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1. Introduction 
 July 15, 2008 was a historic day for petroleum markets in the U.S.  On the New York 

Mercantile Exchange, crude oil opened at $146 per barrel, the highest price ever for the 

commodity. After opening, the price dropped $6.44 per barrel, the largest single-day decline in 

over 17 years.  July 15th also marked the Chicago Board Options Exchange’s release of a 

tradable oil volatility index, the OVX, to track rapid fluctuations in the highly liquid commodity.  

The summer of 2008 tested new limits for oil markets--oil prices could in fact breach $100 per 

barrel and prices above $100 could be sustained over months.  While oil eventually retreated 

from above $100 per barrel in September 2008, the excitement around oil remains. The 

unpredictability of oil prices left everyone wondering what impact oil prices will have on the 

future of the economy. 

 After the oil market turmoil of high prices and extreme volatility had subsided, Exxon 

Mobil reported third quarter profits of $14.83 billion, breaking its own record set the previous 

quarter (Larson, 2008).  This result suggests that oil company earnings are highly linked to the 

price of oil.  Most media outlets credit their increased profits to the higher prices that companies 

charge when crude petroleum prices increase.  However, this is an over-simplification of the oil 

industry.  This claim is supported by the fact that oil corporations own significant amounts of oil 

and thus face constant pumping costs per barrel.  On the other hand, petroleum corporations such 

as Exxon Mobil, ConocoPhillips, and Chevron refine more crude petroleum than they lift out of 

the ground (EIA, 2008).  Consequently, a portion of their input commodity must be bought 

through contracts that reflect changes in crude prices, increasing the cost of goods sold.  These 

two drivers of oil company profits challenge the direct relationship that many have assumed 

exists between oil company earnings and crude petroleum prices.  The correlation between the 

returns of petroleum equities and the returns of oil prices is only one element a more complex 

relationship between the two assets. 

 This paper provides a step towards explaining the connection between oil futures prices 

and the oil equities market in three ways.  First, this paper tests the hypothesis that changes in the 

price of oil affect returns of petroleum companies through investigating simultaneous 

movements in oil future and oil equity returns.  Second, simultaneous price jumps (extreme 

movements) in the oil equities and futures market are investigated with the hypothesis that both 

assets are responding to announcements that affect oil price expectations.  Third, the volatilities 
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are compared across markets, as one might expect that volatile trading of oil futures would 

trigger trading of oil equities. Throughout each step of the analysis, a portfolio of companies in 

the S&P 100 is also considered to provide a context for the results found in the oil sector. 

 The main findings are that oil company asset returns are driven not only by an oil factor 

that describes fluctuations in crude prices, as might be expected, but also by a market factor, 

present across the entire portfolio of stocks included.  Price jumps, on the other hand, appear to 

be occurring simultaneously across the oil equity sector, but discordant with jumps in the oil 

futures market.  Similarly, the volatilities across the entire set of equity assets are highly 

correlated, but the oil futures market does not follow the same volatility pattern. This paper 

emphasizes that a strong connection between the oil futures and the oil equities market exists for 

returns. However, the differences in the types of assets and the motivations of traders between 

the equity and commodity futures market generate starkly different volatility schemes. 

The current literature exploring oil markets does not examine the effects of the oil futures 

market on the oil equities market.  Certain aspects of the oil futures market have been 

extensively studied. The highly volatile nature of oil futures prices led Kang (2008) and Marzo 

(2007) to investigate volatility forecasting in that market.  Further, volatility in oil futures prices 

does not correlate with oil futures returns (Wang, Wu, and Yang 2008).  Moosa and Al-Loughani 

(1994) look at the ability of oil futures to predict spot prices. Litzenberger and Rabinowitz 

(1995) examine the phenomenon that spot market prices are usually higher than the futures 

market prices at expiration. 

To add to the literature on oil markets, this paper analyzes the impact of changing oil 

futures returns, volatility, and price jumps on individual equity returns, volatilities and price 

jumps.  Current research exists regarding the effect of oil shocks on macroeconomic activity.  

Hamilton (1983, 1985) concludes that a strong causal relationship between oil prices and U.S. 

Gross National Product exists.  Mork, Olsen and Mysen (1994) apply the strong connection 

between macroeconomic variables and oil prices to seven OECD countries.  Jones and Kaul 

(1996) find a significant effect of oil price movements on aggregate stock returns by accounting 

for resulting changes in aggregate cash flows.  Driesprong, Jacobsen and Maat (2003) determine 

that oil prices are economically significant in predicting stock market returns in developing 

countries.  Sadorsky (1999) finds a significant correlation between stock index returns and oil 

shocks at the monthly level. 
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This paper is unique in that high-frequency data from specific stocks are analyzed instead 

of simply using aggregate indices that mimic equity markets.  Further, the highly efficient oil 

futures market data is included, rather than using a producer price index for oil.  Additionally, a 

study by Andersen, Bollerslev, and Diebold (2006) suggests that the continuous model of asset 

pricing does not hold when applying the model to real data. Thus, an analysis of simultaneous 

jumps in oil futures prices and stock prices should improve the understanding of oil shocks.  To 

further identify the transfer of information between markets, the paper looks at spillovers in 

volatility from the two markets.  Ross (1989) claims that price volatility can be an accurate 

measure of the rate of information flow in a financial market. If oil equities and oil futures react 

to similar information regarding expectations about future supply and demand of oil, their 

volatility patterns should also be similar. 

Because one of the goals of the paper is to identify simultaneous movements across 

markets and the transfer of information between markets, an understanding of intraday financial 

metrics is required.  Therefore, this paper uses a jump test developed by Lee and Mykland (2008) 

that is capable of identifying a jump statistic and a volatility measure for every observation 

throughout the trading day.  Preliminary results of the Lee-Mykland test suggest that their 

method of jump detection may be biased towards flagging too many jumps in the morning and 

against identifying jumps in the afternoon. This paper offers and utilizes an adjustment to their 

test that appears to correct for this concern. 

This paper will proceed as follows: Section 2 highlights some important practices of the 

oil industry that drive later results; Section 3 describes the diffusive jump model to explain asset 

price movement; Section 4 introduces the relevant statistics used in the financial econometrics 

literature, it describes the Lee-Mykland jump test, and it introduces factor analysis as a method 

of describing the data; Section 5 describes the data used; Section 6 explains the main results and 

Section 7 concludes the paper. 

