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a b s t r a c t

We show how pre-averaging can be applied to the problem of measuring the ex-post covariance of
financial asset returns under microstructure noise and non-synchronous trading. A pre-averaged realised
covariance is proposed, and we present an asymptotic theory for this new estimator, which can be
configured to possess an optimal convergence rate or to ensure positive semi-definite covariance matrix
estimates. We also derive a noise-robust Hayashi–Yoshida estimator that can be implemented on the
original data without prior alignment of prices.We uncover the finite sample properties of our estimators
with simulations and illustrate their practical use on high-frequency equity data.
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1. Introduction

The theory of financial economics is often cast in multivariate
settings, where the covariance structure of assets plays a key
role to the solution of fundamental economic problems, such as
optimal asset allocation and risk management. In recent years, a
broader access to financial high-frequency data has improved our
ability to accurately estimate and draw inference about financial
covariation. The underlying idea is to use quadratic covariation,
which we can estimate using realised covariance, as an ex-post
measure, whose increments can be studied to learn about the
properties of the true asset return covariation (e.g. Andersen et al.,
2003; Barndorff-Nielsen and Shephard, 2004).
In practice, implementing realised covariance is hampered

by two empirical phenomena, namely the presence of mar-
ket microstructure noise (e.g., price discreteness or bid–ask
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spread bounce) and non-synchronous trading. The impact of mi-
crostructure noise has received much attention in the univariate
setting, where its effect on the realised variance has been well
documented. This builds on previous work in the noiseless case,
including Andersen et al. (2001), Barndorff-Nielsen and Shephard
(2002) or Mykland and Zhang (2006, 2009). A key to understand-
ing the nature of the noise and a possible tool of how to deal with
it is that microstructure noise induces autocorrelation in high-
frequency returns and this leads to a bias problem (see, e.g., Zhou,
1996; Aït-Sahalia et al., 2005; Hansen and Lunde, 2006). Currently,
there are three main univariate approaches, where the damage
caused by the noise is explicitly fixed: the two-scale subsampler
proposed by Zhang et al. (2005) or its multi-scale version of Zhang
(2006), the realised kernel introduced in Barndorff-Nielsen et al.
(2008a), which relies on autocovariance-based corrections, and fi-
nally the pre-averaging estimator of Podolskij and Vetter (2009)
and Jacod et al. (2009).
The multivariate version of this problem is, however, more

complicated in that not only does the estimator need to be
robust against various types of noise, it also has to cope with
non-synchronous trading (see, e.g., Fisher, 1966). Asynchronicity
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causes high-frequency covariance estimates to be biased towards
zero as the sampling frequency increases. This feature of the
data, the so-called Epps effect, was highlighted by Epps (1979).
Intuitively, as the sampling frequency is increased, there are
more and more zero-returns in the presence of non-synchronous
trading, and this will dominate realised covariance and related
statistics (e.g. realised correlation). Hayashi and Yoshida (2005)
introduced an estimator, which is capable of dealing with non-
synchronous data, but not withmarketmicrostructure noise. More
recently, Zhang (2008) extended the two-scale RV to integrated
covariance estimation in the simultaneous presence of noise
and non-synchronicity, while in concurrent and independent
work (Barndorff-Nielsen et al., 2008b) proposed a multivariate
realised kernel. Additional work in this growing line of research
includes Malliavin and Mancino (2002), Martens (2003), Renò
(2003), Bandi and Russell (2005), Griffin and Oomen (2006), Large
(2007), Voev and Lunde (2007) and Boudt et al. (2008), among
others.
In this paper, we propose to use a ‘‘modulated’’ realised

covariance (MRC) to estimate the ex-post integrated covariance.
The econometric technique employed here for dealing with
microstructure noise relies on rather simple pre-averaging of the
high-frequency data, which makes the estimator both intuitive to
understand and trivial to implement. It relates to previous work
in the univariate case, where pre-averaging has been suggested
in Podolskij and Vetter (2009) and Jacod et al. (2009). The
current article draws ideas from these papers, but the multivariate
extension is challenging, as it faces the additional complexity of
non-synchronous trading and requires that the resulting estimator
be positive semi-definite.
The pre-averaging approach depends on a bandwidth parame-

ter, or window length, that growswith the sample and dictates the
amount of averaging to be carried out. In turn, the choice of this
tuning parameter controls the influence of microstructure noise
on the MRC and, hence, also its asymptotic properties. In the op-
timal case, called balanced pre-averaging, this leads to an efficient
n−1/4 rate of convergence, which is known to be the fastest attain-
able (see, e.g., Gloter and Jacod, 2001a,b). This baseline MRC esti-
mator, however, needs a bias-correction to be consistent for the
integrated covariance. As a result, it is not guaranteed to be pos-
itive semi-definite in finite samples, though our empirical work
indicates this shortcoming is not too much of a concern for more
recent data. Nonetheless, as we show in the paper, it is straight-
forward to design a positive semi-definite estimator by increasing
the pre-averaging window length slightly, which can also serve to
make the MRC robust against more general noise processes.
The MRC is, in all its essence, a realised covariance computed

on the back of pre-averaged high-frequency returns. As such, it
depends on receiving synchronous observations as input, which
clashes with the irregular spacing of real high-frequency data.
We propose two distinct ways in which pre-averaging can be
applied in the context of non-synchronous trading. First, we use
traditional imputation schemes to map asynchronous data onto
a common time grid, for example using previous-tick or refresh
time, where the latter approach has been used in Barndorff-
Nielsen et al. (2008b). An MRC computed from such returns will
be asymptotically robust to non-synchronous trading. Second, we
extend the Hayashi and Yoshida (2005) estimator to the case of
microstructure noise by using pre-averaging and show that it is
consistent. This second estimator has the property that it can
be implemented directly on the irregular, non-synchronous and
noisy observations without any form of imputation. It therefore
omits throwing away information in the sample and further avoids
potential biases arising from artificially imputed returns.
An appealing feature of pre-averaging is that it is a general

statistical tool that can be applied to many estimation problems.
This proves useful in our setting, because as usual the mixed
Gaussian central limit theorems feature an unknown conditional
covariance matrix. In practice, this must be robustly estimated
from sample data in the presence of noise and non-synchronous
trading to make the distributional results feasible, such that
confidence bands for elements of the integrated covariance matrix
can be constructed.We outline how this can be done based on pre-
averaged high-frequency data.
The paper progresses as follows. In Section 2, we formulate

the theoretical setup and define the MRC estimator. In Section 3,
we first show consistency of the MRC based on balanced pre-
averaging and then derive its asymptotic distribution. As discussed
above, this estimator needs a bias-correction, so we carry on to
study a modified MRC estimator, in which the degree of pre-
averaging is increased. We also discuss the application of the MRC
to non-synchronous data, show its relation to the multivariate
realised kernel, and finally we derive a pre-averaged version of the
Hayashi–Yoshida estimator. In Section 4, we propose an estimator
of the conditional covariance matrix that appears in the central
limit theorem of MRC, which can be used to transform infeasible
limit results into feasible ones. In Section 5, the focus is shifted
towards regression and correlation analysis. A simulation study is
undertaken in Section 6 to uncover the finite sample properties
of our estimators, while an empirical illustration is conducted in
Section 7. Section 8 draws conclusions and presents some ideas
for future work. The Appendix contains the derivations of all our
theoretical results.

2. Theoretical setup

We consider a vector of log-prices X defined on a probability
space (Ω0,F 0, P0) and equipped with an information filtration
(F 0
t )t≥0. X has dimension d—the number of assets under

consideration.
A standard no-arbitrage condition suggests security prices

must be semimartingales (see, e.g., Back, 1991; Delbaen and
Schachermayer, 1994). These processes obey the fundamental
theorem of asset pricing and, as a result, are used extensively to
model the evolution of asset prices through time. In accordance
with this, we model X as a semimartingale that follows the
equation

Xt = X0 +
∫ t

0
audu+

∫ t

0
σudWu, t ≥ 0, (1)

where a = (at)t≥0 is a d-dimensional predictable locally bounded
drift vector,σ = (σt)t≥0 an adapted càdlàg d×d covolatilitymatrix
andW = (Wt)t≥0 is d-dimensional Brownian motion.
This model is a Brownian semimartingale, or stochastic

volatility model with drift, which permeates financial eco-
nomics (cf., Ghysels et al., 1996, for a review). We think of this
construct as governing an underlying efficient price process — the
price that would prevail in the absence of market frictions, which
we then subject to microstructure noise.
Of importance to our analysis is the quadratic covariation

process of X , which is defined as

[X]t = p- lim
n→∞

n∑
i=1

(
Xti − Xti−1

) (
Xti − Xti−1

)′ (2)

for any sequence of deterministic partitions 0 = t0 < t1 < · · · <
tn = t with supi {ti − ti−1} → 0 for n → ∞. In our setting, the
quadratic covariation of X is given by

[X]t =
∫ t

0
Σudu, (3)
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where Σ = σσ ′. The quadratic covariation is pivotal in financial
economics (see, e.g., the reviews by Barndorff-Nielsen and
Shephard, 2007; Andersen et al., 2010), and we thus take Eq. (3) as
defining the target that we are interested in estimating. We note
that for obvious reasons the matrix in Eq. (3) is also called the
integrated covariance and both terms are used interchangeably.
Throughout the remainder of the paper, and without loss of

generality, we restrict the clock t to evolve in the unit interval
[0, 1], which we think of as representing the passing of an
economic event, for example a trading day.

2.1. Microstructure noise

In practice, market microstructure noise leads to a departure
from the pure semimartingale model. Microstructure noise has
many forms, including price discreteness and bid–ask spread
bounce,which creates spurious variation in asset prices. As a result,
we do not observe X from Eq. (1) in the market but a process Y ,
which is the efficient price distorted by noise. More precisely, we
consider the process Y , observed at time points i/n, i = 0, 1, . . . , n,
which is given as

Yt = Xt + εt , (4)

where (εt) is an i.i.d. process with Xyε (the symbol y is used to
denote stochastic independence).
The noise process can be constructed as follows. We define

a second probability space (Ω1,F 1, (F 1
t )t≥0, P

1), where Ω1

denotes R[0,1] and F 1 the product Borel-σ -field on Ω1. Next, let
Q be a probability measure on R (Q is the marginal distribution
of ε). For any t ∈ [0, 1], P1t = Q and P1 denotes the product
⊗t∈[0,1] P1t . The filtered probability space (Ω,F , (Ft)t≥0, P), on
which we define the process Y , is given as

Ω = Ω0 ×Ω1, F = F 0
× F 1, Ft =

⋂
s>t

F 0
s × F 1

s ,

P = P0 ⊗ P1.

}
(5)

The multivariate noise process ε is assumed to satisfy:

E (εt) = 0, E
(
εtε
′

t

)
= Ψ , (6)

where Ψ is a positive definite d× d-matrix.

Remark. The empirical results found by Hansen and Lunde (2006)
show that both the i.i.d. assumption on (εt) and the independence
Xyε can be called into question when sampling the data at very
high frequencies, e.g., below the 1 min mark (see also Diebold
and Strasser, 2008). Jacod et al. (2009) consider more general
types of (one-dimensional) noise processes. Roughly speaking,
they assume that the errors εt ’s are, conditionally on X , centered
and independent. The asymptotic theory developed in this paper
still holds true for themultivariate version of such noise processes,
but we restrict attention tomodels of the form in Eq. (4) to ease the
exposition.

2.2. Pre-averaging of high-frequency data

It is intuitive that under mean zero i.i.d. microstructure noise
some form of smoothing of the observed log-price Y should tend
to diminish the impact of the noise. Effectively, we are going to
approximateXt ,X being a continuous function of t , by an average of
observations of Y in a neighborhood of t , the noise being averaged
away.
Here, we describe in more detail how to conduct the pre-

averaging. In particular, we consider a sequence of integers, kn, and
a number θ ∈ (0,∞) such that

kn
√
n
= θ + o

(
n−1/4

)
. (7)
An example of this would be kn =
⌊
θ
√
n
⌋
.

