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1 The Roll (1977) critique is also relevant.  That is, even if we somehow knew what factor(s) should be priced, it is not
clear that the factor proxies measured in practice would correspond to the factor required by the theory.

2 See Keim and Hawawini (1999) for a good discussion of the difficulty of interpreting additional empirically-motivated
factors in terms of systematic risk.

3 There are of course qualifications, notably Ghysels (1998), which we discuss subsequently.
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1.  Introduction

One of the key insights of asset pricing theory is also one of the simplest:  only systematic risk

should be priced.  Perhaps not surprisingly, however, there is disagreement as to the sources of systematic

risk.  In the one-factor capital asset pricing model (CAPM), for example, systematic risk is determined by

covariance with the market (Sharpe, 1963; Lintner, 1965a, b), whereas, in more elaborate pricing models,

additional empirical characteristics such as firm size and book-to-market are seen as proxies for another set

of systematic risk factors (Fama and French, 1993).1

As with most important scientific models, the CAPM has been subject to substantial criticism (e.g.,

Fama and French, 1992).  Nevertheless, to paraphrase Mark Twain, the reports of its death are greatly

exaggerated.  In fact, the one-factor CAPM remains alive and well at the frontier of both academic research

and industry applications, for at least two reasons.  First, recent work reveals that it often works well –

despite its wrinkles and warts – whether in traditional incarnations (e.g., Ang and Chen, 2003) or more novel

variants (e.g., Cohen, Polk and Voulteenaho, 2002; Campbell and Vuolteenaho, 2002).  Second, competing

multi-factor pricing models, although providing improved statistical fit, involve factors whose economic

interpretations in terms of systematic risks remain unclear, and moreover, the stability of empirically-

motivated multi-factor asset pricing relationships often appears tenuous when explored with true out-of-

sample data, suggesting an element of data mining.2

In this paper, then, we study the one-factor CAPM, which remains central to financial economics

nearly a half century after its introduction.  A key question within this setting is whether stocks’ systematic

risks, as assessed by their correlations with the market, are constant over time – i.e., whether stocks’ market

betas are constant.  And if betas are not constant, a central issue becomes how to understand and formally

characterize their persistence and predictability vis-à-vis their underlying components. 

The evolution of a large literature over several decades reveals both extensive concern with this

question and, we contend, an eventual implicit consensus that betas are likely time-varying.3  Several pieces

of evidence support our contention.  First, leading texts echo it.  For example, Huang and Litzenberger

(1988) assert that “It is unlikely that risk premiums and betas on individual assets are stationary over time”

(p. 303).  Second, explicitly dynamic betas are often modeled nonstructurally via time-varying parameter

regression, in a literature tracing at least to the early “return to normality” model of Rosenberg (1973), as



4 The idea of conditioning in the CAPM is of course not unrelated to the idea of multi-factor pricing mentioned earlier.
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implemented in the CAPM by Schaefer, Brealey, Hodges and Thomas (1975).  Third, even in the absence of

explicit allowance for time-varying betas, the CAPM is typically estimated using moving estimation

windows, usually of five to ten years, presumably to guard against beta variation (e.g., Fama, 1976;

Campbell, Lo and MacKinlay, 1997).  Fourth, theoretical and empirical inquiries in asset pricing are often

undertaken in conditional, as opposed to unconditional, frameworks, the essence of which is to allow for

time-varying betas, presumably because doing so is viewed as necessary for realism.

The motivation for the conditional CAPM comes from at least two sources.  First, from a theoretical

perspective, financial economic considerations suggest that betas may vary with conditioning variables, an

idea developed theoretically and empirically in a large literature that includes, among many others, Dybvig

and Ross (1985), Hansen and Richard (1987), Ferson, Kandel and Stambaugh (1987), Ferson and Harvey

(1991), Jagannathan and Wang (1996), and Wang (2003).4  Second, from a different and empirical

perspective, the financial econometric volatility literature (see Andersen, Bollerslev and Diebold, 2004, for a

recent survey) has provided extensive evidence of wide fluctuations and high persistence in asset market

conditional variances, and in individual equity conditional covariances with the market.  Thus, even from a

purely statistical viewpoint, market betas, which are ratios of time-varying conditional covariances and

variances, might be expected to display persistent fluctuations, as in Bollerslev, Engle and Wooldridge

(1988).  In fact, unless some special cancellation occurs – in a way that we formalize – betas would inherit

the persistence features that are so vividly present in their constituent components.

Set against this background, we assess the dynamics in betas vis-à-vis the widely documented

persistent dynamics in the underlying variance and covariances.  We proceed as follows.  In section 2 we

sketch the framework, both economic and econometric, in which our analysis is couched.  In section 3 we

present the empirical results with an emphasis on analysis of persistence and predictability.  In section 4 we

formally assess the uncertainty in our beta estimates.  In section 5 we offer summary, conclusions and

directions for future research.

2.  Theoretical Framework

Our approach has two key components.  First, in keeping with the recent move toward nonparametric

volatility measurement, we cast our analysis within the framework of realized variances and covariances, or

equivalently, empirical quadratic variation and covariation.  That is, we do not entertain a null hypothesis of

period-by-period constant betas, but instead explicitly allow for continuous evolution in betas.  Our “realized

betas” are (continuous-record) consistent for realizations of the underlying ratio between the integrated stock



5 The underlying theory and related empirical strategies are developed in Andersen, Bollerslev, Diebold and Labys (2001,
2003), Andersen, Bollerslev, Diebold and Ebens (2001), and Barndorff-Nielsen and Shephard (2003).  Here we sketch only the
basics; for a more rigorous treatment in the framework of special semimartingales, see the survey and unification by Andersen,
Bollerslev and Diebold (2004).
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and market return covariance and the integrated market variance.5  Second, we work in a flexible

econometric framework that allows for – without imposing – fractional integration and/or cointegration

between the market variance and individual equity covariances with the market.