 

2. Practices of the Oil Industry 

 Oil is traded in three different ways: the spot market, the futures market, and through 

over-the-counter agreements.  Spot market prices are determined through the transaction between 

suppliers and refiners when tankers are four days away from port and the oil is delivered 

immediately.  The large majority of oil is traded through the futures market, with contracts 
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ranging in delivery date from one to 18 months in the future.  This market is highly liquid and 

provides the most current information about the price of oil.  The price of oil traded under over-

the-counter contract agreements is determined by the spot and futures market prices.  For the 

purposes of this paper, it is assumed that movements in the six-month oil futures market directly 

follow spot prices, although with lower volatility.  According to Haubrich (2005), empirical 

evidence indicates that oil futures actually contain little information about the forward curve of 

oil.  The futures price does not in fact contain any information beyond what that current spot 

price is, storage costs, and interest rates. 

There are a couple of notable practices that connect oil company profits and the oil 

futures market. The first is the process of exploring for, drilling, lifting, and shipping crude oil. 

Increasing oil prices are a boon to all aspects of this business.  As the spot market price of oil 

increases, petroleum corporations directly own or have long-term contracts to extract the now 

more highly valued resource. Exxon Mobil, for example, has 22 billion barrels of proven 

reserves and a presence in 200 countries that makes exotic exploration possible (Larson, 2008).  

Firms have the opportunity to sell their oil at spot market prices as oil is shipped into the U.S.  

Additionally, the valuation of an oil company is dependent on the firm’s current and future 

assets, of which oil reserves account for a significant portion. Rising profitability across the oil 

industry can spark profitable asset sales for large oil companies (Martin 2006).  

The second practice of an oil company is refining, encompassing all processes involved 

with transforming crude oil into a delivered, usable end-product.  This function of an oil 

company is negatively impacted during oil price increases.  The primary reason is that oil is an 

input cost for the business and the higher cost cannot be completely transferred to consumers. 

The highly competitive oil industry results in declining profit margins per gallon from refining 

activity as the price per gallon increases (EIA). However, there are several factors that mitigate 

shrinking refining margins.  The primary mitigating factor is that refining operations only 

purchase a portion of their oil at market rates.  For example, approximately 55% of the oil 

refined by Exxon is purchased on the spot or futures market subject to Nymex prices.  The 

remaining 45% has been lifted from Exxon’s own oil reserves (EIA). Thus, oil companies are 

partially hedged against rising oil prices when buying on the spot or futures market. Another 

mitigating factor is the strength of the consumer market.  Cooper (2003) found that the price 

elasticity of demand for crude oil was -.05 in the U.S., indicating the demand curve’s 
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insensitivity to price changes.  This has been true even during the historically high crude prices 

of 2007 and 2008 (EIA). 

Although the refining component of an oil company is negatively affected by increasing 

oil prices, the positive relationship between lifting activity and oil prices outweighs that effect 

and leads to overall higher profits. This translates to higher valuations of oil companies in equity 

markets and a positive relationship between the expected future price of oil and oil equity 

returns.  While this is a simplistic model of an oil company, it accounts for the main drivers of 

revenue and costs. Equity analysts confirm this connection between crude oil prices and expected 

company earnings.  Recent windfall profits by Exxon Mobil, ConocoPhillips, and Chevron 

empirically indicate this connection during the 2005-2007 period of steadily increasing oil 

prices. 

It is important to note that oil companies do not participate in oil markets for financial 

arbitrage.  Instead, they are active members of the markets only to secure accurate delivery and 

pricing of oil as it impacts their refining operations. 

   

3. Returns Model 

 Before analyzing real data, it is necessary to understand the theoretical model of asset 

price movements and market microstructure noise.  Section 3.1 introduces the jump diffusive 

model of asset pricing on which the jump and volatility measures described in Section 4 are 

based. Section 3.2 explains how the presence of market microstructure noise in high-frequency 

stock quotes influences the sampling interval used in jump statistics and volatility metrics. 

 

3.1 Model of Returns and Volatility 

 The foundational model for this paper is a stochastic differential equation that describes 

the evolution of stock price.  The model to represent asset log-price movement was discussed by 

Merton (1971) and is described below: 

 

! 

dp(t) = µ(t) " dt + #(t) " dW (t).  (1) 

In equation (1), the stock log-price movement, dp(t), is explained in terms of a time-varying drift 

component 

! 

µ(t) " d(t)  and a time-varying volatility component 

! 

"(t) # dW (t) , where dW(t) 

introduces randomization through standard Brownian motion.  Including a Brownian motion 
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component is the result of summing independent identically distributed log-returns over 

infinitesimally small time periods.  When the log-price summations are viewed over a longer 

time period, the model allows the stock price to take on a drift-like movement. This model 

accounts for the continuous component of stock price movement, because standard Brownian 

motions follow continuous sample paths with probability one. 

Recent financial literature, by Barndorff-Nielsen and Shephard (2004, 2006) in particular, 

suggests that the continuous model does not fully capture the dynamics of asset returns and that 

discontinuities represent an essential element in stock price evolution. It is important to note that 

identifying jumps in stock prices is a difficult conceptual and practical task.  The argument could 

be made that all price movement is discontinuous as assets are quoted at discrete prices.  

However, allowing prices to be modeled continuously provides many useful results. The problem 

remains that when there are sharp price movements, the continuous model is not appropriate.  

Therefore, Merton (1976) developed a jump diffusion component to account for such 

discontinuities. The log-price dp(t) is now defined as  

 

! 

dp(t) = µ(t) " dt + #(t) " dW (t) +$(t) " dq(t) .  (2) 

The third term in the log-price model (2), 

! 

"(t) # dq(t), accounts for potential discontinuities or 

jumps in the asset price movement, where 

! 

"(t) represents the magnitude of the jump and dq(t) is 

a counting process.  This model provides the foundation for the study of price jumps throughout 

the remainder of the paper and underlies the statistics described in Section 4. 

