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integrated variance, the forecasting power of alternative inte-
grated variance measures can be assessed. Although proposing
and implementing sensible economic metrics is a difficult task
in general, we believe that this is an important hurdle to over-
come for the literature on integrated variance estimation.
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1. INTRODUCTION

The article by Hansen and Lunde (henceforth HL) provides
an excellent introduction to, overview of, and synthesis of the
recent literature on estimating financial return variability from
high-frequency data in the presence of market microstructure
noise in the observed prices. In addition, importantly, it goes
further by extending the existing procedures in important di-
rections, providing abundant empirical evidence in support of
the main assertions. The latter is perhaps the most compelling
aspect of the work, because it directly pinpoints limitations in
currently popular approaches. Among the features stressed are
findings suggesting a negative correlation between the under-
lying “efficient” price and the noise component, time variation
in the size of the noise component, and temporal dependence
in the noise process. Finally, the magnitude of the noise com-
ponent has decreased dramatically in recent years and is now
quite small relative to the daily return variation for the liquid
stocks investigated. The most striking implication of this is that
the so-called “volatility signature plot” generally will not di-
verge to infinity as the sampling frequency increases toward
tick-by-tick transaction prices or quotations. In fact, for some

relevant sampling schemes, the signature plot drops off rather
than explodes near the origin, implying that the presence of mi-
crostructure noise lowers the return variation estimated from
ultra-high–frequency observations. This is evidently problem-
atic for procedures that rely on an asymptotic theory stipulating
that the noise term will be dominant in the limit (for ever-higher
sampling frequencies) and thus allows for direct identification
and estimation of the variance of the noise term through the
use of subsampling schemes. The time series dependence of
the noise process further complicates the practical implementa-
tion of such strategies. HL provide a foundation for systematic
discussions of such issues and further seek to explain when the
pertinent theoretical assumptions provide a sensible and reliable
guide for real-world applications. This careful balancing of the-
oretical and empirical perspectives produces a comprehensive
exposition of where the literature has originated, as well as in-
sightful suggestions for directions that should be pursued going
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forward. In particular, they explain why a move toward accom-
modating time-varying and dependent noise processes and cor-
relation among the noise and efficient price processes appears
to be critical.

The main purpose of this comment is to emphasize an ad-
ditional important aspect of the underlying “efficient” price
process that has been almost entirely ignored in this litera-
ture, although both theory and empirical evidence strongly sug-
gest it should be present—namely, the presence of discrete
jumps or discontinuities in the price path. From a theoreti-
cal perspective, prices should jump when significant new in-
formation is made public. Examples of this include regularly
scheduled macroeconomic news announcements, as well as
firm-specific dividend and earnings announcements. Such be-
havior is fully consistent with, and arguably even implied by,
the standard no-arbitrage semimartingale framework for mod-
eling asset price dynamics (see, e.g., Back 1991). From the
empirical side, there is ample recent evidence that jumps are
prevalent in asset return series, as has been documented by,
among others, Andersen, Benzoni, and Lund (2002), Andersen,
Bollerslev, and Diebold (2005), Andersen, Bollerslev, and
Dobrev (2005), Andersen, Bollerslev, Frederiksen, and Nielsen
(2005), Andersen, Bollerslev, and Huang (2005), Barndorff-
Nielsen and Shephard (2004, 2006a), Bates (2000), Eraker
(2004), Eraker, Johannes, and Polson (2003), Garcia, Ghysels,
and Renault (2004), Huang and Tauchen (2005), Johannes
(2004), Pan (2002), Schaumburg (2004), and Todorov (2005).
The ramifications of jumps in the price process are manifold.
Qualitatively new considerations are introduced into asset and
derivatives pricing, and the consequences for portfolio selection
and risk management are perhaps even more profound. More-
over, Andersen, Bollerslev, and Diebold (2005) documented
that the decomposition of the realized return variation into dif-
fusive and jump components allow for improved forecasts of
future return variation. Despite these considerations, the liter-
ature on measuring return variation from high-frequency data
in the presence of microstructure noise has been, as mentioned
earlier, developed almost exclusively within a pure diffusive
setting. The only exceptions that we know of are Oomen (2005),
who adopted the view of a pure jump framework, and Huang
and Tauchen (2005), who studied the impact of iid noise on
the high-frequency return-based jump detection techniques pro-
posed by Barndorff-Nielsen and Shephard (2004, 2007). But
neither of these articles contended directly with the problems
of estimating the diffusive component of the return variation in
the presence of market microstrucure noise, which is the main
theme of HL. It is evident that the focus on the diffusive case
has allowed for important progress, but, given the significance
of the jump component for practical financial decision mak-
ing and management, we find the time ripe for this branch of
the literature to start developing tools for separately identify-
ing the jump and diffusive components and also assessing the
impact of jumps on the proposed estimation procedures for the
diffusive return variation. In that spirit, here we propose a few
simple diagnostic tools along the lines of the volatility signa-
ture plot that may prove helpful for gauging the presence and
significance of jumps in the return process even in the presence
of microstructure noise.