Realized Quarterly Variances, Covariances, and Betas

We provide estimates of quarterly betas, based on nonparametric realized quarterly market variances

and individual equity covariances with the market.  The quarterly frequency is appealing from a substantive

financial economic perspective, and it also provides a reasonable balance between efficiency and robustness

to microstructure noise.  Specifically, we produce our quarterly estimates using underlying daily returns, as

in Schwert (1989), so that the sampling frequency is quite high relative to the quarterly horizon of interest,

yet low enough so that contamination by microstructure noise is not a serious concern for the highly liquid

stocks that we study.  The daily frequency further allows us to utilize a long sample of data, which is not

available when sampling more frequently.

Suppose that the logarithmic N×1 vector price process, pt , follows a multivariate continuous-time

stochastic volatility diffusion,

dpt    =    :t  dt   +   St  dWt ,     (1)

where Wt denotes a standard N-dimensional Brownian motion, and both the process for the N×N positive

definite diffusion matrix, St , and the N-dimensional instantaneous drift, :t , are strictly stationary and jointly

independent of the Wt  process.  For our purposes it is helpful to think of the N’th element of  pt as containing

the log price of the market and the i’th element of  pt as containing the log price of the i’th individual stock

included in the analysis, so that the corresponding covariance matrix contains both the market variance, say

FM
2

 ,t = S(NN),t , and the individual equity covariance with the market, FiM,t = S(iN),t .  Then, conditional on the

sample path realization of :t and St , the distribution of the continuously compounded h-period return, rt+h,h/

pt+h - pt , is

rt+h,h  * F{ :t+J , St+J }Jh=0   -   N( I 0
h :t+J dJ ,  I0

h St+J dJ ) , (2)

where F{ :t+J , St+J }Jh=0 denotes the F-field generated by the sample paths of  :t+J and St+J  for 0#J#h.  The

integrated diffusion matrix I0
h St+J dJ  therefore provides a natural measure of the true latent h-period



6 This notion of integrated volatility already plays a central role in the stochastic volatility option pricing literature, in
which the price of an option typically depends on the distribution of the integrated volatility process for the underlying asset over the
life of the option.  See, for example, the well-known contribution of Hull and White (1987).

7 Formal theoretical asymptotic justification for this finding has very recently been provided by Barndorff-Nielsen and
Shephard (2004).
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volatility.6  The requirement that the innovation process, Wt , is independent of the drift and diffusion

processes is rather strict and precludes, for example, the asymmetric relations between return innovations and

volatility captured by the so-called leverage or volatility feedback effects.  However, from the results in

Meddahi (2002), Barndorff-Nielsen and Shephard (2003) and Andersen, Bollerslev and Meddahi (2004), we

know that the continuous-record asymptotic distribution theory for the realized covariation continues to

provide an excellent approximation for empirical high-frequency realized volatility measures.7  As such,

even if the conditional return distribution result (2) does not apply in full generality, the evidence presented

below, based exclusively on the realized volatility measures, remains trustworthy in the presence of

asymmetries in the return innovation-volatility relations.

By the theory of quadratic variation, we have that under weak regularity conditions, and regardless

of the presence of leverage or volatility feedback effects, that

Ej=1,...,[h/)] rt+jA),) A rt
N
+jA),)  -  I0

h
 St+J dJ   6   0, (3)

almost surely for all t as the sampling frequency of the returns increases, or ) 6 0.  Thus, by summing

sufficiently finely-sampled high-frequency returns, it is possible to construct ex-post realized volatility

measures for the integrated latent volatilities that are asymptotically free of measurement error.  This

contrasts sharply with the common use of the cross-product of the h-period returns, rt+h,h A rt
N
+h,h , as a simple

ex-post (co-)variability measure.  Although the squared return (innovation) over the forecast horizon

provides an unbiased estimate for the integrated volatility, it is an extremely noisy estimator, and predictable

variation in the true latent volatility process is typically dwarfed by measurement error.  Moreover, for longer

horizons any conditional mean dependence will tend to contaminate this variance measure.  In contrast, as

the sampling frequency is lowered, the impact of the drift term vanishes, thus effectively annihilating the

mean.

These assertions remain valid if the underlying continuous time process in equation (1) contains

jumps, so long as the price process is a special semimartingale, which will hold if it is arbitrage-free.  Of

course, in this case the limit of the summation of the high-frequency returns will involve an additional jump

component, but the interpretation of the sum as the realized h-period return volatility remains intact.
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Finally, with the realized market variance and realized covariance between the market and the

individual stocks in hand, we can readily define and empirically construct the individual equity “realized

betas.”  Toward that end, we introduce some formal notation.  Using an initial subscript to indicate the

corresponding element of a vector, we denote the realized market volatility by

    =     Ej=1,...,[h/)]    , (4)

and we denote the realized covariance between the market and the ith individual stock return by

    =     Ej=1,...,[h/)]     (5)

We then define the associated realized beta as

    =   (6)

Under the assumptions invoked for equation (1), this realized beta measure is consistent for the true

underlying integrated beta in the following sense:

    6        =     , (7)

almost surely for all t as the sampling frequency increases, or ) 6 0. 