 

3.2 Market Microstructure Noise 

 When analyzing asset prices at high frequencies, special attention must be paid to the 

effects of sampling the data at different intervals. There are two potential complications of 

assigning the proper price to any given asset traded in a market.  The first concern addresses the 

problem of determining an asset price given the cyclical, speculative, and random-walk nature of 

financial products. The second complication in asset pricing is the microstructure noise of 

observed price quotes. This problem has deeper implications for the paper and can be defined as 

deviance of observed prices from their true values.  As sampling frequencies increase, 

microstructure noise has an increasing effect on the reliability of observed prices.  This paper 
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maximizes the use of accurate information by reducing sampling frequencies from their highest 

levels and therefore reducing microstructure noise’s effect on the data. 

The market microstructure noise can be explained through summing the discounted value 

of future dividend payments and thus determining the theoretical price of a stock. Given the 

constant dividend payout ratio assumed by the constant dividend growth model outlined by Levy 

(2005), the expected value of the dividend payout in year i is 

 ii

i gdEgDDE )1()1()( 00 +=+= , (3) 

where g is the constant yearly growth rate, E0 is the current annual dividend earnings per share 

and d is the equity’s constant dividend payout ratio. Once the equity’s future earnings are 

determined, the “fundamental” price is 

 

! 

P
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=
E(Di)

k
i

i= 0

"

# =
D
0
(1+ g)

k $ g
 

(4) 

where k is the required rate of return as determined by the Capital Asset Pricing Model (CAPM) 

(Levy 2005). The CAPM is a method of pricing an asset based on its exposure to the systemic 

risk of the market and the risk-free rate of return offered by the market.  The value P0 is the 

theoretical true price of the equity and it follows the changes in dividends, growth rates, and 

required rate of return. 

 Microstructure noise confounds the observation of an equity’s true price. When 

accounting for microstructure noise, the observed log-price at time t becomes 

 

! 

ln[P
*
(t)] = ln[P(t)]+ "

t
 (5) 

where P(t) is the fundamental price as described in equation 4 and 

! 

"
t
 is microstructure noise. The 

errors in equation 5 are uncorrelated, have unit variance, and mean zero.  The noise in the 

observed price comes primarily from the bid-ask bounce and various other trading anomalies at 

the high-frequency tick level. The slight deviations from the true price must be accounted for in 

determining sampling frequencies and window sizes for the jump statistics explained in Section 

4. 

 

4. Statistical Methods 

4.1 Barndorff-Nielsen Shepard Statistics 

 The measures of variance used in this paper are heavily influenced by Barndorff-Nielsen 

and Shephard’s (2004, 2006) development of two volatility measures: Realized Variance and 
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Bipower Variation. Realized Variance converges to the daily volatility of both the continuous 

and jump components of asset price variation.  Bipower Variation is robust to jumps and 

converges to the volatility of the only the continuous price movement. The paper defines 

geometric returns R(ti) at time ti for an asset with price P(ti) as  

 

! 

R(t
i
) = log

P(t
i
)

P(t
i"1)

# 

$ 
% 

& 

' 
( . (6) 

The volatility statistics and their asymptotic properties are defined below: 
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"  (7) 
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T
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The limits in equations (7) and (8) indicate that as n approaches infinity, the interval between the 

returns approaches zero but the time period between the first and last observation is held 

constant.  In equation (7), Realized Variance converges to the daily variance that includes both a 

continuous component and a jump component, while the Bipower Variation limit in equation (8) 

only describes an asset’s continuous daily variance. The reason for this is that Bipower Variation 

multiplies adjacent returns and the effects of a single large return |R(ti)| are mitigated by the 

smaller returns |R(ti-1)| and |R(ti+1)|. The jump detection test that Barndorff-Nielsen and 

Shephard developed utilizes RV and BV to isolate the variance due to jumps in prices and 

compares the size of the jump to the continuous component of daily variance (2005). This paper 

does not utilize the Barndorff-Nielsen Shephard jump test because the test can only identify days 

that contain jumps, not individual observations that are jumps. 

 

4.2 Lee-Mykland Test Statistics 

The Lee-Mykland (2008) jump test uses a similar methodology for jump detection as the 

Barndorff-Nielsen Shephard test, but has the additional capability of identifying specific returns 

that can be classified as jumps.  After knowing the exact time of a jump, it is possible to identify 

simultaneous jumps occurring in the equities and oil futures market. The Lee-Mykland jump test 

creates a standardized return value )(iL at every observation with time 
i
t , 

 

! 

L(i) =
R(t

i
)

" (t
i
)

 (9) 
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! 

" 2
(ti) =

1

K # 2
R(t j )

j= i#K +2

i#1

$ R(t j#1) . (10) 

The 

! 

"(t
i
)  statistic is a scaled version of the Bipower Variation used in the Barndorff-Nielsen and 

Shephard literature. Lee and Mykland recommend using 5-minute data to reduce the effect of 

microstructure noise on high-frequency price quotes.  By using K equal to 270, the window size 

of the test is 3.5 days when using 5-minute sampling of the data.  That is, the test generates a 

local volatility measure by calculating the Bipower Variation of the previous 3.5 days of returns.  

Therefore, the )(iL  statistic is a ratio of the return scaled by the local, continuous volatility 

! 

"(t
i
)  

that is robust to discontinuous or “jumpy” behavior.  Lee and Mykland then identify the 

following statistic as having an exponential distribution:  

 

! 

"
i
=
max

i#M L(i) $C
n

S
n

%& , ),....,3,2,1( nM =  (11) 
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n
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!=

"  (13) 

 2/1)log*2(

1

nc
S
n
=  (14) 

 ./2 !=c  (15) 

The maximum absolute value of the adjusted return )(iL  over the observations in a day is shifted 

by Cn and scaled by Sn, both determined under the normal distribution of the )(iL  statistic (Lee 

and Mykland, 2008).  The resulting statistic 
i

!  is exponentially distributed.  Further, the test is 

run at the 1% significance level for rejecting the hypothesis that there is no jump at time 
i
t . 

 

4.3 Lee-Mykland Test Adjustment 

After performing the jump tests on three oil stocks, it was evident that the Lee and 

Mykland jump test method may be biased, as the results presented in Section 6.1 confirm.  The 

histograms presented in Figure 1 display the intraday jump behavior of three oil stocks. These 

figures indicate that jumps occur disproportionately during the time period from 9:35 to 10:35. 