We also choose a function g on [0, 1], which is continuous,
piecewise continuously differentiable with a piecewise Lipschitz
derivative g ′ with g(0) = g(1) = 0 and which satisfies∫ 1
0 g

2 (s) ds > 0. Furthermore, we introduce the following
functions and numbers that are associated with g:

φ1 (s) =
∫ 1

s
g ′ (u) g ′ (u− s) du,

φ2 (s) =
∫ 1

s
g (u) g (u− s) du,

ψ1 = φ1 (0) , ψ2 = φ2 (0) ,

Φ11 =

∫ 1

0
φ21 (s) ds, Φ12 =

∫ 1

0
φ1 (s) φ2 (s) ds,

Φ22 =

∫ 1

0
φ22 (s) ds.

The functions φ1 and φ2 are assumed to be 0 outside the interval
[0, 1].
Next, with any process V = (Vt)t≥0 we associate the following

random variables

1ni V = V in − V i−1n , for i = 1, . . . , n

V̄ ni =
kn−1∑
j=1

g
(
j
kn

)
1ni+jV , for i = 0, . . . , n− kn + 1.

Applying this notation to Y , it can be seen that1ni Y represents the
noisy high-frequency returns, while Ȳ ni is the pre-averaged return
data, using the weight function g . It follows that the stochastic
order of Ȳ ni = X̄

n
i + ε̄

n
i is controlled by the sequence kn, since

X̄ni = Op

(√
kn
n

)
, ε̄ni = Op

(√
1
kn

)
. (8)

Thus, taking kn = O(
√
n) implies that the orders of the two terms

in Eq. (8) are equal, so that Ȳ ni = Op
(
n−1/4

)
. This is called balanced

pre-averaging and delivers the best rate of convergence. As shown
below, it is also useful to look at cases in which a higher order of
kn is chosen. This results in a suboptimal rate of convergence, but
it has some potentially valuable side-effects on the robustness and
finite sample properties of our estimator.
The pre-averaging window length, kn, depends on the tuning

parameter θ , which needs to be chosen by the user. We will later
discuss how to sensibly make this choice.

2.3. Modulated realised covariance

The core statistic of this paper is the multivariate extension of
the estimator, which was introduced in Jacod et al. (2009). We call
it the modulated realised covariance (MRC) and define it as

MRC [Y ]n =
n

n− kn + 2
1

ψ2kn

n−kn+1∑
i=0

Ȳ ni
(
Ȳ ni
)′
. (9)

The factor n/(n− kn + 2) is a finite sample correction for the true
number of summands in MRC [Y ]n relative to the sample size n. It
is sometimes left out in the presentation below, but it is always
included in implementations on data.

Remark. The sum of outer products in Eq. (9) is a realised
covariance based on pre-averaged data. To build some intuition for
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our approach, we explain the usage of Ȳ ni in more detail. Suppose
kn is an even number and write

Ŷ ni =
2
kn

kn/2−1∑
j=0

Y i+j
n
,

which is a simple average of Y over kn/2 terms. Because of this
pre-averaging, Ŷ ni will be closer to the efficient price X in . Next, we
compute the realised covariation estimator based on these filtered
increments by setting

Ȳ ni =
1
2

(
Ŷ n
i+ kn2
− Ŷ ni

)
=
1
kn

(
kn−1∑
j=kn/2

Y i+j
n
−

kn/2−1∑
j=0

Y i+j
n

)
.

(However, as we shall see this induces a bias, which is a function
of Ψ .) This method was originally proposed by Podolskij and
Vetter (2009) and using the above definition of Ȳ ni corresponds to
choosing the weight function

g (x) = min (x, 1− x) , (10)

which is the most intuitive example. Here we explicitly give the
numerical values of the asymptotic constants for this choice of
function g , as it is the one used for all our simulations and empirical
work:

ψ1 = 1, ψ2 =
1
12
, Φ11 =

1
6
,

Φ12 =
1
96
, Φ22 =

151
80,640

.

Remark. As noted in Jacod et al. (2009), to avoid biases in small
sampleswe should replace the asymptotic constants and functions
ψ1,ψ2,φ1,φ2,Φ11,Φ12, andΦ22 by their Riemann approximations:

ψ
kn
1 = kn

kn∑
i=1

(
g
(
i
kn

)
− g

(
i− 1
kn

))2
,

ψ
kn
2 =

1
kn

kn−1∑
i=1

g2
(
i
kn

)
,

φ
kn
1 (j) =

kn−1∑
i=j+1

(
g
(
i− 1
kn

)
− g

(
i
kn

))
×

(
g
(
i− j− 1
kn

)
− g

(
i− j
kn

))
,

φ
kn
2 (j) =

kn−1∑
i=j+1

g
(
i
kn

)
− g

(
i− j
kn

)
,

Φ
kn
11 = kn

(
kn−1∑
j=0

(
φ
kn
1 (j)

)2
−
1
2

(
φ
kn
1 (0)

)2)
,

Φ
kn
12 =

1
kn

(
kn−1∑
j=0

φ
kn
1 (j) φ

kn
2 (j)−

1
2
φ
kn
1 (0) φ

kn
2 (0)

)
,

Φ
kn
22 =

1
k3n

(
kn−1∑
j=0

(
φ
kn
2 (j)

)2
−
1
2

(
φ
kn
2 (0)

)2)
.

These are the actual terms that appear in the computations of the
MRC. Note that for all appropriate indices of i and j, ψkni → ψi,
φ
kn
i → φi, Φ

kn
ij → Φij as n → ∞ at smaller order than n−1/4,

so the finite sample versions can be replaced with the asymptotic
constants in all the limit theorems given below, including the
central limit theorems.
3. Asymptotic properties of MRC

3.1. Consistency

Our first result inspects the probability limit ofMRC [Y ]n.

Theorem 1. Assume that E
(
|ε j |4

)
< ∞ for all j = 1, . . . , d and

(kn, θ) satisfy Eq. (7). As n→∞, it holds that

MRC [Y ]n
p
−→

∫ 1

0
Σsds+

ψ1

θ2ψ2
Ψ . (11)

Proof. See Appendix. �

A couple of points are worth highlighting. First, as Theorem 1
shows MRC [Y ]n is consistent for

∫ 1
0 Σsds up to a bias-correction.

The bias term depends on the unknown Ψ , which must be
estimated from the data.
We set

Ψ̂n =
1
2n

n∑
i=1

1ni Y
(
1ni Y

)′
, (12)

which is linked to the univariate estimator proposed by Aït-Sahalia
et al. (2005) and Bandi and Russell (2006, 2008). Then, we obtain
the convergence Ψ̂n

p
−→ Ψ , such that

MRC [Y ]n −
ψ
kn
1

θ2ψ
kn
2

Ψ̂n
p
−→

∫ 1

0
Σsds.

Hence, for the remainder of the paper, we shall incorporate the
bias-correction term into the definition of MRC [Y ]n.1 In doing
so, we are no longer ensured that MRC [Y ]n is positive semi-
definite in finite samples. To deal with this problem,we propose an
alternative formulation of theMRC below,which uses a longer pre-
averaging window kn to avoid this step. Second, since Ψ̂n is a

√
n-

estimator of Ψ , it will not affect the CLT of MRC [Y ]n, as the latter
converges at a slower rate. Third, our initialMRC estimator is based
on synchronous data, assuming all components of the log-price
vectorY are observed contemporaneously.Wewill later extend the
MRC to the non-synchronous setting.

3.2. The central limit theorem

We proceed with the central limit theorem for MRC [Y ]n. As
in Jacod et al. (2009), we only require a moment condition on ε
to prove this result.
The notion of stable convergence is used, which we describe

here. A sequence of random variables V n is said to converge stably
in law towards V , where V is defined on an appropriate extension
(Ω ′,F ′, P ′) of the probability space (Ω,F , P), if and only if for
anyF -measurable, bounded randomvariableW and any bounded,
continuous function f , the convergence

lim
n→∞

E
[
Wf (V n)

]
= E′ [Wf (V )]

holds.
We write this as V n

ds
−→ V and note that stable convergence is a

slightly stronger mode of convergence than weak convergence, or

1 Since
∑n
i=11

n
i Y
(
1ni Y

)′
= 2nΨ +

∫ 1
0 Σsds + op(n

−1), where the error of this
approximationhas expectation zero, the bias-correctedMRC [Y ]n actually estimates(
1− ψ

kn
1

θ2ψkn2

1
2n

)∫ 1
0 Σsds and thus needs to be rescaled by 1/

(
1− ψ

kn
1

θ2ψkn2

1
2n

)
. We

include this rescaling in our simulations and empirical work but omit it throughout
the remainder of the text to simplify notation.
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convergence in law, which is the special case obtained by taking
W = 1 (see, e.g., Rényi, 1963; Aldous and Eagleson, 1978, for
further details on stable convergence). Jacod and Shiryaev (2003)
discuss the extension of this concept to stable convergence of
processes. The key reasonwe require the convergence in law stably
is that the conditional covariance matrix in the CLT of MRC[Y ]n,
avarMRCn , is a function of σ and therefore random, and the usual
convergence in law is insufficient to ensure joint convergence of
the bivariate vector (MRC[Y ]n, avarMRCn), which we need to apply
the delta method to the joint asymptotic distribution, for example
in order to construct confidence intervals.

Theorem 2. Assume that E
(
|ε j |8

)
< ∞ for all j = 1, . . . , d and

(kn, θ) satisfy Eq. (7). As n→∞, it holds that

n1/4
(
MRC [Y ]n −

∫ 1

0
Σsds

)
ds
−→

d∑
j′,k′=1

∫ 1

0
γ jk,j

′k′
s dBj

′k′
s , (13)

where B is a standard d2-dimensional Brownian motion defined on an
extension of (Ω,F , (Ft)t≥0, P) with ByF ,

d∑
j,m=1

γ kl,jms γ k
′ l′,jm
s

=
2
ψ22

(
Φ22θΛ

kl,k′ l′
s +

Φ12

θ
Θkl,k

′ l′
s +

Φ11

θ3
Υ kl,k

′ l′
)
,

and whereΛ,Θ and Υ are d× d× d× d arrays with elements

Λs =

{
Σkk

′

s Σ
ll′
s +Σ

kl′
s Σ

lk′
s

}
k,k′,l,l′=1,...,d

,

Θs =

{
Σkk

′

s Ψ
ll′
+Σkl

′

s Ψ
k′ l
+Σk

′ l
s Ψ

kl′

+Σ ll
′

s Ψ
kk′
}
k,k′,l,l′=1,...,d

, (14)

Υ =

{
Ψ kk

′

Ψ ll
′

+ Ψ kl
′

Ψ lk
′
}
k,k′,l,l′=1,...,d

.

Proof. See Appendix. �

Because ByF , we can write the convergence statement in
Theorem 2 as follows:

n1/4
(
MRC [Y ]n −

∫ 1

0
Σsds

)
ds
−→ MN (0, avarMRC ) ,

where

avarMRC =
2
ψ22

(
Φ22θ

∫ 1

0
Λsds+

Φ12

θ

∫ 1

0
Θsds+

Φ11

θ3
Υ

)
(15)

is the conditional covariance matrix. This means that the
asymptotic distribution of MRC [Y ]n is mixed normal. To make
use of this result to construct confidence intervals for elements
of
∫ 1
0 Σudu in practice, we need to estimate avarMRC , which is

addressed in Section 4.2

2 The assumption that data be equidistant is not required for the consistency to
hold true. It would also apply under identical observation times (i.e., synchronous
but non-equidistant data). Here, MRC [Y ]n is consistent with 1ni V redefined as
1ni V = Vti −Vti−1 for any process V and kn = θ

√
n+o(n1/4). This is not surprising:

the realised covariance also remains consistent for irregular observations (by
definition). The CLT also holds, but here the variable of integration ds needs to
be replaced by dHs , where Hs is the so-called ‘‘quadratic variation of time’’, see,
e.g., Barndorff-Nielsen et al. (2008b).
3.3. Choosing θ in practice

The avarMRC matrix in Theorem 2 depends on the parameter θ ,
or in other words the window size kn. If the purpose is to estimate
some one-dimensional parameters (such as realised covariance,
regression or correlation) by real-valued functions of the MRC, it
is in principle possible tominimize avarMRC by choosing the ‘‘best’’
θ for a fixed function g .3

To illustrate this point, we focus on the estimation problem in
the univariate case, d = 1. In this situation, the expressions reduce
to

avarMRC =
4
ψ22

(
Φ22θ

∫ 1

0
σ 4s ds+

2Φ12
θ

Ψ 2
∫ 1

0
σ 2s ds+

Φ11

θ3
Ψ 4
)
,

where IV =
∫ 1
0 σ

2
s ds and IQ =

∫ 1
0 σ

4
s ds are called the integrated

variance and integrated quarticity, respectively. Minimizing this
termwith respect to θ results in solving a quadratic equation. Thus,
for the optimal choice of θ , say θ∗, we get θ∗ = f (IV , IQ ,Ψ ). Then,
we can use an iterative procedure to find an approximation of θ∗:
(i) Choose a ‘‘reasonable’’ value for θ and compute ˆIV , ˆIQ and Ψ̂ ,
(ii) from these compute θ̂∗ by setting θ̂∗ = f ( ˆIV , ˆIQ , Ψ̂ ) and (iii)
then, assuming the values of θ̂∗ converge, repeat this process until
θ̂∗ has stabilized.
In practice, a simple guide that informs us about how to select

θ for small values of nwould certainly be valuable. Unfortunately,
θ comes from asymptotic statistics and therefore it does not give
any precise instructions on this issue. Nonetheless, some plausible
range of values of θ can be inferred from previous work in this
area. For example, Jacod et al. (2009) report that the univariate pre-
averaged realised variance measure is fairly robust to the choice
of kn, and they suggest to take θ = 1/3. Christensen et al.
(forthcoming) use simulations to gauge the influence of sample
size and noise on the optimal choice of θ . Interestingly, they show
that the MSE curve of their pre-averaged quantile-based realised
variance is highly asymmetric in kn and they generally prefer to
use a slightly higher value of kn than what would be optimal. In
their empirical analysis, they also show that conservative choices
of kn helps to heavily reduce the detrimental effects of price
discreteness. In the simulation section and empirical illustration
below, we therefore pick conservative values of kn by choosing
θ = 1, which seems to work well.