A number of comments are in order.  First, the integrated return covariance matrix, I0
h
 St+J dJ , is

treated as stochastic, so both the integrated market variance and the integrated covariances of individual

equity returns with the market over [t, t+h] are ex-ante, as of time t, unobserved and governed by a non-

degenerate (and potentially unknown) distribution.  Moreover, the covariance matrix will generally vary

continuously and randomly over the entire interval, so the integrated covariance matrix should be interpreted

as the average realized covariation among the return series.  Second, equation (3) makes it clear that the

realized market volatility in (4) and the realized covariance in (5) are continuous-record consistent estimators

of the (random) realizations of the underlying integrated market volatility and covariance.  Thus, as a

corollary, the realized beta will be consistent for the integrated beta, as stated in (7).  Third, the general

representation here encompasses the standard assumption of a constant beta over the measurement or
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estimation horizon, which is attained for the degenerate case of the St  process being constant throughout

each successive h-period measurement interval, or St =  S.  Fourth, the realized beta estimation procedure in

equations (4)-(6) is implemented through a simple regression (without a constant term) of individual high-

frequency stock returns on the corresponding market return.  Nonetheless, the interpretation is very different

from a standard regression, as the OLS point estimate now represents a consistent estimator of the ex-post

realized regression coefficient obtained as the ratio of unbiased estimators of the average realized covariance

and the realized market variance.  The associated continuous-record asymptotic theory developed by

Barndorff-Nielsen and Shephard (2003) explicitly recognizes the diffusion setting underlying this regression

interpretation and hence facilitates the construction of standard errors for our beta estimators.

Nonlinear Fractional Cointegration:  A Common Long-Memory Feature in Variances and Covariances

The possibility of common persistent components is widely recognized in modern multivariate time-

series econometrics.  It is also important for our analysis, because there may be common persistence features

in the underlying variances and covariances from which betas are produced.

The idea of a common feature is a simple generalization of the well-known cointegration concept.  If

two variables are integrated but there exists a function f of them that is not, we say that they are cointegrated,

and we call f the conintegrating function.  More generally, if two variables have property X but there exists a

function of them that does not, we say that they have common feature X.  A key situation is when X

corresponds to persistence, in which case we call the function of the two variables that eliminates the

persistence the copersistence function.  It will prove useful to consider linear and nonlinear copersistence

functions in turn.

Most literature focuses on linear copersistence functions.  The huge cointegration literature

pioneered by Granger (1981) and Engle and Granger (1987) deals primarily with linear common long-

memory I(1) persistence features.  The smaller copersistence literature started by Engle and Kozicki (1993)

deals mostly with linear common short-memory I(0) persistence features.  The idea of fractional

cointegration, suggested by Engle and Granger (1987) and developed by Cheung and Lai (1993) and

Robinson and Marinucci, (2001), among others, deals with linear common long-memory I(d) persistence

features, 0<d<1/2.

Our interest is closely related but different.  First, it centers on nonlinear copersistence functions,

because betas are ratios.  There is little literature on nonlinear common persistence features, although they

are implicitly treated in Granger (1995).  We will be interested in nonlinear common long-memory I(d)



8 One could of course attempt a linear cointegration approach by taking logs of the realized volatilities and covariances,
but there is no theoretical reason to expect all covariances to be positive, and our realized covariance measures are indeed sometimes
negative, making logarithmic transformations problematic.
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persistence features, 0<d<1/2, effectively corresponding to nonlinear fractional cointegration.8 

Second, we are interested primarily in the case of known cointegrating relationships.  That is, we

may not know whether a given stock’s covariance with the market is fractionally cointegrated with the

market variance, but if it is, then there is a good financial economic reason (i.e., the CAPM) to suspect that

the cointegrating function is the ratio of the covariance to the variance.  This provides great simplification. 

In the integer-cointegration framework with known cointegrating vector under the alternative, for example,

one could simply test the cointegrating combination for a unit root, or test the significance of the error-

correction term in a complete error-correction model, as in Horvath and Watson (1995).  We proceed in

analogous fashion, examining the integration status (generalized to allow for fractional integration) of the

realized market variance, realized individual equity covariances with the market, and realized market betas.

Our realized beta series are unfortunately relatively short compared to the length required for formal 

testing and inference procedures regarding (fractional) cointegration, as the fractional integration and

cointegration estimators proposed by Geweke-Porter Hudak (1983), Robinson and Marinucci (2001) and

Andrews and Guggenberger (2003) tend to behave quite erratically in small samples.  In addition, there is

considerable measurement noise in the individual beta series so that influential outliers may have a

detrimental impact on our ability to discern the underlying dynamics.  Hence we study the nature of the long

range dependence and short-run dynamics in the realized volatility measures and realized betas through

intentionally less formal but arguably more informative graphical means, and via some robust procedures

that utilize the joint information across many series, to which we now turn. 

3.  Empirical Analysis

We examine primarily the realized quarterly betas constructed from daily returns.  We focus on the

dynamic properties of market betas vis-à-vis the dynamic properties of their underlying covariance and

variance components.  We quantify the dynamics in a number of ways, including explicit measurement of the

degree of predictability in the tradition of Granger and Newbold (1986).

Dynamics of Quarterly Realized Variance, Covariances and Betas

This section investigates the realized quarterly betas constructed from daily returns obtained from the

Center for Research in Security Prices from July 1962 to September 1999.  We take the market return  to

be the thirty Dow Jones Industrial Average (DJIA), and we study the subset of twenty-five DJIA stocks as of



9 We compute the quarterly realized variance, covariances and betas from slightly different numbers of observations due
to the different numbers of trading days across the quarters.

10 Note also that the Dickey-Fuller statistics indicate that unit roots are not present in the market variance, individual
equity covariances with the market, or market betas, despite their persistent dynamics.

11 For the realized covariances and realized betas, we show the median autocorrelations functions.
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March 1997 with complete data from July 2, 1962 to September 17, 1999, as detailed in Table 1.  We then

construct quarterly realized DJIA variances, individual equity covariances with the market, and betas, 1962:3

- 1999:3 (149 observations).