Van Tassel found the same intraday pattern in the distribution of jumps using the slightly altered 

Lee-Mykland test proposed in 2006 (Van Tassel, 2008).  To investigate this phenomenon further, 
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the average Bipower Variation for each observation time across the entire dataset is calculated.  

This statistic is defined as  

 

! 

BV
h

=
1

N
* R

b,h"1 * Rb,h

b=1

N

# * R
b,h+1 , (16) 

where 
hb

R
,

 is the return of an observation for the th
b day and the th

h  time within that day and N 

is the number of days in the sample. The U-shaped pattern of 
h

BV for both the futures and the 

equities is noticeable in Figure 2.  This pattern is cause for concern over the validity of the Lee-

Mykland test.  The instantaneous volatility )(
i
t!  is assumed to be flat throughout the window 

size, which spans 3.5 days when using 5-minute data.  However, with a morning volatility 2.5 

times greater than the afternoon volatility, the Lee-Mykland test is biased towards incorrectly 

finding more jumps in the morning and failing to flag jumps in the afternoon.   

To adjust for the biased jump test, the following method is proposed: to scale the 

individual returns by their corresponding 

! 

BV
h

 value and then re-perform the Lee-Mykland test 

on the adjusted returns 

 

! 

ˆ R 
b,h

=
R

b,h

BV
h

. (17) 

In this method, the instantaneous volatility reflects the local volatility, but also compensates for 

the intraday volatility pattern.  When performing this test, first and last returns of the day are 

omitted, as there are no 
h

BV  calculations for these returns.  The results from this Lee-Mykland 

correction are presented in detail in Section 5.1. The rest of the paper utilizes the following 

statistics: adjusted returns 

! 

L(b,h) =
log( ˆ R 

b,h )

"
b,h

, the jump statistic ),( hbL , and instantaneous 

volatility 

! 

" b,h

2
=

1

K # 2
* ˆ R b,h

j= i#K +2

i#1

$ * ˆ R b,h#1
. 

 

4.4 Factor Analysis 

The primary method of data analysis presented in this paper is factor analysis. In contrast 

to using regression tools, factor analysis does not presuppose a single dependent variable and a 

group of explanatory variables. Instead, factor analysis extracts a number of unobserved factors 

that explain the common variance across concurrent observations of a set of variables (Gorsuch 
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1983).  If markets are efficient and a connection between oil futures prices and the stock market 

exists, then changes in price, volatility, and jumps should occur simultaneously on average.  If 

this did not hold, after accounting for the bid-ask transaction cost, then an arbitrage situation 

would arise.  Therefore, the analytic structure of this study requires factor analysis to examine 

contemporaneous movements in stock returns, jumps, and volatilities. 

The process of extracting factors for an individual variable can be described by the 

following equation: 

 

! 

z j = a j,1 " F1 + a j ,2 " F2 + ...+ a j,m " Fm + #i , (j=1,2,…,n)        (18) 

where the observed data for variable j is represented by zj.  Further, zj is described as a linear 

combination of the common factors Fm and an error term 

! 

"
i
. The coefficients of the factors, aj,m, 

are referred to as the loadings.  The common factors account for the correlations among the 

variables and the error term captures the remaining variance of that variable (Harman 1967). 

Additionally, the extracted factors are orthogonal and uncorrelated. To allow for multiple 

observations, equation (18) has been generalized to:  

 

! 

z j,i = a j ,p " Fp,i

p=1

m

# + $ j ,i . (i=1,2,…,N; j=1,2,…,n)        (19) 

In equation 19, zj,i represents the company variable being explained, either returns, jumps, or 

volatility, while aj,p and Fp,i are the factor loadings and factors. The coefficients aj,p are 

transformed to be able to represent the correlation between Fp,i  and zj,i  and thus do not have unit 

variance. The errors are uncorrelated with unit variance and mean zero. Equation (19) is capable 

of explaining observations across multiple companies.  Factor analysis is only meaningful when 

the number of factors m is low. That is, the researcher can explain a large quantity of data with 

only a few key factors. 

To simplify the interpretation of the factor analysis results, a rotated factor matrix can be 

created.  In this process, the new rotated factors are linear combinations of the previously 

preserved factors.  Thus, the variables are described by the linear combination of the old factors.  

The rotated factor-loading matrix forces the loadings to be close to either zero, one, or negative 

one, as each company variable is intended to be either correlated highly or not at all with the 

factor combination. With rotated factor loadings, the same number of factors is retained and the 

same degree of explanatory power is preserved (Gorsuch 1983). 
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There are two key tests of validity for the extracted factors: statistical significance and 

practical significance.  First, the retained factors themselves need to be statistically significant 

and explain a meaningful portion of the variance. There are several competing ideas about the 

correct number of factors that should be retained.  Kaiser (1960) developed a criterion where 

only the factors with an eigenvalue, a scalar multiplier of an eigenvector that indicates 

magnitude, greater than one should be retained. Further research by Cattell (1966) indicates that 

factors should be retained until any additional factors would only explain a sharply reduced 

percentage of the variance.  For this study, only the factors with an eigenvalue above 0.2 are 

retained for the factor-loading matrix.  Any non-included additional factors explained a 

significantly smaller portion of the variance.  As will be discussed in Section 6, two extracted 

factors were found to be significant in the factor analysis results.  

To determine the statistical significance of specific factor loadings, Stevens (2003) 

describes testing the loadings using standard errors calculated by doubling the standard error for 

a standard Pearson correlation, 

! 

1

n "1
, where n is the number of observations in the sample and 

the test is performed at the 

! 

" = .01 level from standard normal distribution. In practice, a sample 

size greater than 1,000 must have a correlation above 0.162 to be determined significant. As this 

dataset contains approximately 65,000 observations, factor loadings, or correlations, above 0.162 

are statistically different from zero.  To determine practical significance, Hair et al. (1998) 

suggest the correlation thresholds of 

! 

±0.3,±0.4,±0.5  to determine minimally, moderate, and 

significant practical interpretation.  These thresholds were chosen through their historical work—

using their field expertise to determine what the expected number of practically significant 

factors should be and comparing the correlation.  Intuitively, a correlation of 

! 

±0.3  indicates that 

9% of the variation in the dependent variable is explained by the factor. A correlation smaller 

than 

! 

