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Econometric Theory, 12, 1996, 657-681 Printed in the United States of America. 

WHICH MOMENTS TO MATCH? 

A. RONALD GALLANT 
University of North Carolina 

GEORGE TAUCHEN 
Duke University 

We describe an intuitive, simple, and systematic approach to generating mo- 
ment conditions for generalized method of moments (GMM) estimation of the 
parameters of a structural model. The idea is to use the score of a density that 
has an analytic expression to define the GMM criterion. The auxiliary model 
that generates the score should closely approximate the distributionl of the ob- 
served data but is not required to nest it. If the auxiliary model nests the struc- 
tural model then the estimator is as efficient as maximum likelihood. The 
estimator is advantageous when expectations under a structural model can be 
computed by simulation, by quadrature, or by analytic expressions but the 
likelihood cannot be computed easily. 

1. INTRODUCTION 

We present a systematic approach to generating moment conditions for the 
generalized method of moments (GMM) estimator (Hansen, 1982) of the 
parameters of a structural model. The approach is an alternative to the com- 
mon practice of selecting a few low-order moments on an ad hoc basis and 
then proceeding with GMM. The idea is simple: Use the expectation under 
the structural model of the score from an auxiliary model as the vector of 
moment conditions. 

This score is the derivative of the log density of the auxiliary model with 
respect to the parameters of the auxiliary model. Thus, the moment condi- 
tions depend on both the parameters of the auxiliary model and the param- 
eters of the structural model. The parameters of the auxiliary model are 
replaced by their quasimaximum likelihood estimates, which are computed 
by maximizing the pseudolikelihood of the auxiliary model. 

The estimates of the structural parameters are computed by minimizing a 
GMM criterion function. As seen later, the optimal weighting matrix for 
forming the GMM criterion from the moment conditions depends only on 
the auxiliary model and is easily computed. 
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658 A. RONALD GALLANT AND GEORGE TAUCHEN 

We call the auxiliary model the score generator. The score generator need 
not encompass (nest) the structural model. If it does, then the estimator is 
as efficient as the maximum likelihood estimator. Hence, our approach 
ensures efficiency against a given parametric model. If the score generator 
closely approximates the actual distribution of the data, even though it does 
not encompass it, then the estimator is nearly fully efficient. 

The estimation context that we have in mind is one where a structural 
model defines a data generation process for the data. The key feature of this 
data generation process is that it is relatively easy to compute the expecta- 
tion of a nonlinear function given values for the structural parameters. An 
expectation may be computed by simulation, by numerical quadrature, or by 
analytic expressions, whichever is the most convenient. 

Examples of this estimation context are the panel data models motivating 
the simulated method of moments approach of Pakes and Pollard (1989) and 
McFadden (1989). Another is the asset pricing model that motivates the 
dynamic method of moments estimator of Duffie and Singleton (1993). In 
Section 4, we present three such situations drawn from macroeconomics, 
finance, and empirical auction modeling. In these examples, the likelihood 
is difficult to compute, so maximum likelihood is infeasible. Simulation and 
moment matching thus naturally arise. 

As indicated, there is no presumption that the score generator encompasses 
the structural model, although an order condition for identification requires 
a minimal level of complexity of the score generator. Under weak regularity 
conditions, our estimator is root-n consistent and asymptotically normal with 
an asymptotic distribution that depends on both the structural model and the 
score generator. If there exists a local, smooth mapping of the structural 
parameters into the parameters of the score generator, then the estimator has 
the same asymptotic distribution as the maximum likelihood estimator under 
the structural model. 

The asymptotic theory of the estimator subsumes situations with strictly 
exogenous variables, where one conditions on particular values of the explan- 
atory variables. It also subsumes situations with predetermined but not 
strictly exogenous variables, as is typical of stationary Markov data gener- 
ation processes. The most general version allows for processes with time- 
dependent laws of motion and dependence extending into the indefinite past. 

Section 2 presents the asymptotic justification of the estimator. Section 3 
presents some candidate specifications for the score generator. Section 4 
presents three proposed applications, each of which is a substantive empiri- 
cal project. 

2. THEORY 

For a stochastic process described by a sequence of densities [pi (xI p), 
pt (yt Ixt, P)] l j for which expectations of nonlinear functions are easily 

computed by simulation, by quadrature, or by analytic expressions, we 
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WHICH MOMENTS TO MATCH? 659 

derive a computationally convenient GMM estimator for p that uses the 
scores (a/dG) lnf t (y I x,, 0) from another sequence of densities [ fi (xI1 I0) I 
[ft (yt xt, 0))t= to generate the moment conditions. As an example, 
Pl (xl p), pt (Yt I xt, p)ll } might be a model that describes asset prices Yt in 

terms of exogenous variables x, and structural parameters p and f fi (xI I 0), 
[ft (yt I x, 0)C j IJ might be the sequence of densities of a GARCH process 
(Bollerslev, 1986, 1987). The estimator is consistent and asymptotically nor- 
mally distributed in general. It is fully efficient if the model pi (x Ip), 
PI(YtIxt,P)}to=1l JpER iS smoothly embedded (Definition 1) within the model 

(f1(xi 0),IGft(ytIxt,G0)U' Ic V . The estimator is attractive when the density 
ft (yt I xt, 0) has a convenient analytic expression whereas the densityp, ( yt I xt, p) 
does not. 

Throughout, the observed data (yt, Jt7 I are assumed to have been gen- 
erated from the sequence of densities 

(PI (xI IP 0) ( Pt(ytIxt,p 0)7t= } , (1) 

which is to say that p0 denotes the true value of the parameter p in the 
model 

[PI (xI I P)I (Pt (yt IXt IP)Jt= I pER (2) 

where R denotes the parameter space. The model 

fi (XI I ft ( Yt I xt, 0)1t= I IOCe (3) 

is called the score generator. The variables Yt and xt can be univariate or 
multivariate or have a dimension that depends on t. The functional form of 
the score generator may act to exclude elements of the vector Yt; that is, the 
score generator may define a stochastic process for only some elements of y1. 

When we say that a process is time invariant we mean that the densities 
of the process do not depend on t, in which case the t subscripts on the den- 
sities may be suppressed and the dimensions of Yt and xt are fixed. Writing 

hX, N(OA Vn) means <f(V,V ) Xn- N(O,I), where Vn=(V,}2)(V,V2)' 
Smoothly embedded is defined as follows. 

DEFINITION 1. The model (P1 (x1 IIP), Pt(ytlXt,P)Jt=1 p is said to be 
smoothly embedded within the score generator t fi (x1 I 0), I ft ( yt I xt, 0)Jt-I bo-o 
if for some open neighborhood R? of p0 there is a twice continuously 
differentiable mapping g: R? -- 0 such that 

pt(ytlxt,p) =ft[ytixt,g(p)], t = 1,2,..., (4) 

for every p E R? and pi (xl I p) = f1 [xl I g (p)] for every p E R?. 

