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Abstract

We provide a set of probabilistic laws for estimating the quadratic variation of continuous

semimartingales with the realized range-based variance—a statistic that replaces every squared return

of the realized variance with a normalized squared range. If the entire sample path of the process is

available, and under a set of weak conditions, our statistic is consistent and has a mixed Gaussian

limit, whose precision is five times greater than that of the realized variance. In practice, of course,

inference is drawn from discrete data and true ranges are unobserved, leading to downward bias. We

solve this problem to get a consistent, mixed normal estimator, irrespective of non-trading effects.

This estimator has varying degrees of efficiency over realized variance, depending on how many

observations that are used to construct the high–low. The methodology is applied to TAQ data and

compared with realized variance. Our findings suggest that the empirical path of quadratic variation

is also estimated better with the realized range-based variance.
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1. Introduction

The volatility of asset prices is a key ingredient in several areas of financial economics.
Not long ago, academic studies routinely used constant volatility models (e.g., Black and
Scholes, 1973), despite empirical evidence in the data suggesting that the conditional
variance is both time-varying and highly persistent. These facts were uncovered by the
development and application of parametric models, such as ARCH (see, e.g., Bollerslev et
al., 1994), through stochastic volatility models (e.g., Ghysels et al., 1996), and more
recently non-parametric methods based on high-frequency data, the most conspicuous idea
being realized variance (RV), see, e.g., Andersen et al. (2001b) or Barndorff-Nielsen and
Shephard (2002); henceforth ABDL and BN–S.

RV is the sum of squared returns over non-overlapping intervals within a sampling
period. Given weak regularity conditions, RV converges in probability to the quadratic

variation (QV) of all semimartingales as the sampling frequency tends to infinity.
In practice, the consistency of RV breaks down as data limitations prevent the sampling

frequency from rising without bound. Most notably, market microstructure noise
contaminates high-frequency asset prices. This invalidates the asymptotic theory, and
RV is known to be inconsistent in the presence of noise (e.g., Bandi and Russell, 2005,
2006, and Hansen and Lunde, 2006). Therefore, it is common in applied work to construct
RV at a moderate frequency, where the impact of noise is small enough to be ignored, but
this leads to loss of information. Though current research seeks to make RV robust against
microstructure noise (e.g., Zhang et al., 2004 or Barndorff-Nielsen et al., 2006b), the most
accurate estimator of QV remains unknown. Set against this backdrop, we suggest the
realized range-based variance (RRV).
Range-based estimation of volatility (developed in, e.g., Feller, 1951; Garman and

Klass, 1980; Parkinson, 1980; Rogers and Satchell, 1991; Kunitomo, 1992; Alizadeh et al.,
2002) reveals more information than returns sampled at fixed intervals, because the
extremes are formed from the entire price process. The daily squared range, for example, is
about five times more efficient at estimating the scale of Brownian motion than the daily
squared return. But, as noted in Andersen and Bollerslev (1998), the accuracy of the
high–low estimator is only around that afforded by RV based on 2- or 3-h returns, and the
range has largely been neglected in the recent literature.
Intraday range-based estimation of volatility, however, has the potential of achieving

smaller sampling errors than a sparsely sampled RV, because we can replace every squared
return of RV with a squared range and extract most of the information about volatility
contained in the intermediate data points. No prior studies have explored the properties of
such an estimator. Indeed, it is not clear what to expect from sampling, properly
transformed, high-frequency ranges. Extrapolating from the daily interval would suggest
that hourly ranges, say, achieve the accuracy of RV based on 5- or 10-min returns, but the
comparison is more complicated as each intraday range is constructed from less data.
We propose to sample and sum intraday price ranges to construct more efficient

estimates of QV. Our contributions are four-fold. First, we develop a non-parametric
method for measuring QV with the RRV. Second, and unlike the existing time-invariant
theory for the high–low, we deal with estimation of time-varying volatility, when the
driving terms of the price process are (possibly) continuously evolving random functions.
Third, we derive a set of probabilistic laws for sampling intraday high–lows. Fourth, we
remove the problems with downward bias reported in the previous range-based literature.
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The new estimator is defined as

RRVD
m ¼

1

l2;m

Xn

i¼1

s2piD;D;m
, (1.1)

where spiD;D;m ¼ max0ps;tpmfpði�1Þ=nþt=mn � pði�1Þ=nþs=mng is the observed range of a price
process p over the interval ½ði � 1Þ=n; i=n�, i ¼ 1; . . . ; n. m is the number of high-frequency
returns used to construct spiD;D;m and l2;m is a constant. We prove that RRVD

m is consistent
for the integrated variance (IV) and that

ffiffiffi
n
p
ðRRVD

m � IV Þ has a mixed Gaussian limit with
a variance that can be much smaller relative to RV.

The paper is structured as follows. In the next section, we unfold the necessary diffusion
theory, present various ways of measuring volatility and advance our methodological
contribution by suggesting RRV and a version thereof that handles non-trading effects.
Under mild conditions, we prove consistency for the estimation method and derive a mixed
Gaussian central limit theorem (CLT). Section 3 illustrates the approach through Monte
Carlo analysis to uncover the finite sample properties, and we present some empirical
results in Section 4. Rounding up, Section 5 offers conclusions and sketches several
directions for future research.

2. A semimartingale framework

In this section, we propose a new method for consistently estimating QV based on the
price range. The theory is developed for the log-price of a univariate asset evolving in
continuous time over some interval, say p ¼ ðptÞtX0. p is defined on a filtered probability
space ðO;F; ðFtÞtX0;PÞ and adapted to the filtration ðFtÞtX0, i.e. a collection of s-fields
with Fu �Ft �F for all upto1.

The basic building block is that p constitutes a continuous sample path semimartingale.1

Hence, we write the time t log-price in the generic form:

pt ¼ p0 þ

Z t

0

mu duþ

Z t

0

su dW u for tX0, (2.1)

where m ¼ ðmtÞtX0 (the drift) is locally bounded and predictable, s ¼ ðstÞtX0 (the volatility)
is càdlàg, and W ¼ ðW tÞtX0 is a standard Brownian motion.

