ,B = .97. Calculations were made for both y = 0.30 
and y = 1.30, but because the results were so similar we only report those for 
y= 0.30. 

Implementation of the discretization is as follows. Given values for the AR 
parameters in (5.1), the rr'(x) and the Nik are computed in the manner 
described in Section 3 using a JxJ product Gauss-Hermite rule where J= 
2,3,.. ., 8. The discrete price dividend ratios -VNj' j = 1, 2,..., N, N = j2are the 
solutions to the associated system of linear equations. 

A measure of accuracy is the mean square approximation error for the 
Nystrom extension VN(X), X E R2, of {T Nij}Jf 1' 

(5.2) MSEN= f 
ER 

3N(x) - E(x)]2fs(x) dx, 

where f, is the stationary distribution of {yt1. We use the continuous extension 
vN(x) to make comparisons across various degrees of fineness of the state space, 
because the sets of abscissa for J-point Gauss-Hermite quadrature rules are 
never the same for different J, and therefore there is not direct way to make 
meaningful comparison of the discrete -VNj* A measure of relative mean square 
error is 

MSEN 
(5.3) REL-MSEN= TVAR 

where 

(5.4) TVAR = f[J(x) -u A]2fs(x) dx 

and where /_t, denotes the unconditional expected value of vc,(x) based on 
fs(x). The relative mean square error measure is analogous to one minus an R2 
statistic. This measure can exceed unity, which will occur if the approximation 
of v. is poorer than what would be obtained by using a constant function equal 
to V. 
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TABLE IV 

RELATIVE MEAN SQUARE ERRORS FROM APPROXIMATING PRICE / DIVIDEND RATIOS 

Abscissa Coefficient on Dividend Growth (a22)' 

(J) .50 .30 .10 -.10 -.30 -.50 -.70 

2 12.836 1.682 .104 .038 .269 2.118 10.738 
3 1.780 1.342E - 02 9.859E - 06 2.349E - 06 1.438E - 03 .121 2.291 
4 .118 7.350E - 05 7.073E - 10 1.290E - 10 9.633E - 06 7.060E - 03 .531 
5 5.411E - 03 3.493E - 07 4.438E - 14 7.344E - 15 7.287E - 08 4.563E - 04 1.015E - 01 
6 2.016E - 04 1.571E - 09 2.673E - 18 4.788E - 19 4.783E - 10 2.676E - 05 1.618E - 02 
7 5.247E - 06 6.029E - 12 3.828E - 22 1.067E - 22 2.185E - 12 9.569E - 07 1.804E - 03 

dall=-.10, al2=a21=0-0;o11=-01,o12=o-211=0-0,o22=-.1- 

Table IV displays the relative MSE's for various values of J and a22 with 
all = -0.10, al2 = a2l = 0. The limiting vu cannot be computed exactly, and for 
the purposes of the calculation the i3O is approximated by the Nystrom extension 
for J = 8. This is quite reasonable as convergence always sets in well before 
then. The integrals in (5.2) and (5.4) were approximated using an 8 x 8 Gauss- 
Hermite rule for the stationary density f5. 

The rate of convergence shown in Table IV is quite rapid. So long as the 
autoregressive coefficient a22 on dividend growth is 0.30 or smaller, then 
convergence is achieved at J= 4; when the magnitude of the coefficient is .50, 
convergence is achieved at J= 6. Note the asymmetry in the rates of conver- 
gence depending upon the sign of a22, with the convergence being less rapid 
when a22 is positive. This is due to the nonlinearity of the asset pricing 
equations. In fact, when a22 = 0.50 the model is very close to a situation where 
the dividend growth is so strongly positively autocorrelated that the infinite sum 
of the dividend capitalization formula is not convergent. If a22 is increased to 
0.55 or larger, then the discrete price/dividend ratios are negative, which is 
indicative of a lack of convergence of the capitalization sum. Still, the conver- 
gence is reasonably rapid at a22 = 0.50.7 