In Figure 1 we provide a time series plot of the quarterly realized market variance, with fall 1987

included (top panel) and excluded (bottom panel).  It is clear that the realized variance is quite persistent and,

moreover, that the fall 1987 volatility shock is unlike any other ever recorded, in that volatility reverts to its

mean almost instantaneously.  In addition, our subsequent computation of asymptotic standard errors reveals

that the uncertainty associated with the fall 1987 beta estimate is enormous, to the point of rendering it

entirely uninformative.  In sum, it is an exceptional outlier with potentially large influence on the analysis,

and it is measured with huge imprecision.  Hence, following many other authors, we drop the fall 1987

observation from this point onward.

In Figures 2 and 3 we display time series plots of the twenty-five quarterly realized covariances and

realized betas.9  Like the realized variance, the realized covariances appear highly persistent.  The realized

betas, in contrast, appear noticeably less persistent.  This impression is confirmed by the statistics presented

in Table 2:  the mean Ljung-Box Q-statistic (through displacement 12) is 84 for the realized covariance, but

only 47 for the realized beta, although both are of course significant relative to a  distribution.10

The impression of reduced persistence in realized betas relative to realized covariances is also

confirmed by the sample autocorrelation functions for the realized market variance, the realized covariances

with the market, and the realized betas shown in Figure 4.11  Most remarkable is the close correspondence

between the shape of the realized market variance correlogram and the realized covariance correlograms. 

This reflects an extraordinary high degree of dependence in the correlograms across the individual realized

covariances with the market, as shown in Figure 5.  In Figure 4, it makes the median covariance correlogram

appear as a very slightly dampened version of that for the market variance.  This contrasts sharply with the

lower and gently declining pattern for the realized beta autocorrelations.  Intuitively, movements of the

realized market variance are largely reflected in  movements of the realized covariances; as such, they largely

“cancel” when we form ratios (realized betas).  Consequently, the correlation structure across the individual

realized beta series in Figure 6 is much more dispersed than is the case for the realized covariances in Figure



12 The standard error band (under the null of an i.i.d. series) indicated in Figure 4 is only valid for the realized market
variance.  It should be lower for the two other series, reflecting the effective averaging in constructing the median values.  In fact, it
should be considerably lower for the beta series due to the near uncorrelated nature of the underlying beta dynamics, while the
appropriate reduction for the covariance series would be less because of the strong correlation across the series.  We cannot be more
precise on this point without imposing some direct assumptions on the correlation structure across the individual series.

13 A partial list of references not written by the present authors includes Breidt and de Lima (1998), Comte and Renault
(1998), Harvey (1998), and Robinson (2001), as well as many of the earlier papers cited in Baillie (1996).
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5.  This results in an effective averaging of the noise and the point estimates of the median correlation values

are effectively zero beyond ten quarters for the beta series.12 

The work of Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen, Bollerslev, Diebold and

Labys (2003), as well as that of many other authors, indicates that asset return volatilities are well-described

by a pure fractional noise process, typically with the degree of integration around 13  That style of

analysis is mostly conducted on high-frequency data.  Very little work has been done on long memory in

equity variances, market covariances, and market betas at the quarterly frequency, and it is hard to squeeze

accurate information about d directly from the fairly limited quarterly sample.  It is well-known, however,

that if a flow variable is I(d), then it remains I(d) under temporal aggregation.  Hence, we can use the results

of analyses of high-frequency data, such as Andersen, Bollerslev, Diebold and Labys (2003), to help us

analyze the quarterly data.  After some experimentation, and in keeping with the typical finding that ,

we settled on 

In Figure 7 we graph the sample autocorrelations of the quarterly realized market variance, the

median realized covariances with the market, and the median realized betas, all prefiltered by .  It is

evident that the dynamics in the realized variance and covariances are effectively annihilated by filtering

with , indicating that the pure fractional noise process with  is indeed a good approximation

to their dynamics.  Interestingly, however, filtering the realized betas with  appears to produce

overdifferencing, as evidenced by the fact that the first autocorrelation of the fractionally differenced betas is

often negative.  Compare, in particular, the median sample autocorrelation function for the prefiltered

realized covariances to the median sample autocorrelation function for the prefiltered realized betas.  The

difference is striking in the sense that the first autocorrelation coefficient for the betas is negative and much

larger than those for all of the subsequent lags.  Recall that the standard error band for the median realized

beta (not shown in the lower panels, as it depends on the unknown cross-sectional dependence structure)

should be considerably narrower than for the other series in Figure 7, thus likely rendering the first-order

correlation coefficient for the beta series significantly negative.  This finding can be seen to be reasonably

consistent across the individual prefiltered covariance and beta correlation functions displayed in Figures 8
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and 9.

If fractional differencing of the realized betas by  may be “too much,” then the question

naturally arises as to how much differencing is “just right.”  Some experimentation revealed that differencing

the betas by  was often adequate for eliminating the dynamics.  However, for short samples it is

almost impossible to distinguish low-order fractional integration from persistent but strictly stationary

dynamics.  We are particularly interested in the latter alternative where the realized betas are I(0).  To explore

this possibility, we fit simple AR(p) processes to realized betas, with p selected by the AIC.  We show the

estimated roots in Table 3, all of which are indicative of covariance stationarity.  In Figure 10 we show the

sample autocorrelation functions of quarterly realized betas prefiltered by the estimated AR(p) lag-operator

polynomials.  The autocorrelation functions are indistinguishable from those of white noise.

Taken as a whole, the results suggest that realized betas are integrated of noticeably lower order than

are the market variance and the individual equity covariances with the market, corresponding to a situation of

nonlinear fractional cointegration.  I(d) behavior, with , appears accurate for betas, whereas the

market variance and the individual equity covariances with the market are better approximated as I(d) with

.  Indeed, there is little evidence against an assertion that betas are I(0), whereas there is strong

evidence against such an assertion for the variance and covariance components.