Much work in financial econometrics is cast within this setting (see, e.g., Andersen et al.,
2002b or BN–S, 2007 for reviews and references). Except for the continuity of the local
martingale, we impose little structure on the model. In fact, for semimartingales with a
continuous martingale component as above, the form

R t

0 mu du
� �

tX0
is implicit, when the

drift term is predictable (in the absence of arbitrage).2

The objective is to estimate a suitable measure of the return variation over a subinterval
½a; b� � ½0;1Þ, labeled the sampling period or measurement horizon. We assume
½a; b� ¼ ½0; 1�; this will be thought of as representing a trading day, but the choice is
arbitrary and can serve as a normalization. At any two sampling times ti�1 and ti, with
1We adopt the continuity assumption as a starting point only. In subsequent work, we have been analyzing the

properties of our estimator, when p exhibits jumps (see Christensen and Podolskij, 2006).
2Moreover, all continuous local martingales, whose QV (to be defined in a moment) is absolutely continuous,

has the martingale representation of the second term in Eq. (2.1), e.g., Doob (1953). We refer to BN–S (2004,

footnote 6) for further details.
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0pti�1ptip1, the intraday return over ti�1; ti½ � is denoted by

rti ;Di
¼ pti

� pti�1
, (2.2)

where Di ¼ ti � ti�1.
From the theory of stochastic integration, it is well-known that QV is a natural measure

of sample path variability for the class of semimartingales. QV is defined by

hpi ¼ p- lim
n!1

Xn

i¼1

r2ti ;Di
, (2.3)

for any sequence of partitions, 0 ¼ t0ot1o � � �otn ¼ 1, such that max1pipnfDig ! 0 as
n!1 (e.g., Protter, 2004).
In our framework, QV is entirely induced by innovations to the local martingale and

coincides with the IV, which is the object of interest:

IV ¼

Z 1

0

s2u du. (2.4)

IV is central to financial economics, whether in asset and derivatives pricing, portfolio
selection or risk management (e.g., Andersen et al., 2002b). The econometric problem is that
IV is latent, which complicates the empirical estimation of this quantity. We briefly review
the literature on existing methods for measuring IV, before suggesting a new approach.

2.1. Return-based estimation of IV

Not long ago, the daily squared return was employed as a non-parametric estimator of
IV. With the advent of high-frequency data, however, more recent work has computed RV,
which is the sum of squared intraday returns sampled over non-overlapping intervals (see,
e.g., ABDL, 2001 or BN–S, 2002). More formally, consider an equidistant partition
0 ¼ t0ot1o:::otn ¼ 1, where ti ¼ i=n. Then, adopting the notation of Hansen and Lunde
(2005), we define RV at sampling frequency n by setting

RVD ¼
Xn

i¼1

r2iD;D. (2.5)

RV builds directly on the theory of QV. From Eqs. (2.3) and (2.4), it follows that

RVD!
p

IV , (2.6)

as n!1.3

BN–S (2002) derived a distribution theory for RVD in relation to IV. The law of the
scaled difference between RVD and IV has a mixed Gaussian limit,ffiffiffi

n
p
ðRVD � IV Þ!

d
MNð0; 2IQÞ, (2.7)
3Though an irregular partition of the sampling period suffices for consistency, it is standard to compute an

equidistant time series of intraday returns by various approaches, such as linear interpolation in, e.g., Andersen

and Bollerslev (1997) or the previous-tick method suggested in Wasserfallen and Zimmermann (1985). A side-

effect of linear interpolation is that RVD!
p

0 as n!1, because the interpolated process is of continuous

bounded variation, see Hansen and Lunde (2006, Lemma 1). Intuitively, a straight line is the minimum variance

path between two points. Oomen (2005) characterizes RV under alternative sampling schemes.
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where

IQ ¼

Z 1

0

s4u du, (2.8)

is the integrated quarticity (IQ). Thus, the size of the error bounds for RVD is positively
related to s, so RV is a less precise estimator of IV when s is high. BN–S (2002) also
derived a feasible CLT, where all quantities except IV can be computed directly from the
data. This was done by simply replacing IQ by a consistent estimator, such as realized

quarticity (RQ):

RQD ¼
n

3

Xn

i¼1

r4iD;D, (2.9)

making it possible to construct confidence bands for RVD to measure the size of the
estimation error involved with finite sampling.

2.2. Range-based estimation of IV

The choice of volatility proxy is not obvious in practice, since microstructure bias affects
RV if n is too large. With noisy prices, RV is both biased and inconsistent, see, e.g., Zhou
(1996), Bandi and Russell (2005, 2006), or Hansen and Lunde (2006).4 Previous studies
have recognized this by developing bias reducing techniques (e.g., pre-whitening of the
high-frequency return series with moving average or autoregressive filters as in Andersen et
al., 2001a and Bollen and Inder, 2002, or kernel-based estimation as in Zhou, 1996 and
Hansen and Lunde, 2006). Zhang et al. (2004) also suggest a subsample estimator that is
robust to the noise in some situations. In empirical work, the benefits of more frequent
sampling is traded off against the damage caused by cumulating noise, and—using various
criteria to pick the optimal sampling frequency—the result is often sampling at a moderate
frequency, e.g., every 5-, 10-, or 30-min, whereby data are discarded.

This pitfall of RV motivates our choice of another proxy with a long history in finance:
the price range or high–low. Using the terminology from above, we define the intraday
range at sampling times ti�1 and ti as

spti ;Di
¼ supfpt � psg

ti�1ps;tpti

. (2.10)

The subscript p indicates that we use the range of the price process. Below, we also need the
range of a standard Brownian motion over ½ti�1; ti�, which is denoted by

sWti ;Di
¼ supfW t �W sg

ti�1ps;tpti

. (2.11)
2.2.1. The distribution of the range

The foundations of the range go back to Feller (1951), who found its distribution
by using the theory of Brownian motion.5 According to his work, the density of sW ti ;Di

is
4With IID noise, for instance, RV diverges to infinity, i.e. RVD!
p
1 as n!1.

5There are two types of range-based volatility estimators: the first relies purely on the high–low, while the

second combines the high–low with the open–close, e.g., Garman and Klass (1980) or Rogers and Satchell (1991).

Throughout, we only consider the high–low estimator.
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Fig. 1. The distribution of the absolute return and range of a standard Brownian motion over an interval of unit

length.
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given by

f ðxÞ ¼ 8
X1
j¼1

ð�1Þj�1
j2ffiffiffiffiffi
Di

p f
jxffiffiffiffiffi
Di

p

� �
for x40, (2.12)

with fðyÞ ¼ expð�y2=2Þ=
ffiffiffiffiffiffi
2p
p

. The infinite series is evaluated by a suitable truncation. In
Fig. 1, we plot the density function of sW ti ;Di

by taking ti ¼ Di ¼ 1 (we use the shorthand
notation sW for this random variable in the rest of the paper).
The figure also displays the distribution of the absolute return. By comparing these

proxies, it is suggestive that the efficiency of the range is higher, or in other words that its
variance vis-à-vis the return is lower.
Parkinson (1980) used Feller’s insights to derive the moment generating function of the

range of a scaled Brownian motion, pt ¼ sW t.
6 For the rth moment:

E½sr
pti ;Di
� ¼ lrD

r=2
i sr for rX1, (2.13)

where lr ¼ E½sr
W �.