5.2. Risk-Return Relations with ARCH Endowment Processes 

The nature of the relationships between risk premiums on financial assets and 
the conditional variances and covariances of returns has been the subject of 
intensive empirical investigation. Bollerslev, Engle, and Wooldridge (1988), 
French, Schwert, and Stambaugh (1987), along with many others use ARCH- 
in-mean specifications for returns to relate risk premiums to conditional second 
moments. Much of this effort is directed towards measurement and interpreta- 
tion of simple monotonic relationships between risk premiums and conditional 
second moments, often between the risk premium on a single asset and its own 

7As an additional accuracy check, we computed the equilibrium price dividend ratios for the 
parameter settings shown in Table IV for the case of logarithmic utility, y = 1.0. In every instance, 
the program computed the correct price dividend ratio, which is f3/(1 - /3), to within machine 
accuracy. 
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conditional variance. The existence of such relationships, though, has been 
contested both empirically (Pagan and Hong (1990)) and theoretically (Backus 
and Gregory (1988)). This debate is perhaps not surprising, given that equilib- 
rium asset pricing models relate the conditional means of asset returns to 
generalized notions of a marginal rate of substitution (Hansen and Jagannathan 
(1989)), and not directly to their conditional second moment structure. 

In this subsection we explore further the nature of the relationship between 
the risk premium on an equity asset and its conditional variance. Our strategy is 
to use the quadrature method to solve a small scale equilibrium asset pricing 
model. We then examine how the risk premium covaries with the conditional 
variability of the equity return in the model economy under various assumptions 
about risk aversion. 

The analysis differs in several respects from that of Abel (1988) and Backus 
and Gregory (1988), primarily in the way we calibrate and solve the asset pricing 
model. Abel (1988) shows that the asset pricing model admits an exact solution 
under special assumptions about the law of motion of the endowment process, 
but does not actually undertake estimation and calibration. Backus and Gregory 
(1988) employ a tightly parameterized small-state Markov model for the con- 
sumption endowment but do not directly link it to a fully specified law of motion 
for the endowment process. Our approach is to specify and estimate an actual 
time-series model with conditional heteroskedasticity for the consumption en- 
dowment. We use the quadrature method to find an approximating Markov 
chain for the estimated endowment process, and we solve the asset pricing 
equations that underlie the discrete approximation. 

We consider asset pricing relationships for a one-good, single-agent endow- 
ment economy where the law of motion of the endowment process {c,} is 

In (c, llc,) 
= b +alIn (c,lc,- 1) + ut+ I Ut+ I"" N(0, ht+ 1) 

ht+I = ao + alut. 

This is the basic ARCH model of Engle (1982) with one lag each in the mean 
and variance equations. We calibrated this model using annual data, 1889-1983, 
taking as {ct} annual observations on the consumption of nondurables and 
services.8 Point estimates and standard errors are 

b = 0.023 , a= -0.298, R2= 0.08, 
(0.004) (0.099) 

a= 0.00086 , -1= 0.287 , R2= 0.08. 
(0.00027) (0.099) 

The estimates were obtained by using simple regression to fit the AR(1) model 
for ln(ct/ct-1) and by using simple regression to fit an AR(1) model to the 
squared residuals. These estimates are consistent but not necessarily fully 
efficient method of moments estimates. Additional analysis using longer lag 

8 The data series is from Muoio (1988), who constructed the series from data in Kuznets (1961) 
and from the National Income and Product Accounts. 
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lengths uncovered no evidence for lags extending beyond the first. In particular, 
when an extra lag is introduced in the mean equation, the R2 only increases to 
0.09; when the same is done in the variance equation, the R2 remains essen- 
tially unchanged. 