Predictability

Examination of the predictability of realized beta and its components provides a complementary

perspective and additional insight.  Granger and Newbold (1986) propose a measure of the predictability of

covariance stationary series under squared-error loss, patterned after the familiar regression R2,

  (8)

where j is the forecast horizon of interest,  is the optimal (i.e., conditional mean) forecast, and

.  Diebold and Kilian (2001) define a generalized measure of predictability, building on the

Granger-Newbold measure, as

,  (9)

where L denotes the relevant loss function, S is the available univariate or multivariate information set, j is the

forecast horizon of interest, and k is a long but not necessarily infinite reference horizon.  

Regardless of the details, the basic idea of predictability measurement is simply to compare the



14 Note that only one figure is needed, despite the many different realized covariances, because all  are identical, as
all processes are assumed to be ARFIMA(0, .42, 0).
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expected loss of a short-horizon forecast to the expected loss of a very long-horizon forecast.  The former will

be much smaller than the latter if the series is highly predictable, as the available conditioning information will

then be very valuable.  The Granger-Newbold measure, which is the canonical case of the Diebold-Kilian

measure (corresponding to L(e) = e2, univariate S, and ) compares the 1-step-ahead forecast error

variance to that of the 4-step-ahead forecast error variance, i.e., the unconditional variance of the series being

forecast (assuming that it is finite).

In what follows, we use predictability measures to provide additional insight into the comparative

dynamics of the realized variances and covariances versus the realized betas.  Given the strong evidence of

fractional integration in the realized market variance and covariances, we maintain the pure fractional noise

process for the quarterly realized market variance and the realized covariances, namely ARFIMA(0, .42, 0). 

We then calculate the Granger-Newbold predictability  analytically, conditional upon the ARFIMA(0, .42,

0) dynamics, and we graph it in Figure 11 for j = 1, ... , 7 quarters.14  The graph starts out as high as .4 and

decays only slowly over the first seven quarters.  If the realized beta likewise follows a pure fractional noise

process but with a smaller degree of integration, say ARFIMA(0, .20, 0), which we argued was plausible, then

the implied predictability is much lower, as also shown in Figure 11.  As we also argued, however, the

integration status of the realized betas is difficult to determine.  Hence, for the realized betas we also compute

Granger-Newbold predictability using an estimated AR(p) sieve approximation to produce estimates of

 and ; this approach is valid regardless of whether the true dynamics are short-memory or

long-memory.  In Figure 12 we plot the beta predictabilities, which remain noticeably smaller and more

quickly-decaying than the covariance predictabilities, as is further clarified by comparing the median beta

predictability, also included in Figure 11, to the market variance and equity covariances predictability.  It is

noteworthy that the shorter-run beta predictability – up to about four quarters – implied by the AR(p) dynamics

is considerably higher than for the I(.20) dynamics.  Due to the long-memory feature of the  I(.20) process this

eventually reverses beyond five quarters.

4.  Assessing Precision:  Interval Estimates of Betas

Thus far we have largely abstracted from the presence of estimation error in the realized betas.  It is

possible to assess the (time-varying) estimation error directly using formal continuous-record asymptotics.

Continuous-Record Asymptotic Standard Errors

We first use the multivariate asymptotic theory recently developed by Barndorff-Nielsen and



15 N has a time subscript because the number of trading days varies slightly across quarters.
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Shephard (2003) to assess the precision of our realized betas which are, of course, estimates of the underlying

integrated betas.  This helps us in thinking about separating “news from noise” when examining temporal

movements in the series.

From the discussion above, realized beta for stock i in quarter t is simply

, (10)

where  is the return of stock i on day j of quarter t,  is the return of the DJIA on day j of quarter t, and

 is the number of units (e.g., days) into which quarter t is partitioned.15  Under appropriate regularity

conditions that allow for non-stationarity in the series, Barndorff-Nielsen and Shephard (2003) derive the

limiting distribution of realized beta.  In particular, as ,

 , (11)

where

(12)

and

 . (13)

Thus a feasible and asymptotically valid "-percent confidence interval for the underlying integrated beta is

 , (14)

where  denotes the appropriate critical value of the standard normal distribution.



16  The high-frequency tick-by-tick data underlying the fifteen-minute returns was obtained from the TAQ (Trade And
Quotation) database.  We refer the reader to the web appendix to this paper, available at www.ssc.upenn.edu/~fdiebold, for a more
detailed description of the data capture, return construction, and high-frequency beta measurements.
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In Figure 13 we plot the pointwise ninety-five percent confidence intervals for the quarterly betas. 

They are quite wide, indicating that daily sampling is not adequate to drive out all measurement error.  They

are, given the width of the bands, moreover, consistent with the conjecture that there is only limited (short

range) dependence in the realized beta series.

The continuous record asymptotics discussed above directly points to the advantage of using finer

sampled data for improved beta measurements. However, the advent of reliable high-frequency intraday data

is, unfortunately, a relatively recent phenomenon and we do not have access to such data for the full 1962:3 -

1999:3 sample period used in the empirical analysis so far.  Nonetheless, to see how the reduction in

measurement error afforded by the use of finer sample intradaily data manifests itself empirically in more

reliable inference, we reproduce in Figure 14 the pointwise ninety-five percent confidence bands for the

quarterly betas over the shorter 1993:1 - 1999:3 sample.  These bands may be compared directly to the

corresponding quarterly realized beta standard error bands over the identical time span based on a fifteen-

minute sampling scheme reported in Figure 15.16  The improvement is readily visible in the narrowing of the

bands.  It is also evident from Figure 15 that there is quite pronounced positive dependence in the realized

quarterly beta measures.  In other words, the high-frequency beta measures importantly complement the

results for the betas obtained from the lower frequency daily data, by more clearly highlighting the dynamic

evolution of individual security betas.  In the web appendix to this paper (www.ssc.upenn.edu/~fdiebold), we

perform a preliminary analysis of realized betas computed from high-frequency data over the shorter seven-

year sample period.  The results are generally supportive of the findings reported here, but the relatively short

sample available for the analysis invariably limits the power of our tests for fractional integration and non-

linear cointegration.  In the concluding remarks to this paper we also sketch a new and powerful econometric

framework that we plan to pursue in future, much more extensive, work using underlying high-frequency data.