±0.3  would not explain enough of the variation to be determined practically significant. 

 

4.5 Co-Jump Correlation 

 The method of factor analysis is not the only way to identify common jumps or jump 

processes across the oil and equity markets.  Roeber (1993) argues that the oil futures market 

responds very rapidly to changes in price expectations.  Market participants include oil 

companies, refining companies, electric utilities, traders, and investors, creating a well-
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functioning and efficient market.  However, following news announcements regarding oil or oil 

expectations, the oil futures market may respond faster to the information than the stock price of 

an oil company might.  Therefore, to account for the potential lag time in the equity market 

response, this study uses a correlation-type statistic, comparing days that contain a jump rather 

than specific returns that contain a jump, giving the equity market the remaining time in the 

trading day to react.  This statistic is defined as  

 

ba

ba

ba

JJ

C

*

,

, =!  
(20) 

where 
ba

C
,

is the number of common days between stocks a and b that contain at least one jump 

as determined by the adjusted Lee-Mykland test and 
a
J is the number of days that contain at 

least one jump for stock a. 

 

5. Data 

 The high-frequency data for the eleven equities traded on the New York Stock Exchange 

were obtained from the commercial data source price-data.com. Price quotes from the oil futures 

traded on the New York Mercantile Exchange (Nymex) were obtained from tickdata.com. The 

paper refers to the oil futures price with the shorthand OIL and the equities are quoted by their 

ticker symbol. 

As mentioned in Section 3.1, to test and adjust the Lee-Mykland jump detection method, 

three oil stocks are analyzed, ExxonMobil (XOM), ConocoPhillips (COP), and Chevron (CVX), 

over the period of 9/3/2002 to 1/24/2008, for a total of 1343 trading days.  The dataset has 385 

observations per-day, recorded at the 1-minute frequency, with each day beginning at 9:35 AM 

and ending at 3:59 PM.  For the Lee-Mykland test, the data was sampled at the 5-minute 

frequency, creating 77 observations per day.  However, the first observation of the day was not 

included in my test as it contained an overnight return that was not a part of the intraday price 

movement. 

  The dataset used in the factor analysis section includes OIL (oil futures), the three 

refining oriented oil company stocks used above, an upstream drilling company, and 7 other 

equities with different relationships to petroleum.  The results from the factor analysis are 

grouped to reflect oil’s potential relationship on the company’s performance.  The first group 
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regards the companies directly related to lifting and selling oil: XOM, COP, CVX, and Baker 

Hughes (BHI). BHI is an oilfield services company dealing with lifting and drilling services.  

The second group contains companies with services or products related to the price of oil, 

including Entergy (ETR), Ford (F), and FedEx (FDX). ETR is a consumer utilities company with 

primary operations in electricity delivery originating from nuclear power plants.  ETR’s product 

is potentially a substitute for electricity originating from an oil-fueled plant.  Ford products are 

heavily reliant upon consumer petroleum prices as they concentrate in pickup and industrial 

truck production and have been slow to develop smaller or hybrid powered cars.  With the 

largest air cargo fleet in the world and a formidable fleet of ground trucks, FedEx is an enormous 

consumer of oil.  The final grouping includes companies whose products are less related to the 

price of oil: Goldman Sachs (GS), Proctor & Gamble (PG), Boeing (BA), and Dell (DELL).   

Because oil futures trade on the Nymex between 10:00 a.m. and 2:30 p.m., the equities 

data was truncated to this time interval. The Nymex light, sweet crude oil futures data contains 

54 observations per-day when sampled at the 5-minute frequency, with an open at 10:00 a.m. and 

close at 2:30 p.m., for the majority of the days dating. The OIL and equities datasets contained a 

small number of incongruous days, where the trading time was either shortened or non-existent.  

The time period of the data spans from 9/3/2002 to 1/24/2008, with 1284 complete trading days 

1284 and 65,484 individual observations. The adjusted returns 

! 

L(b,h) , the jump statistic 

),( hbL , and instantaneous volatility 

! 

"
b,h

2 are constructed from this formatted data for each 

observation in accordance with the theory described in Sections 3 and 4.  The oil contracts are 

six-month-forward futures contracts for light, sweet crude. Light, sweet crude is the highest 

grade of unrefined oil and comes primarily from gulf oil reserves such as the Ghawar field in 

Saudi Arabia via tankers. 

 

6. Results 

The first portion of this section describes the results of the adjusted Lee-Mykland jump 

test and potential explanations for the pattern of intraday volatility. The second portion of the 

section applies the adjusted Lee-Mykland test, and the statistics it utilizes, to the much larger 

dataset, described above.  Sections 6.3-6.5 use factor analysis to examine the patterns in adjusted 

returns, jump statistics, and instantaneous volatilities for OIL and the eleven equities. Section 6.6 

presents the Co-Jump Matrix of common jump days across OIL and the eleven equities. 
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6.1 Lee-Mykland Test Results 

By adjusting for the intraday pattern in Bipower Variation, the Lee-Mykland test used in 

this paper flags an even number of jumps throughout the trading day.  The results discussed in 

Section 4.3 explore the shortcomings of the Lee-Mykland test and a potential correction to the 

test.  The most important finding was that the Lee-Mykland test assumed that intraday Bipower 

Variation was flat, while the data indicates that volatility is 2.5 times higher in the morning than 

in the afternoon.  The uncorrected, intraday average Bipower Variation 

! 

BV
h

 results are shown in 

Figure 2, with OIL as a solid line and the average of XOM, COP, and CVX as an asterisk line. 

The diamond line is the 

! 

RV h  average of XOM, COP, and CVX and is constant throughout the 

day.  The graph indicates that the intraday volatility is not constant, but U-shaped.  There is a 

clear spike in the daily average Bipower Variation starting at 10:30 and remaining in the 10:35 

and 10:40 averages.  The 
h

BV then trails off after 10:40, until it rises slightly again in the last 

half hour of the trading day.  The most likely explanation for the sharp 10:30 increase is that the 

Department of Energy’s Weekly Petroleum Status Report is released at 10:30 every Wednesday.  

This report contains all the major oil measures including world prices, refinery activity, net 

imports, oil reserves, and products supplied.  Van Tassel (2007) found that within the equity 

market, intraday Bipower Variation was higher in the morning and lower in the afternoon due to 

the higher frequency of morning news announcements and higher volume of market transactions.  