3.4. Positive semi-definite estimators

In the previous section, we used an optimal pre-averaging
window length to construct theMRC, which balances the impact of
the noise with the estimation of the integrated covariance matrix.
This choice leads to an optimal rate of convergence – n−1/4 –
but requires that we subtract an estimate of Ψ to eliminate the
bias induced by noise, and the final estimator is then not positive
semi-definite in general. Here, we demonstrate howpositive semi-
definite estimates of

∫ 1
0 Σsds can be formed by increasing the

bandwidth parameter kn as to kill the influence of the noise, rather
than balancing it. This comes at the cost of slowing down the speed
at which MRC converges to the true integrated covariation.
Now, we take:

kn
n1/2+δ

= θ + o
(
n−1/4+δ/2

)
(16)

3 The optimal choice of θ will depend on the original real-valued functions of the
MRC. In this sense, there is no universal optimal θ .
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for some 0 < δ < 1/2, and set

MRC [Y ]δn =
n

n− kn + 2
1

ψ2kn

n−kn+1∑
i=0

Ȳ ni
(
Ȳ ni
)′
. (17)

The following result shows that MRC [Y ]δn is consistent without a
bias-correction.

Theorem 3. Assume that E
(
|ε j |4

)
< ∞ for all j = 1, . . . , d and

(kn, θ) satisfy Eq. (16). As n→∞, it holds that

MRC [Y ]δn
p
−→

∫ 1

0
Σsds. (18)

Proof. See Appendix. �

In Theorem 3, the properties of the noise process do not show up in
the stochastic limit of Eq. (18), because the influence of the noise is
negligible by the choice of order for kn made in Eq. (16) (refer back
to Eq. (8)). This has some appealing advantages. First, MRC [Y ]δn is
positive semi-definite by construction. Second, although we state
and prove this result in the i.i.d. noise case, Theorem 3 does in
fact allow for more general noise dynamics than in Theorem 1.
In particular, so long as E (εt | X) = 0 and ε̄ni admits asymptotic
normality at the usual rate k−1/2n , the theorem will hold (so we do
not require any assumptions on the dependence between X and ε).
Of course, the rate k−1/2n is achieved in the i.i.d. case, but there are
more general cases where it also holds (e.g., for q-dependent and
mixing processes).
To show the CLT, we require a restriction on δ. This is because

the bias caused by the noise, which is negligible in Theorem 3,
becomes more substantial when multiplying with the rate of
convergence.

Theorem 4. Assume that E
(
|ε j |8

)
< ∞ for all j = 1, . . . , d and

(kn, θ) satisfy Eq. (16). As n→∞, it holds that

(i) If δ > 0.1

n1/4−δ/2
(
MRC [Y ]δn −

∫ 1

0
Σsds

)
ds
−→ MN

(
0,
2Φ22θ
ψ22

∫ 1

0
Λsds

)
, (19)

where (Λs) is defined in (14).
(ii) If δ = 0.1

n1/5
(
MRC [Y ]δn −

∫ 1

0
Σsds

)
ds
−→ MN

(
ψ1

θ2ψ2
Ψ ,
2Φ22θ
ψ22

∫ 1

0
Λsds

)
. (20)

Proof. See Appendix. �

Theorem 4 amounts to a classical bias-variance trade-off. It shows
the expected result that using a longer pre-averagingwindow kn =
O(n1/2+δ) averages enough to make MRC [Y ]δn consistent without
a bias-correction, but it also slows down its rate of convergence.
The larger is δ, the harder is this effect. Note that the asymptotic
variance depends solely on the volatility process σ , while the
two noise-dependent terms (a cross-term and a pure noise term)
appearing in Eq. (15) are wiped out.
The optimal choice δ = 0.1 results in a n−1/5 rate of

convergence, and a large sample bias of the order n−1/5 ψ1
θ2ψ2

Ψ . If
desired, the bias can be estimated using Ψ̂n, but it should be small
for more recent data and could be ignored.4

This result bears some resemblance to that of the multivariate
realised kernel of Barndorff-Nielsen et al. (2008b). A flat-top
kernel estimator can be designed to converge at rate n−1/4, but
the resulting estimator may go negative. To guarantee positive
semi-definiteness, the authors propose kernel corrections that are
not entirely flat-top and they show this results in n−1/5 rate of
convergence and a non-zero asymptotic mean as produced here
as well.

3.5. Mapping MRC into a realised kernel estimator

We can indeed make a stronger link between the multi-
scale RV, the kernel approach and our pre-averaging method,
when estimating quadratic variation. Here, we provide some
more details about this relationship. To fix ideas, we take d =
1 (i.e., the univariate setting) and compare only to the kernel
approach. Barndorff-Nielsen et al. (2008a) then show how the
multi-scale RV fits into the realised kernel setting.
Whenwe explicitly include the bias-correction and ignore finite

sample issues, theMRC [Y ]n estimator is given by the formula

MRC [Y ]n =
1

ψ2kn

n−kn+1∑
i=0

|Ȳ ni |
2
−
ψ1

θ2ψ2
Ψ̂n. (21)

Consider a flat-top kernel-based estimator with kernel weights

k(s) =
φ2(s)
ψ2

,

where φ2(s) and ψ2 are defined as in Section 2.2. We call the
function k a flat-top kernel, if (i) k(0) = 1, (ii) k(1) = 0 and (iii)
k′(0) = k′(1) = 0. We note that k(s) = φ2(s)/ψ2 satisfies all three
conditions: (i) and (ii) are trivial, while the third condition follows
from the identity:

k′(s) = −
1
ψ2

∫ 1

s
g(x)g ′(x− s)dx,

and integration by parts (recall that g(0) = g(1) = 0).
In the next step, wemap theMRC statistic into a kernel-like one

as follows

MRC [Y ]n =
n∑
i=1

δ0i|1
n
i Y |

2
+2

kn−2∑
h=1

n−h∑
i=1

δhi1
n
i Y1

n
i+hY (22)

with

δ0i =



1
ψ2kn

i∑
j=1

g2
(
j
kn

)
−

ψ1

θ2ψ22n
:

1 ≤ i ≤ kn − 2
1

ψ2kn

kn−1∑
j=1

g2
(
j
kn

)
−

ψ1

θ2ψ22n
:

kn − 1 ≤ i ≤ n− kn + 2
1

ψ2kn

n−i+1∑
j=1

g2
(
kn − j
kn

)
−

ψ1

θ2ψ22n
:

n− kn + 3 ≤ i ≤ n

(23)

4 Ifwe do bias-correctMRC [Y ]δn , the resulting estimator is then again not ensured
to be positive semi-definite.
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and

δhi =



1
ψ2kn

i∑
j=1

g
(
j
kn

)
g
(
j+ h
kn

)
:

1 ≤ i ≤ kn − h− 2
1

ψ2kn

kn−h−1∑
j=1

g
(
j
kn

)
g
(
j+ h
kn

)
:

kn − h− 1 ≤ i ≤ n− kn + 2
1

ψ2kn

n−i+1∑
j=1

g
(
kn − j
kn

)
g
(
kn − j+ h
kn

)
:

n− kn + 3 ≤ i ≤ n

(24)

for 1 ≤ h ≤ kn − 2.
An example and some remarks are now in order.

Example. Take g(x) = min(x, 1 − x) for x ∈ [0, 1], which is our
canonical weight function. Then, the corresponding kernel k(s) =
φ2(s)/ψ2 is the Parzen kernel.

Remark. Apart from border terms, i.e. terms close to 0 and 1, the
pre-averaging estimator coincideswith the kernel-based estimator
using the flat-top kernel function k(s) = φ2(s)/ψ2. Both estimators
possess the optimal rate of convergence n−1/4, but the border
terms affect their asymptotic distribution. In fact, to arrive at their
central limit theorem for the realised kernel, Barndorff-Nielsen
et al. (2008b) need to apply some averaging (or ‘‘jittering’’) to edge
terms, while the pre-averaging estimator is asymptotically mixed
normal ‘‘by construction’’.

Remark. Using the definition k(s) = φ2(s)/ψ2, we learn that for
every weight function g there exists a flat-top kernel k. However,
the converse statement is not true in general. Thus, the class of
flat-top kernels is larger than our class of pre-averaging functions,
but this does not appear to be a noticeable disadvantage for
practical applications (Barndorff-Nielsen et al., 2008b, for example,
advocate using the Parzen kernel in practice, which corresponds to
our g function by the example).

It is worthwhile to underscore that pre-averaging is a general
approach, which can be used to estimate various characteristics
of semimartingales, when they are cloaked with noise. Jacod
et al. (2009), for example, pre-average realised variance, but it
has also been used in jump-robust inference in conjunction with
the bipower variation statistic (e.g., Podolskij and Vetter, 2009)
or the quantile-based realised variance (e.g., Christensen et al.,
forthcoming). This is also the reason, why we can estimate the
asymptotic conditional variance in the CLT using the same type of
estimator to deliver a feasible result. Other estimationmethods are
typically designed to estimate quadratic variation and cannot, in
general, be used to solve other estimation problems.

3.6. Applying the MRC to non-synchronous data

Non-synchronous trading has long been a recognized feature
of multivariate high-frequency data (see, e.g., Fisher, 1966; Lo
and MacKinlay, 1990). This causes spurious cross-autocorrelation
amongst asset price returns sampled at regular intervals in
calendar time, as new information gets built into prices at
varying intensities. It is well known that high-frequency realised
covariance estimates, using for example the previous-tick method
to align prices, are biased towards zero in this setting (e.g., Epps,
1979).
Motivated by these shortcomings of realised covariance, a

number of alternative procedures have been proposed in the
literature. Scholes and Williams (1977) and Dimson (1979)
suggested to include leads and lags of sample autocovariances
of high-frequency returns into the realised covariance to correct
for stale prices. This results in a bias reduction but also
increases the variance of the estimator (e.g., Griffin and Oomen,
2006). Importantly, the lead–lag realised covariance is generally
inconsistent in the presence of noise. More recently, (Zhang,
2008) extends the two-scale RV to the multivariate setting and
shows that it is consistent under non-synchronous prices and
noise. An analytic derivation of the impact of Epps effect on
realised covariance under previous-tick sampling is also given. In
independent and concurrent work to ours, Barndorff-Nielsen et al.
(2008b) propose a multivariate realised kernel. They rely on the
concept of refresh time to match prices in calendar time and show
that stale pricing errors under refresh time sampling do not change
the asymptotic distribution of the multivariate realised kernel.
A related approach can be taken to make the MRC robust

to non-synchronous observation times. In particular, under
suitable regularity conditions on the sampling times, non-
synchronous trading does not alter the asymptotic distribution of
the MRC, when constructing synchronous time series of prices.
A multivariate time series of high-frequency returns obtained in
this fashion can therefore be plugged into the asymptotic theory
developed above without concern. The proof of these results are
highly technical, but their validity should be clear in the light of
the comparison with the multivariate realised kernel given above.
Therefore, we omit the detailed proofs of these results. Instead, we
conduct some simulations in Section 6 to verify the correctness of
these conjectures.