7

Arguably, a process without drift and constant s is irrelevant from an empirical point of
view. An overwhelming amount of research indicates that s is time-varying, see, e.g.,
Ghysels et al. (1996). Nonetheless, to our knowledge there exists little theory about range-
based estimation of IV in the presence of a continually evolving diffusion parameter.8

Previous work accounts for (randomly) changing volatility by holding st fixed within the
6Note, s does double-duty; representing either the process s ¼ ðstÞtX0 or a constant diffusion parameter st ¼ s.
The meaning is clear from the context.

7The explicit formula for lr is lr ¼ 4=
ffiffiffi
p
p
ð1� 4=2rÞ2r=2Gððrþ 1Þ=2Þzðr� 1Þ, for rX1; where GðxÞ and zðxÞ denote

the Gamma and Riemann’s zeta function, respectively.
8A notable exception is Gallant et al. (1999), who estimate two-factor stochastic volatility models in a general

continuous time framework. They derive the density function of the range in this setting, but do not otherwise

explore its theoretical properties.
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trading day, while allowing for (stochastic) shifts between them (e.g., Alizadeh et al., 2002).
Still, there are strong intraday movements in st (e.g., Andersen and Bollerslev, 1997).

A major objective of this paper is, therefore, to extend the theoretical domain of the
extreme value method to a more general class of stochastic processes. Contrary to extant
research, we develop a statistical framework for the Brownian semimartingale in Eq. (2.1),
featuring less restrictive dynamics for m and s.
2.2.2. A realized range-based estimator

As stated earlier, the (transformed) daily range is less efficient than RV for moderate
values of n; 2- or 3-h returns suffice. But with tick-by-tick data at hand, we can construct
more precise range-based estimates of IV by sampling high–lows within the trading day.
Curiously, a rigorous analysis of intraday ranges has been missing in the volatility
literature.9

Accordingly, consider again the equidistant partition with ti ¼ i=n, for i ¼ 1; . . . ; n.10 We
then propose a RRV estimator of IV, which—at sampling frequency n—is defined as

RRVD ¼
1

l2

Xn

i¼1

s2piD;D
. (2.14)

RRVD has two advantages over the previous return- and range-based methods suggested in
the literature on volatility estimation. First, RRVD inspects all data points (regardless of n),
whereby we avoid neglecting information about IV. Second, the efficiency of RRVD is
several times that of RVD, leading to narrower confidence intervals for IV (see below).
2.2.3. Properties of RRV

The properties of RRVD are trivial for the scaled Brownian motion, pt ¼ sW t. As the
infill asymptotics start operating by letting n!1, we achieve an increasing sequence of
IID random variables, fspiD;Dgi¼1;:::;n. Suitably transformed to unbiased measures of s2 using
(2.13), the consistency of RRVD follows from a standard law of large numbers by
averaging. To see this, note that E½RRVD� ¼ s2 and var ½RRVD� ¼ Ln�1s4 with

L ¼
l4 � l22

l22
’ 0:4073. (2.15)

Hence, RRVD!
p

s2 as n!1. Also, for this process a standard CLT implies that

ffiffiffi
n
p
ðRRVD � s2Þ!

d
Nð0;Ls4Þ. (2.16)

If m and s are stochastic, establishing the large sample properties of RRVD is more
involved, but nonetheless possible. Overall, the basic idea extends to general Brownian
semimartingales, given some regularity on m and s, as we next show.11
9In an independent, concurrent paper, Dijk and Martens (2006) have studied RRV for homoscedastic

diffusions, but they do not derive a general asymptotic theory.
10We use equidistant estimation to ease notation. All our results generalize to an irregular subdivision of the

sampling period, so long as max1pipnfDig ! 0 as n!1, although the conditional variance in the CLT is

modified slightly, as spelled out below.
11Throughout the paper, proofs of the theorems are presented in the Appendix.



ARTICLE IN PRESS
K. Christensen, M. Podolskij / Journal of Econometrics 141 (2007) 323–349330
Theorem 1. Assume p satisfies the continuous time stochastic volatility model in Eq. (2.1),
where m is locally bounded and predictable, and s is càdlàg. Then, as n!1,

RRVD!
p

IV . (2.17)

No knowledge about the dynamics of s is needed for Theorem 1 to hold, except for weak
technical conditions, so it considerably extends the theory of range-based volatility
estimation. We allow for very general continuous time processes, including, but not limited
to, models with leverage, long-memory, diurnal effects or jumps (in s). This is certainly not
true in the previous range-based literature. Moreover, the theorem allows for drift due to
the fact that the variation induced by the expected move in p, ð

R t

0 mu duÞtX0, is an order of
magnitude lower than the variation induced by the continuous local martingale; comprised
by ð

R t

0 su dW uÞtX0.

2.2.4. Asymptotic distribution theory

In empirical work, the consistency of RRVD becomes unreliable due to microstructure
noise, if n is too large. Theorem 1 does not indicate the precision of RRVD if n is fixed at a
moderate level, and econometricians often compute confidence bands as a guide to the
error made from estimation in finite samples. To strengthen the convergence in
probability, we next develop a distribution theory for RRVD.
The above weak assumptions on s are too general to prove a CLT, and we need slightly

stronger conditions:

Assumption (V). s does not vanish (V1) and satisfies

st ¼ s0 þ
Z t

0

m0u duþ

Z t

0

s0u dW u þ

Z t

0

v0u dB0u for tX0, (V2)

where m0 ¼ ðm0tÞtX0, s0 ¼ ðs0tÞtX0 and v0 ¼ ðv0tÞtX0 are càdlàg, with m0 also being locally
bounded and predictable, and B0 ¼ ðB0tÞtX0 is a Brownian motion independent of W.

We prove our result by invoking stable convergence in law. This is standard in the RV

literature. But to avoid any confusion about our terminology, we present the definition.

Definition 1. A sequence of random variables, ðX nÞn2N, converges stably in law with limit
X, defined on an appropriate extension of ðO;F; ðFtÞtX0;PÞ, if and only if for every
F-measurable, bounded random variable Y and any bounded, continuous function g, the
convergence limn!1E½YgðX nÞ� ¼ E½YgðX Þ� holds.

We use the symbol X n!
ds

X to denote stable convergence. Note that this implies weak
convergence, which may be equivalently defined by taking Y ¼ 1 (see, e.g., Rényi, 1963 or
Aldous and Eagleson, 1978 for more details).
We now state the main result, which is a (non-standard) CLT.

Theorem 2. Assume that the conditions of Theorem 1 hold and Assumption (V) is satisfied.

Then it holds that, as n!1,

ffiffiffi
n
p
ðRRVD � IV Þ!

ds ffiffiffiffi
L
p

Z 1

0

s2u dBu, (2.18)

where B ¼ ðBtÞtX0 is a standard Brownian motion, independent from F (written B@F).
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A critical feature of this theorem is that the left-hand side converges to a stochastic
integral with respect to B, which is independent of the driving term s. This impliesffiffiffi

n
p
ðRRVD � IV Þ has a mixed normal limit, with s governing the mixture.12 In general, this

introduces heavier tails in the unconditional distribution of RRVD than for Gaussian
random variables. To summarize:ffiffiffi

n
p
ðRRVD � IV Þ!

d
MNð0;LIQÞ. (2.19)

Remark 1. The L scalar in front of IQ in Eq. (2.19) is roughly 0.4. In contrast, the number
appearing in the CLT for RVD is 2.