The asset pricing structure is as follows. Let vt =pt/ct denote the price 
dividend ratio at time t on the equity asset that pays the stochastic dividend 
stream {ct+jy 1=. We employ the CRR utility function, u(c) = (c - 1)/(1 - y), 
which is commonly used in this debate. The asset pricing equation is 

vt = 8Et [(1 + Vt + 1) - | 

where Ej[ ] denotes conditional expectations given time t information calcu- 
lated from the ARCH model for the endowment. The gross one-period return 
on the equity asset is re,t+1 = [(1 + Vt+1)/vt](ct+1/ct). The gross one-period 
return on a conditionally risk free pure discount one-period bond is rf t+l = 

[,8Et(ct+j1/ct)-1, which is observed by the agent in period t. Throughout, we 
define the risk premium on the equity to be the random variable Et[re t+1] - 

rft +1 and the equity premium to be the constant E[ ret +1] - E[ rf, t+ 1]. 

Some preliminary analytical evidence on the characteristics of this model can 
be obtained by considering the special case of logarithmic utility (y = 1), in 
which case the model admits an exact solution. Using methods similar to those 
of Abel (1988), one can show that whenever the endowment growth ct+l/ct is 
lognormally distributed conditional on time t information, then, if y = 1, the 
following relation holds: 

E [re, t+ 1] 2 

rft+l 

where 6t+j is the coefficient of variation (standard error divided by the mean) 
of the conditional distribution of re,t+l- In this case there will be a positive risk 
premium, which will be time varying if ln(ct+1/ct) displays conditional het- 
eroskedasticity as was found to be the case in the empirical work reported 
above. 

In the general case, y = 1, no known analytical solution is available and we 
use the quadrature method outlined in Sections 3 and 4. We calibrate a discrete 
economy with endowment dynamics defined by a Markov chain that approxi- 
mates the law of motion, f(yty I t-, iYt -2), implied by the fitted ARCH model 
for endowment growth. The weighting function is wo(y) =f(yIO) and the quadra- 
ture rule is an 8-point Gauss-Hermite rule. Because of the ARCH error 
structure, the lag length is two, and with an 8-point rule the number of discrete 
states is 64. 

Table V shows, for various values of y, the population unconditional means 
of the equity return and the conditionally risk-free return in the discrete 
economy. For these calculations the value f8 = 0.97 is used, though additional 
calculations showed the conclusions are quite insensitive to the choice of P3. 
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TABLE V 

COVARIANCE STRUCTURE BETWEEN THE EouiTy PREMIUM 

AND THE CONDITIONAL VARIANCE OF THE EQUITY RETURN 

y E[re,t+1] E[rf,t+l] Intercept Slope pa 

Fitted ARCH Model 

0.1 1.0329 1.0328 - 0.0001 0.0077 0.9943 
1.0 1.0502 1.0489 - 0.0015 0.0781 0.9936 
2.0 1.0692 1.0661 - 0.0038 0.1560 0.9920 
3.0 1.0879 1.0824 - 0.0067 0.2313 0.9895 
3.5 1.0971 1.0902 - 0.0084 0.2674 0.9879 
4.0 1.1063 1.0978 - 0.0101 0.3022 0.9862 
4.5 1.1153 1.1051 -0.0119 0.3355 0.9843 
5.0 1.1243 1.1122 - 0.0138 0.3673 0.9824 

Sign Reversed AR(1) Coefficient 

0.1 1.0329 1.0328 - 0.0002 0.0079 0.9938 
1.0 1.0502 1.0489 - 0.0015 0.0781 0.9936 
2.0 1.0677 1.0661 - 0.0018 0.1504 0.9930 
3.0 1.0833 1.0824 - 0.0008 0.1879 0.9914 
3.5 1.0905 1.0902 - 0.0003 0.1251 0.9663 
4.0 1.0971 1.0978 0.0000 - 0.0908 - 0.8370 
4.5 1.1033 1.1051 0.0016 - 0.2633 - 0.9774 
5.0 1.1089 1.1122 0.0034 -0.3335 -0.9740 

dp Corr(Ej[re,+ 1 - rf,+ t ] ot(re,t+ 1))- 

Also shown in the table are the slope and intercept from the population linear 
regression of the risk premium, Ej[ re t + 1 ] - rf t + 1 on the conditional standard 
error, ort(re t+l) of the equity return, along with the correlation coefficient 
between these two random variables. The conditional standard error is used 
instead of the conditional variance only to achieve better scaling of the calcula- 
tions. Note that both the risk premium and conditional standard deviation are 
exact functions of the state of the system at time t, and thus in general there is 
an exact relationship between these two variables. The linear regression should 
therefore be interpreted as an -/2 approximation to this relationship and is 
reported as a convenient summary measure. Inspection of the correlation 
coefficients shows that the linear approximation is quite close. 