3.6.1. A pre-averaged Hayashi–Yoshida estimator
Hayashi and Yoshida (2005, 2008) develop an alternative

procedure for covariance measurement in the noise-free case,
which is based on the original non-synchronous data (see, e.g., de
Jong and Nijman, 1997; Martens, 2003; Palandri, 2006; Corsi and
Audrino, 2007, for related work). This estimator has the profound
advantage that it does not throw away information that is typically
lost using a synchronization procedure. Here, we show how this
estimator can also bemade robust to noise by using pre-averaging.
Given the vector of log-prices Y = (Y 1, . . . , Y d)′, which is

defined by the noisy diffusion model in Eq. (4), we now assume
that the component processes (Y k) are observed at non-random
time points t(k)i , for i = 1, . . . , nk, with (t

(k)
i ) being a partition of

the interval [0, 1] and k = 1, . . . , d. In addition, we need some
regularity conditions on the sampling such that all time schemes
are comparable in the following way: max |t(k)i − t

(k)
i−1| → 0 as

nk →∞, for k = 1, . . . , d and

max
1≤i≤nk

#
{
t(k)j | t

(k)
j ∈

[
t(l)i , t

(l)
i

]}
≤ K , (25)

for 1 ≤ k, l ≤ d and some K > 0, where K is independent of
nk, for k = 1, . . . , d. The latter condition says that data from one
process do not cluster in any single interval of the others. Finally,
the following condition is needed

max |t(k)i − t
(k)
i−1|

min |t(k)i − t
(k)
i−1|
≤ c, (26)

where c > 0 is a constant independent of nk for all 1 ≤ k ≤ d.
This condition implies that nkmax |t

(k)
i − t

(k)
i−1| ≤ c , which could be

assumed instead.
A consistent estimator of the integrated covariance

∫ 1
0 Σ

kl
s ds

between assets Y k and Y l can then be constructed as follows. We
set n =

∑d
k=1 nk and define the statistic

HY [Y ](k,l)n

=
1

(ψHY kn)2

nk−kn+1∑
i=0

nl−kn+1∑
j=0

Ȳ k
n
i Ȳ l

n
j I{(t(k)i ,t(k)i+kn ]∩(t

(l)
j ,t

(l)
j+kn
]6=∅}

, (27)
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where ψHY =
∫ 1
0 g(x)dx and I{•} is the indicator function

discarding pre-averaged returns that do not overlap in time. Hence,
HY [Y ](k,l)n is a pre-averaged version of the Hayashi and Yoshida
(2005) estimator. Note that under the previous conditions, n, nk
and nl are of the same order and that n controls the universal pre-
averaging window kn.5

Theorem 5. Assume that E
(
|ε j |4

)
<∞ for all j = 1, . . . , d, (kn, θ)

satisfy Eq. (7) and g(x) > 0 for x ∈ (0, 1). As n→∞, it holds that

HY [Y ](k,l)n
p
−→

∫ 1

0
Σkls ds, (28)

for 1 ≤ k, l ≤ d.

Proof. See Appendix. �

Interestingly, Theorem 5 shows the somewhat surprising result
that there is no asymptotic noise-induced bias in HY [Y ](k,l)n , not
even when the spacings (t(k)i ) and (t

(l)
j ) are identical. This can be

seen as follows. First, under the i.i.d. structure on the noise only
products of the form εk

t(k)i
ε l
t(l)j
with t(k)i = t(l)j = t contribute

to potential bias. We consider that set of points and assume that
kn ≤ i ≤ n1 − kn and kn ≤ j ≤ n2 − kn (this is innocent, for
the summands which do not fulfill this are negligible). Then, an
inspection of HY [Y ](k,l)n shows that all products εkt ε

l
t appear with

the factor(
kn−1∑
j=0

g
(
j+ 1
kn

)
− g

(
j
kn

))2

in front. But
∑kn−1
j=0 g

(
j+1
kn

)
− g

(
j
kn

)
= 0, because g(0) = g(1) =

0, so these terms drop out of the summation.
While HY [Y ](k,l)n has the advantage that it is free of prior align-

ment of log-prices and hence does not throw away information in
the sample, it does suffer from being a pairwise estimator, which
means that oncewe assemble all the single variance/covariance es-
timates into a full covariancematrix, it is not guaranteed to be pos-
itive semi-definite. Still, there are some problems in financial eco-
nomics, in which it is only the accuracy of the estimator that mat-
ters and positive semi-definiteness is less important, for example
in asset allocation and riskmanagement under gross exposure con-
straints (e.g. Fan et al., 2009). Moreover, our empirical results show
that (HY [Y ](k,l)n )1≤k,l≤d does not fail to be positive semi-definite on
a single day for the d = 5-dimensional vector of asset prices con-
sidered there.

Proposition 1. Assume that E
(
|ε j |4

)
< ∞ for all j = 1, . . . , d. If

(kn, θ) satisfy Eq. (7) and g(x) > 0 for x ∈ (0, 1), then

var
(
HY [Y ](k,l)n

)
= O

(
n−1/2

)
,

that is, HY [Y ](k,l)n has the optimal rate of convergence.

5 Our choice here implies that kn is identical across all pairs of asset combinations.
In general, the best way of choosing kn depends on what is being estimated
(e.g., covariance, correlation or beta). Thus, if one only cares about efficiency in
pairwise covariance estimation, a better HY [Y ](k,l)n estimator might be based on
a local kn , for example kk,ln = θk,l

√
n + o(n1/2). This would also serve to make

the estimated covariances universe independent (i.e., they will not change by
adding or removing assets). To make a more qualified, statistical argument on this
issue, however, we need to compare an expression for the asymptotic variance of
HY [Y ](k,l)n under different ways of choosing kn (e.g., from a CLT). This is beyond the
scope of this paper andwill be left for future research, where we hope to shedmore
light on the subject.
Proof. See Appendix. �

Proposition 1 shows that the rate of convergence associated
with HY [Y ](k,l)n is n−1/4. A proof of the much stronger result, the
CLT for HY [Y ](k,l)n , will be given in a companion paper to this
one (see Christensen et al., 2010). In the empirical section, we
gauge the properties of this estimator on actual data and find that
the pre-averaged version performs very well.

4. An estimator of the asymptotic covariance matrix

In order tomake Theorems 2 and 4 feasible, we need to estimate
the asymptotic covariancematrix avarMRC , as it appears in Eq. (15).
Here, we give an explicit estimator of avarMRC . More precisely, we
present an estimator of the asymptotic covariance matrix of the
vectorized statistic in Eq. (13).
First, we set

χni = vec
(
Ȳ ni (Ȳ

n
i )
′
)
, (29)

where vec(·) is the vectorization operator that stacks columns of a
matrix below one another. Next, we define the statistic

Vn(g) =
n−kn+1∑
i=0

χni (χ
n
i )
′
−
1
2

n−2kn+1∑
i=0

(
χni (χ

n
i+kn)

′
+ χni+kn(χ

n
i )
′

)
.

We should note that Vn(g) depends on both the bandwidth
parameter θ and the pre-averaging function g , and that it is
positive semi-definite by construction. Moreover, for any 1 ≤
k, k′, l, l′ ≤ d, we get the following convergence

V (k−1)d+k
′,(l−1)d+l′

n (g)
p
−→ aB(g, θ)

∫ 1

0
Λkk

′,ll′
u du

+ aM(g, θ)
∫ 1

0
Θkk

′,ll′
u du+ aN(g, θ)Υ kk

′,ll′ ,

where aB(g, θ) = θ2ψ22 , aM(g, θ) = ψ1ψ2 and aN(g, θ) =
ψ21
θ2
(the

proof of this result is achieved by using arguments alike the ones
presented in the proof of Theorem1; see Kinnebrock and Podolskij,
2008, for further details).
What needs to be estimated is

avarMRC =
2
ψ22

(
Φ22θ

∫ 1

0
Λudu+

Φ12

θ

∫ 1

0
Θudu+

Φ11

θ3
Υ

)
,

with all constants referring to a given function g0. Suppose that
g0(x) = min(x, 1 − x) as above. Now, we take three different
functions g1, g2 and g3 that satisfy all the conditions of g0, and
which are chosen such that the matrix

A(g1, g2, g3) =

(aB(g1, θ) aM(g1, θ) aN(g1, θ)
aB(g2, θ) aM(g2, θ) aN(g2, θ)
aB(g3, θ) aM(g3, θ) aN(g3, θ)

)
is invertible. We can then construct a weight vector

C(g1, g2, g3) =
(
2Φ22θ
ψ22

,
2Φ12
ψ22 θ

,
2Φ11
ψ22 θ

3

)
A−1(g1, g2, g3). (30)

Finally, we form the statistic
âvarMRC,n = C (1)(g1, g2, g3)Vn(g1)+ C (2)(g1, g2, g3)Vn(g2)

+ C (3)(g1, g2, g3)Vn(g3), (31)
where Vn(gk) are the above estimators associated with the
functions gk, k = 1, 2, 3. Then, it holds that

âvar (k−1)d+k
′,(l−1)d+l′

MRC,n
p
−→ avarkk

′,ll′
MRC ,

for any 1 ≤ k, k′, l, l′ ≤ d.6

6 The weights
(
2Φ22θ
ψ22

,
2Φ12
ψ22 θ

,
2Φ11
ψ22 θ

3

)
in Eq. (30) are the coefficients in front of

(
∫ 1
0 Λudu,

∫ 1
0 Θudu,Υ ) in the expression for the asymptotic variance of MRC.
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There are various classes of functions from which the gk can be
selected, for example g(x) = xa (1− x)b with a, b ≥ 1 or g(x) =
sin(cπx) for integer c. If one manages to find a set of functions gk
for which the coefficients C (k)(g1, g2, g3) are all positive, k = 1, 2
and 3, then the statistic in Eq. (31) is guaranteed to be positive
semi-definite, because it is a linear combination of positive semi-
definite statistics Vn(gk) using positive weights C (k)(g1, g2, g3). It
appears to be quite hard to find such a combination in practice, and
so far we did not succeed at this. Nonetheless, âvarMRC,n remains a
consistent estimator.

5. Asymptotic theory for covariance, regression and correlation

The results in Sections 3 and 4 can be applied in order to
compute confidence intervals for some functionals of

∫ 1
0 Σudu

that are important in practice, such as covariance, regression and
correlation. For the ith and jth asset, these quantities are given by∫ 1

0
Σ ijudu, β(ji) =

∫ 1
0 Σ

ij
udu∫ 1

0 Σ
ii
udu

,

ρ(ji) =

∫ 1
0 Σ

ij
udu√∫ 1

0 Σ
ii
udu

∫ 1
0 Σ

jj
udu

.

(32)

Theorems 1, 3 or 5 can be invoked to provide consistent estimates
of
∫ 1
0 Σ

ij
udu, β(ji) and ρ(ji), e.g. forMRC [Y ]n

MRC [Y ]i,jn
p
−→

∫ 1

0
Σ ijudu, β̂(ji)n =

MRC [Y ]i,jn
MRC [Y ]i,in

p
−→ β(ji),

ρ̂(ji)n =
MRC [Y ]i,jn√

MRC [Y ]i,in MRC [Y ]
j,j
n

p
−→ ρ(ji) (33)

for any 1 ≤ i, j ≤ d. The estimators in (33) are called modulated
realised covariance, regression and correlation, respectively. In
the next theorem we present the associated feasible central limit
theorems, which follow from Theorem 2 and the delta method for
stable convergence.