This paper confirms that result.  The oil industry’s intraday volatility pattern is most likely 

subject to similar processes, but is additionally affected by the importance of the Department of 

Energy announcements on oil expectations and their corresponding effect on oil futures and 

companies. 

The problematic jump detection method of the original Lee-Mykland test appears to be 

corrected.  The results of the adjusted Lee-Mykland test are displayed in a histogram in Figure 3 

and present jumps evenly distributed throughout the day.  Figure 4 applies a kernel density to the 

combined, adjusted jumps.  The histogram in Figure 4 indicates that jumps are evenly distributed 

throughout the day. However, the Kernel density identifies the subdued U-shaped intraday 

pattern. This remains an intuitive result as morning announcements should still cause more 

discontinuities around 10:30 a.m. and 11:00 a.m.  The new 
h

BV  graph is not included, but the 



 

17 

volatility has variance zero and a mean of one throughout the day, as it should by construction. 

After adjusting the returns to reflect their sample average Bipower Variation, the Lee-Mykland 

test correctly assumes that instantaneous volatility is constant throughout the window size of 2.5 

days. Therefore, there is no longer a bias towards over-identifying jumps in the morning and 

under-identifying jumps in the afternoon.  The test continues to reflect global periods of higher 

or lower volatility. The corrected test flags an average of 8.01% fewer days as containing at least 

one jump when compared to the uncorrected Lee-Mykland test. 

 

6.3 Adjusted Returns 

To test the connection between equity returns and the oil futures market, the first variable 

investigated was the adjusted returns.  The factor loading matrix is described in Table 1.  Only 

two of the factors were determined to have eigenvalues above 0.2 and significantly contribute to 

the explanation of the variance of the adjusted returns.  For a visual demonstration of the results, 

the factor loadings are plotted in Figure 4.3, where the correlations with factor one and two form 

the coordinates.  There are three clear groupings in Figure 4.3: OIL, the oil companies, which 

includes XOM, COP, CVX, and BHI, and the remaining, non-oil companies.   

The first extracted factor can be interpreted to be the “market” factor, describing the 

overall trend in the S&P 100. It is highly correlated with all of the equity stock returns in the 

sample as seen in the second column of Table 1. As is indicated by a correlation of only .09, 

factor one does not meaningfully describe OIL return variance.  This is expected as the price of 

oil is more related to political events and supply-shocks than macroeconomic indicators (Chua 

1994).  The first factor describes 37% of the total variance. This factor would be related to 

general employment statistics, the strength of consumer spending, inflation impacts, and the 

macro-economic cycle.  Another explanation of the market factor could the systemic risk defined 

by the Capital Asset Pricing Model.  Under the CAPM framework, the common variance across 

the different equity returns should indicate the risk-return profile for the stock market. 

The second factor can be interpreted to be the “oil” factor, as oil futures and the oil 

equities are significantly and positively correlated with factor two while the non-oil companies 

were negatively and less significantly correlated with factor two.  Therefore, this factor could 

simply be the expected future price of oil, where an increase in the expected oil price would lead 

to an increase in the adjusted returns of oil futures and oil business sector equities.  Further, an 
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expected increase in oil prices should decrease the returns of non-oil related companies as 

petroleum is an input in their products and may place a damper on overall consumer spending.  

The importance of oil on the returns of the U.S. economy, as studied by Hamilton (1983) and 

Mork, Olsen, and Mysen (1994), is apparent even at the 5-minute return level when looking at 

individual equity returns.  Finally, together the two factors are able to explain an average of 53% 

of the variance of the oil company stocks, while only 25% of the non-oil equities.  By including 

four stocks from the same oil-related sector, factor analysis is able to isolate the oil factor and 

explain an additional portion of the sector’s returns beyond the return profile of the broad 

market. 

These two factors were present during the first half of 2008. While it was a record year 

for profits across the oil sector due to high crude prices, many petroleum companies were trading 

down approximately 20% through October 2008.  However, the overall market has declined an 

average of 34% through the same period.  Experts suggest that the poor health of the economy 

has depressed the consumer demand for petroleum products and led to decreased expectations 

for oil equities. Fluctuations in oil futures prices affect oil equity returns at the 5-minute return 

level.  However, petroleum companies are not immune to the macroeconomic cycles and 

outlooks affecting stock markets, also seen at the return level. 

 

6.4 Jump Statistics 

The second test to investigate the connection between the futures and equities market is 

to analyze whether price jumps occur simultaneously.  The analytic result of examining 

simultaneous jump statistics is very similar to the returns model of the previous section: a market 

and an oil factor drive the data.  When examining the jump statistics data, the rotated factor-

loading matrix yielded more interpretable results.  The results of the adjusted returns above 

suggest there is correlation between the two factors as oil prices can affect the macro economy in 

the form of oil shocks (Chua 1994).  For this reason, an oblique rotation is used for interpretation 

that allows for correlation between factors. The output is presented in Table 2.   

As expected, the jump results are similar to the results of the standardized returns.  

However, the factors selected capture less of the variance of the jump component than they did 

for the adjusted returns.  This is reflected in the lower communality for each company’s 

counterpart in the adjusted return factor analysis presented previously in Table 1.  For example, 
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60% of Exxon Mobil’s return variance is explained by the two factors while only 39% of the 

jump variance is explained.   

Factor one is highly correlated with oil companies and slightly less so with oil futures and 

non-oil companies. As was the case in analyzing the adjusted returns, this appears to be a 

“market” factor that captures the systematic likelihood for all equities in the market to jump. The 

second factor is the oil factor—positively correlated with oil companies and negatively 

correlated with the non-oil companies. Oil company stock prices are likely jumping 

contemporaneously as they respond similarly to oil announcements and crude oil price 

fluctuations while non-oil companies are not likely to be jumping.  Further, the low levels of oil 

futures correlation, as evidenced by the top row, indicate that the oil futures market is reacting to 

similar, yet unique events that determine the price of oil.  The presence of non-simultaneous 

jumping of oil futures and equities is puzzling.  If oil equity returns were closely tied to oil 

futures returns, one might expect efficient markets would create contemporaneous jumps.  The 

incredible access to information and the use of new technology in electronic trading should make 

jumps across related markets simultaneous.  A possible explanation is that unexpected, random 

jumps affect the more volatile futures market first and then later reverberate to the equity 

markets. It is also possible that markets are inefficient and an arbitrage opportunity exists. 