Hence, the sampling errors of RRVD are about one-fifth of those based on RVD. This is
not surprising: RRVD uses all the data, whereas RVD is based on high-frequency returns
sampled at fixed points in time. As, for the moment, p is assumed fully observed, RVD is
neglecting a lot of information.

IQ on the right-hand side in (2.19) is infeasible, i.e. it cannot be computed directly from
the data. We can estimate it with the realized range-based quarticity (RRQ):

RRQD ¼
n

l4

Xn

i¼1

s4piD;D
. (2.20)

With techniques similar to the proof of Theorem 1, we can show that RRQD!
p

IQ. Thus,
by using the properties of stable convergence (e.g., Jacod, 1997), we get the next corollary.

Corollary 1. Given the conditions of Theorem 2, it follows thatffiffiffi
n
p
ðRRVD � IV Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LRRQD
p !

d
Nð0; 1Þ. (2.21)

Remark 2. With irregular sampling schemes, the distributional result in (2.19)—and those
in the next sections—changes slightly (the stochastic limit is unchanged). Set

RRVX ¼
1

l2

Xn

i¼1

s2pti ;Di
, ð2:22Þ

HX
n;u ¼ n

Xj:tjpu

i¼1

ðti � ti�1Þ
2, ð2:23Þ

and assume that a pointwise limit HX
u of HX

n;u exists and is continuously differentiable.
Then, as n!1 such that max1pipnfDig ! 0:

ffiffiffi
n
p
ðRRVX � IV Þ!

d
MN 0;L

Z 1

0

qHX
u

qu
s4u du

� �
. (2.24)

The derivative qHX
u =qu is small, when sampling runs quickly. Hence, there are potential

gains in having more frequent observations when s is high. Hansen and Lunde (2006)
prove that such a sampling scheme minimizes the asymptotic variance of the RV.
12Earlier drafts of this paper had a non-mixed Gaussian CLT and the stronger conditions, m ¼ 0 and s is

Hölder continuous of order g41
2
, i.e. st � ss ¼ Opðj t� sjgÞ for t! s. We have substantially weakened these

restrictions and also proved the mixed Gaussian CLT. Svend E. Graversen was helpful in pointing our attention

to a result that enabled us to remove these assumptions (see Lemma 1 in the Appendix).
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Obviously, for equidistant subdivisions HX
u ¼ u, so the extra term drops out. The theory is

made feasible with

RRQX ¼
n

l4

Xn

i¼1

s4pti ;Di
!
p
Z 1

0

qHX
u

qu
s4u du. (2.25)

2.2.5. Discretely sampled high-frequency data

In practice, we draw inference about IV from a finite sample and cannot extract the true
range, so the intraday high–low statistic will be progressively more downward biased as n

gets larger. Building on the simulation evidence of Garman and Klass (1980), Rogers and
Satchell (1991) proposed a technique for bias correcting the range that largely removed the
error from a numerical perspective.
Nonetheless, it is misleading to think about ranges as downward biased. The source of

the bias is l2, which is constructed on the presumption that p is fully observed. Therefore,
we will now develop an estimator that accounts for the number of high-frequency
data used in forming the high–low, in order to scale properly. To formalize this
idea, additional notation is required. Assume, without loss of generality, that mnþ 1
equidistant observations of the price process are available, giving mn returns. These are
split into n intervals each with m innovations. We denote the observed range over the ith
interval by

spiD;D;m ¼ max
0ps;tpm

fpði�1Þ=nþt=mn � pði�1Þ=nþs=mng. (2.26)

Also, we let

sW ;m ¼ max
0ps;tpm

fW t=m �W s=mg, (2.27)

and then define a new realized range-based estimator by setting

RRVD
m ¼

1

l2;m

Xn

i¼1

s2piD;D;m
, (2.28)

where lr;m ¼ E½sr
W ;m�. lr;m is the rth moment of the range of a standard Brownian motion

over a unit interval, when we only observe m increments of the underlying continuous time
process.
To our knowledge, there is no explicit formula for lr;m, but it is easily simulated to any

degree of accuracy. Fig. 2 details this for r ¼ 2 and all values of m that integer divide
23,400.
Of course, l2;m ! l2 as m!1, but note also that l2;1 ¼ 1, which defines RVD. The

downward bias reported in simulation studies on the range-based estimator is a
consequence of the fact that 1=l2 was applied in place of 1=l2;m, as the bias is in one-to-
one correspondence with the difference.
Having completed these preliminaries, we prove consistency and asymptotic normality

for the estimator in Eq. (2.28). Note that m is not required to approach infinity for the
CLT to work; convergence to any natural number is sufficient.

Theorem 3. Given the assumptions of Theorem 1, as n!1,

RRVD
m!

p
IV , (2.29)
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where the convergence is uniform in m. Moreover, if assumption (V) holds and

m! c 2 N [ f1g:

ffiffiffi
n
p
ðRRVD

m � IV Þ!
ds ffiffiffiffiffiffi

Lc

p Z 1

0

s2u dBu, (2.30)

where Lc ¼ l4;c � l22;c
� �

=l22;c and B@F. Finally,ffiffiffi
n
p
ðRRVD

m � IV Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LmRRQD

m

q !
d

Nð0; 1Þ, (2.31)

with Lm ¼ ðl4;m � l22;mÞ=l
2
2;m and

RRQD
m ¼

n

l4;m

Xn

i¼1

s4piD;D;m
. (2.32)

Remark 3. Theorem 3 provides a CLT for RVD with m ¼ 1, as also derived in, e.g., BN–S
(2002) or Barndorff-Nielsen et al. (2006a).