Theorem 6. Assume that E
(
|ε j |8

)
< ∞ for all j = 1, . . . , d and

(kn, θ) satisfy Eq. (7). As n→∞, it holds that

n1/4
(
MRC [Y ]i,jn −

∫ 1
0 Σ

ij
udu

)
âvar (i−1)d+j,(i−1)d+jMRC,n

d
−→ N(0, 1), (34)

n1/4(β̂(ji)n − β(ji))√(
MRC [Y ]i,in

)−2
g(ji)n

d
−→ N(0, 1), (35)

n1/4(ρ̂(ji)n − ρ(ji))√(
MRC [Y ]i,in MRC [Y ]

j,j
n

)−1
h(ji)n

d
−→ N(0, 1), (36)

where âvarMRC,n is given in (31) and g
(ji)
n and h

(ji)
n are defined by

g(ji)n =
(
1,−β̂(ji)n

)
Γn

(
1,−β̂(ji)n

)′
,

h(ji)n =
(
−
1
2
β̂(ji)n , 1,−

1
2
β̂(ij)n

)
Γ n

(
−
1
2
β̂(ji)n , 1,−

1
2
β̂(ij)n

)′

This choice results in a consistent estimator of avarMRC . More generally, one
can estimate any linear combination of (

∫ 1
0 Λudu,

∫ 1
0 Θudu,Υ ) by choosing an

appropriate weight vector in Eq. (30). For example, the multivariate version of the
integrated quarticity,

∫ 1
0 Λudu, can be estimated by plugging the linear combination

(1, 0, 0)A−1(g1, g2, g3) into Eq. (31).
with

Γn =

(
âvar(i−1)d+j,(i−1)d+jMRC,n âvar(i−1)d+j,(i−1)d+iMRC,n

• âvar(i−1)d+i,(i−1)d+iMRC,n

)
,

Γ n =

âvar
(i−1)d+i,(i−1)d+i
MRC,n âvar(i−1)d+j,(i−1)d+iMRC,n âvar(i−1)d+i,(j−1)d+jMRC,n

• âvar(i−1)d+j,(i−1)d+jMRC,n âvar(i−1)d+j,(j−1)d+jMRC,n

• • âvar(j−1)d+j,(j−1)d+jMRC,n

 .
All the required terms are easy to compute, so it is rather simple to
implement the estimators.

6. Simulation study

We now demonstrate the finite sample accuracy of some of
the asymptotic results developed above using simulations. The
design of our Monte Carlo study, which we briefly describe here,
is identical to the analysis conducted in Barndorff-Nielsen et al.
(2008b).
Specifically, to simulate log-prices we consider the following

bivariate stochastic volatility model

dX (i)t = a
(i)dt + ρ(i)σ (i)t dB

(i)
t

+

√
1− [ρ(i)]2σ (i)t dWt , for i = 1, 2, (37)

where B(i) and W are independent Brownian motions. In this
model, the term ρ(i)σ (i)t dB

(i)
t is an idiosyncratic component, while√

1− [ρ(i)]2σ (i)t dWt is a common factor.
The spot volatility is modeled as σ (i)t = exp(β(i)0 + β

(i)
1 %

(i)
t )

with an Ornstein–Uhlenbeck specification for %(i)t : d%
(i)
t =

α(i)%
(i)
t dt + dB

(i)
t . This implies that there is perfect correlation

between the innovations of ρ(i)σ (i)t dB
(i)
t and σ

(i)
t , while it is ρ(i)

between the increments of X (i)t and %
(i)
t . Finally, the magnitude of

correlation between the two underlying price processes X (1)t and
X (2)t is

√
1− [ρ(1)]2

√
1− [ρ(2)]2. The reported results are based

on the following configuration of parameters for both processes:
(a(i), β(i)0 , β

(i)
1 , α

(i), ρ(i)) = (0.03,−5/16, 1/8,−1/40,−0.3), so
that β(i)0 = [β

(i)
1 ]
2/[2α(i)]. We note that this particular choice

of parameters also means that the volatility process has been
normalized, in the sense that E(

∫ 1
0 [σ

(i)
s ]
2ds) = 1.

We simulate 1000 paths of this model over the interval [0, 1].
Motivated by our empirical data, we let [0, 1] represent 6.5 hours
worth of trading, which is then further decomposed into N =
23,400 subintervals of equal length 1/N (N denoting the number
of seconds in 6.5 hours). In constructing noisy prices Y (i), we
first generate a complete high-frequency record of N equidistant
observations of the efficient price X (i) using a standard Euler
scheme. The initial values for the %(i)t processes at each simulation
run is drawn randomly from the stationary distribution of %(i)t ,
which is %(i)t ∼ N(0, [−2α(i)]−1).7
We add simulated microstructure noise Y (i) = X (i) + ε(i) by

taking

ε(i) | {σ , X}
i.i.d
∼ N(0, ω2) with ω2 = γ 2

√√√√ 1
N

N∑
j=1

σ
(i)4
j/N . (38)

This choice again follows Barndorff-Nielsen et al. (2008b) and
means that the variance of the noise process increases with the

7 Note that the Ornstein–Uhlenbeck process admits an exact discretization (see,
e.g., Glassermann, 2004). We use that result here to avoid discretization errors in
approximating the continuous time distribution of d%(i) over discrete time steps of
size1t = 1/N .
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Table 1
Simulation results.

Cov15m Cov1m MRC[Y ]n=RT MRC[Y ]δ=0.1n=RT HY [Y ](k,l)n

bias rmse bias rmse bias rmse bias rmse bias rmse

Panel A: Integrated covariance
ξ 2 = 0
λ = (3, 6) −0.015 0.159 −0.052 0.103 −0.007 0.156 −0.018 0.222 −0.044 0.278
λ = (5, 10) −0.025 0.170 −0.090 0.147 −0.010 0.167 −0.023 0.233 −0.055 0.296
λ = (10, 20) −0.044 0.174 −0.178 0.266 −0.017 0.207 −0.027 0.270 −0.069 0.338
λ = (30, 60) −0.128 0.255 −0.387 0.547 −0.028 0.259 −0.038 0.326 −0.101 0.426
λ = (60, 120) −0.228 0.367 −0.505 0.702 −0.038 0.300 −0.047 0.370 −0.123 0.513
ξ 2 = 0.001
λ = (3, 6) −0.019 0.166 −0.054 0.122 −0.008 0.148 −0.018 0.220 −0.044 0.275
λ = (5, 10) −0.025 0.174 −0.089 0.161 −0.011 0.176 −0.022 0.239 −0.053 0.298
λ = (10, 20) −0.046 0.188 −0.183 0.292 −0.016 0.198 −0.028 0.267 −0.071 0.345
λ = (30, 60) −0.125 0.246 −0.383 0.538 −0.030 0.263 −0.036 0.329 −0.100 0.432
λ = (60, 120) −0.226 0.368 −0.506 0.705 −0.039 0.295 −0.043 0.366 −0.123 0.518
ξ 2 = 0.01
λ = (3, 6) −0.014 0.350 −0.048 0.519 −0.007 0.147 −0.019 0.216 −0.044 0.276
λ = (5, 10) −0.019 0.350 −0.070 0.485 −0.010 0.174 −0.021 0.237 −0.054 0.295
λ = (10, 20) −0.056 0.346 −0.192 0.604 −0.017 0.202 −0.029 0.264 −0.069 0.341
λ = (30, 60) −0.116 0.365 −0.392 0.682 −0.029 0.243 −0.040 0.323 −0.099 0.430
λ = (60, 120) −0.225 0.494 −0.508 0.767 −0.039 0.324 −0.042 0.386 −0.121 0.525

Panel B: Integrated correlation
ξ 2 = 0
λ = (3, 6) −0.016 0.028 −0.069 0.070 −0.001 0.017 −0.002 0.026 −0.012 0.051
λ = (5, 10) −0.026 0.037 −0.119 0.121 −0.002 0.020 −0.003 0.030 −0.014 0.059
λ = (10, 20) −0.051 0.060 −0.237 0.239 −0.002 0.024 −0.004 0.036 −0.020 0.076
λ = (30, 60) −0.157 0.167 −0.514 0.517 −0.003 0.034 −0.008 0.047 −0.032 0.112
λ = (60, 120) −0.287 0.299 −0.672 0.674 −0.006 0.044 −0.013 0.061 −0.044 0.159
ξ 2 = 0.001
λ = (3, 6) −0.141 0.149 −0.438 0.440 −0.001 0.018 −0.005 0.027 −0.012 0.050
λ = (5, 10) −0.146 0.154 −0.463 0.465 −0.002 0.020 −0.005 0.030 −0.014 0.060
λ = (10, 20) −0.170 0.179 −0.528 0.530 −0.003 0.025 −0.007 0.037 −0.019 0.077
λ = (30, 60) −0.257 0.266 −0.657 0.659 −0.005 0.035 −0.012 0.050 −0.032 0.117
λ = (60, 120) −0.368 0.378 −0.738 0.739 −0.007 0.046 −0.017 0.062 −0.045 0.159
ξ 2 = 0.01
λ = (3, 6) −0.559 0.571 −0.813 0.815 −0.002 0.026 −0.024 0.039 −0.011 0.051
λ = (5, 10) −0.564 0.574 −0.817 0.819 −0.003 0.030 −0.027 0.044 −0.014 0.063
λ = (10, 20) −0.579 0.590 −0.831 0.833 −0.005 0.037 −0.034 0.055 −0.020 0.079
λ = (30, 60) −0.620 0.632 −0.851 0.853 −0.007 0.053 −0.044 0.074 −0.035 0.121
λ = (60, 120) −0.657 0.667 −0.859 0.861 −0.011 0.067 −0.054 0.091 −0.043 0.166

Panel C: Integrated beta
ξ 2 = 0
λ = (3, 6) −0.020 0.092 −0.090 0.128 −0.000 0.065 −0.002 0.098 −0.026 0.179
λ = (5, 10) −0.034 0.100 −0.159 0.219 −0.001 0.076 −0.002 0.112 −0.030 0.214
λ = (10, 20) −0.069 0.143 −0.316 0.427 −0.003 0.092 −0.003 0.135 −0.043 0.266
λ = (30, 60) −0.212 0.316 −0.693 0.926 −0.001 0.129 −0.005 0.178 −0.069 0.385
λ = (60, 120) −0.384 0.538 −0.902 1.190 −0.001 0.170 −0.008 0.222 −0.106 0.504
ξ 2 = 0.001
λ = (3, 6) −0.188 0.277 −0.586 0.777 0.000 0.067 −0.004 0.099 −0.026 0.177
λ = (5, 10) −0.195 0.297 −0.623 0.832 −0.002 0.076 −0.004 0.112 −0.028 0.217
λ = (10, 20) −0.226 0.325 −0.716 0.956 −0.003 0.093 −0.007 0.136 −0.039 0.263
λ = (30, 60) −0.354 0.511 −0.903 1.200 −0.004 0.131 −0.010 0.183 −0.070 0.388
λ = (60, 120) −0.495 0.680 −1.005 1.330 −0.006 0.169 −0.014 0.215 −0.089 0.496
ξ 2 = 0.01
λ = (3, 6) −0.747 1.010 −1.093 1.450 0.000 0.091 −0.031 0.116 −0.025 0.185
λ = (5, 10) −0.758 1.033 −1.096 1.442 −0.002 0.114 −0.035 0.134 −0.032 0.220
λ = (10, 20) −0.772 1.047 −1.123 1.501 −0.009 0.137 −0.045 0.159 −0.045 0.289
λ = (30, 60) −0.839 1.149 −1.154 1.530 −0.006 0.181 −0.059 0.215 −0.076 0.380
λ = (60, 120) −0.888 1.203 −1.169 1.559 −0.005 0.222 −0.065 0.239 −0.094 0.486

Note. This table shows the results of the simulation analysis.
level of volatility of X (i), as documented by Bandi and Russell
(2006). γ 2 takes the values 0, 0.001, 0.01, which covers scenarios
with no noise through low-to-high levels of noise.

Finally, we extract irregular, non-synchronous data from the
complete high-frequency record using Poisson process sampling to
generate actual observation times, {t(i)j }. In particular, we consider
two independent Poisson processes with intensity parameter λ =
(λ1, λ2). Here λi denotes the average waiting time (in seconds) for
new data from process Y (i), so that an average day will have N/λi
observations of Y (i), i = 1, 2.We vary λ1 through (3, 5, 10, 30, 60)
to capture the influence of liquidity on the performance of our
estimators, and we set λ2 = 2λ1 such that on average Y (2)
refreshes at half the pace of Y (1).