We consider three cases. 

Case 1. All densities are time invariant, the analysis is conditional on 
the observed sequence LiJ5 _ 17, and the data [(yt,t)n are a sample from 
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660 A. RONALD GALLANT AND GEORGE TAUCHEN 

H= I P(yt p p0). An example for which these assumptions are appropriate 
is the nonlinear regression model on cross-sectional data with independently 
and identically distributed errors. For this case, using simulation to com- 
pute the GMM estimator proposed here requires N simulated sequences 

tUY71=1h=1 from the density Ht=Ip(yt1tJ,p). We impose Assumptions 1-6 
of Gallant (1987, Ch. 3) on both p(yIx,p) andf(yIx,0). 

Case 2. All densities are time invariant, the analysis is unconditional, and 
the data (ytx.kt)j} are a sample from H1-np(ytjx,,p)p(x1 IP?) An ex- 
ample for which these assumptions are appropriate is an autoregressive 
process where xt is comprised of L lagged values of y,. We impose Assump- 
tions 1-6 of Gallant (1987, Ch. 7) oil both p(yIx,p) andf(yJx,0). In addi- 
tion, 1(yt,,xt)I=_. is assumed to be stationary with joint density p(y,xl p), 
marginal density p (x I p) = fp (y, x I p) dy, and conditional density p (y x,p) = 
p(y,xIp)/p(xIp). Similarly for f(yIx,0). For this case, using simulation 
to compute the GMM estimator requires only a single simulated sequence 
{(r,X4)1 =I from the density HN l p(y,IxT,p)p(x1 Ip), generated as follows: 
Start at an arbitrary xl - (PY0... ,Y-L+ 1), simulate Y1 from p (Yi I x1, p), 
put X2 = (Y1, . Y-L+2), simulate 92 from P (Y2 I xJ2, p), and so on. So that 
xS is plausibly a sample from p(x Ip), enough initial simulations are dis- 
carded for transients to die out and the next N simulations are retained as 
the sequence ( 9T XT)i NT- 

Case 3. Densities are not time invariant, the analysis is unconditional, and 
the data [(_Pt, 9,)} I are a sample from IHn=pt (yt Ixt, p0)pl (x1 I p?0). This 
framework does permit conditioning on the initial observation xl and con- 
ditioning on exogenous variables. Conditioning on xl is accomplished by 
letting pi (xl Ip) put its mass on a single point. Conditioning on exogenous 
variables w, is accomplished through the dependence of Pt ( Yt I xt, p) on t by 
putting Pt (Yt Ix, p) = p (Yt Ix, wt, p). An example for which these assump- 
tions are appropriate is a nonlinear regression with fixed regressors wt and 
lagged dependent variables x. For Case 3, using simulation to compute the 
GMM estimator may require N simulated sequences UI ItT,*tT }T1 INI from 
the density f m I pt(Yt XI, P)Pl (xl Ip). However, in the common case where 
the structural model is Case 2 and the score generator describes an asymp- 
totically strictly stationary process, a single simulated sequence as in Case 2 
suffices. We impose Assumptions 1-6 of Gallant (1987, Ch. 7) on both 
pt (yt Ixt, p) and ft (yt I xt, 0). 

Our idea is to use the scores 

(a1a0)nft ( yt I xt,O (5) 

evaluated at the quasimaximum likelihood estimate 

I n 

n- argmax - Z ln ft(.Yt 14t, 0) (6) OeO n =1 
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WHICH MOMENTS TO MATCH? 661 

to generate GMM moment conditions. The GMM moment equations are 

Case 1: mn(p,On) = - f(a/a0)lnf(yI*t,On)P(Y It,P)cYs (7) 
n t=1 

Case 2: m (p IO,) = f a (a/a )lnf(y 7x, n)p (y I x, p) dyp (x I p) dx, (8) 

Case 3: m,(p, n) = . f J (a/a0)Inft(YtIxt, n) 
t =1 

n 
x II p (l IT YxT, p) dYr p (xl Ip) dxl. (9) 

T=1 

These are the moment conditions that define the estimator. In most appli- 
cations, analytic expressions for the integrals will not be available and sim- 
ulation or quadrature will be required to compute them. 

If the integrals are computed by simulation, then the formulas used in 
practice are 

Case 1: m,(p,On)= - 
-i 

_~ (a/aO)lnf(p-t7IjXt,jn), (0 
t=1 A 

lN 

Case 2: mn (p, on) = N ( a/3)lnf(YIXT?,OE), (11) 

= _~ 1N 
n N 

Case 3: mn(P, n) n- - 

(a/aN)lnfr(=,Yt7rI*TO) 
(12) 

We assume that N is large enough that the Monte Carlo integral approxi- 
mates the analytic integral to within a negligible error of the same sort as is 
made in computing any mathematical expression on a digital computer. 

There are instances where the integral can be computed to a given accu- 
racy at less cost by quadrature. Quadrature rules have the generic form 

1 1N 
Case 1: mn(P,in) = E ,j E)tn)W(Y'tr19tP) (13) 

Case 2: mn(p,Gn) = - z (a/aO)lnf(j 7j7,6)W(jx7p), (14) 

where W( PT" . p) and (Y',X*) are the weights and the abscissae implied by 
the quadrature rule. Of course, N is dramatically smaller for quadrature rules 
than for Monte Carlo integration. Quadrature for Case 3 will be at too high 
a dimension to be practical in most applications. 

As to statistical theory, Cases 1 and 2 are special cases of Case 3, so that 
throughout the rest of the discussion we can discuss Case 3 and specialize to 
Cases 1 and 2, as required. 
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662 A. RONALD GALLANT AND GEORGE TAUCHEN 

The randomness in m, (p, 0,) is solely due to the random fluctuation of the 
maximum likelihood estimator 0,. Under the regularity conditions imposed 
earlier, there is a sequence IO' ,n such that m, (p0,G') = 0, limnc^z(O,, - ) = 0 
almost surely, and 

_Wn(0 - *f0o) = N[O, (9O)-' (So0) (J0)-' (15) 

where JO = (/80')mn(p0,O,') and 

1n 
=o Var - (a/1a)lnft(iYtL -t 0o1) (16) 

(Gallant, 1987, Ch. 7, Theorem 6). Note that 9 and 9jn are not random 
quantities because we have assumed that either quadrature has been em- 
ployed to compute mn (p, 0) or that N is as large as necessary to make the 
average essentially the same as the expected value. Using Taylor's theorem 

4iim,n(p 0,Jn) = VFmnn(p 0, 0) + [JO? + Os (1)]Vi(O,, - ) 

= (WJn)Vn(On -O0no) + op(l). (17) 

This implies that 

FnMn(P?, an ) = N(0,9Jn). (18) 
Thus, given an estimator 3n of go that is consistent in the sense that 
limn-* oo( -gn-n) = 0 almost surely, the GMM estimator with an efficient 
weighting matrix is 

Pn = argmin m'( P, On ) (iSn) -1 Mn ( P, J n) (19) 
pER 

The computations necessary to estimate 9' depend on how well one 
thinks that the score generator approximates the true data generating pro- 
cess. If one is confident that the score generator is a good statistical approx- 
imation to the data generating process, then the estimator 

1in 
3n-= -Z [(a/daO)lnft(ytlkt,#n)][(/ala9)Inft(yt I -t, #0) (20) 

n tl 

can be used. This estimator can also be used with Gaussian QMLE scores if 
the conditional mean and variance functions are correctly specified (Bollerslev 
and Woolridge, 1992). A sufficient (but not necessary) condition is Assump- 
tion 2. 