HAC Asymptotic Standard Errors

As noted previously, the quarterly realized betas are just regression coefficients computed quarter-by-

quarter from CAPM regressions using intra-quarter daily data.  One could obtain consistent estimates of the

standard errors of those quarterly regression-based betas using HAC approaches, such as Newey-West, under

the very stringent auxiliary assumption that the period-by-period betas are constant.  For comparison to the

continuous-record asymptotic bands discussed above, we also compute these HAC standard error bands.

In Figure 16 we provide the Newey-West ninety-five percent confidence intervals for the quarterly

realized betas.  Comparing the figure to Figure 13, there is not much difference in the assessment of the
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estimation uncertainly inherent in the quarterly beta measures obtained from the two alternative procedures

based on daily data. However, as noted above, there are likely important gains to be had from moving to high-

frequency intraday data.

5.  Summary, Concluding Remarks, and Directions for Future Research

We have assessed the dynamics and predictability in realized betas, relative to the dynamics in the

underlying market variance and covariances with the market.  Key virtues of the approach include the fact that

it does not require an assumed volatility model, and that it does not require an assumed model of time

variation in beta.  We find that, although the realized variances and covariances fluctuate widely and are

highly persistent and predictable (as is well-known), the realized betas, which are simple nonlinear functions

of the realized variances and covariances, display much less persistence and predictability.

The empirical literature on systematic risk measures, as captured by beta, is much too large to be

discussed in a sensible fashion here.  Before closing, however, we do want to relate our approach and results

to the literature on latent factor models and two key earlier papers that have important implications for the

potential time variation of betas and the further use of the techniques developed here.

First, our results are closely linked to the literature on the latent factor volatility model, as studied by a

number of authors, including Diebold and Nerlove (1989), Harvey, Ruiz and Shephard (1994), King, Sentana

and Wadhwani (1994), Fiorentini, Sentana and Shephard (1998), and Jacquier and Marcus (2000). 

Specifically, consider the model,

,             (15a)

,              (15b)

where , and t = 1, ..., T.  The ith and jth time-t conditional (on ) variances, and the ij-th

conditional covariance, for arbitrary i and j, are then given by

,      ,                   (16)

Assume, as is realistic in financial contexts, that all betas are nonnegative, and consider what happens as 

increases, say: all conditional variances increase, and all pairwise conditional covariances increase.  Hence the

market variance increases, and the covariances of individual equities with the market increase.  Two

observations are immediate:  (1) both the market variance and the covariances of individual equities with the



17 In contrast, on estimating a similar EGARCH model for individual daily stock returns, Cho and Engle (2000) find that
daily company specific betas do respond asymmetrically to good and bad news.

18 Chang and Weiss (1991) argue that a strictly stationary ARMA(1,1) model provides an adequate representation for
most individual quarterly  beta series.  Their sample size is smaller than ours, however, and their estimated betas are assumed to be
constant over each quarter.  Also, they do not provide any separate consideration of the persistence of the market variance or the
individual covariances with the market.
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market are time-varying, and (2) because the market variance moves together with the covariances of

individual equities with the market, the market betas may not vary as much – indeed in the simple one-factor

case sketched here, the betas are constant, by construction!  The upshot is that wide fluctuations in the market

variance and individual equity covariances with the market, yet no variation in betas, is precisely what one

expects to see in a latent (single) factor volatility model.  It is also, of course, quite similar to what we found in

the data:  wide variation and persistence in market variance and individual equity covariances with the market,

yet less variation and persistence in betas.  Notice also the remarkable similarity in the correlograms for the

individual realized covariances in Figure 5.  This is another indication of a strong coherence in the dynamic

evolution of the individual covariances, consistent with the presence of one dominant underlying factor.

Second, our results also complement and expand upon those of Braun, Nelson and Sunier (1995), who

study the discrepancy in the time series behavior of betas relative to the underlying variances and covariances

for twelve industry portfolios using bivariate EGARCH models.  They also find variation and persistence in

the conditional variances and covariances, and less variation and persistence in betas.  Moreover, they find the

strong asymmetric relationship between return innovations and future return volatility to be entirely absent in

the conditional betas.17  Hence, at the portfolio level they document similar qualitative behavior between the

variances and covariances relative to the betas as do we.  However, their analysis is linked directly to a

specific parametric representation, it studies industry portfolios, and it never contemplates the hypothesis that

the constituent components of beta – variances and covariances – may be of a long memory form.  This latter

point has, of course, been forcefully argued by numerous subsequent studies.  Consequently, our investigation

can be seen as a substantive extension of their findings performed in a fully nonparametric fashion.

Third, our results nicely complement and expand upon those of Ghysels (1998), who argues that the

constant beta CAPM, as bad as it may be, is nevertheless not as bad as some popular conditional CAPMs.  We

provide some insight into why allowing for time-varying betas may do more harm than good when estimated

from daily data, even if the true underlying betas display significant short memory dynamics:  it may not be

possible to estimate reliably the persistence or predictability in individual realized betas, so good in-sample

fits may be spurious artifacts of data mining.18  We also establish that there should be a real potential for the

use of high-frequency intraday data to resolve this dilemma.