In Table 1, we report the results of the simulations. As the
results for estimating the variance components of the 2 × 2
covariance matrix are as expected compared to prior work, we



126 K. Christensen et al. / Journal of Econometrics 159 (2010) 116–133
Table 2
Descriptive statistics and number of data before and after filtering.

Stock BMY LMT ORCL SLE SPY

Exchange N N Q N P
Panel A: Transaction data
Raw trades 1085,420 811,607 8153,413 533,517 7685,215

Corrected/Abnormal/Zeros 111 61 13806 85 2584
Time aggregation 231,826 139,181 6599,286 78,039 6000,898

#Trades 853,483 672,365 1540,321 455,393 1681,733
Intensity 3400 2679 6137 1814 6700
Noise ratio, γ 0.363 0.336 0.484 0.656 0.202

Panel B: Quotation data
Raw quotes 5,402,607 3,245,315 23,411,495 3,208,830 17,536,447

Negative/Wide/Zeros 643 3917 2623 604 256
Time aggregation 2,547,054 1,075,914 20,050,224 979,299 12,851,464

#Quotes 2,854,910 2,165,484 3,358,648 2,228,927 4,684,727
Intensity 11,374 8627 13,381 8880 18,664
Avg. spread (in cents) 1.273 2.389 1.017 1.215 1.575
Noise ratio, γ 0.205 0.219 0.203 0.310 0.109

Note. This table reports some descriptive statistics and liquiditymeasures for the selection of stocks included in our empirical application.We show the exchange fromwhich
data are extracted. The exchange code is: N= NYSE, Q= NASDAQ and P= Pacific. Raw trades/quotes is the total number of data available from these exchanges during the
trading session, while # trades/quotes is the total sample remaining after filtering the data. Intensity is the average number of data per day, while the noise ratio is defined
in Oomen (2006).
give focus here towards estimating the integrated covariance,
correlation and beta. Also, because the refresh time sampled MRC
estimators perform somewhat better than the previous-tick based
MRC estimators, we only report the results for the MRC estimators
based on refresh time sampling (n = RT ).8 In the three panels of
the table, we therefore provide the bias and root mean squared
error (rmse) of the various estimators in terms of estimating
the integrated covariance, correlation and beta. We compare our
results to a standard realised covariance sampled at either a 1 min
or 15 min frequency.
Looking at the table, we see that the MRC estimators are very

efficient across all scenarios of noise and non-synchronous trading
considered here, matching or outperforming the standard realised
covariance. The HY [Y ](k,l) estimator is less efficient, owing largely
to a larger finite sample bias in this estimator. We will study
the possibilities of making finite sample adjustments to HY [Y ](k,l),
elsewhere.
Above, we conjecturedwithout a proof that theMRCwas robust

to stale prices and retained its rate of convergence under non-
synchronous trading. If this is to be true, and ignoring finite sample
biases, we should then expect the rmse of the twoMRC estimators
to decrease at rate n−1/4 and n−1/5. As can be seen from the table,
this is exactly what we find. For example, when estimating the
integrated covariance and going from λ = (60, 120) to λ = (3, 6),
i.e. an approximate twenty-fold increase in sample size, the rmse
ofMRC[Y ]n decreases roughly by half and the rmse ofMRC[Y ]δn by
slightly less than a half, which is consistent with the rates given
above.
All in all, the simulation results show that the estimators

proposed in this paper are very good at estimating the integrated
covariance, correlation and beta across a wide range of noise
and liquidity scenarios, and that the asymptotic predictions given
above are also reasonable guides to their finite sample behavior.

7. Empirical illustration

To illustrate some empirical features of the pre-averaging
theory developed above, we retrieved high-frequency data for a
five-dimensional vector of assets from Wharton Research Data
Services (WRDS). We picked four equities at random from the

8 All unreported results are available upon request.
S&P 500 constituents list as of July 1, 2009. We then added a 5th
element, namely the S&P 500 Depository Receipt (ticker symbol
SPY), which is an exchange-traded fund that tracks the large-cap
segment of the US stock market. As such, it can be viewed as
generating market-wide index returns. The four remaining stocks
are the following (with ticker symbol and industry classification in
parenthesis): Bristol-Myers Squibb (BMY, health care), Lockheed
Martin (LMT, industrials), Oracle (ORCL, information technology)
and Sara Lee (SLE, consumer staples), thus representing a broad
category of industries. We use both trades and quotes data for the
sample period that covers the whole of 2006, which results in 251
trading days.
Table 2 reports some descriptive statistics for our universe of

stocks and sample period. As can be seen, these equities display
varying degrees of liquidity with ORCL and SPY being the most
liquid, while LMT and SLE are the least liquid. Also reported in the
table is the univariate noise ratio statistic, γ , which is a noise-to-
signal measure that describes the level of microstructure noise to
integrated variance (see, e.g., Oomen, 2006, for further details on
the noise ratio). Generally speaking, there is a tendency for more
frequently traded companies to contain less microstructure noise,
the notable exception being the transaction data for ORCL.

7.1. Filtering procedures

As a preliminary step, we subdued the sample data to
some cleaning procedures. Pre-cleaning high-frequency data is
necessary, because the raw data has many invalid observations
(e.g., data with misplaced decimal points, or trades that are
reported out-of-sequence). Our filter is roughly identical to
that used by Barndorff-Nielsen et al. (2008b) with some minor
differences. Here, we briefly describe the filtering ruleswe employ.
Trades and quotes: The following rules are applied to both trades
and quotes data. (a) We keep data from a single exchange: Pacific
for SPY and primary exchange for the 4 remaining equities, see
Table 2, (b) we delete data with time stamps outside the regular
exchange opening hours from 9:30am to 4:00pm, (c) we delete
rows with a transaction price, bid or ask quote of zero, and (d) we
aggregate data with identical time stamp using volume-weighted
average prices (using total transaction volume or quoted bid and
ask volume, respectively).
Trades only: We delete entries with a correction indicator 6= 0 or
with abnormal sales condition.
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Table 3
Average of high-frequency covariance matrix estimates.

MRC[Y ]n=CT (390) MRC[Y ]δ=0.1n=CT (390)

BMY LMT ORCL SLE SPY BMY LMT ORCL SLE SPY

BMY 1.465 0.203 0.259 0.154 0.233 1.396 0.195 0.259 0.152 0.231
LMT 0.201 0.975 0.232 0.149 0.247 0.194 0.905 0.222 0.158 0.235
ORCL 0.255 0.228 1.804 0.143 0.316 0.256 0.218 1.718 0.151 0.316
SLE 0.144 0.149 0.136 0.955 0.162 0.144 0.156 0.143 0.911 0.167
SPY 0.228 0.249 0.307 0.154 0.317 0.228 0.237 0.309 0.162 0.310

MRC[Y ]n=RT MRC[Y ]δ=0.1n=RT

BMY LMT ORCL SLE SPY BMY LMT ORCL SLE SPY

BMY 1.394 0.197 0.226 0.134 0.220 1.397 0.198 0.249 0.141 0.227
LMT 0.193 0.955 0.224 0.134 0.242 0.201 0.924 0.222 0.147 0.241
ORCL 0.196 0.198 1.756 0.128 0.297 0.228 0.220 1.726 0.139 0.310
SLE 0.117 0.114 0.105 0.878 0.147 0.131 0.134 0.122 0.898 0.157
SPY 0.200 0.237 0.243 0.120 0.310 0.216 0.249 0.285 0.138 0.311

HY HY [Y ](k,l)n

BMY LMT ORCL SLE SPY BMY LMT ORCL SLE SPY

BMY 1.160 0.093 0.097 0.103 0.111 1.417 0.192 0.255 0.144 0.227
LMT 0.049 0.761 0.075 0.072 0.097 0.202 0.902 0.223 0.147 0.238
ORCL 0.032 0.036 1.922 0.077 0.112 0.240 0.227 1.903 0.135 0.309
SLE 0.029 0.026 0.013 1.053 0.095 0.134 0.137 0.127 0.900 0.159
SPY 0.041 0.051 0.040 0.023 0.253 0.219 0.250 0.292 0.143 0.309

Cov15s Covavg(5m,15m)

BMY LMT ORCL SLE SPY BMY LMT ORCL SLE SPY

BMY 1.823 0.088 0.118 0.091 0.120 1.499 0.192 0.288 0.149 0.221
LMT 0.095 0.854 0.084 0.059 0.094 0.191 0.953 0.209 0.152 0.221
ORCL 0.095 0.086 4.043 0.069 0.162 0.261 0.206 1.936 0.153 0.306
SLE 0.056 0.049 0.043 1.947 0.072 0.146 0.148 0.142 1.008 0.161
SPY 0.111 0.118 0.117 0.057 0.293 0.219 0.233 0.290 0.152 0.303

Note. This table reports average covariance matrix estimates. In all subpanels, the numbers in the upper diagonal (including diagonal elements) are based on transaction
prices, while the lower diagonal is based on mid-quote data. Covavg(5m,15m) is a simple time series average of the realised covariance computed from 5 and 15 min returns.
Quotes only: We delete quotes with negative spreads and rows
where the quoted spread exceeds 10 times the median spread for
that day.
Table 2 also reports how many observations that are lost by
passing these filters through the data. It should be noted that the
‘‘Trades Only’’ and ‘‘Quotes Only’’ filters generally tend to reduce
the sample by only a very small fraction.

7.2. High-frequency covariance analysis

Here, we inspect the outcome of applying the estimators
introduced above, after which we look at transforms of the
covariancematrix. As a comparison, we also compute the standard
realised covariance from 15 min, 5 min, and 15 s previous-tick
data.
We implement both the MRC [Y ]n and MRC [Y ]

δ
n estimators of

Sections 2 and 3.4, respectively. Recall that MRC [Y ]n converges
at rate n−1/4, it needs to be corrected for bias, and as a result is
not guaranteed to be positive semi-definite. We base MRC [Y ]δn
on δ = 0.1, among many plausible choices, which results in a
n−1/5 rate of convergence, a small finite sample bias that we omit
correcting and, hence, positive semi-definiteness by construction.
Two sampling schemes are used, calendar time and refresh time
sampling, which yields a total of four combinations. We use pre-
averaging windows found as kn = bθnδ

′

c, where θ = 1 and
δ′ = (0.5, 0.6) for our two choices. The selection of θ follows
the conservative rule discussed above. We set n = 390 for the
calendar time-based estimators, which is 1 min sampling, while
n is determined automatically by the data for the refresh time
sampling scheme.
In Table 3, we report the sample covariance matrix estimates
averaged across the 251 days. This table is constructed in the
usual way, displaying the results based on transaction prices
in the upper diagonal (including the main diagonal), while the
strict lower diagonal elements are the corresponding results
based on quotation data. Consistent with prior literature, we see
from the table that the standard realised covariance is suffering
from Epps effect, when sampling runs quickly. All estimated
covariance terms lie in the positive region, but for Cov15s they
are heavily compressed towards zero. This is less of a concern for
Covavg(5m,15m), which should tend to capture the average level of
the covariance structure well, while not being seriously influenced
by microstructure frictions and Epps effect. Turning next to the
estimators proposed in this paper, we note that the time series
average of both MRC versions and the noise-robust HY estimator
are in line with that produced by Covavg(5m,15m), showing that they
appear free of any systematic bias. The Hayashi and Yoshida (2005)
estimator produces a strong downwards bias in the covariance
estimates, when it is applied directly to noisy and irregular high-
frequency data. This reaffirms previous empirical work (see,
e.g., Barndorff-Nielsen et al., 2008b; Griffin andOomen, 2006; Voev
and Lunde, 2007), so these results are not surprising or novel. The
pre-averaged version HY [Y ](k,l)n , however, does a much better job
and tends to agree with the average level of other noise-robust
estimators.
Finally, we turn to the issue of positive semi-definiteness. As

noted above,MRC [Y ]n andHY [Y ]
(k,l)
n are not guaranteed to possess

this property. Nonetheless, they do not fail to be positive semi-
definite on a single instance across our sample period. This is true
for both the transaction and quotation data, and both combinations
of the bias-corrected MRC estimator. Thus, while theoretically
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Fig. 1. MRC-based beta.
a concern, this problem does not appear to occur frequently in
practice, although the conclusionmight change for other data sets.