A weaker assumption that facilitates estimation of 9' is the following. 

Assumption 1. There is a 01 such that 

r r ~~~~~~~~~n 
f 

...f(a/ao)lnft(ytixt,OO)U pr(YTIxT,Po) dyT pl(xljpo)dxl= O (21) 
f v=n 

for every t c n. 
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WHICH MOMENTS TO MATCH? 663 

Case 2 will always satisfy Assumption 1 because of stationarity and time 
invariance. Thus, it is an assumption that only affects Cases 1 and 3. 

For Case 1, the preceding estimator, 

I n 
gn = (22) 

n t=1 

retains its consistency under the weaker Assumption 1. 
For Cases 2 and 3, the following estimator is consistent under Assumption 1: 

r=- [nl5 ( n5])23 

where 

f - 61x12 + 61x13 ifO<X O x 
w (x)- 

2(1- if x < 1, (24) 

and 

'1n 
- [(a1a/0 ) nft (Yt | t,U n )] [(a8/d0 ) njt7-T (Yt-T | 1-7. U n )]' 

n t=1+r 

Sn7 = - 

InT- if r ? 0, 

L (Sn,-r)' if T < 0 (25) 

(Gallant, 1987, Ch. 7, Theorem 5). See Andrews (1991) for alternative sug- 
gestions as to appropriate weights and rates one might use instead of w(x) 
and n 1/5. The Parzen weights suggested above guarantee the positive defi- 
niteness of gns, which is essential. Weights that do not guarantee positive 
definiteness cannot be used. 

If one is unwilling to accept Assumption 1, then the estimator S,, is mod- 
ified as follows. First, compute the initial estimator 

= argmin mn(P, Un)mn (p,O n) * (26) 
pER 

Compute 

r ~~~~~~~n 
At ..* (f/a0)lnft(ytIxt0n) II PT(YrIXT7Pn')dY7P1(X1|Pn)dx I 

T=1 

(27) 

using the integration methods already described. For Case 1, use the estimator 

I n 
= =-n [(d/aO)lnft(57tjIt*,n) - A] [(a/1a)lnft( 3t lt,in) - Aj'. (28) 

n t=1 
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664 A. RONALD GALLANT AND GEORGE TAUCHEN 

For Case 3, use the formula 

n [=/5] ( / 15] ) (29) 

with Snr above modified to read 

I n 

SnT = - E [(8/ao)lnft(Y,tUXIt,) - j 
n tl+T 

x 
[(a/aO))lnft_,( 7|X(-7Oan) - (30) 

for r > 0. It is unlikely that -this generality will be necessary in practice 
because the use of this formula means that one thinks that the score gener- 
ator is a poor statistical approximation to the data generating process, which 
is unlikely to be true for the following reasons. The score generator is con- 
ceptually a reduced form model, not a structural model. Thus, it is ordinarily 
easy to modify it by adding a few parameters so that it fits the data well. The 
situation where one thinks the score generator is a poor approximation might 
arise in hypothesis testing, but even then the null hypothesis will usually imply 
either Assumption 1 or Assumption 2 and the generality is, again, unnecessary. 

Theorem 1 gives the asymptotic distribution of Pn 

THEOREM 1. For Case 1, let Assumptions 8-11 of Gallant (1987, Ch. 3) 
hold. For Cases 2 and 3, let Assumptions 8-11 of Gallant (1987, Ch. 7) hold. 
Then, 

lim ,3,= p0 a.s., (31) 
n-,oo 

. n h(Pn0- p?) 6tNI0,[(A1,4)'(Sln)- (Mn,~)]P l, (32) 

lim (Mn - Mn) =0 a.s., (33) 

nn=M 
whereMn n (n 9n) Mn, =Mn(p 0, O/), and Mn(p,0) = (a/pM')Mn(p,O)., 

Proof. Apply Theorems 7 and 9 of Gallant (1987, Ch. 3) for Case 1 and 
Theorems 8 and 10 of Gallant (1987, Ch. 7) for Cases 2 and 3. Make these 
associations: X = P, Xn = p0, mn (X) = mn(p,0 6) , Mno (X) =Mn (p ,G? ), and 
S* Varr[Vnmn((X)] =. U 

The identification condition 

m"(p, 0 ) = 0 =* p = p0 for all n larger than some n0 (34) 

is aniong the regularity conditions of Theorem 1. The situation is analogous 
to verification of the order and rank conditions of simultaneous equations 
models. The order condition is that the dimension of 0 must exceed the 
dimension of p. However, due to nonlinearity, analytic verification of the 
analog of the rank condition, which is that the equations mn (P, Ono) = 0 do 
not have multiple solutions for p E R, is difficult. See Gallant (1977) for dis- 
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WHICH MOMENTS tO MATCH? 665 

cussion and examples. It is usually adequate to rely on the optimization pro- 
gram used to compute argminpeRmn(p, M)(9n) 'mn(p, ,) to indicate the 
flat spots on the surface Mn'(P,On)(9n) 'mn(P,0n) that suggest identification 
failure. For example, the parameters of the mixing process of a stochastic 
volatility model (see Section 4.2) require third- and fourth-order moment 
information for identification. Using the score of a Gaussian vector auto- 
regression will not provide this information. We have actually done this inad- 
vertently by setting some tuning parameters erroneously in a computation 
and learned of the error by the behavior of the optimizer with respect to the 
parameters of the mixing process. 

Direct use of Theorem 1 for setting confidence intervals on the elements 
Of P'n or testing hypotheses with the Wald test requires computation of 
Mn (p,0). This is probably easiest to do by saving the trial values of p and 
m(p, 0n) generated over the course of the optimization that computes 
argminpER mn(P, in ) ( 3n ) -'mn (P, 0,n), fitting the local quadratic regressions 
mi = boi + b,'(p - Pn) + (P - P'n)'Bi (p - Pn) for i = 1,2,.. ,dim(0) to the 
elements of Mn (P, in) at points near Pn and taking MLn to be the matrix with 
rows bW. Computation of Mn (p, 0) can be avoided by testing hypotheses 
using the criterion difference test statistic (Gallant, 1987, Ch. 7, Theorem 15) 
and setting confidence intervals by inverting it. Under Assumption 1, the 
condition HVH' = H9j'H' of Gallant (1987, Ch. 7, Theorem 15) will be 
satisfied. 