 

6.5 Instantaneous Volatility 

While the adjusted return and jump statistic data yield similar analytic results, an 

investigation of the contemporaneous volatility across the futures and equity market does not fit 

the same pattern.  Table 3 displays the results of the unrotated factor-loading matrix.  The most 

interesting aspect of the analysis is that on average, 85% of the oil company price volatility is 

explained by the common three factors.  Approximately 75% of the non-oil equity price 

volatility is explained by the three retained factors.  This is not a surprising result as the 

volatilities of any two equities traded in the same market are highly correlated.  However, only 

26 percent of the variance in oil futures volatility is explained by the three factors.  The first 

factor is highly correlated with all of the equity variables, yet not at all with the oil futures 

volatility. The extremely volatile nature of the oil futures market most likely excludes it from 

sharing correlation with factor one.  The presence of factor one suggests that there exists a 

common element of volatility across the entire equity market, regardless of business sector.  
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Additionally, the second factor contributes uniquely to the oil-company stocks and OIL, 

accounting for the higher communality across those sector-specific stocks. The negative 

relationship between oil futures volatility and factor two, and thus the oil-equity sector, is 

puzzling.  One might expect that an increase in volatility of oil futures would trigger trading of 

the oil equities, but this is not supported by the data. Wang, Wu, and Yang (2008) find that oil 

futures volatility is symmetric across positive and negative returns.  Although increased volatility 

does not indicate changes in expected returns, risk-averse equity investors could be avoiding the 

uncertainty of buying and selling during periods of highly volatile oil prices. The low 

communality of oil futures volatility indicates that neither factor explains oil futures volatility 

well.  Thus, there is still a possibility for spurious correlation between OIL volatility and factor 

two. In contrast to the results from analyzing the adjusted returns and jump statistics data, oil 

price volatility and equity volatility appear to have no connection when assessed at the 5-minute 

observation level. 

 

6.6 Co-Jump Matrix 

The jump-day correlation-type matrix, using the statistic defined in Section 4.6, is 

displayed in Table 4.  The results of the matrix suggest that there are “market” and “oil” factors 

similar to the factor analysis results above.  The equity market factor appears to contribute 

approximately 0.20 to the statistic, as any two given stocks will have several common jump days.  

This could be due to market-wide jump-inducing announcements like a major interest rate 

change, or it could be a spurious correlation indicating nothing more than the probability of two 

random processes sharing a common jump day.  However, the correlation-type relationship 

between XOM, CVX, and COP is not sufficiently explained by the “market” alone.  The average 

correlation between the three stocks is 0.40, double the average correlation between any two 

stocks chosen at random.  By examining the existence of jumps over a given day, this method 

compensates for a possible lagged response of the equity market. The correlation between OIL 

and the three stocks remains around 0.20.  This indicates that oil-company prices are not jumping 

in response to jumps in the oil futures price.  Further, by examining the OIL column, it appears 

that oil price jumps simply do not occur simultaneously with jumps in the equity market beyond 

what can be accounted for by spurious jumping.  The fact that OIL and equities are traded in 
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markets with completely different dynamics, investors, and price determinants could be limiting 

the ability to compare the two markets when applying a jump test. 

 

7. Conclusion 

This paper looks at simultaneous returns, jumps, and volatilities of oil futures, oil 

equities, and other equities in the S&P 100. After adjusting returns for the natural intraday 

volatility pattern that exists in the data, factor analysis is used to extract the essential components 

that drive the variation in the three dependent variables. Through this method, a market factor is 

found to affect the overall level of returns across the equities and the likelihood that two given 

equities to jump simultaneously. This component likely describes the macroeconomic conditions 

that drive equity returns regardless of specific industry.  A second factor is found to affecting the 

returns and jumps that uniquely describes the variation in the oil equity and futures data.  This 

characteristic supports the intuitive connection between oil futures and oil equity results 

discussed in the paper.  Volatility in oil futures and equities, however, is not found to have a 

common root due to the differences in types and motivations of traders. 

One future extension of this paper is to study the potential lag-lead relationships between 

the two markets.  The value of volatility spillovers on determining the rate of informational flow 

that Ross (1989) outlines suggests that the volatility relationship between the markets could be 

better explained by lead-lag relations rather than a contemporaneous relationship. A GARCH 

framework could elucidate the potential leading role that oil futures volatility plays in imputing 

oil equity volatility. Of course, the rise of instant information and computerized trading could 

have vastly changed in the 20-year old model that Ross (1989) introduced. Another 

recommendation of further research the inclusion of an equity index, such as the S&P 500, in 

determining market returns, jumps, and volatility.  The true activity of equity markets may not be 

fully captured through looking at individual stocks.
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A. Figures and Tables 

 

Figure 1: 
Histograms of Intraday Unadjusted Jump Pattern 

 
The histograms are for COP, XOM, CVX and Combined, which displays the total number from 
the three stocks.  The histograms display the total number of flagged jumps at every observation 
time over the period from September 3rd, 2002 to January 24, 2008 for a total of 1,343 trading 

days. The jumps detection method is the unadjusted Lee-Mykland (2008) test. The Lee-Mykland 
test uses observations starting at 9:40 a.m. and ending at 4 p.m.  
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Figure 2: 

Intraday Bipower Variation for Oil Equities and Futures 

 
The solid line displays the intraday Bipower Variation as defined in equation (16) for oil futures 

prices. The asterisk line averages the intraday Bipower Variation, from equation (16), across 
XOM, COP, and CVX.  The diamond line averages the Realized Variance, as defined in 

equation (7), across XOM, COP, and CVX.  All plots use data over the period from September 
3rd, 2002 to January 24, 2008 for a total of 1,343 trading days. The BV and RV calculations use 

observations starting at 10 a.m. and ending at 2:30 p.m.
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Figure 3:  