The remainder of our comment is organized as follows. We
first review the concepts of realized power and bipower varia-
tion that are critical for the jump detection procedures proposed
by Barndorff-Nielsen and Shephard (2004, 2007), hereinafter
referred to as BNS. We then generalize the notion of a volatility
signature plot to encompass realized power and bipower varia-
tion depicted against sampling frequency. As usual, such plots
allow us to assess the impact of the microstructure noise on
the power variation measures, but, more importantly, we may
also use the joint features of the volatility and bipower sig-
nature plots to gauge whether there is evidence of a signifi-
cant jump component in the return process. Finally, we propose
minor alterations to these plots that should mitigate the influ-
ence of noise and hence provide a more robust indication of
the strengths of the different return variation components and
the distortions induced by microstructure noise. We apply these
new diagnostic tools to the individual Dow Jones components
used for illustration throughout by HL, namely Alcoa (AA) and
Microsoft (MSFT).

2. REALIZED POWER AND BIPOWER VARIATION

Allowing for a more general class of arbitrage-free asset
return processes than considered by HL, we stipulate that the
efficient log-price evolves according to the following jump dif-
fusive model,

dp∗(t)= µ(t)dt + σ(t)dw(t)+ κ(t)dq(t), 0 ≤ t ≤ T, (1)

where µ(t) is a continuous and locally bounded variation
process, σ(t) is a strictly positive stochastic volatility process
with a right-continuous sample path with well-defined left lim-
its (thus allowing for jumps in volatility that are ruled out by
HL), w(t) is a standard Brownian motion, and q(t) denotes a
counting process with (possibly) time-varying intensity λ(t).
That is, P[dq(t) = 1] = λ(t)dt, where κ(t) ≡ p∗(t) − p∗(t−)

refers to the size of the corresponding discrete jumps in the log-
arithmic price process. The representation in (1) corresponds to
the most general asset price dynamics typically contemplated
in asset pricing applications, although it does not include Levy
processes with infinite jump activity, which have received some
attention in the recent mathematical finance literature. In the
present setting, the quadratic variation (QV) for the cumulative
return process, y∗(t)≡ p∗(t)− p∗(0), equals

[y∗, y∗]t =
∫ t

0
σ 2(s)ds+

∑
0<s≤t

κ2(s), (2)

where by definition the summation consists of the q(t) squared
jumps occurring between time 0 and time t. Of course, in the
absence of jumps, or q(t) ≡ 0, the summation vanishes, and
the quadratic variation simply equals the integrated variance of
the continuous sample path component, or IV in HL’s notation.
More generally, however, the return variation is QV, which, in
the presence of jumps, is not identical to IV. Note that the drift
of the return process in (1) has no impact on these theoretical
return variation measures. In fact, the mean drift of the price
process will, according to standard arguments, exert a negligi-
ble impact on the analysis based on very high-frequency data
(see, e.g., the discussion in Andersen, Bollerslev, and Diebold
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2004). Thus, without loss of generality and in line with HL, we
ignore this term in the sequel, imposing µ(t)= 0.