It is important to note that we have not, as yet, made use of an assump- 
tion that the score generator Ifi (xI 0), (ft (yt I xt,9 0)J t=IeO contains the true 
model. That is, we have not yet imposed the following assumption. 

Assumption 2. There is a 0 0 such that Pt(Yt IXt, pO) = ft(y, xt, 00) for 
t =1,2,... andp1(xlIpo) =f1(xII00). 

Because Assumption 2 implies that the score generator is a correctly spec- 
ified model, it implies Assumption 1 and the following standard results from 
the theory of maximum likelihood estimation: 

f (a/a0)lnf,(ytIx,,00)pt(y,lx,,tp) dy, = 0 (35) 

for t = 1,2,.... 

f (a/0)lnf1 (xl 10 0)p1 (xl Ip0) dxl = 0, (36) 

and 

f ... f [(a/a0)lnfs(ysjxs,00)] [(a/a0)lnft(ytIxt,00)]' 

n 

x HI p( (yT I XT P 0) dyr p1 (xI P 0) dxl = 0 (37) 
T =1 
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666 A. RONALD GALLANT AND GEORGE TAUCHEN 

when t * s. These results allow use of the estimator 

I n 

3n = - [(a/ao)lnf,(S'|xt,,o)] [ (38) 
n t=l 

in Cases 1-3. Moreover, 

f [(a/ao)lnft(yt Io x9?)] [(a/ao)lnf,(ytlxt,o0)] 

n 

x 1 p(yTIxr,p0) dyrpI (xl IP0) dx 
T=1 

f (a82/ao a )lnft(ytIxt,e0) 

n 

X II p( (yT I x p P0) dy7 p I (x I P 0) dxl (39) 
T=1 

for t = 1,2, . ., so that 

;(jn f-- ? ) N[O, ( q?)-1 (40) 

Now let us examine the consequences of the smoothly embedded assump- 
tion (see Definition 1, earlier). 

Assumption 3. The model [pi (xl I p), pt(yt Ixt,p) t_ pEER is smoothly 
embedded within the score generator (fi (x1 I 0) ft ( Yt I xt, )1I= IIEeO* 

Assumption 3 implies Assumption 2. Moreover, the consistency of Pn 
implies that P, is tail equivalent (Gallant, 1987, p. 187) to a GMM estima- 
tor obtained by optimizing over the closure of RO instead of over R. There- 
fore, without loss of generality, we may assume that the twice continuously 
differentiable function g given by Definition 1 is defined over R. Let G (p) = 
(a/ap')g(p), Go = G(p?), and G = G(p). 

A consequence of Assumption 3 is that the minimum chi-square estimator 

Pmcs = argmin[0n - g(p)] (P0) [On - g(p)] (41) 
pER 

is as efficient as the maximum likelihood estimator for { Pi (xl I p), 
pt ( yt I xt, p )I } ITo see this, first note that 

fh(Pmncs-P?0) % N[O, [(G )'(9 )(G )]1 - J. (42) 

Now, if 'mie denotes the maximum likelihood estimator for f [xI I g (p)], 
tft[ytIxt,g(p)]J01J, then 

(Pmie-P?) ~- N[O, [(G?)'(9?) (Go)]-'43 

(Gallant, 1987, Ch. 7, Sect. 4). Because 

[fl [xl g(p)], tf[ytlxt,g(p)]Jt=1I = tPi (x1 Ip),Pt(ytIx,,p))t=01 , (44) 
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Pmle is also the maximum likelihood estimator for the process {Pi (xI IP), 
[Pt (Yt Ixt ,P)}tt_ }- 

If g cannot be computed, the minimum chi-square estimator is not prac- 
tical. However, 8(On I p) can be computed by simulation and the preceding 
remarks suggest that minimum chi-square with ? (6, I p) replacing g(p) would 
be a practical, fully efficient estimator. See Gourieroux, Monfort, and Renault 
(1993) and Smith (1993) for examples. The difficulty with this approach is 
that the simulated minimum chi-square estimator is computationally ineffi- 
cient relative to the GMM estimator proposed here because at each of the N 
Monte Carlo repetitions in the expression 8(0n I p) = (1/N) EN an opti- 
mization to compute 0n, is required. The GMM estimator requires only the 
one optimization to compute 0n and avoids the N extra optimizations 
required to compute 8(in, I p). Moreover, one would actually have to invoke 
Assumption 2 or estimate gJ? to follow this approach. See Gourieroux et al. 
(1993) for additional remarks on the relationships among various approaches. 

We conclude this section by showing that P'n has the same asymptotic dis- 
tribution as Pmle- 

THEOREM 2. Assumption 3 implies 

-(Pn-p?) z0 N(0,[(G0)'(,q0)(G0?)]- 1. (45) 

Proof. From the first-order conditions 

o = (a/8P) [mn(P'n, 0n)( On) ,'mn n(P an)] 

-2[(/ )n Pn,a) OA n) -1Mn Un gin), (46) 

we have, after a Taylor's expansion of mn (P 0n), 

[(Mn)'(n) -(Mn)]n(iPn - p) = Y-[(M,,y(0n)-1(a/ao)i n]J(0n- 

(47) 

where the overbars indicate that the rows of Mn (p,6) = (d/ap')mn (p,O) 
and (0/13')mn(p,0) have been evaluated at points on the line segment 
joining (pOn , 6n) to (p0, 0?). Recall that M,n and Mn' indicate evaluation of 
Mn (p, I) at (PAn On) and (p 0,0 0) , respectively. Now limn,o(Mn - Mno) = 0, 
lIMn-oo (Mn -Mn?) = 0 limno, Xt(a 10) mnn- gnoI = 0, and liMn,-On(3-no)- 
0 a.s. Furthermore, 

Tfhn-f(On, 0) - N[O, ( n] (48) 

Therefore, the preceding equation can be rewritten as 

(Mn)' (9n) -l(Mn)] i(Pn 
- PO) 

= (no)'1(,n - 60) + op(l), (49) 

which implies that 

F(Pn - p?) = N(0, [(Mn,)'(,0)-'(MMn?)]- J). (50) 

We complete the proof by showing that Mn- = ?G 
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Mn' = (1/p) -n . f(8/a0)lnft(ytlxt,oo) 
n 

n 

x I P(YTIXTY p) dyTpl (xi Ip) dxl IP=P 
T=1 

n 

X flfr[ YT IxTrg (P)] dy7p1 (X1|P ) dx1| P=P 

_ 1 S f* f(. (o)lnaf t ( yt xxt, 

n t=I 

n 

s= 1 

n 
x H (alap,)fsdyslxspg(p)lp= )d 

s-- 

n 

X HfT (YTIXT, 0 )) dY / dYsP) (X IP ) dxi 

n =+ (a la/ 0) lIn ft ( Yt I xt, 0 0?) 