Sensitivity checks with 4-point and 12-point rules revealed that the selected 
8-point rule generally yields close to four digit accuracy in Table V, which is the 
conventional standard for numerical work. This includes the measurement of 
the equity premium, as the approximation errors for the mean returns are 
strongly positively correlated, and hence cancel in the calculation of the equity 
premium. Exceptions are the calculated intercepts and slopes in the bottom 
panel in the region y E [3.0,4.0], where the sign of the slope coefficient changes 
abruptly as y increases. Here the accuracy drops to roughly two digits, which is 
still more than adequate.9 

9 The total computational time required to compute a typical row in the table-including 
calculation of the Markov chain, solution of the asset pricing equations, and computation of the 
relevant population statistics-is 18.9 seconds using Gauss 1.49b on a Compaq 386-25. 
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The top panel in the table shows the population statistics computed for a 
discrete economy with the Markov chain model calibrated directly from the 
fitted ARCH model for the endowment process. These endowment dynamics 
are arguably realistic, but, not surprisingly in view of Mehra and Prescott (1985), 
the model generates too small of an equity premium. At the same time, though, 
the model does predict a tight and monotonic increasing relationship be- 
tween the risk premium and the conditional variability of the equity return over 
the wide range of values considered for the risk aversion parameter y. 

The bottom panel shows the same statistics computed from a model economy 
calibrated with the same ARCH specification for the endowment process except 
that the sign is reversed on the autoregressive parameter in the mean equation 
and the constant is adjusted to retain the same unconditional mean of 
ln(ct+1/ct). This model economy thus differs from the previous one only in that 
ln(ct+1/ct) is positively autocorrelated instead of negatively autocorrelated. As 
one should expect, for y near unity the predictions from this second model 
economy are very similar to those from the first economy. Interestingly, though, 
this second economy can generate a negative relationship between the risk 
premium and conditional variability, which confirms Backus and Gregory (1988). 
But it does so only at relatively high values of the risk aversion parameter and 
simultaneously predicts a negative equity premium. 

Some interesting conclusions emerge from our analysis. When the underlying 
endowment dynamics are calibrated from actual data with a model that allows 
for conditional heteroskedasticity, then the equilibrium asset pricing model 
predicts a positive relationship between the risk premium and conditional 
volatility. Furthermore, the slope of the relationship becomes larger as risk 
aversion increases. As in Backus and Gregory (1988), though, we can find 
alternative configurations of the parameters where the model will predict a 
negative relationship. But in the alternative configurations the autocorrelation 
structure of ln(ct+1/ct) is counterfactual, the risk aversion parameter is rela- 
tively high, and a negative equity premium is generated. This finding adds some 
theoretical support for empirically based efforts directed at measuring the 
relationship between risk premia and conditional second moments, though some 
caution is needed in interpreting the finding. The model's conditional moments 
are computed given current and lagged consumption, which in the context of 
the model is an information set that subsumes all relevant current information. 
In empirical work, on the other hand, the moments are typically computed using 
an information set comprised of variables observed by the econometrician, e.g., 
current and lagged returns, which is presumably a smaller information set than 
that actually used by economic agents. 

6. CONCLUSION 

This paper has developed a discrete method for finding approximate solutions 
to a class of nonlinear rational expectations models. The class of models is wide 
enough to include many asset pricing models and some interesting monetary 
models. Excluded models are those with endogenous state variables where the 
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dependence of the exogenous variables implicitly extends into the infinite past. 
These models require more elaborate solution methods, though, as noted in the 
Introduction, the Markov chain approximation method developed here is a 
potentially useful component of such a method. 