Following HL, let the discretely sampled intraday returns be
denoted by y∗i,m ≡ p∗(ti,m) − p∗(ti−1,m), i = 1,2, . . . ,m. The
corresponding ideal realized variation (volatility) estimator is
then given by

RV(m)∗ ≡
m∑

i=1

y∗2
i,m, (3)

where we normalize the period [t− 1, t] to be one time unit, re-
ferred to as a trading day. Moreover, like HL we have dropped
the explicit reference to the particular trading day, and hence-
forth, unless otherwise noted, we measure all quantities over
this [t − 1, t] time interval.

It follows directly from the theory of QV that the realized
variation converges uniformly in probability to the increment
of the QV process as the sampling frequency of the underlying
returns increases, that is,

RV(m)∗ → QV ≡
∫ t

t−1
σ 2(s)ds+

∑
t−1<s≤t

κ2(s)

for m →∞. (4)

Hence, even in the ideal case of no noise in the observed prices,
the realized volatility estimator will generally converge not to
the integrated variance but rather to the QV, which includes the
impact of the squared jumps that occurred over the course of
the trading day.

The BNS jump detection procedure relies on the realized
standardized bipower variation for disentangling these two
components. In particular, define

BV(m)∗ ≡ µ−2
1

m

m− 1

m∑
i=2

|y∗i,m||y∗i−1,m|, (5)

where µ1 ≡ √
(2/π) = E(|Z|) and Z denotes a standard nor-

mally distributed random variable. BNS then showed that, even
in the presence of jumps,

BV(m)∗ → IV ≡
∫ t

t−1
σ 2(s)ds for m →∞. (6)

This leads directly to a consistent jump detection procedure, as,
evidently,

RV(m)∗ − BV(m)∗ →
∑

t−1<s≤t

κ2(s) for m →∞. (7)

Moreover, under the null hypothesis of no jumps, the appropri-
ately scaled and studentized version of the quantity in (7) will
asymptotically, for increasingly frequent sampling (m →∞),
be standard normally distributed,

m1/2 RV(m)∗ − BV(m)∗
[(µ−4

1 + 2µ−2
1 − 5)

∫ t
t−1 σ 4(s)ds]1/2

⇒ N(0,1). (8)

Ignoring the potential complications associated with market mi-
crostructure noise, the left side of (8) thus may serve as a test
statistic for the presence of jumps, except that the integrated
quarticity that appears in the denominator is unobserved. Mean-
while, it is possible to show more generally that, in the absence
of jumps and under weak auxiliary assumptions, the integrated

power of the volatility coefficient for p > 0 may be consistently
estimated by the corresponding standardized realized power
variation,

RPV(m)∗ (p) ≡ µ−1
p m(p/2−1)

m∑
i=1

|y∗i,m|p

→
∫ t

t−1
σ p(s)ds for m →∞. (9)

where µp ≡ E(|Z|p). Unfortunately, this estimator diverges to
infinity for p > 2 in the presence of jumps. Hence the resulting
test statistic obtained by replacing the integrated quarticity in
the denominator in (8) with the corresponding realized quartic-
ity defined in (9) will have no power (asymptotically) to reject
the null hypothesis when in fact there are jumps.