n 

n 

x Hf T (YT IX T, 00) dYT (a/lP )P1 (XI I P)dI -p? dxl 
rT_ 

1n nr r 
+E .. f ./ (a)Inft(yt)xt,0O) 

x [(d/aO')fs(yslxs #)lo=g(p, G(p)]p=po 
n 

x H fr(yrIxT, 0) dYTdySpi (Xi Ip?) dxl 

T*s 

_1 n r 

+ Jo(alp3)Pl (X/ I P))PfP? dxl n t=l 

n n f 

** Z . [(a1a0)lnft(y,jxt, 00)] 
t= t- s=l 

? [(aI3/i) Infs (ys Ixs, 0 0)]fs (ys xs, f9?) G? 

n 

? rl f(YrlXT, ?) dYT dYSPI (XI IPO) dXl 
#s 

n nr r 

Z z [(a/80)Inft(ytlxt, 00)][(a/aO)Infs(yslx, a0)1, n t=l .v_1 
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n 
X flf(yT Ixr,G0)dyrpi (xi Ip0)dxl G 

T=1 

... f [(a/a0)lnftf(y Ixt, 00)] [(a/1a)lnft(yt, I xt 00)]' 

n 
X flfT(y|x,G00) dyrpi (xl Ip?) dxl Go 

=9G'. (51) 

3. GENERAL PURPOSE SCORE GENERATORS 

As pointed out in Section 2, if a model {f1 (xI1I 0), I ft (yt Ixt, O)j7= I10o0 is 
known to accurately describe the distribution of the data t, It It=, then that 
model should be the score generator that defines m, (p, an) and P If not, 
we can suggest two general purpose score generators. 

The first is the SNP score, which can be expected to closely approximate 
any nonlinear Markovian process. An example of its use in connection with 
the estimator P,n proposed here is that by Bansal, Gallant, Hussey, and 
Tauchen (1995), who fit a general equilibrium, two-country, monetary model 
using high-frequency financial market data. The second is the neural net 
score, which can be expected to closely approximate any cross-sectional non- 
linear regression or any dynamic nonlinear autoregression, including deter- 
ministic chaos. An example of its use in connection with P, is that by Ellner, 
Gallant, and Theiler (1995), who use data widely believed to exhibit chaotic 
dynamics to calibrate the parameters of the SEIR model, which is a model 
of epidemics often used in health economics. The cited applications contain 
descriptions of the SNP and neural net scores, respectively. 

In terms of convenience, what one would like is for 

f (a/ao)lnft(y,lxt,O,')p,(ylx,,p') dyt (52) 

to be small enough that Ait can be put to zero with little effect upon the 
accuracy of the computation of S,3 and small enough that 

SnT , r * 0, (53) 

can be put to zero with little effect on the accuracy of the computation of 
3n. The estimator of qn would then assume its simplest form: 

1n =J (54) 
n t= 

Both SNP and neural nets are series expansions that have the property that 
(52) can be made arbitrarily small by using enough terms in the expansion 
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670 A. RONALD GALLANT AND GEORGE TAUCHEN 

(Gallant and Nychka, 1987; Gallant and White, 1992). Hence, At and (53) 
can be made arbitrarily small by using enough terms. The appropriate num- 
ber of terms relative to the sample size are suggested by the results of Fen- 
ton and Gallant (1996) and McCaffrey and Gallant (1994). However, there 
is as yet no general theory giving the rate at which terms can be added so as 
to retain Jn--asymptotic normality so one must guard against taking too 
many terms and then claiming that standard asymptotics apply. 

4. APPLICATIONS 

We discuss three classes of applications of the estimator developed in the pre- 
vious sections. In the setup for each application, it is relatively simple to gen- 
erate simulated realizations from the structural model while computation of 
the likelihood is infeasible. Hence, simulation and moment matching are 
appropriate estimation strategies. 

4.1. Consumption and Asset Returns in a Production Economy 

Consider the following version of the Brock-Mirman one-sector setup. The 
representative agent's problem is 

max t[1 Ct+-iY V2 t+i] (55) 

subject to 

ct + ktl -kt < Akvlt, (56) 

where ct is consumption at time t and k, the capital stock at the beginning 
of period t (i.e., inherited from period t - 1); v1t and V2t are strictly posi- 
tive shocks to technology and preferences; &t(.) is shorthand for the condi- 
tional information given all variables in the model dated time t and earlier; 
and the parameters satisfy 0 < f < 1, oy > O, A > 0, and 0 < a c 1. The 
agent's choice variables at time t are c, and k,+1. The stochastic process v, = 
(v1t,v2t) is strictly stationary and Markovian of order r, with conditional 
density v( vt+1 I v*, 6), where v7* = ( v,, . , v[')' and 6 is a parameter vector. 

The Euler equation for this problem is 

ct--? t (lc7 Y aAkt+jl). (57) 

The solution of the optimization problem is 

kt+ = Pk (kt,Vt), (58) 

Ct = AC(kt,v), (59) 

where VI and 1k are the policy functions. 
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There is no known closed form solution for the policy functions, though 
the policy functions can be well approximated using one of the newly devel- 
oped methods for solving nonlinear rational expectations models. The 1990 
symposium in the Journal of Business and Economic Statistics (Tauchen, 
1990) surveys many of the extant methods. For this model, and the proposed 
application, the method of Coleman (1990), which uses quadrature for 
numerical integration and computes the policy function over an extremely 
fine grid, is probably the most accurate and numerically efficient. 

Using Coleman's method to evaluate the policy functions, one can then 
easily simulate from this model. Given an initial value k? for the capital 
stock, and a simulated realization 0 VT I generated from 4( v I v*, 6), one gen- 
erates simulated (kr, cT by recursively feeding the V& and kT through the 
policy function for capital. Good practice is to allow the iterations to run 
for a long while in order to let the effects of the transients wear off. A sim- 
ulated realization of length N, IAk, v, )I, would be the last N values of the 
iterations. 

Strategies to implement empirically the corresponding competitive equilib- 
rium of this model differ depending on which variables are used to confront 
the model to data, that is, which variables enter the score generator. For 
example, with good data on both consumption and capital, the researcher 
could use (ce, k,). However, if capital is poorly measured but output well 
measured, then it would be better to use (c,, qt)', where qt is total output, 
which in the simulation would be computed as q7 = Akg ,v. Neither of 
these strategies, though, makes use of price data. 