In our main application we employ the discretization technique for the 
purpose of analyzing the covariation between the risk premium on a financial 
asset and the variability of its return. In particular, we estimate a time series 
model with conditional heteroskedasticity for annual per capita consumption. 
This fitted time series model is taken as input to the discretization technique to 
make calibration of the Markov chain realistic. We then use the solution 
method to solve the asset pricing equations and thereby calculate risk premiums 
and related statistics. With this calibration of the Markov chain, we find a 
positive relationship between the risk premium of the equity return and its 
conditional variability given current and lagged consumption, which is the single 
driving variable of the model. In addition, the relationship becomes stronger at 
higher values of the risk aversion parameter. The findings help buttress the 
motivation for empirical efforts aimed at relating risk premiums to conditional 
second moments, which has been a topic of contention. Subsequent research 
should investigate the sensitivity of the findings to the use of a single-shock 
endowment economy. It should also investigate the covariance structure of 
conditional moments computed from past returns only, as these are the condi- 
tional moments commonly utilized in empirical work. Quadrature-based meth- 
ods could be used for this work. 

Department of Economics, Duke University, Durham, N.C., 27706, U.S.A. 
and 

The Jesuits at Wernersville, Wernersville, PA 19565, U.S.A. 

Manuscript received September, 1987; final revision received February, 1990. 

APPENDIX A 

APPROXIMATION FOR FINITE-MEMORY CONDITIONAL DENSITIES 

We now consider the most general case where the law of motion for the state vector is a finite 
memory Markov process with conditional density f(y Iy _1, yt-2-..yt-L) defined on R M. The 
most general case is treated as an extension of the first-order multivariate case. This is done despite 
the fact that by suitably defining a new state vector, a system with lag length L can always be 
re-expressed as a first order system, and the first order system was handled in Section 3.2. The 
reason for not defining a new state vector is that this device produces no gain here. The device 
produces a new system with a singular conditional density concentrated on a lower dimensional 
space. Development of a quadrature rule that properly accounts for the singularity is very awkward 
and notationally cumbersome. The best strategy is not to take the step of reducing the system's lag 
length to unity in the conventional manner, but rather just to leave the system in general form with 
L lags. 

From (2.4) of Section 2 the most general integral equation is 

(A.1) v(x) = f[1 + v(y, x-)]O(y, x)f(ylx) dy 
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where x is an M * L vector that corresponds to (yt-1, Yt2 Yt-L), X- is an M * (L - 1) vector 
that corresponds to (yt-1, Yt-2, Yt-L+ 1), and the rest of the notation is given after (2.4) in 
Section 2. 

Write the integral in (A.1) as an integral against a weighting density w(y): 

(A.2) v(x) = f[1 + v(y, x-)]A(y, x) f(ylx) (y) dy. 
co(y) 

Let Yk and Wk denote the abscissa and weights for an N-point quadrature rule on RM for the 
density w(y). Define 

(A.3) ak(x) = 
Wk) 

vk (k 1,2,.--,N), 

and 

(A.4) ik4(X) =a(X) (k =1,2,..., N), 
s(x) 

where s(x) = Eklcak(x). 

The discretization of the integral equation (A.2) is as follows. Let 

Y*= ( Y' Y'2 Y Jl1 X J2 X X JL X 

where the range of the indices are 

1 <j <N, i= 1,2,...,L, 

1 As AN*, N* =NL 

Here 5*, which is of dimension M- L, is an arrangement of L possible choices of the Yk- There are 
a total of N* NL such arrangements for the y * and it is understood that there is an invertible 
labeling scheme, 

(A.5) S = S(I1, 12. X I *XL) 

that maps the subscripts (i1, 12... I iL) into s E {1, 2,. .., N*}. 
Now put 

(A.6) tsJsk = OM(Y, Ys*), 

(A.7) =s 7N (ys), 

for k = 1, 2,..., N and s = 1, 2,..., N*. Then the VNs in the discretization are given by the solution 
to the N* linear equations 