In closing, therefore, let us sketch an interesting framework for future research using high-frequency



19 Generalization to an arbitrary ARMA process or other stationary structures for the evolution in the true betas is, of
course, straightforward. 
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intraday data, which will hopefully deliver superior estimates of integrated volatilities by directly exploiting

insights from the continuous-record asymptotics of Barndorff-Nielsen and Shephard (2003).  Consider the

simple state-space representation:

     =            +               (17a)

      =             +         +              (17b)

,     .            (17c)

The measurement equation (17a) links the observed realized beta to the unobserved true underlying integrated

beta by explicitly introducing a normally-distributed error with the asymptotically valid variance obtained

from the continuous-record distribution of Barndorff-Nielsen and Shephard (2003).  The transition equation

(17b) is a standard first-order autoregression with potentially time-varying error variance.19  The simplest

approach would be to let  have a constant variance, but it is also straightforward to let the variance change

with the underlying variability in the realized beta measure, so that the beta innovations become more volatile

as the constituent parts, the market variance and the covariance of the stock return with the market, increase. 

This approach directly utilizes the advantages of high-frequency intraday beta measurements by incorporating

estimates of the measurement errors to alleviate the errors-in-variables problem while explicitly recognizing

the heteroskedasticity in the realized beta series.  We look forward to future research along these lines.
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Table1
The Dow Jones Thirty

Company Name Ticker Data Range

Alcoa Inc. AA 07/02/1962-09/17/1999
Allied Capital Corporation  ALD 07/02/1962-09/17/1999
American Express Co. AXP* 05/31/1977-09/17/1999
Boeing Co. BA 07/02/1962-09/17/1999
Caterpillar Inc. CAT 07/02/1962-09/17/1999
Chevron Corp. CHV 07/02/1962-09/17/1999
DuPont Co. DD 07/02/1962-09/17/1999
Walt Disney Co. DIS 07/02/1962-09/17/1999
Eastman Kodak Co. EK 07/02/1962-09/17/1999
General Electric Co. GE 07/02/1962-09/17/1999
General Motors Corp. GM 07/02/1962-09/17/1999
Goodyear Tire & Rubber Co. GT 07/02/1962-09/17/1999
Hewlett- Packard Co. HWP 07/02/1962-09/17/1999
International Business Machines Corp. IBM 07/02/1962-09/17/1999
International Paper Co. IP 07/02/1962-09/17/1999
Johnson & Johnson JNJ 07/02/1962-09/17/1999
JP Morgan Chase & Co. JPM* 03/05/1969-09/17/1999
Coca-Cola Co. KO 07/02/1962-09/17/1999
McDonald's Corp. MCD* 07/05/1966-09/17/1999
Minnesota Mining & Manufacturing Co. MMM 07/02/1962-09/17/1999
Philip Morris Co. MO 07/02/1962-09/17/1999
Merck & Co. MRK 07/02/1962-09/17/1999
Procter & Gamble Co. PG 07/02/1962-09/17/1999
Sears, Roebuck and Co. S 07/02/1962-09/17/1999
AT&T Corp. T 07/02/1962-09/17/1999
Travelers Group Inc. TRV* 10/29/1986-09/17/1999
Union Carbide Corp. UK 07/02/1962-09/17/1999
United Technologies Corp. UTX 07/02/1962-09/17/1999
Wal-Mart Stores Inc. WMT* 11/20/1972-09/17/1999
Exxon Corp. XON 07/02/1962-09/17/1999

Notes:  The table summarizes company names and tickers, and the range of the data examined.  We use the Dow Jones Thirty
as of March 1997.  Tickers with asterisks denote stocks with incomplete data, which we exclude from the analysis.



Table 2
The Dynamics of Quarterly Realized Market Variance, Covariances and Betas

109.50 -5.159 -3.792 -4.014 -3.428

Min. 47.765 -6.188 -4.651 -4.621 -4.023 6.6340 -8.658 -6.750 -5.482 -5.252
0.10 58.095 -5.880 -4.383 -4.469 -3.834 15.026 -7.445 -6.419 -5.426 -4.877
0.25 69.948 -5.692 -4.239 -4.352 -3.742 26.267 -6.425 -5.576 -5.047 -4.294
0.50 84.190 -5.478 -4.078 -4.179 -3.631 46.593 -6.124 -5.026 -3.896 -3.728
0.75 100.19 -5.235 -3.979 -4.003 -3.438 66.842 -5.431 -4.188 -3.724 -3.313
0.90 119.28 -4.915 -3.777 -3.738 -3.253 106.67 -4.701 -3.404 -3.225 -2.980
Max. 150.96 -4.499 -3.356 -3.690 -2.986 134.71 -4.600 -3.315 -2.808 -2.493
Mean 87.044 -5.435 -4.085 -4.159 -3.580 53.771 -6.090 -4.925 -4.245 -3.838
St.Dev 24.507  0.386  0.272  0.250  0.239 35.780  1.026  0.999  0.802  0.729

Notes:  The table summarizes aspects of the time-series dependence structure of quarterly realized market variance, covariances and realized betas.  
denotes the Ljung-Box portmanteau statistic for up to twelfth-order autocorrelation, and  denotes the augmented Dickey-Fuller unit root test, with
ntercept and with i augmentation lags.  The sample covers the period from 1962:3 through 1999:3, with the 1987:4 outlier excluded, for a  total of 148
observations.  We calculate the quarterly realized variance, covariances and betas from daily returns.