To provide an impression of the efficiency of RRVD
m, Fig. 3 depicts Lm on the y-axis, as a

function of m along the x-axis. The steep initial decline in Lm renders the advantage of
RRVD

m large compared to RVD even for moderate values of m. For m ¼ 10, say, since the
scalar appearing in front of IQ in the CLT for RRVD

m is about 0.7, the confidence intervals
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for IV are much narrower. In our experience m ¼ 10, or higher values, is usually obtained
for moderately liquid assets at empirically relevant frequencies, such as 5-min sampling.13
3. Monte Carlo experiment

To study the finite sample properties of RRVD
m, this section uses repeated samples from a

stochastic volatility model. We simulate the following system of stochastic differential
equations:

dpt ¼ st dW t,

d ln s2t ¼ yðo� ln s2t Þdtþ ZdBt, ð3:1Þ

where W and B are independent Brownian motions, while ðy;o; ZÞ are parameters. Thus,
the log-variance of spot prices evolves as a mean reverting Ornstein–Uhlenbeck process
with mean o, mean reversion parameter y and volatility Z (see, e.g., Gallant et al., 1999;
Alizadeh et al., 2002; Andersen et al., 2002a). The vector y;o; Zð Þ ¼ 0:032;�0:631; 0:115ð Þ

is taken from Andersen et al. (2002a), who apply efficient method of moments (EMM) to
calibrate numerous continuous time models.
13Under parametric assumptions and no microstructure noise, RV is the maximum likelihood estimator. Thus,

our efficiency comparison should be viewed as the potential reduction in variance that can be achieved with

RRVD
m when microstructure noise is preventing RVD from being sampled at the maximum frequency (mn) and n is

set at a moderate level where the impact of noise is minimal.
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Initial conditions are set at p0 ¼ 0 and ln s20 ¼ o, and we generate T ¼ 1; 000; 000 daily
replications from this model each with mn returns, where mn depends on the setting (see
below). Throughout, we continue to ignore the irregular spacing of empirical high-
frequency data and work with equidistant data.

3.1. Simulation results

The distributional result for RRVD
m is detailed by setting m ¼ 10. The reported results

are not very sensitive to specific choices of m, but in general higher values improve the
coverage rates of the asymptotic confidence bands. We simulate n ¼ 10, 50, 100 for a total
of mn ¼ 100, 500, 1000 increments each day, allowing us to show the convergence in
distribution to the standard normal for high-frequency sample sizes that resemble those of
moderately liquid assets.

Fig. 4 (upper panel) graphs kernel densities for the standardized errors of RRVD
m; cf. the

ratio in Eq. (2.31). For n ¼ 10, the distribution is left-skewed with a poor approximation in
both the center and tail areas compared to the N(0,1) reference density. The distortions are
diminished by progressively increasing the sample. With n ¼ 100 the tails are tracked quite
closely.

BN–S (2005) showed that log-based inference via standard linearization methods
improved the raw distribution theory for RVD. They reported a better finite sample
behavior for the errors of the log-transform than those extracted with the feasible version
of the CLT outlined in Eq. (2.7). The shape of the actual densities for RRVD

m suggests that
this also applies to our setting. By the delta method, the log-version of the CLT for RRVD

m

takes the form:

ffiffiffi
n
p
ðlnRRVD

m � ln IV Þ!
d

MN 0;
LcIQ

IV 2

� �
. (3.2)

In the lower panel of Fig. 4, we plot the density functions of the feasible log-based t-
statistics. The coverage probabilities of Eq. (3.2) are a much better guide for small values
of n, with n ¼ 100 providing a near perfect fit to the N(0,1) distribution. Hence, the results
for RRVD

m are consistent with the findings for RVD.
This technique is also applicable to study other (differentiable) functions of RRVD

m. For
convenience, we state the CLT of a particularly useful transformation, obtained by taking
square roots:

ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RRVD

m

q
�

ffiffiffiffiffiffi
IV
p

� �
!
d

MN 0;
LcIQ

4IV

� �
. (3.3)

4. Empirical application: General Motors (GM)

We investigate the empirical properties of intraday ranges by analyzing a major stock
from the Dow Jones Industrial Average, GM.

High-frequency data were extracted from the TAQ database, which is a recording of
trades and quotes from the securities listed on New York Stock Exchange (NYSE),
American Stock Exchange (AMEX), and National Association of Securities Dealers
Automated Quotation (NASDAQ). The sample period covers January 3, 2000 through
December 31, 2004; a total of 1,255 trading days. We restrict attention to NYSE updates
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Fig. 4. Asymptotic normality for the standardized realized range-based statistic in estimating IV. The figure plots

kernel densities of the sampling errors of RRVD
m for the small sample settings n ¼ 10, 50, 100 and m ¼ 10. All

plots are based on a simulation with 1,000,000 repetitions from a log-normal diffusion for s, as explained in the

main text. The upper panel depicts t-statistics of the feasible CLT for RRVD
m, while the lower panel is the

corresponding log-based version. The solid line is the N(0,1) density.
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and only report the results of the quotation data, for which the midquote is used.14 All raw
data were filtered for irregularities (e.g., prices of zero, entries posted outside the NYSE
opening hours, or quotes with negative spreads), and a second algorithm handled
remaining outliers in the price series.
The average number of data points after filtering is given in Table 1. The column

#rti
a0, where rti

¼ pti
� pti�1

and ti is the arrival time of the ith tick, counts the number
of price changes relative to the previous posting. #Drti

a0 does the same for second
differences, but after having removed updates with rti

¼ 0. These numbers are important
to calculate l2;m and l4;m that are required to estimate RRVD

m and construct confidence
14The analysis of transaction data is available upon request.
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Table 1

Number of tick data pr. trading day

Ticker Trades Quotes

All #rti
a0 #Drti

a0 All #rti
a0 #Drti

a0

GM 2220 960 558 5144 1357 1017

The table contains information about the filtering of the General Motors high-frequency data. All numbers are

averages across the 1,255 trading days in our sample from January 3, 2000 through December 31, 2004. #rti
a0 is

the daily amount of tick data left after counting out price repetitions in consecutive ticks. #Drti
a0 also removes

price reversals.

Table 2

Sample statistics for RVD and RRVD
m

Mean Var. Skew. Kurt. Min. Max. Correlation

RVD RRVD
m

RVD 7.276 47.740 3.624 25.085 0.472 79.332 1.000

RRVD
m

6.212 27.693 3.056 18.417 0.496 56.256 0.982 1.000

The table reports sample statistics of the annualized percentage RVD and RRVD
m for General Motors during

January 3, 2000 up to December 31, 2004. We provide the mean, variance, skewness, kurtosis, minimum and

maximum of the two time series, plus their correlation.
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bands. Initially, we found mn on the basis of all non-zero returns; i.e. the #rti
a0 numbers.

This meant mn was too high, because of instantaneous reversals (e.g., bid-ask bounce
behavior). We assessed that a proper method to determine mn was to only count repeated
reversals once. Thus, to compute mn we use the #Drti

a0 numbers.
The estimation of RVD and RRVD

m proceeds with 5-min sampling through the trading
session starting 9:30AM EST until 4:00PM EST; i.e. by setting n ¼ 78 or D ¼ 300 s.15 We
use the previous-tick method to compute returns for RVD. Note that since the empirical
high-frequency data are irregularly distributed, there are, in general, different values of m

in the 5-min intervals. This does not cause any problems, however, for the theory extends
directly to this setting, provided we use the individual values of m in the estimation.