A strategy that incorporates price information is to use c, along with the 
returns on a pure discount risk-free bond, rbt, and a stock, rt. Asset returns 
are determined via asset pricing calculations, carried out as follows. (It turns 
out to be a bit easier to think of the equations defining returns between t and 
t + 1.) The bond return, rb, t+, is the solution to 

ct 7 = 6t(fc-+2)(1 + rb,(+1), (60) 

and rb,t+l is known to agents at time t. For the stock return, the dividend 
process is dst = Akt vIt - rb,kt, and the stock price process Ipt is the solu- 
tion to the expectational equation 

p -,c5 = ? [t Ilc -2 (Ps,t+I + ds,t+ )] (61) 

The stock return between t and t + 1 is rs,t+l = (ps,t+l + ds,t+ )/ps,. Solv- 
ing for the asset returns entails additional computation that could potentially 
be as numerically intensive as approximating the policy functions. 

This formulation presumes that, in the competitive equilibrium, the firm 
uses 100070 debt financing to rent from a household the capital stock k,+, 
for one period at interest rate rb,t+1. (Both rb t+l and kt+1 are determined 
and known at time t.) The firm distributes to the household as the dividend 
ds,t+I= Akt+I vI,t+I - rb,t+1 kt+, I which is the firm's cash flow in period t + 1, 
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that is, the proceeds after paying off the bondholder. Other conceptualiza- 
tions are possible, and, in particular, the stock price and returns process 
could be different if the firm retains earnings or uses different forms of debt 
financing. 

One typically does not observe a risk-free real bond return. Common prac- 
tice in empirical asset pricing is to use the consumption series along with 
either the real ex-post return on the stock (deflated using a price index) or 
the excess of the stock return over the bond return, ret = rst - rbt, from 
which inflation cancels out. This practice presumes that the observed data 
come from a monetary economy with exactly the same real side as above and 
a nominal side characterized by a binding cash-in-advance constraint, which 
implies unitary monetary velocity. 

We show how to implement the estimator on data consisting of consump- 
tion and the excess stock return. This is done for illustrative purposes. The 
proposal offers an alternative to the standard SMM strategy of selecting out 
a set of low-order moments, as in Gennotte and Marsh (1993), for estima- 
tion of an asset pricing model. In actual practice, one would want to employ 
more sophisticated versions of the model with time nonseparabilities in con- 
sumption and production and also incluide additional latent taste and/or tech- 
nology shocks when additional asset returns are observed. Common practice 
in stochastic modeling is to include sufficient shocks or measurement errors 
to preclude the predicted distribution of the data from being concentrated 
on a lower dimensional manifold, which is normally counterfactual, and the 
model being dismissed out of hand immediately. 

Put yt = (ret,ct)'. Let p = (,y,A,ca,5')' denote the vector of structural 
parameters. The numerical solution of the model provides a means to sim- 
ulate data given a value of p. 

Experience with financial data suggests that a reasonable choice for the 
score generator is the sequence of densities defined by an ARCH (Engle, 
1982) or GARCH (Engle and Bollerslev, 1986) process. For ease of exposi- 
tion, we show the ARCH case. Consider the multivariate ARCH model 

Li 

yt = bo + E Bjyt,j + ut, (62) 
j=l 

L2 

v,ech(Et) = c0 + Z Cj vech(ut_; 0 utj), (63) 
j_= 

where u, - N(O, S,). Let pdf( Yt I xt, i ) denote the implied conditional density 
of IytY under the ARCH model, where x, = (Y1'-L, . ,Yt-)', L = L1 + L2, 
and 

4 = (b6, vec([BIB2 ... BLI ])', c', vec([ Cl C2 .* *CL2])') (64) 

Common practice in ARCH modeling is to impose a priori restrictions, such 
as diagonality or factor restrictions, so as to constrain ,6 = 4 (0) to depend 
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on a lower dimensional parameter, 0. Letf(ytlxt,,) = pdf(ytIxt,b[0]) de- 
note the ARCH conditional density under the restrictions, which we take as 
the score generator. 

Given the observed data set f Yttl I, the first step in the estimation is to 
apply quasimaximum likelihood to the ARCH model 

I n 

=n - argmax - E lnft (Yt j 0,,). (65) 
oee n t=i 

The second step is to estimate p by 

p = argmin mn (P, n)( 3n)-mn(PqAn ) (66) 
pE:R 

where mn(P,An) = (I/N) N= 1 (a/6o)lnfA (PT IA , On), tT.) is a simulated 
realization given p from the model, and kf = (PA-L,. * y i 

The relevant asymptotic distribution theory is that of Case 2 in Section 2. 
The order condition for identification is that the length of 0 be at least as long 
as the length of p. The analog of the rank condition is given in the discus- 
sion following Theorem 1. It is exceedingly difficult to determine analytically 
whether the ARCH scores suffice to identify the asset pricing model, which, 
as noted earlier, is typical of nonlinear statistics. In practice, near flat spots 
in the sample objective function would be a strong indicator of failure of 
identification. In such a case, further expansion of the score generator such 
as relaxing conditional normality or using a non-Markov (GARCH) model 
could bring in additional score components to achieve identification. The 
mechanics of implementing a GARCH-type score generator are similar to 
that just described for ARCH, though the notation is more cumbersome. In 
either case, use of this estimator provides a means to bring to bear on the 
task of selecting moments the knowledge that ARCH-GARCH models fit 
returns data well. 

Another possible score generator would be to use the SNP model of Gal- 
lant and Tauchen (1989, 1992); this strategy is employed by Bansal et al. 
(1995) for estimation of a model of weekly currency market data. Use of an 
SNP model would give the exercise a more nonparametric slant, as the choice 
of dimension of the score generator model would be data-determined. Either 
choice would ensure efficiency against a class of models known to capture 
much of the first and second moment dynamics of asset prices and other 
macro aggregates. 

4.2. Stochastic Volatility 

Consider the stochastic volatility model 

Yt - yy = c(yt-1 - Ay) + exp(wt)ryzt, 

w= awt + rwzt. 
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The first equation is the mean equation with parameters y, c, and ry; the 
second is the volatility equation with parameters a and r, I Yt I is an ob- 
served financial returns process and I wt J is an unobserved volatility process. 
In the basic specification, Zt and Zt are mutually independent iid N(0, 1) 
shocks. The model can be generalized in an obvious way to accommodate 
longer lag lengths in either equation. Versions of this model have been exam- 
ined by Clark (1973), Melino and Turnbull (1990), Harvey, Ruiz, and Shep- 
hard (1993), Jacquier, Polson, and Rossi (1994), and many others. The 
appeal of the model is that it provides a simple specification for speculative 
price movements that accounts, in qualitative terms, for broad general fea- 
tures of data from financial markets such as leptokurtosis and persistent vol- 
atility. The complicating factor for estimation is that the likelihood function 
is not readily available in closed form, which motivates consideration of 
other approaches. 