Alternatively, the integrated quarticity may be estimated con-
sistently in a jump robust fashion from a generalization of the
realized bipower variation measure by summing products of ad-
jacent absolute returns raised to powers less than two, as in, for
example, the standardized realized tripower quarticity measure
used by Andersen, Bollerslev, and Diebold (2005),

TQ(m)∗ ≡ µ−3
4/3

m

m− 2

m∑
i=3

|y∗i,m|4/3|y∗i−1,m|4/3|y∗i−2,m|4/3

→
∫ t

t−1
σ 4(s)ds for m →∞. (10)

In the absence of any discrepancies between the observed and
the “efficient” prices (i.e., no market microstructure noise),
these results thus allow for the construction of a feasible one-
sided test for the presence of jumps based on the statistic in (8)
coupled with the tripower quarticity measure in (10). Mean-
while, the extensive simulation evidence given by Huang and
Tauchen (2005) suggests that a better-behaved finite-sample
(finite m) test statistic is obtained by invoking a variance-
stabilizing logarithmic, [log(RV(m)∗ ) − log(BV(m)∗ )] or ratio
[RV(m)∗ /BV(m)∗ ] transformation.

All of these developments are, of course, subject to the crit-
icism that any noise in the observed prices may distort the in-
ference. The question is whether it is feasible to robustify the
procedures along lines similar to those proposed by HL. We
take an initial look at this issue in the next section.

3. BIPOWER VARIATION SIGNATURE PLOTS

We have identified the realized variation and bipower vari-
ation measures as the critical elements in the proposed jump
detection strategy, whereas formal inference regarding this fea-
ture also will involve the integrated quarticity, which in turn
may be estimated by the appropriate realized power varia-
tion measure or the realized tripower quarticity measure. The
volatility signature plot advocated by Andersen, Bollerslev,
Diebold, and Labys (2000b) graphs the average sample val-
ues measured over a long time span (preferably several years)
of realized volatilities (RVs) for various high-frequency return
sampling frequencies. These different RV measures should, in
the absence of microstructure frictions, provide reasonable esti-
mates of the same average return variability irrespective of the
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underlying sampling frequency. Meanwhile, if significant mi-
crostructure biases are present for the measures based on the
highest sampling frequencies, this should be reflected in sys-
tematic deviations of the corresponding average variation mea-
sures relative to those computed from returns sampled at lower
frequencies. As explained by HL, this diagnostic tool is quite
useful for gauging the impact of noise in the various modified
RV estimators. Here we propose a similar approach for infor-
mally gauging the properties of the bipower variation measure
by plotting the sample average values over long calendar pe-
riods against the underlying return sampling frequencies. We
term the resulting graphical display a bipower signature plot.

The comparison of the volatility and bipower signature plots
over an identical time period should speak to the impact of
microstructure noise on each of these measures, but, perhaps
even more importantly, the discrepancy between them should
reflect the magnitude of the jump component in the sample re-
turn variation as implied by the results in (7) and (8). Toward
this end, Figure 1 depicts the standard volatility signature plots
and the bipower volatility signature plots for AA and MSFT
constructed using returns obtained from the quote midpoints for
the period 1998–2002, much in line with the corresponding se-
ries of HL. In addition, for simple reference, we have superim-
posed the average realized variation estimate for the 30-minute
frequency as a benchmark indication of an approximately un-
biased measure. The use of quote midpoints is motivated by a
desire to reduce the noise induced by bid–ask bounce-type ef-
fects, whereas the relatively long sample period allows for fairly
precise estimates of the average sample values.

The figures are telling. First, as documented by HL, the tradi-
tional RV measure drops off at the highest frequencies, suggest-
ing the presence of a significant negative correlation between
the noise and the underlying efficient price. This effect turns out
to be even stronger for the realized bipower variation, where the
downward bias is very pronounced. Second, the bipower vari-
ation plot is uniformly below the volatility signature plot. The
existence of such a gap is precisely what we would expect if
jump components exerted a nonnegligible impact on the total
return variation. As such, this feature, evident in both plots, is
strongly suggestive of the presence of jumps in the underlying
efficient price processes. Third, compared with the overall vari-
ability of the plots, the discrepancy between the two plots is

remarkably stable over the frequencies corresponding to an in-
traday return period of 5–30 minutes. One hypothesis is that the
microstructure noise tends to impact both measures in a similar
direction so that the difference between the two will tend to be
more stable than each individual measure. This is obviously of
interest for gauging the significance of the jump component in
the overall return variability.