Sample statistics for the resulting time series are printed in Table 2. RVD has a lower
minimum and a higher maximum than RRVD

m, while its overall mean is higher. Both
kurtosis figures are consistent with a mixed Gaussian limit. The variance of RRVD

m is only
58% that of RVD. This is much lower, but as expected still somewhat higher than predicted
by the theory (relative to RVD). First off, here we are looking at a time series variance for
the whole sample, so the CLT factors are not directly applicable. Second, the data from the
empirical price process are, in all likelihood, not drawn from a Brownian semimartingale
15This choice was guided by signature plots, i.e. sample averages of the estimators across different sampling

frequencies n. We found increasing signs of microstructure noise by moving below the 5-min frequency.
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(e.g., there are jumps and microstructure frictions). RRVD
m, in turn, behaves differently for

other specifications, which we address elsewhere.
The correlation between RVD and RRVD

m is 0.982, pointing towards little gain—at
relevant frequencies—from taking linear combinations of the estimators to further reduce
sampling variation. From the joint asymptotic distribution of ðRVD;RRVD

mÞ, the
conditional covariance matrix at time u is given by

Su ¼ s4u

2
covðW2

1
;s2

W ;mÞ

l2;m
Lm

0
@

1
A. (4.1)

The covariance term appearing in Su is hard to tackle analytically. In unreported results,
we used simulations to inspect the structure of the correlation coefficient around a grid of
values for m that matches our sample. Based on this, we found that the estimated empirical
correlation is slightly higher than the theoretical level.
In Fig. 5, IV estimates are drawn for the two methods, RVD and RRVD

m. The time series
agree on the level of IV. The key point is that the sample path of RRVD

m is less volatile
compared to RVD (but still appears quite erratic). Again, this suggests that the sampling
errors of RVD are larger compared to RRVD

m, and that the theoretical gains of the realized
range-based estimator also hold for the empirical identification of the IV, at least for the 5-
min frequency.
To underscore these insights, we extracted data from July 1, 2002 to December 31, 2002

to plot the IV estimates in Fig. 6 together with 95% confidence intervals, constructed from
the log-based theory. The confidence bands widen as expected, when s goes up.
Nonetheless, the stability of RRVD

m feeds into much smaller intervals, consistent with the
theoretical relationship between the m and Lm scalars from Fig. 3. This implies that very
few increments are required for RRVD

m to gain a significant advantage in efficiency over
RVD.16

These empirical findings translate into a more persistent time series behavior for RRVD
m,

as shown by the autocorrelation functions in Fig. 7. We included the first 75 lags and
report Bartlett two standard error bands for testing a white noise null hypothesis. All
autocorrelations are positive, starting at about 0.60–0.70 and ending around 0.10–0.15.
The decay pattern in the series is identical but it evolves more smoothly and at higher levels
for RRVD

m. Combined, these observations might be put to work in a forecasting exercise,
although we do not pursue this idea here.
All told, realized range-based estimation of IV offers several advantages compared to

RV, both from a theoretical and practical viewpoint. We acknowledge, however, that the
probabilistic theory proposed in this paper needs further refinement at higher frequencies,
where microstructure noise is more problematic. Statistical tools for controlling the impact
of such noise is crucial for getting consistent estimates of IV. These techniques have
already been developed for RV, see, e.g., Zhang et al., 2004 or Barndorff-Nielsen et al.,
2006b. It presents a topic for future research to verify if our method extends along these
lines, and we are currently undertaking a formal analysis of RRV and market
microstructure noise.
16With #Drti
a0 equal to 1,017 on average for the midquote data, we have roughly m ¼ 13 increments within

each of the 78 5-min intervals during the trading day.
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Fig. 5. The time series of RVD and RRVD
m for GM are shown through the sample period January 3, 2000 to

December 31, 2004; or 1,255 trading days in total. These are constructed from 5-min midquote returns or ranges

for data extracted from TAQ.
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5. Conclusions and directions for future research

RRV is an approach based on intraday price ranges for non-parametric measurement of
the IV of continuous semimartingales. Under weak regularity conditions, we have shown
that it can extract IV more accurately than previous methods, when microstructure noise is
preventing RV from being sampled at the maximum frequency. Another contribution of
this paper, particularly useful in empirical analysis, is the solution to the downward bias
problem that has haunted the range-based literature for decades.

The finite sample distributions of the estimator were inspected with Monte Carlo
analysis. For moderate samples, the coverage probabilities of the confidence bands for the
t-statistics correspond with the limit theory, in particular for log-based inference.

We highlighted the empirical potential of RRV vis-à-vis RV by applying our method to a
set of high-frequency data for GM. Consistent with the theory, RRV has smaller
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confidence bands than RV. Although empirical price processes are very different from
diffusion models and real data are noisy objects, we feel the results support our theory
quite well and opens up alternative routes for estimating IV.
In future projects, we envision several extensions of the current framework. First, there is

plenty of evidence against the continuous sample path diffusion. We are convinced that a
range-based statistic can estimate QV, when the price also exhibits jumps. This theory is being
developed in Christensen and Podolskij (2006), along with realized range-based bipower
variation. Second, with microstructure noise in observed asset prices, further comparisons of
RRV and RV are needed. Finally, we can handle the bivariate case with the polarization
identities, so multivariate range-based analysis constitutes a promising future application.
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Appendix A

Without loss of generality, in the following we restrict the functions m and s to be
bounded (e.g., Barndorff-Nielsen et al., 2006a).
A.1. Proof of Theorem 1

First, define

xn
i ¼

1

l2
s2ði�1Þ=ns2WiD;D

,

Un ¼
Xn

i¼1

xn
i ,
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and note that

E½xn
i jFði�1Þ=n� ¼

1

n
s2ði�1Þ=n.

So

Xn

i¼1

E½xn
i jFði�1Þ=n�!

p
IV . (A.1)

Now, by setting

Zn
i ¼ xn

i � E½xn
i jFði�1Þ=n�,

we get

E½ðZn
i Þ

2
jFði�1Þ=n� ¼ L

1

n2
s4ði�1Þ=n.

Therefore,

Xn

i¼1

E½ðZn
i Þ

2
jFði�1Þ=n�!

p
0.

Hence, Un!
p

IV follows from (A.1). As a sufficient condition in the next step, we deduce
that RRVD �Un!

p
0. Note the equality

RRVD �Un ¼
1

l2

Xn

i¼1

ðspiD;D � sði�1Þ=nsW iD;D ÞðspiD;D þ sði�1Þ=nsW iD;D Þ

� R1
n þ R2

n,

with R1
n and R2

n defined by

R1
n ¼

2

l2

Xn

i¼1

sði�1Þ=nsWiD;D ðspiD;D � sði�1Þ=nsWiD;D Þ,

R2
n ¼

1

l2

Xn

i¼1

ðspiD;D � sði�1Þ=nsW iD;D Þ
2.