7.3. Analysing realised beta

We now focus on estimating β(ji) by β̂(ji)n = MRC [Y ]i,jn /
MRC [Y ]i,in , where we take i = SPY and form regressions by
using j = BMY, LMT,ORCL, SLE. This type of regression, where
individual equity covariances with the market are regressed onto
a market-wide realised variance measure, is important in financial
economics, for example within the conditional CAPM (see,
e.g., Jagannathan and Wang, 1996; Lettau and Ludvigson, 2001),
since only systematic risk should be rewarded with expected
excess returns.
In Fig. 1, we plot the MRC-based betas from transaction prices

and refresh time sampling. The corresponding plots from the
other estimators proposed in this paper are qualitatively similar.
As in Barndorff-Nielsen et al. (2008b), we smooth the daily beta
estimates by passing them through an ARMA(1, 1) filter. The figure
shows that beta is time-varying andpredictable, and that it tends to
fluctuate around its mean level. Evidently, the estimated processes
exhibit substantial memory with autoregressive roots at 0.90 or
higher (see also Andersen et al., 2006, who study the persistence
of quarterly realised beta estimated from daily asset returns).
8. Concluding remarks

In this paper, we present a simple solution, based on
applying pre-averaging to financial high-frequency data, to the
problem of how to estimate the multivariate ex-post integrated
covariance matrix, possibly in the simultaneous presence of
market microstructure noise and non-synchronous trading.
Amodulated realised covariance (MRC) estimator is introduced.

The MRC bears close resemblance to a standard realised covari-
ance, being a sum of outer products of high-frequency returns, but
it relies instead on pre-averaging to reduce the harmful impact
of microstructure noise. We study the properties of this new es-
timator by showing its consistency and asymptotic mixed normal-
ity under mild conditions on the dynamics of the price process. As
shown in the paper, the MRC can be configured to possess an op-
timal rate of convergence or to guarantee positive semi-definite
covariance matrix estimates. In the presence of non-synchronous
trading, we also outline how to modify the MRC by using an impu-
tation scheme (for example the previous-tick rule or refresh time
sampling) to match high-frequency prices in time. An MRC con-
structed on the back of such artificial returns will again be consis-
tent for the integrated covariance.
Another novelty developed in this paper is a pre-averaged

version of the Hayashi and Yoshida (2005) estimator that can
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be implemented directly on the raw noisy and non-synchronous
observations, without any prior alignment of prices. We also show
the consistency of this estimator and derive a rate for its variance,
but otherwisewe defer further theoretical analysis of finite sample
improvements and asymptotic properties of the pre-averaged
Hayashi–Yoshida estimator to future research (see Christensen
et al., 2010).
We demonstrate with a set of simulations that these newly

proposed estimators can bring substantial efficiency gains with
them compared to a standard realised covariance in the realistic
setting with both microstructure noise and non-synchronous
trading. Furthermore, an empirical illustration highlights their
applicability to real high-frequency data. We therefore look
forward to future applications of these estimators, including an
investigation of their informational content about future volatility.
Being able to produce good forecasts of future volatility is
paramount in financial economics. Thus, as an example, it could
be interesting to apply our estimators in the context of portfolio
choice to calculate their economic value, akin to Fleming et al.
(2001, 2002), Bandi and Russell (2006) and others. However,
generally they should also be useful in many other areas, including
asset and option pricing or risk management.
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Appendix. Proofs

In the following, we assume that the processes a and σ are
bounded. This is without loss of generality and can be justified by a
standard localization procedure (see, e.g., Barndorff-Nielsen et al.,
2006). Moreover, we denote constants by C , or Cp if they depend on
an additional parameter p. The main parts of the proofs are based
upon Podolskij and Vetter (2009) and Jacod et al. (2009).

Proof of Theorem 1. Due to the triangular equality [V ,W ] =
1
4 ([V + W , V + W ] − [V − W , V − W ]), it suffices to prove the
univariate case d = 1 (i.e. all processes are one-dimensional). We
use the decomposition

MRC [Y ]n =
1
kn

kn−1∑
l=0

MRC [Y ]ln −
ψ1

θ2ψ2
Ψ̂n, (39)

with

MRC [Y ]ln =
1

θψ2
√
n

[n/kn]−1∑
j=0

|Ȳ nl+jkn |
2 .

Notice that, for any l = 0, . . . , kn − 1, the summands in the
definition ofMRC [Y ]ln are asymptotically uncorrelated. This type of
estimators have been discussed in Podolskij and Vetter (2009) and
we can deduce by the methods presented therein (see the proof of
Theorem 1) that

MRC [Y ]ln
p
−→

∫ 1

0
σ 2s ds+

ψ1

ψ2θ2
Ψ ,

where the convergence holds uniformly in l (due to the bounded-
ness of the processes a and σ ). On the other hand we have that

Ψ̂n =
1
2n

n∑
i=1

|1ni Y |
2 p
−→ Ψ .
This implies the convergence

MRC [Y ]n
p
−→

∫ 1

0
σ 2s ds,

which completes the proof. �

Proof of Theorem 2. Here we apply the ‘‘big blocks & small
blocks’’-technique used in Jacod et al. (2009). The role of the small
blocks (which will be asymptotically negligible) is to ensure the
asymptotic independence of the big blocks. More precisely, we
choose an integer p, set

ai(p) = i(p+ 1)kn and bi(p) = i(p+ 1)kn + pkn,

and let Ai(p) denote the set of integers l satisfying ai(p) ≤ l < bi(p)
and Bi(p) the integers satisfying bi(p) ≤ l < ai+1(p). We further
define jn(p) to be the largest integer j such that bj(p) ≤ n holds,
which gives the identity

jn(p) =
⌊

n
kn(p+ 1)

⌋
− 1. (40)

Moreover, we use the notation in(p) = (jn(p)+ 1)(p+ 1)kn.
Next, we introduce the random variable

Ȳ ni,m =
kn−1∑
j=1

g
( j
kn

) (
σm
n
1ni+jW +1

n
i+jε

)
, (41)

which can be interpreted as an approximation of some Ȳ nj .
Moreover, we set

Υ nj,m = Ȳ
n
i,m

(
Ȳ ni,m

)′
− E

[
Ȳ ni,m

(
Ȳ ni,m

)′
| Fm

n

]
, (42)

and define

Ỹ nj =


Υ nj,ai(p), j ∈ Ai(p)
Υ nj,bi(p), j ∈ Bi(p)
Υ nj,in(p), j ≥ in(p)

as well as

ζ (p, 1)nj =
bj(p)−1∑
l=aj(p)

Ỹ nl , ζ (p, 2)nj =
aj+1(p)−1∑
l=bj(p)

Ỹ nl .

Notice that ζ (p, 1)nj contains pkn summands (‘‘big block’’) whereas
ζ (p, 2)nj contains kn summands (‘‘small block’’). Finally, we set

M(p)n = n−
1
2

jn(p)∑
j=0

ζ (p, 1)nj , N(p)n = n−
1
2

jn(p)∑
j=0

ζ (p, 2)nj ,

C(p)n = n−
1
2

n∑
j=in(p)

Ỹ nj

and note that

E
[
ζ (p, 1)nj | F aj(p)

n

]
= 0 = E

[
ζ (p, 2)nj | F bj(p)

n

]
(43)

by construction.
Now, by the same approximations as presented in Jacod et al.

(2009) (see the identity (5.14), Lemmas 5.5 and 5.6 therein) we get
that

n1/4
(
MRC [Y ]n −

∫ 1

0
Σsds

)

=
n
1
4

θψ2
(M(p)n + N(p)n + C(p)n)+ R(p)n (44)
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where the last three summands satisfy the convergence

lim
p→∞

lim sup
n→∞

P(‖n
1
4N(p)n‖

+‖n
1
4 C(p)n‖ + ‖R(p)n‖ > δ) = 0 (45)

for any δ > 0. Notice that the term R(p)n stands for the approxi-
mation error in Eq. (41).

In the next lemma we show the stable convergence n
1
4

θψ2
M(p)n

ds
−→ U(p) (for any fixed p). On the other hand, we will see that, as
p → ∞, U(p)

p
−→ U , where U is the limiting variable defined in

Theorem 2. By combining this with Eqs. (44) and (45) we arrive at
the assertion of Theorem 2.

Lemma 1. If the assumptions of Theorem 2 are satisfied we obtain
(for any fixed p)

n
1
4

θψ2
M(p)n

ds
−→ U(p) =

d∑
j′,k′=1

∫ 1

0
γ jk,j

′k′
s (p)dBj

′k′
s ,

and
d∑

j,m=1

γ kl,jms (p)γ k
′ l′,jm
s (p)

= Akl,k
′ l′

s =
2
ψ22

(
θp
p+ 1

Λkl,k
′ l′

s

∫ 1

0

(
1−

u
p

)
φ22(u)du

+
p

θ(p+ 1)
Θkl,k

′ l′
s

∫ 1

0

(
1−

u
p

)
φ1(u)φ2(u)du

+
p

θ3(p+ 1)
Υ kl,k

′ l′
∫ 1

0

(
1−

u
p

)
φ21(u)du

)
,

where the processesΛs,Θs and Υ are given in Theorem 2.

Notice that
∑d
j,m=1 γ

kl,jm
s (p)γ k

′ l′,jm
s (p)

p
−→
∑d
j,m=1 γ

kl,jm
s γ

k′ l′,jm
s (1 ≤

k, k′, l, l′ ≤ d), where γs is defined in Theorem 2. From this we
deduce the convergence U(p)

p
−→ U .

Proof of Lemma 1. Due to Theorem IX 7.28 in Jacod and Shiryaev
(2003) the following conditions need to be shown (for all 1 ≤
k, k′, l, l′ ≤ d)

n−1/2

θ2ψ22

jn(p)∑
j=0

E
[
ζ (p, 1)n,klj ζ (p, 1)n,k

′ l′
j | F aj(p)

n

]
p
−→

∫ 1

0
Akl,k

′ l′
u du, (46)

n−1
jn(p)∑
j=0

E
[
‖ζ (p, 1)nj ‖

4
| F aj(p)

n

]
p
−→ 0, (47)

n−1/4
jn(p)∑
j=0

E
[
ζ (p, 1)n,klj 1W (p)n,k

′

j | F aj(p)
n

]
p
−→ 0, (48)

n−1/4
jn(p)∑
j=0

E
[
ζ (p, 1)n,klj 1N(p)nj | F aj(p)

n

]
p
−→ 0, (49)

where 1V (p)nj = Vn/bj(p) − Vn/aj(p) for any process V and Eq.
(49) holding for any one-dimensional boundedmartingaleN being
orthogonal toW . For proving Eqs. (47) and (49), it is no restriction
to assume that d = 1. Then these conditions are already shown
in Jacod et al. (2009) (Lemma5.7). On the other hand, the functional
ζ (p, 1)nj is even inW . SinceW and ε are independent, we readily
deduce that

E
[
ζ (p, 1)n,klj 1W (p)n,k

′

j | F aj(p)
n

]
= 0,
which implies the condition in Eq. (48). Hence, we are left to
proving Eq. (46).
First, notice the identity

V̄ ni =
kn∑
j=1

g
(
j
kn

)
1ni+jV = −

kn−1∑
j=0

(
g
(
j+ 1
kn

)
− g

(
j
kn

))
V i+j
n
.

The second equality is useful for the computation of the moments
of ε̄ni . By the smoothness assumption on the function g and the
above identity we obtain the approximations (1 ≤ k, l ≤ d)

E[W
n,k
j W

n,l
j′ ] = δkl

kn
n
ψ2

(
|j− j′|
kn

)
+ O(n−1),

E[εn,kj ε
n,l
j′ ] =

Ψ kl

kn
ψ1

(
|j− j′|
kn

)
+ O(n−1)

(50)

for |j − j′| < kn, whereas the above expectations vanish when
|j − j′| ≥ kn (here δkl denotes the Kronecker symbol). Next, we
introduce the decomposition

ζ (p, 1)nj = v(p, 1)
n
j + v(p, 2)

n
j + v(p, 3)

n
j ,

where the terms v(p, 1)nj , v(p, 2)
n
j and v(p, 3)

n
j are given by

v(p, 1)nj =
bj(p)−1∑
l=aj(p)

σ aj(p)
n
W
n
l

(
σ aj(p)

n
W
n
l

)′
−E

[
σ aj(p)

n
W
n
l

(
σ aj(p)

n
W
n
l

)′
| F aj(p)

n

]
,

v(p, 2)nj =
bj(p)−1∑
l=aj(p)

εnl

(
εnl

)′
− E

[
εnl

(
εnl

)′]
,

v(p, 3)nj =
bj(p)−1∑
l=aj(p)

σ aj(p)
n
W
n
l

(
εnl

)′
+ εnl

(
σ aj(p)

n
W
n
l

)′
.