Gallant, Hsieh, and Tauchen (1994) employ the estimator of-this paper to 
estimate the stochastic volatility model on a-long time series comprised of 
16,127 daily observations fyt j_6127 on adjusted movements in the Standard 
and Poor's Composite Index, 1928-1987. The score generator is an SNP 
model, as described in Section 3. The specification search for appropriate 
auxiliary models for I ytj 6127 leads to two scores: a "Nonparametric ARCH 
Score," when errors are constrained to be homogeneous, and a "Nonlinear 
Nonparametric Score," when errors are allowed to be conditionally hetero- 
geneous. The Nonparametric ARCH Score contains indicators for both devi- 
ations from conditional normality and ARCH. Together, these scores suffice 
to identify the stochastic volatility model; indeed, the stochastic volatility 
model places overidentifying restrictions across these scores. The Nonlinear 
Nonparametric ARCH Score contains additional indicators for conditional 
heterogeneity, most importantly, the leverage type effect of Nelson (1991), 
which is a form of dynamic asymmetry. These additional indicators identify 
dynamic asymmetries like those suggested by Harvey and Shephard (1993), 
which the Nonparametric ARCH Score does not identify. When fitted to 
either of these two scores, the standard stochastic volatility model fails to 
approximate the distribution of the data adequately; it is overwhelmingly 
rejected on the chi-square goodness-of-fit tests. After altering the distribu- 
tion of Zt to accommodate thickness in both tails along with left skewness 
and generalizing the volatility equation to include long memory (Harvey, 
1993), the stochastic volatility model can match the moments defined by the 
simpler Nonparametric ARCH Score, but not those defined by the Nonlin- 
ear Nonparametric Score. Introducing cross-correlation between Zt-i and Zt 
as in Harvey and Shephard (1993) improves the fit to the Nonlinear Nonpara- 
metric Score substantially, but still the stochastic volatility model cannot fit 
that score. Overall, Gallant et al. (1994) find the estimation provides a com- 
putationally tractable means to assess the relative plausibility of a wide class 
of alternative specifications of the stochastic volatility model. They show how 
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to use the score vector of a rejected model to elucidate useful diagnostic 
information. 

There are other ongoing applications of the estimator in the context of sto- 
chastic volatility. Engle (1994) employs it to estimate a continuous time sto- 
chastic volatility model, with the score generator being a GARCH model 
fitted to the discrete time data. Ghysels and Jasiak (1994) use it to estimate 
a continuous time model of stock returns and volume subject to time defor- 
mation like that of Clark (1973) and Tauchen and Pitts (1983). Their score 
generator is an SNP model very similar to that of Gallant, Rossi, and Tau- 
chen (1992) fitted to the discrete time returns and volume data. 

4.3. Empirical Modeling of Auction Data 

Auctions are commonly used to sell assets. Game theoretic models of auc- 
tions provide a detailed theory of the mapping from the disparate values that 
bidders place on the asset to the final outcome (the winner and the sales 
price). The predictions of this theory depend strongly on the assumptions 
regarding the characteristics of the auction and the bidders. Generally, the 
specific rules of the auction along with the information structure, the atti- 
tudes of the bidders toward risk, and the bidders' strategic behavior all mat- 
ter a great deal in determining the final outcome (Milgrom, 1986). 

Empirical implementation of game theoretic models of auctions lags well 
behind the theory. The extreme nonlinearities and numerical complexity of 
auction models presents substantial obstacles to direct implementation. Two 
recent papers, by Paarsch (1991) and Laffont, Ossard, and Vuong (1991) 
make substantial progress, however. In both papers, the task is to estimate 
the parameters of the distribution of values across bidders. Paarsch devel- 
ops a framework based on standard maximum likelihood. His approach can 
handle a variety of informational environments but is restricted to a relatively 
narrow set of parametric models for the valuation distribution -essentially 
the Pareto and Weibull. Laffont et al. use a simulation approach, and they 
can thereby handle a much broader class of valuation distributions. How- 
ever, their approach imposes only the predictions of the theory regarding first 
moments and ignores higher order structure, which can cause problems of 
inefficiency and identification. 

The method set forth in Section 2 imposes all restrictions and generates an 
efficient estimate of the valuation distribution. In what follows, we illustrate 
how one would implement the method for some of the simpler models of 
auctions. A full empirical study would go much further and, in particular, 
would relax our strong assumptions and consider other environments known 
to be theoretically important. 

We first provide a short overview of some of the simplest auction models 
and then proceed to the econometrics. 
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Two auction models under independent private valuations. An item, such 
as a tract of land or stand of timber, is to be sold at auction. The item will 
be sold so long as a selling price at least as large as a reservation price ro > 0 
is realized; otherwise, it is left unsold. 

There are two commonly used auction designs. In an oral ascending auc- 
tion, the selling value of the item starts at ro and then increases. Bidders 
drop out as the selling value rises until one bidder remains, who pays the sell- 
ing value at which the last of the other bidders dropped out. In a sealed bid 
first price auction, all bids are collected simultaneously. The object is sold 
to the highest bidder, who pays his bid so long as it exceeds the reservation 
price. 

The independent private value paradigm is a set of assumptions regarding 
the characteristics of bidders; the paradigm is applied to either type of auc- 
tion. In this paradigm, each of B bidders is assumed to have a private valu- 
ation, vi, i = 1,2,. . . ,B, for the item to be sold. Each bidder knows his or 
her own private valuation but does not know the valuation of other bidders. 
The bidders act as if the B valuations are i.i.d. drawings from a common val- 
uation distribution H( v I q, p), with density h (v I q, p), where q is a vector of 
covariates defining characteristics of the item to be sold and p is a param- 
eter vector. Each bidder knows q, p, the functional form of H( v I q, p), and 
the reservation price, ro. Also, each bidder is assumed to be risk-neutral and 
the equilibrium concept is the symmetric Bayesian Nash equilibrium. 

For the oral ascending auction, the winning bid, y, is 

y = max[v(B-1 B),rO] I(V(B:B) > rO) if B _2, (67) 

y = rol(vl > ro) if B =1, (68) 

where V(1:B) C * * V(B:B) are the order statistics of vl,. . ,VB, and I(.) is 
the zero-one indicator function. On the event V(B:B) < ro0 the winning bid is 
defined as zero and the item is unsold. 

Let poaa(y roB,q, p), or simplypoa(yIx,p) with x = (ro,B,q), denote the 
conditional probability density of the winning bid. Below, we write either 
Poa (y I ro IB, q, p) or poa (y I x, p), depending on whether or not we wish to 
emphasize dependence on each of the different components of x. In general, 
Poa(Y I Xi P) is an ordinary density on the region y > ro, so long as h (v q, p) 
is smooth, whereas Poa ( Y I x, p) has atoms at y = 0 and y = ro. In certain 
circumstances - for example, h (v I q, p) is Pareto or Weibull as in Paarsch 
(1991)-Poa(Ylx,p) has a manageable closed-form expression. In other 
circumstances-for example, h(vlq,p) is lognormal as in Laffont et al. 
(1991)-Poa(y x,p) admits no tractable expression. However, so long as it 
is easy to simulate from h (v I q, p), then it is easy to simulate from Poa ( Y I X, p) . 