Although at a first glance these displays appear to be highly
informative, caution is clearly called for, because the strong pat-
tern in the bipower variation plots suggests a rather pronounced
impact of the market microstructure noise, and how this affects
the general features of the plots is unclear. Consequently, we
next introduce new types of measures and displays designed
explicitly to mitigate the effects of certain noise components.

4. ROBUSTIFIED SIGNATURE PLOTS

The issue of how microstructure noise may impact the jump
detection procedures was explicitly considered by analytical
means by Huang and Tauchen (2005), hereinafter HT. Their
general conclusion is that the noise is likely to reduce the power
of the BNS jump detection tests. In other words, the magni-
tude of the jump component suggested by Figure 1 may well
be biased in that the discrepancy between the two curves is too
small. HT also provided the first systematic analysis of a sim-
ple variant of the bipower variation, which involves an addi-
tional spacing or skipping between the adjacent high-frequency
returns used in the computations. This measure will tend to alle-
viate the impact of iid noise, because it “breaks” the first-order
serial correlation induced in the observed returns. Formally, de-
fine the generalized (standardized) bipower variation measure
computed with i additional skips between the intraday returns
as

BV(m)
i ≡ µ−2

1
m

m− 1− i

m∑
j=2+i

|yj,m|
∣∣yj−(1+i),m

∣∣. (11)

Note that for i = 0 this reduces to the standard bipower vari-
ation measure in (5). More generally, however, for i ≥ 1, the
staggered nature of the terms serves to reduce the impact of
short-lived dependencies in the noise process.

Of course, the RV estimator also may be affected by mi-
crostructure noise, the main theme of HL. HL find improved

(a) (b)

Figure 1. Bipower Variation Signature Plots for (a) AA and (b) MSFT ( RV; RV 30 minutes; BV).
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(a) (b)

Figure 2. Robustified Signature Plots for (a) AA and (b) MSFT ( RVAC1
; RV 30 minutes; BV1).

empirical performance of the first-order serial correlation–
adjusted estimator, RV(m)

AC1
, as used by, for example, French,

Schwert, and Stambaugh (1987) in estimating monthly realized
volatilities from daily data and first advocated in the context of
high-frequency data by Zhou (1996). We present the signature
plots for both of these iid “robust” measures in Figure 2, with
the generalized bipower variation computed using one skip, that
is, i = 1.

The impacts of the adjustments are readily seen for both
curves. In particular, for AA, the RV estimator now appears un-
biased from the 60- or 90-second sampling frequency, rather
than the 300-second frequency for the uncorrected estimator
in Figure 1(a). The impact on the bipower variation measure
is even more dramatic, because the modified staggered version
delivers an estimate that is lower across the entire range of sam-
pling frequencies. This is consistent with the upward bias in
the measure resulting from microstructure noise stressed by HT.
Consequently, the gap between the two estimators is now larger,
but still quite stable for the frequencies below 5 minutes. Hence
these displays suggest an even more important role for the jump
component. The results for MSFT are qualitatively very similar,
although the increase in the gap between the two curves associ-
ated with the jump component appears somewhat smaller.

5. POWER VARIATION SIGNATURE PLOTS

We have already alluded to the critical role of the integrated
quarticity measure in drawing statistical inference regarding the
realizations of the integrated variance for a given trading day.
The corresponding realized quarticity measures used in practice
are, of course, also affected by market microstructure noise. It
is straightforward to define power variation signature plots that
depict the sample average of the realized fourth-order power
variation measure given in (9), say RQ(m)∗ ≡ RPV(m)∗ (4), against
the underlying sampling frequency. Likewise, we may construct
a realized tripower quarticity signature plot based on the jump-
robust estimator of the integrated quarticity defined in (10).
Moreover, motivated by the desire for robustness against iid
noise, a staggered version of the tripower quarticity measure

is naturally defined by

TQ(m)
i ≡ µ−3

4/3
m

m− 2(1+ i)

×
m∑

j=3+2i

|yj,m|4/3
∣∣yj−(1+i),m

∣∣4/3∣∣yj−2(1+i),m
∣∣4/3

, (12)

which may similarly be displayed in a signature plot format for
different values of m.