By a straightforward calculation (and Eq. (50)) we obtain for all
1 ≤ k, l, k′l′ ≤ d

E
[
v(p, 1)n,klj v(p, 1)n,k

′ l′
j | F aj(p)

n

]
=
2pk4n
n2

Λ
kl,k′ l′
aj(p)
n

∫ 1

0

(
1−

u
p

)
φ22(u)du+ op(1),

E
[
v(p, 2)n,klj v(p, 2)n,k

′ l′
j | F aj(p)

n

]
= 2pΥ kl,k

′ l′
∫ 1

0

(
1−

u
p

)
φ21(u)du+ op(1),

E
[
v(p, 3)n,klj v(p, 3)n,k

′ l′
j | F aj(p)

n

]
=
2pk2n
n
Θ
kl,k′ l′
aj(p)
n

∫ 1

0

(
1−

u
p

)
φ1(u)φ2(u)du+ op(1),

where the approximation holds uniformly in j. Now recall that
jn(p) =

⌊
n

kn(p+1)

⌋
− 1. Consequently, by Riemann integrability we

deduce that

n−
1
2

θ2ψ22

jn(p)∑
j=0

E
[
ζ (p, 1)n,klj ζ (p, 1)n,k

′ l′
j | F aj(p)

n

]
p
−→

∫ 1

0
Akl,k

′ l′
u du,

which completes the proof of Lemma 1. �
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Proof of Theorem 3 and 4. Recall that kn
n1/2+δ

= θ + o(n−1/4+δ/2).
A straightforward calculation shows that

E
[
MRC [ε]δn

]
=

ψ1

θ2ψ2n2δ
Ψ + o(n−1/4+δ/2).

By similar methods as presented in the proof of Theorem 1 we
deduce that

MRC [Y ]δn −
(∫ 1

0
Σsds+

ψ1

θ2ψ2n2δ
Ψ

)
p
−→ 0.

Hence, we obtain the convergence in probability

MRC [Y ]δn
p
−→

∫ 1

0
Σsds,

which implies the assertion of Theorem 3. Following the same
scheme demonstrated in the proof of Theorem 2 we get

n1/4−δ/2
(
MRC [Y ]δn −

(∫ 1

0
Σsds+

ψ1

θ2ψ2n2δ
Ψ

))
ds
−→ MN

(
0,
2Φ22θ
ψ22

∫ 1

0
Λsds

)
,

since ψ1
θ2ψ2n2δ

Ψ is an appropriate centering for the noise term in this
case. Now

ψ1n1/4−δ/2

θ2ψ2n2δ
Ψ

p
−→ 0

for δ > 1/10, whereas

ψ1n1/4−δ/2

θ2ψ2n2δ
Ψ =

ψ1

θ2ψ2
Ψ

for δ = 1/10. Hence, Theorem 4 follows.

Proof of Theorem 5. First, we start with the decomposition

HY [Y ](k,l)n =
1

(ψHY kn)2
(∑
i,j

X̄k
n
i X̄ l

n
j I{(t(k)i ,t(k)i+kn ]∩(t

(l)
j ,t

(l)
j+kn
]6=∅}

+

∑
i,j

(
X̄k
n
i ε̄
ln
j + ε̄

kn
i X̄ l

n
j

)
I
{(t(k)i ,t(k)i+kn ]∩(t

(l)
j ,t

(l)
j+kn
]6=∅}

+

∑
i,j

ε̄k
n
i ε̄
ln
j I{(t(k)i ,t(k)i+kn ]∩(t

(l)
j ,t

(l)
j+kn
]6=∅}

)
=: HY [Y ]1n + HY [Y ]

2
n + HY [Y ]

3
n.

As X and ε are independent, it follows that E
(
HY [Y ]2n

)
= 0, and a

simple computation shows that

var(HY [Y ]2n)→ 0.

Thus, HY [Y ]2n
p
−→ 0. Next, we consider the term HY [Y ]3n. This

expression can be further decomposed as

HY [Y ]3n =
1

(ψHY kn)2

∑
ti∈Jk,l

ani (k, l)ε
k
tiε
l
ti +

∑
ti∈Jck,l

bni (k, l)ε
k
tiε
l
ti

+

∑
(i,j)∈Fk,l

cnij (k, l)ε
k
t(k)i
ε l
t(l)j

I
{t(k)i 6=t

(l)
j }

 ,
for certain numbers ani (k, l), b

n
i (k, l) and c

n
ij (k, l). Here Jk,l denotes

the set of common points of (t(k)i )kn≤i≤nk−kn and (t
(l)
i )kn≤i≤nl−kn ,
and Jck,l denotes the set of all common points of (t
(k)
i )1≤i≤nk and

(t(l)i )1≤i≤nl excluded Jk,l. The set Fk,l is given by

Fk,l =
{
(i, j) | ∃r, swith r ≤ i ≤ r + kn, s ≤ j ≤ s+ kn,

(t(k)r , t
(k)
r+kn ] ∩ (t

(l)
s , t

(l)
s+kn ] 6= ∅

}
.

Since ε̄k
n
i = −

∑kn
j=1

(
g
(
j
kn

)
− g

(
j−1
kn

))
εk
t(k)i+j
and g is piecewise

differentiable it holds that

|bni (k, l)| + |c
n
ij (k, l)| ≤ C .

A straightforward computation shows that

ani (k, l) =

(
kn∑
j=1

g
( j
kn

)
−

( j− 1
kn

))2
= (g(1)− g(0))2 = 0,

because g(0) = g(1) = 0. Thus, the first summand in the
decomposition of HY [Y ]3n disappears, which is absolutely crucial
for the proof. On the other hand, ]Jck,l ≤ Ckn which means that

1

(ψHY kn)2
∑
ti∈Jck,l

bni (k, l)ε
k
tiε
l
ti

p
−→ 0.

Finally, note that the summands εk
t(k)i
ε l
t(l)j

I
{t(k)i 6=t

(l)
j }
have expectation

0 and are mutually uncorrelated. Since ]Fk,l ≤ Cnkn this implies
that

1

(ψHY kn)2
∑

(i,j)∈Fk,l

cnij (k, l)ε
k
t(k)i
ε l
t(l)j

I
{t(k)i 6=t

(l)
j }

p
−→ 0.

Hence,

HY [Y ]3n
p
−→ 0.

Now, we consider the term HY [Y ]1n. We decompose

HY [Y ]1n =
1

(ψHY kn)2

×

 ∑
(i,j)∈Ik,l

ānij(k, l)1
nk
i X

k1
nl
j X
lI
{(t(k)i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]6=∅}

+

∑
(i,j)∈Ick,l

b̄nij(k, l)1
nk
i X

k1
nl
j X
lI
{(t(k)i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]6=∅}

+

∑
(i,j)∈Fk,l

c̄nij (k, l)1
nk
i X

k1
nl
j X
lI
{(t(k)i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]=∅}

 , (51)

for some constants ānij(k, l), b̄
n
ij(k, l), c̄

n
ij (k, l), Ik,l = {(i, j) : kn ≤

i ≤ nk − kn, kn ≤ j ≤ nl − kn} and Ick,l = {(i, j) : 1 ≤ i ≤
nk, 1 ≤ j ≤ nl}− Ik,l. Notice that all ‘‘border terms’’ are collected in
the second summand whereas all terms with empty intersection
of the intervals are in the third summand (in fact, we will see that
both are negligible).
Notice that

|ānij(k, l)| + |b̄
n
ij(k, l)| + |c̄

n
ij (k, l)| ≤ Cn.

Furthermore, we have

E
[
|1
nk
i X

k1
nl
j X
l
|
]
≤ C

√(
t(k)i − t

(k)
i−1

) (
t(l)j − t

(l)
j−1

)
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and ](Ick,l ∩ {(i, j) : (t
(k)
i−1, t

(k)
i ] ∩ (t

(l)
j−1, t

(l)
j ] 6= ∅}) ≤ Ckn by Eq. (25).

This implies by Eq. (26) that

1

(ψHY kn)2
∑
(i,j)∈Ick,l

b̄nij(k, l)1
nk
i Y

k1
nl
j Y
lI
{(t(k)i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]6=∅}

= Op(n−1/2),

and thus the second summand in Eq. (51) is negligible.
Now, recall that1nki X

k can be replaced with (σs1
nk
i W )

k for any
s with t(k)i − s = O(kn/n) (1 ≤ k ≤ d) without changing the first-
order asymptotics (see, e.g., Podolskij and Vetter, 2009). Notice
also that the terms1nki W

k1
nl
j W

lI
{(t(k)i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]=∅}

aremutually

uncorrelated. Hence,

1

(ψHY kn)2
∑

(i,j)∈Fk,l

c̄nij (k, l)1
nk
i X

k1
nl
j X
lI
{(t(k)i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]=∅}

= op(1).

Finally, consider the first summand in Eq. (51). As above, we
approximate1nki X

k1
nl
j X
l by

Xni,j(k, l) =
(
σt(k)i−1∧t

(l)
j−1
1
nk
i W

)k (
σt(k)i−1∧t

(l)
j−1
1
nl
j W

)l
whenever (t(k)i−1, t

(k)
i ] ∩ (t

(l)
j−1, t

(l)
j ] 6= ∅, and set

HY [X](k,l)n

=
1

(ψHY kn)2
∑
(i,j)∈Ik,l

ānij(k, l)X
n
i,j(k, l)I{(t(k)i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]6=∅}

.

Note that the quantities HY [Y ](k,l)n and HY [X](k,l)n have the same
first-order asymptotics. Then, it can be shown that

ānij(k, l) =

(
kn−1∑
h=1

g
(
h
kn

))2
= k2n

(∫ 1

0
g(x)dx

)2
+ o

(
k2n
)
.

Next, note that

E
[
1
nk
i W

a1
nl
j W

bI
{(t(k)i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]6=∅}

| Ft(k)i−1∧t
(l)
j−1

]
= δab

[(
t(k)i ∧ t

(l)
j

)
−

(
t(k)i−1 ∨ t

(l)
j−1

)]
. (52)

Eq. (52) and Riemann integrability then delivers the convergence

1

(ψHY kn)2
∑
(i,j)∈Ik,l

ānij(k, l)

×E
[
Xni,j(k, l)I{(t(k)i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]6=∅}

| Ft(k)i−1∧t
(l)
j−1

]
p
−→

∫ 1

0
Σkls ds.

By usual martingale arguments we have that

HY [X](k,l)n −
1

(ψHY kn)2
∑
(i,j)∈Ik,l

ānij(k, l)

×E
[
Xni,j(k, l)I{(t(k)i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]6=∅}

| Ft(k)i−1∧t
(l)
j−1

]
p
−→ 0.

On the other hand, HY [Y ](k,l)n − HY [X](k,l)n
p
−→ 0. Thus, collecting

terms produces

HY [Y ](k,l)n
p
−→

∫ 1

0
Σkls ds,

which completes the proof. �
Proof of Proposition 1. The terms Ȳ k
n
i Ȳ l

n
j I{(t(k)i ,t(k)i+kn ]∩(t

(l)
j ,t

(l)
j+kn
]}
and

Ȳ k
n
r Ȳ l

n
s I{(t(k)r ,t(k)r+kn ]∩(t

(l)
s ,t

(l)
s+kn
]}
are (asymptotically) uncorrelatedwhen

the intervals (t(k)i , t
(k)
i+kn ] and (t

(l)
j , t

(l)
j+kn ] do not intersect with (t

(k)
r ,

t(k)r+kn ] and (t
(l)
s , t

(l)
s+kn ]. Thus, due to the assumption in Eq. (25), there

are O(nk3n) correlated terms, and each covariance has order O(n
−1)

(cf. Eq. (8)). This implies that var(HY [Y ](k,l)n ) = O(n−1/2). �
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