We decompose the second term further:

R2
np

1

l2

Xn

i¼1

sup j

Z t

s
ði�1Þ=nps;tpi=n

mu duþ

Z t

s

ðsu � sði�1Þ=nÞdW u j

0
B@

1
CA

2

p
2

l2

Xn

i¼1

sup j

Z t

s
ði�1Þ=nps;tpi=n

mu du j

0
B@

1
CA

2

þ
2

l2

Xn

i¼1

sup j

Z t

s
ði�1Þ=nps;tpi=n

su � sði�1Þ=n

� �
dW u j

0
B@

1
CA

2

� R2:1
n þ R2:2

n .
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It is straightforward to verify that E R2:1
n

	 

¼ O n�1

� �
. For the latter term, we exploit

Burkholder’s inequality (e.g., Revuz and Yor, 1998):

E½R2:2
n �p

2C

l2

Xn

i¼1

E

Z i=n

ði�1Þ=n

ðsu � sði�1Þ=nÞ
2 du

" #

¼
2C

l2
E

Z 1

0

ðsu � s½nu�=nÞ
2 du

� �
¼ oð1Þ,

for some constant C40. Thus, R2
n ¼ opð1Þ. Using a decomposition as above and the

Cauchy–Schwarz inequality, we have that R1
n ¼ opð1Þ. By collecting terms, RRVD�

Un!
p

0.

A.2. Proof of Theorem 2

We need the following lemma.

Lemma 1. Given two continuous functions f ; g : I ! R on compact I � Rn, assume t� is the

only point in I where the maximum of f is achieved. Then it holds:

M�ðgÞ �
1

�
sup
t2I

ff ðtÞ þ �gðtÞg � sup
t2I

ff ðtÞg

� �
! gðt�Þ as � # 0.

Proof. Construct the set

Ḡ ¼ fh 2 CðIÞ j h is constant on Bdðt
�Þ \ I for some d40g.

As usual, CðIÞ is the set of continuous functions on I and Bdðt
�Þ is an open ball of radius d

centered at t�. Take ḡ 2 Ḡ and recall ḡ is bounded on I. Thus, for � sufficiently small:

sup
t2I

ff ðtÞ þ �ḡðtÞg ¼ max supff ðtÞ þ �ḡðtÞg
t2I\Bdðt

�Þ

; supff ðtÞ þ �ḡðtÞg
t2I\Bc

dðt
�Þ

( )

¼ supff ðtÞ þ �ḡðtÞg
t2I\Bdðt

�Þ

¼ f ðt�Þ þ �ḡðt�Þ.

So,

M�ðḡÞ ! ḡðt�Þ,

8ḡ 2 Ḡ. Now, let g 2 CðIÞ. As Ḡ is dense in CðIÞ, 9ḡ 2 Ḡ : ḡðt�Þ ¼ gðt�Þ and jḡ� gj1o�0

(j � j1 is the sup-norm). We see that jM�ðḡÞ �M�ðgÞjo�0, and

jM�ðgÞ � gðt�ÞjpjM�ðḡÞ � ḡðt�Þj þ jM�ðgÞ �M�ðḡÞj ! 0.

Thus, the assertion is established. &

With this lemma at hand, we proceed with a three-stage proof of Theorem 2. In the first
part, a CLT is proved for the quantity

Ūn ¼
ffiffiffi
n
p Xn

i¼1

Zn
i .
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The second step is to define a new sequence:

U 0n ¼
ffiffiffi
n
p 1

l2

Xn

i¼1

ðs2piD;D
� E½s2piD;D

jFði�1Þ=n�Þ,

and show the result

U 0n � Ūn!
p

0.

The interested reader may note that assumption (V) is not needed for Part I and II. Finally,
in Part III, the theorem follows from:ffiffiffi

n
p Xn

i¼1

1

l2
E½s2piD;D

jFði�1Þ=n� � E½xn
i jFði�1Þ=n�

� �
!
p

0; and

ffiffiffi
n
p Xn

i¼1

E½xn
i jFði�1Þ=n� � IV

 !
!
p

0.

Proof of Part I. Notice that:

n
Xn

i¼1

E½ðZn
i Þ

2
jFði�1Þ=n�!

p
LIQ,

and by the scaling property of Brownian motion,ffiffiffi
n
p Xn

i¼1

E½Zn
i ðW i=n �W ði�1Þ=nÞ jFði�1Þ=n�!

p n
l2

IV ,

where n ¼ E½W 1s
2
W �. As W ¼

d
�W , it follows that n ¼ �n and, hence, n ¼ 0.

Next, let N ¼ ðNtÞt2½0;1� be a bounded martingale on ðO;F; ðFtÞt2½0;1�;PÞ, which is
orthogonal to W (i.e. with quadratic covariation hW ;Nit ¼ 0, almost surely). Then

ffiffiffi
n
p Xn

i¼1

E½Zn
i ðNi=n �N ði�1Þ=nÞ jFði�1Þ=n� ¼ 0. (A.2)

For this result, we use Clark’s Representation Theorem (see, e.g., Karatzas and Shreve,
1998, Appendix E):

s2W iD;D
�

1

n
l2 ¼

Z i=n

ði�1Þ=n

Hn
u dW u, (A.3)

for some predictable function Hn
u. Notice E½

R b

a
f u dW uðNb �NaÞ jFa� ¼ 0, for any ½a; b� and

predictable f. To prove this assertion, take a partition a ¼ t�0ot�1o � � �ot�n ¼ b and compute

E
Xn

i¼1

f t�
i�1
ðW t�

i
�W t�

i�1
ÞðNb �NaÞjFa

" #

¼ E
Xn

i¼1

f t�
i�1
ðW t�

i
�W t�

i�1
ÞNbjFa

" #

¼ E
Xn

i¼1

E½E½f t�
i�1
ðW t�

i
�W t�

i�1
ÞNbjFt�

i
�jFt�

i�1
� jFa

" #

¼ 0.
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From Eq. (A.3), (A.2) is attained. Finally, stable convergence in law follows by Theorem
IX 7.28 in Jacod and Shiryaev, 2003:

Ūn!
ds

ffiffiffiffi
L
p

Z 1

0

s2udBu.

Proof of Part II. We begin by setting

zn
i ¼

ffiffiffi
n
p 1

l2
s2piD;D
� xn

i

� �
,

and obtain the identity:

U 0n � Ūn ¼
Xn

i¼1

ðzn
i � E½ðzn

i Þ
2
jFði�1Þ=n�Þ.

To complete the second step, it suffices thatXn

i¼1

E½ðzn
i Þ

2
� ! 0.

We can show this result with the same methods applied to the estimates of R1
n and R2

n in the
proof of Theorem 1.

Proof of Part III. It holds that

ffiffiffi
n
p Xn

i¼1

E½xn
i jFði�1Þ=n� � IV

 !
¼

ffiffiffi
n
p Xn

i¼1

Z i=n

ði�1Þ=n

ðs2ði�1Þ=n � s2uÞdu.