Figure 3 presents these different (realized) integrated quar-
ticity signature plots. First, recall that the standardized fourth-
order realized power variation measure will diverge at the
highest sampling frequencies in the presence of jumps. This
feature is readily observed in the plots. The RQ estimator is al-
ways well above the corresponding jump robust tripower quar-
ticity, TQ, and the divergence becomes apparent as we approach
the 5-second sampling interval. These features are again much
more evident for AA than for MSFT, suggestive of a relatively
larger role of jumps for the former stock. Comparing the two
TQ measures, we see much better coherence, although the iid
noise robust version with i = 1 lies almost universally below the
unadjusted (i = 0) realized tripower quarticity measure, sug-
gesting an upward bias in the latter measure due to the presence
of microstructure noise. This discrepancy is more substantial
than a cursory look at the figures may indicate, because the
common scale is somewhat distorted by the large values of the
corresponding power variation measures. For return intervals
ranging between 1 and 30 minutes, the relative difference be-
tween the two tripower measures is in fact nontrivial.

These results have important implications for the calcula-
tion of reliable standard errors for daily integrated variance
estimates. The indication of a severe upward bias in the power
variation measure of integrated quarticity implies that the as-
sessment of the precision of daily variation, or volatility, es-
timates derived from this measure should be interpreted very
carefully. Given that the evidence for the presence of both
jumps and noise in the high-frequency return series is rather
overwhelming at this point, it thus seems critical to apply
the jump-robust estimators and also explore the iid noise—
or more general noise-robust—integrated quarticity estimators
when constructing standard error bands for realized volatility.
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(a) (b)

Figure 3. Power Variation Signature Plots for (a) AA and (b) MSFT ( RQ; TQ; TQ1).

Of course, an additional issue of interpretation crops up as the
return variation in the presence of jumps does not equal the
integrated variance. Hence the appropriate approach may also
involve jump-adjusting the intraday return series before com-
puting the relevant integrated variance measures and confidence
bands, along the lines of the procedures recently investigated
by Andersen, Bollerslev, and Dobrev (2005) and Andersen,
Bollerslev, Frederiksen, and Nielsen (2005).

6. CONCLUDING REMARKS

We find the article by HL extremely inspiring. We applaud
the constructive elements, as well as the provocative topics
raised in the course of their presentation and discussion. Our
main purpose in this discussion has been to call attention to
another feature of high-frequency return series with direct and
important implications for the issues debated by HL—namely,
the presence of jumps and their impact on the analysis of high-
frequency return–based realized variation measures. We deem
the evidence for jumps to be indisputable from the results both
presented here and elsewhere, so the issue is mostly to assess
their impact on the theory and practical procedures hitherto
developed for estimating daily integrated variance series. On
that front, we detect a striking impact of jumps in our gener-
alized volatility signature plots. Furthermore, it seems evident
that these types of signature plots can be quite informative as
to the presence of both jumps and noise in the underlying ob-
served return series. Up to this point, the jump component has
been largely ignored in the literature on market microstructure
noise-robust volatility estimation. Our simple diagnostics ap-
pear to identify systematic biases in these estimators and the as-
sociated inference stemming from the neglect of jumps. Hence
the larger message is really a call for action to develop a the-
ory for volatility estimation from high-frequency data that are
robust simultaneously to noise and jumps. Currently, the only
work that we know of dealing with this topic in the jump-
diffusion setting is that of Huang and Tauchen (2005), whereas
Large (2005) and Oomen (2005) both operated under the as-
sumption of a pure jump process. Our introduction of general-
ized (and robustified) volatility signature plots presented here,
and originally initiated by Andersen, Bollerslev, Frederiksen,