For the sealed bid first price auction, the winning bid is 

y = Etmax(v(B1 B),r)Il v(B B) I(v(B B) ? rO) if B > 2, (69) 

y = rOI(vl ? ro) if B=1. (70) 
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Thus, when there are two or more bidders and V(B:B) 2 ro, then the winning bid 
follows the distribution of the conditional expectation of max(V(BA :B)ir0) 
given V(B:B). Let p (y I ro, B, q, P)r pP( Yx, p), denote the implied con- 
ditional density of the winning bid in the sealed bid case. 

Generally, pp ( Y x, p) is less mnanageable in practice than is Poa ( Y x, p). 
Generation of a simulated draw from Pp ( Y x, p) entails either numerical 
integration of the cumulative distribution of the valuation distribution or a 
double-nested set of simulations. 

A new estimation strategy for auction models. Suppose an econometri- 
cian observes [Iy,tnt= 1, where Yj is the winning bid and xt = iPot, Bt, t) 
contains the reservation price, the number of bidders, and covariates for 
each of n auctions. In what follows, we take the auctions to be oral ascend- 
ing auctions and point out, where appropriate, how things differ for sealed 
bid auctions. The econometrician assumes that the same valuation density, 
h (V I q, p?0), describes the bidder valuations for each auction. The analysis is 
conditional (the x's are strictly exogenous); the econometrician assumnes that 
.t and ys are statistically independent for t w s, conditional on the sequence 

{xI ,x2, ...,I 1. The task is to estimate the true underlying parameter vec- 
tor, p0. 

One estimation strategy is straight maximum likelihood. Under special dis- 
tributional assumptions on the valuation density such as Weibull or Pareto, 
the conditional density Of the winning bid Poa (Yy ro, B, q, p) has a manage- 
able closed form. Conventional maximum likelihood estimation can then be 
undertaken. This is the strategy of Paarsch (1991). 

Laffont et al. (1991) developed a simulated nonlinear least squares (SNLLS) 
estimator that can handle a broader class of parent densities for the valua- 
tion distribution. Their approach is to apply nonlinear least squares: 

n\ 
= argmin ( [it 1- ,oa(Ot ,Bt,t t,p)]2 (71) 

pC-R t= 1 

where Ila(Pot, Bt, )t =p fypoa(Y I | 0t t, p) dy. In practice, oa (iot, Bt, 
t, p) is approximated via Monte Carlo integration: 

i N 

A4oa (Pot,Bt, 't,P) - N j max( VT,1 PBt),ot) (72) 

where VT, (Br-i lt) is the second highest order statistic of the rth independent 
simulated realization of (VTv,... ,vTA,) i.i.d. from h(vJvt,p) In their moti- 
vating examples and empirical applications, v is conditionally lognormal with 
a mean that depends on q-, and p contains the parameters of this condi- 
tional lognormal distribution. The SNLLS estimator is nonlinear least 
squares with a heteroskedasticity-robust estimate of the asymptotic variance 
of p that accounts for conditional heteroskedasticity of 
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Laffont et al. (1991) noted that revenue equivalence implies the same for- 
mulation of the conditional mean function applies for a sealed bid auction. 
Revenue equivalence implies 

poa(roB,q,p) = fYPoa (Y ro, B,q p) dy 

= fYPsb(Yi ro, B,q, p) dy 

= -sb (rO, B, q, p) (74) 

for all ro, B, q, and p. Hence, one can evaluate the conditional mean func- 
tion at the data, that is, compute P,sb (FOtB, Btt, P), by simulating and aver- 
aging exactly as one does under oral ascending rules. The result can be a 
significant reduction in computational demands. 

The SNLLS approach works off of the conditional first moment implica- 
tions alone, though, and auction models place additional structure on the 
data. An auction model has second moment implications as well as first 
moment implications. In fact, it actually dictates the functional form of the 
conditional heteroskedasticity in the nonlinear regression equation, which 
suggests additional moment conditions. There are practical consequences 
from not incorporating additional restrictions beyond first moment informa- 
tion. Laffont et al. (1991) and Baldwin (1992) find it difficult to estimate the 
variance of the underlying parent lognormal using SNLLS. Bringing in sec- 
ond moment estimation can be expected to alleviate this difficulty. In gen- 
eral, there are further implications beyond first and second moments as well; 
imposition of all implications of the model can be expected to sharpen even 
further the estimates of the parameter p. 

Ideally, one wants to do this by doing maximum likelihood using either 
Poa ( y I rO, B, q, p) or Psb (y I ro, B, q, p) as appropriate to define the likelihood. 
The difficulty is that both densities are intractable, except in the special cir- 
cumstances assumed by Paarsch (1991). 

The approach outlined in Section 2 can come close to the maximum like- 
lihood ideal. Our analysis pertains to the just-described situation where the 
likelihood is smooth but intractable; it does not cover cases where the like- 
lihood is nondifferentiable in parameters. The consistency of the estimator 
P, is not affected by nondifferentiability but asymptotic normality may be. 
See Hansen, Heaton, and Luttmer (1995, Appendix C) for a discussion of 
differentiability considerations with respect to GMM estimators. 

The approach would be applied to the auction data as follows. A, is ob- 
tained as 

in = argmax ( E In f [.t lt, 0 ]), (75) 
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where f(y Ix, 6) is a score generator that gives a good approximation to the 
conditional distribution of y given the exogenous variables. One choice for 
f(y I x, 0) is a truncated Hermite expansion, or SNP model of Gallant and 
Tauchen (1992), which has been found in practice to be sufficiently flexible 
to approximate well a wide class of densities. Note that f(y I x, 0) does not 
have to smoothly embed Poa ( Y I x, p), although, if it does, then the estima- 
tor is equally efficient as maximum likelihood. 

Our estimator is GMM using the score function of the 0 estimation to 
define the moment conditions: 

=-argmin m'(p, an) (5 mn (P, 60) (76) 
pER 

where 
n N 

mn(p,in) = (I/n) > (1/N) E (a10)1nt(YPtjkt,an) (77) 
t=l r=1 

and where, for each t, I. IN=I is a simulated realization of length N from 
either Poa (Y I Pot, Bt, 4t, P) or Psb (Y I rO, Bt, qt, p) , depending on whether 
the data are from an oral ascending or sealed bid auction. Sampling from 
po0 (y I Pot, Bt, qt, p) is relatively easy while sampling from Psb (Y I Pot, Bt, 4t, p) > 

is more difficult. (The revenue equivalence property only simplifies the'sam- 
pling for the conditional'first moment.) 

The appropriate asymptotic theory for this estimator is Case 1, as the 
entire analysis is conditional on the realization of the strictly exogenous pro- 
cess 1t5c,I. To the extent f(y I x, 0) provides a good approximation of the dis- 
tribution of y given the exogenous variables, then this estimator will have 
efficiency close to that of maximum likelihood. 
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