Intraday Adjusted Jump Pattern 

 
The histograms are for COP, XOM, CVX and Combined, which displays the total number from 
the three stocks.  The histograms display the total number of flagged jumps at every observation 
time over the period from September 3rd, 2002 to January 24, 2008 for a total of 1,343 trading 

days. The jumps detection method is the adjusted Lee-Mykland test, as defined in equation (17). 
The adjusted Lee-Mykland test uses observations starting at 9:40 a.m. and ending at 4 p.m.   
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Figure 4: 

Combined Jumps with Kernel Density 

 
The histogram displays the total number from three stocks: XOM, CVX, and COP.  The 

histogram displays the total number of flagged jumps at every observation time over the period 
from September 3rd, 2002 to January 24, 2008 for a total of 1,343 trading days. The jumps 

detection method is the adjusted Lee-Mykland test, as defined in equation (17). The adjusted 
Lee-Mykland test uses observations starting at 9:40 a.m. and ending at 4 p.m.  The diamond line 

displays the kernel density for the histogram of combined jumps. 
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Table 1: 
Adjusted Returns Factor Loadings 

 
 F1 - Market F2 - Oil Communality 

rOIL 0.0985 0.3428 0.1272 

rCOP 0.653 0.3128 0.5243 

rCVX 0.7242 0.2753 0.6003 

rXOM 0.7479 0.2073 0.6023 

rBHI 0.5413 0.3196 0.3951 

rETR 0.4018 -0.2064 0.204 

rF 0.2977 -0.1567 0.1132 

rFDX 0.4608 -0.2785 0.2899 

rGS 0.5245 -0.2801 0.3535 

rPG 0.4588 -0.2768 0.2871 

rBA 0.4553 -0.266 0.278 

rDELL 0.4524 -0.2486 0.2665 

 

The table represents the factor analysis results from the adjusted returns data. The data is 
described in detail in section 5 and the adjusted returns are derived in equation (17).  Each row 
represents a different financial asset. The first column is the correlation between the ‘Market’ 

factor and the asset’s returns, the second column is the correlation between the ‘Oil’ factor and 
the asset’s returns, and the third column provides the percentage of total return variance 

explained by the two factors. See Section 4.4 for an explanation of factor analysis. 
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Figure 4.3: 
 Plot of Adjusted Returns Factor Loadings  
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The factor loadings from the adjusted returns factor analysis output in Table 1 are plotted.  Three 
distinct groups are displayed: oil equities returns in the lower right corner, oil futures returns in 

the lower left corner, and non-oil equities in the upper middle. 
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Table 2: 
Factor Loadings of Jump Statistic 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table represents the factor analysis results from the jump statistic data. The data is described 
in detail in section 5 and the jumps statistic is derived in equation (9).  Each row represents a 

different financial asset. The first column is the correlation between the ‘Market’ factor and the 
asset’s jump statistic, the second column is the correlation between the ‘Oil’ factor and the 
asset’s jump statistic, and the third column provides the percentage of total jump variance 

explained by the two factors. See Section 4.4 for a more complete explanation of factor analysis. 
See Section 4 for an explanation of the jump statistic used. 

 F1 - Market F2 - Oil Communality 

jOIL 0.1358 0.0866 0.0259 

jCOP 0.5341 0.2113 0.3299 

jCVX 0.6098 0.1871 0.4068 

jXOM 0.6137 0.1341 0.3946 

jBHI 0.4076 0.1836 0.1998 

jETR 0.261 -0.1714 0.0975 

jF 0.1663 -0.1172 0.0414 

jFDX 0.2991 -0.2158 0.136 

jGS 0.3523 -0.2324 0.1781 

jPG 0.3097 -0.2196 0.1442 

jBA 0.2873 -0.2093 0.1263 

jDELL 0.2889 -0.1973 0.1224 
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Table 3: 
Factor Loadings of Instantaneous Volatility 

 

 
The table represents the factor analysis results from the instantaneous volatility data. The data is 
described in detail in section 5 and the volatility is derived in equation (10).  Each row represents 
a different financial asset. Columns 1-3 present the correlation between instantaneous volatility 

and the three extracted factors across the twelve different assets. See Section 4.4 for a more 
complete explanation of factor analysis. 

 F1 F2 F3 Communality 

ivOIL -0.079 0.290 0.413 0.261 

ivCOP 0.736 -0.576 0.176 0.904 

ivCVX 0.837 -0.492 0.053 0.945 

ivXOM 0.921 -0.241 0.021 0.908 

ivBHI 0.795 -0.225 0.101 0.693 

ivETR 0.860 0.097 0.041 0.750 

ivF 0.777 0.310 -0.048 0.702 

ivFDX 0.841 0.164 -0.122 0.749 

ivGS 0.816 0.020 -0.231 0.719 

ivPG 0.751 0.305 0.277 0.734 

ivBA 0.712 0.535 0.105 0.804 

ivDELL 0.755 0.227 -0.305 0.714 
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Table 4: 
Co-Jump Correlation Matrix 

 

 OIL COP CVX XOM BHI ETR F FDX GS PG BA DELL 

OIL 1.000            

COP 0.253 1.000           

CVX 0.146 0.420 1.000          

XOM 0.287 0.324 0.458 1.000         

BHI 0.195 0.283 0.185 0.238 1.000        

ETR 0.199 0.212 0.247 0.187 0.125 1.000       

F 0.196 0.185 0.190 0.159 0.112 0.239 1.000      

FDX 0.178 0.214 0.220 0.235 0.150 0.223 0.186 1.000     

GS 0.142 0.226 0.286 0.334 0.195 0.218 0.215 0.194 1.000    

PG 0.141 0.229 0.223 0.217 0.145 0.223 0.225 0.260 0.299 1.000   

BA 0.136 0.219 0.299 0.219 0.183 0.243 0.149 0.187 0.256 0.239 1.000  

DELL 0.147 0.264 0.267 0.233 0.134 0.233 0.223 0.233 0.262 0.299 0.241 1.000 

 

This matrix presents the correlation type statistic that describes the correlation between the jump 
days of two assets. The correlation statistic is defined as  

ba

ba

ba

JJ

C

*

,

, =! ,  

defined in more detail in Section 4.5. The jump detection method is the adjusted Lee-Mykland 
test, as defined in equation (17).  All twelve financial assets are presented, as described in 

Section 5. The data spans the period from September 3rd, 2002 to January 24, 2008 for a total of 
1,343 trading days.  
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