and Nielsen (2005), is directly inspired by this work. We feel
these plots may serve as useful tools for assessing the relevance
and magnitude of the different effects in the more general con-
text, much along the lines of the currently popular volatility
signature plots used extensively throughout by HL. It is worth
mentioning that our exposition here has been based on simple
“first-generation” RV volatility estimators. It is clearly feasi-
ble, and likely advisable, to exploit results on optimal sam-
pling frequency and more exhaustive usage of the underlying
high-frequency data through subsampling techniques or kernel-
based estimators as has been advocated by, among others, Bandi
and Russell (2005), Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2004), and Zhang, Mykland, and Aït-Sahalia (2005);
see also the recent incisive survey of Barndorff-Nielsen and
Shephard (2007).
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1. INTRODUCTION

The article by Hansen and Lunde provides an excellent win-
dow through which researchers and new students can view
how econometricians have been trying to nonparametrically
estimate quadratic variation (QV) in the presence of market
frictions. The story that the authors tell us demonstrates an
enormous leap forward in recent years, underpinned by the
availability of high-frequency data. The matching of continu-
ous-time arbitrage-free price processes with the econometrics
has driven this subject and provides a solid basis for fur-
ther work. Our recent survey (Barndorff-Nielsen and Shephard
2007) provided an overview of recent work that has a rather
different emphasis than that provided by Hansen and Lunde.

Fascinatingly, Hansen and Lunde have shown that as the-
oretical research has progressed, the properties of friction on
U.S. equity markets have changed due to the advent of new
technology, which has reduced the tick size on many markets,
dramatically reducing the variance of frictions and moderately
increasing the temporal dependence. The result is that exist-
ing no-noise analysis, such as the feasible central limit theorem
(CLT) introduced by Barndorff-Nielsen and Shephard (2002),
appears to give pretty good predictions of finite-sample be-
havior when returns are measured through midpoints recorded
every 10 or 20 minutes. Given that this was the goal of that
research, it is rather pleasing to have it confirmed.

The current research agenda focuses on two issues:

1. Can we exploit even higher-frequency data than 10 mi-
nutes to improve the efficiency of our estimator of QV?

2. Do these methods extend to the multivariate case?

We briefly discuss both of these issues. Finally, we make
some general observations on the model used for the efficient
price, a Brownian stochastic volatility model, and the role of
jumps.

2. HIGHER–FREQUENCY DATA

Hansen and Lunde suggest that two steps are involved in
tackling issue 1. For returns down to the level of 1 minute,
a useful approximation is that frictions are uncorrelated with the
underlying price. This is a helpful simplifying assumption that
appears in much recent econometric theory on this subject, in-
cluding the subsamplers of Zhou (1996), Zhang, Mykland, and
Aït-Sahalia (2005), Zhang (2004), and Aït-Sahalia, Mykland,
and Zhang (2005b) and the general kernel approach studied by
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004). The
finite-sample behavior of these estimators using 1-minute re-
turn data is unclear, however, although we expect this issue to
be clarified soon.

The gains from using 1-minute data rather than 10-minute
data are less than might be expected. Under the 10-minute re-
turn data, we know that the no-noise CLT provides a reasonable
approximation, which says that

δ−1/2([Pδ]t − [P]t) L→ MN

(
0,2

∫ t

0
σ 4

u du

)
, (1)

where [P] denotes the QV of P and Pδ is the discretized price
process updating the price every δ units of time. Hence if the
no-noise assumption were true, then moving from 10 minutes
to 1 minute would reduce the variance of the estimator by a fac-
tor of 10. However, as Hansen and Lunde argue, when there is
noise, one should change the estimator to make it more robust.
A simple estimator for this is the kernel estimator. Barndorff-
Nielsen et al. (2004) extended (1) to general kernels. In partic-
ular, in the best-case scenario for the larger data approach, if
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