N 

(A.8) VNs = E [1 + Z3N, (s,k)] rsktVk (s= 1,2..., N*), 
k=~1 

where o(s, k) selects the state label from (A.5) that corresponds to the arrangement of subscripts 
(k, il, 12...IL-)L In the asset pricing example, DNs is the price dividend ratio when the (discrete) 
state is ( J-, - 2..iL'), and -3 N(s,k) is the price dividend ratio when the next state is 
(yk,y i,...,yjL-1 The reason for introducing the selection function o-(s,k) becomes apparent 
when one observes that in VAR models where (yt . 1, . . ., Yt-L) is viewed as the state of the system 
as of period t - 1, then the only possible states of the system in period t are of the form 
(Yt, Yt- 1 * * *X Yt-L+1)d 
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APPENDIX B 

PROOF OF THEOREM 4.2: Define the function PN on [a, b] by 

g(YNk)f( YNk IX) 
PN(X) = WNk. 

k=i I (YNk) 

For each fixed x, the assumptions imply g(y)f(ylx)/w&(y) is bounded and continuous in y, and 
PN(X) = QN(g(-)f(-IX)/w)(-)). By the assumption on the quadrature rule, PN(X) -* eg(x) pointwise 
in x. The assumptions also imply that the PN are uniformly bounded. Furthermore, for X1, X2 E [a, b], 

N 

IPN(X2) -PN (X1) I A<C ||| WN, I f (YN I X2) f (YN I X1)I 

and equicontinuity of the PN thereby follows from the (uniform) continuity of f(y Ix), together with 
- = IWNi = 1. Hence, PN -* eg uniformly. By a similar argument with g replaced by the identity 

function, SN -* 1 uniformly. Hence, egN = PN/SN eg uniformly. Q.E.D. 

PROOF OF THEOREM 4.3: We need to establish the Anselone-Moore conditions stated as Al, A2, 
and A3 of Atkinson (1976, p. 96). Condition Al is automatically satisfied because CO[a, b] is a 
Banach space. Condition A2 requires that TN[g] -* T[g] for each g E Co[a, b], which follows from 
Theorem 4.2 above. Condition A3 requires that {TN} be collectively compact; specifically, the set 
{TN(g): lIglI < 1) must be precompact in CO[a, b]. To show this, note that 

N 
k (Yk, X)f ( YkIX)WNk 

TN[g](x) = E g(jk)- 
k=i I)(Yk)SN(X) 

is uniformly bounded because qi and f are bounded from above, a) is bounded from below, and, 
from the argument used to prove Theorem 4.2, SN -* 1 uniformly. Furthermore, the continuity of 
f(ylx) implies that SN(X) is equicontinuous in x and this, together with the continuity of 
i(y, x)f(ylx), implies that TN[g](x) is equicontinuous in x. Hence, by the Arzela-Ascoli Theorem 
(Wouk (1979, p. 83)) the set {TN(g): llgll < 1) is precompact and so {TN} is collectively compact. 

Given that the sequence of operators {TN} satisfies the Anselone-Moore conditions, then 
conclusion (1) of the theorem holds by Atkinson (1976, Theorem 4, pp. 97-98). Thus for sufficiently 
large N, (I- TN)-1 exists and 

(B.1) VIWN-VII = VI(I- TN) 'TN[l] - (I- T)'T[l]11 

< ||(I- TN)'T[l] - (I- T)'T[l] + |(I- TN) '(TN[l] - T[l]) 

by the triangle inequality. Now put 

(B.2) ENJJ(I -T) 1jj(TN- T)TN||, 

(B.3) "7N J=(I - T) 1 |||TN-T ||j. 

By Atkinson (1976, Lemma 4, p. 96), EN -*O and 'rN --O. Furthermore, by applying displays 
(3.26)-(3.28) of Atkinson's Theorem 4 (pp. 96-97) to each of the two terms on the right side of the 
inequality (B.1), we get 

(B.4) 11~ 11 ENIIVII + qNN||T|| 7NN|(I -T) -'II 
1 -EN 1EN 

The boundedness of the sequence of numbers {lITN II was established in the proof of the Anselone- 
Moore conditions, and hence IIVN - VI -?0. Q.E.D. 
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