Exploiting the results of Barndorff-Nielsen et al. (2006a), we find that, under Assumption ðV2Þ,ffiffiffi
n
p Xn

i¼1

E½xn
i jFði�1Þ=n� � IV

 !
!
p

0.

Now, we prove the first convergence of Part III stated above. After some computations—
identical to the methods in Theorem 1—we get, using ðV2Þ,

ffiffiffi
n
p Xn

i¼1

1

l2
E½s2piD;D

jFði�1Þ=n� � E½xn
i jFði�1Þ=n�

� �

¼
ffiffiffi
n
p 2

l2

Xn

i¼1

E½sði�1Þ=nsWiD;D ðspiD;D�sði�1Þ=n
sW iD;DÞ jFði�1Þ=n� þ opð1Þ

¼
ffiffiffi
n
p 2

l2

Xn

i¼1

E sði�1Þ=nsW iD;D sup
ði�1Þ=nps;tpi=n

sði�1Þ=nðW t �W sÞ þ

Z t

s

mu du

� "

þ

Z t

s

ðsu � sði�1Þ=nÞdW u

�
� sði�1Þ=nsW iD;D

!
jFði�1Þ=n

#
þ opð1Þ.

By appealing to assumption ðV2Þ again, we get the decomposition:

ffiffiffi
n
p Xn

i¼1

1

l2
E½s2piD;D

jFði�1Þ=n� � E½xn
i jFði�1Þ=n�

� �
¼ V 1

n þ V2
n þ opð1Þ,
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with the random variables V1
n and V 2

n defined by

V1
n ¼

2

l2

Xn

i¼1

E sði�1Þ=nsW iD;D sup
ði�1Þ=nps;tpi=n

ð
ffiffiffi
n
p

sði�1Þ=nðW t �W sÞ þ
ffiffiffi
n
p
Z t

s

mði�1Þ=n du

("

þ
ffiffiffi
n
p
Z t

s

fs0ði�1Þ=nðW u �W ði�1Þ=nÞ þ vði�1Þ=nðB
0
u � B0ði�1Þ=nÞgdW u

�
ffiffiffi
n
p

sði�1Þ=nsW iD;D

)
jFði�1Þ=n

#
,

and

V2
n ¼

ffiffiffi
n
p 2

l2

Xn

i¼1

E sði�1Þ=nsW iD;D sup
ði�1Þ=nps;tpi=n

sði�1Þ=nðW t �W sÞ þ

Z t

s

mu du

�("

þ

Z t

s

ðsu � sði�1Þ=nÞdW u

�
� sði�1Þ=nsW iD;D

)
jFði�1Þ=n

#
� V 1

n

p
ffiffiffi
n
p 2

l2

Xn

i¼1

E sði�1Þ=nsW iD;D sup
ði�1Þ=nps;tpi=n

Z t

s

ðmu � mði�1Þ=nÞdu

�("

þ

Z t

s

Z u

ði�1Þ=n

m0rdrþ

Z u

ði�1Þ=n

ðs0r � s0ði�1Þ=nÞdW r

(

þ

Z u

ði�1Þ=n

ðv0r � v0ði�1Þ=nÞdB0r

)
dW u

!)
jFði�1Þ=n

#
.

From the Cauchy–Schwarz and Burkholder inequalities, we find that

V 2
n ¼ opð1Þ.

At this point, we invoke Lemma 1 by setting:

f inðs; tÞ ¼
ffiffiffi
n
p

sði�1Þ=nðW t �W sÞ,

ginðs; tÞ ¼ n

Z t

s

mði�1Þ=n duþ n

Z t

s

fs0ði�1Þ=nðW u �W ði�1Þ=nÞ þ v0ði�1Þ=nðB
0
u � B0ði�1Þ=nÞgdW u

¼ mði�1Þ=ng1
inðs; tÞ þ s0ði�1Þ=ng2

inðs; tÞ þ v0ði�1Þ=ng3
inðs; tÞ.

Note that � ¼ 1=
ffiffiffi
n
p

. Through assumption ðV1Þ, we get the following identity:

ðt�inðW Þ; s
�
inðW ÞÞ ¼ arg sup f inðs; tÞ

ði�1Þ=nps;tpi=n

¼ arg sup
i�1ð Þ=nps;tpi=n

ffiffiffi
n
p
ðW t �W sÞ

¼
d
arg sup
0ps;tp1

ðW t �W sÞ.
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A standard result then states that the points t�inðW Þ and s�inðW Þ are unique, almost surely,
so the lemma applies. Hence, by repeating the proof of the lemma, we get the
decomposition:

V1
n ¼

2

l2

Xn

i¼1

E sði�1Þ=nsW iD;D

1ffiffiffi
n
p ginðt

�
inðW Þ; s

�
inðW ÞÞ þ Rin

� �
jFði�1Þ=n

� �
,

where the term Rin satisfies:

E½ðRinÞ
2
� ¼ oðn�1Þ,

(uniformly in i). By the Cauchy–Schwarz inequality, we have the estimation:

2

l2

Xn

i¼1

E½sði�1Þ=nsW iD;DRinjFði�1Þ=n� ¼ opð1Þ.

As g1
inðs; tÞ, g2

inðs; tÞ and g3
inðs; tÞ are independent of Fði�1Þ=n, we obtain:

E sði�1Þ=nsW iD;D

1ffiffiffi
n
p g1

inðt
�
inðW Þ; s

�
inðW ÞÞjFði�1Þ=n

� �
�

1ffiffiffi
n
p sði�1Þ=nmði�1Þ=nn1

E sði�1Þ=nsW iD;D

1ffiffiffi
n
p g2

inðt
�
inðW Þ; s

�
inðW ÞÞjFði�1Þ=n

� �
�

1ffiffiffi
n
p sði�1Þ=ns

0
ði�1Þ=nn2

E sði�1Þ=nsW iD;D

1ffiffiffi
n
p g3

inðt
�
inðW Þ; s

�
inðW ÞÞjFði�1Þ=n

� �
�

1ffiffiffi
n
p sði�1Þ=nvði�1Þ=nn3,

with

nk ¼ E½sW iD;Dgk
inðt
�
inðW Þ; s

�
inðW ÞÞ� for k ¼ 1; 2; and 3.

Note that,

ðt�inðW Þ; s
�
inðW ÞÞ ¼ ðs

�
inð�W Þ; t�inð�W ÞÞ. (A.4)

Using (A.4) and the relationship ðW ;BÞ ¼
d
ð�W ;�BÞ, it follows that nk ¼ �nk and, hence,

nk ¼ 0 for k ¼ 1, 2, and 3. This yields the estimation:

V1
n ¼ opð1Þ,

and the proof is complete. &

A.3. Proof of Theorem 3

The result is shown in the same manner as the proofs of Theorem 1 and 2. &
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