Table 3
Inverted Roots of AR(p) Models for Quarterly Realized Betas

     
Stock Inverted Roots    (and Modulus of Dominant Inverted Root)

         
AA 0.49 -.25i 0.49+0.25i -0.10 -0.41i -0.10+0.41i -0.57 (0.57)
ALD 0.50   -0.30 (0.50)
BA 0.80   -0.30+0.49i -0.30 -0.49i (0.80)
CAT 0.39 (0.39)
CHV 0.80 -0.29 -0.44i -0.29+0.44i (0.80)
DD 0.20 (0.20)
DIS 0.86 0.20 -0.48i 0.20+0.48i -0.50 -0.59i -0.50+0.59i (0.86)
EK 0.73 -0.25+0.38i -0.25 -0.38i (0.73)
GE 0.50 -0.28 (0.50)
GM 0.84 -0.29+0.44i -0.29 -0.44i (0.84)
GT 0.83 -0.33+0.41i -0.33 -0.41i (0.83)
HWP 0.36 -0.13+0.27i -0.13 -0.27i (0.36)
IBM 0.66 0.09+0.68i 0.09 -0.68i -0.76 (0.76)
IP 0.10 (0.10)
JNJ 0.33 (0.33)
KO 0.79 0.04+0.50i 0.04 -0.50i -0.63 (0.79)
MMM 0.47 -0.13+0.31i -0.13 -0.31i (0.47)
MO 0.83 0.16+0.61i 0.16 -0.61i -0.48 -0.35i -0.48+0.35i (0.83)
MRK 0.60 -0.11i 0.60+0.11i -0.07 -0.73i -0.07+0.73i -0.81 (0.81)
PG 0.72 -0.45 (0.72)
S 0.59 0.25 -0.57 (0.59)
T 0.87 0.17 -.64i 0.17+0.64i -0.56+0.34i   -0.56 -0.34i (0.87)
UTX 0.77 0.08+.63i 0.08 -0.63i -0.68 (0.77)
UK 0.80 -0.10+.58i -0.10 -0.58i -0.42 (0.80)
XON 0.58 -0.29 (0.58)

Notes:  The table shows the inverted roots and modulus of the dominant root of the autoregressive lag operator polynomials
, where  are the least squares estimates of the parameters of AR(p) models fit to the realized

betas, with p selected by the AIC.  The sample covers the period from 1962:3 through 1999:3, with the 1987:4 outlier excluded, for a 
total of 148 observations.  We calculate the quarterly realized variance, covariances and betas from daily returns.
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Figure 1a
Time Series Plot of Quarterly Realized Market Variance, Fall 1987 Included

Figure 1b
Time Series Plot of Quarterly Realized Market Variance, Fall 1987 Excluded

Notes:  The two subfigures show the time series of quarterly realized market variance, with the 1987:4 outlier included (Figure 1a)
and excluded (Figure 1b).  The sample covers the period from 1962:3 through 1999:3, for a  total of 149 observations.  We calculate
the realized quarterly market variances from daily returns.
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Figure 2
Time Series Plots of Quarterly Realized Covariances

Notes:  The Figure shows the time series of quarterly realized covariances, with the 1987:4 outlier excluded.  The sample covers the
period from 1962:3 through 1999:3, for a  total of 148 observations.  We calculate the realized quarterly covariances from daily
returns.
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Figure 3
Time Series Plots of Quarterly Realized Betas

Notes:  The Figure shows the time series of quarterly realized betas, with the 1987:4 outlier excluded.  The sample covers the period
from 1962:3 through 1999:3, for a  total of 148 observations.  We calculate the realized quarterly betas from daily returns.
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Figure 4
Sample Autocorrelations of Quarterly Realized Market Variance, Median Sample Autocorrelations
of Quarterly Realized Covariances and Median Sample Autocorrelations of Quarterly Realized
Betas

Notes:  The figure shows the first 36 sample autocorrelations of quarterly realized market variance, the medians across individual
stocks of the first 36 sample autocorrelations of quarterly realized covariances and the medians across individual stocks of the first
36 sample autocorrelations of quarterly realized betas. The dashed lines denote Bartlett’s approximate 95 percent confidence band in
the white noise case.   denotes the Ljung-Box portmanteau statistic for up to twelfth-order autocorrelation.  The sample covers the
period from 1962:3 through 1999:3, with the 1987:4 outlier excluded, for a  total of 148 observations.  We calculate the quarterly
realized variance, covariances and betas from daily returns.
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Figure 5
Sample Autocorrelations of Quarterly Realized Covariances

Notes:  The figure shows the first 36 sample autocorrelations of quarterly realized covariances.  The dashed lines denote Bartlett’s
approximate 95 percent confidence band in the white noise case.   denotes the Ljung-Box portmanteau statistic for up to twelfth-
order autocorrelation.  The sample covers the period from 1962:3 through 1999:3, with the 1987:4 outlier excluded, for a  total of
148 observations.  We calculate the quarterly realized covariances from daily returns.
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Figure 6
Sample Autocorrelations of Quarterly Realized Betas

Notes:  The figure shows the first 36 sample autocorrelations of quarterly realized betas.  The dashed lines denote Bartlett’s
approximate 95 percent confidence band in the white noise case.   denotes the Ljung-Box portmanteau statistic for up to twelfth-
order autocorrelation.  The sample covers the period from 1962:3 through 1999:3, with the 1987:4 outlier excluded, for a  total of
148 observations.  We calculate the quarterly realized betas from daily returns.
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Figure 7
Sample Autocorrelations of Quarterly Realized Market Variance Prefiltered by 

Median Sample Autocorrelations of Quarterly Realized Covariances Prefiltered by 

Median Sample Autocorrelations of Quarterly Realized Betas  Prefiltered by 

Notes:  The three subfigures show the first 36 sample autocorrelations of quarterly realized market variance, the medians across
individual stocks of first 36 sample autocorrelations of quarterly realized covariances and   the medians across individual stocks of
first 36 sample autocorrelations of quarterly realized betas all prefiltered by .  The dashed lines denote Bartlett’s
approximate 95 percent confidence band in the white noise case.   denotes the median of Ljung-Box portmanteau statistic for up to
twelfth-order autocorrelation.  The sample covers the period from 1962:3 through 1999:3, with the 1987:4 outlier excluded, for a 
total of 148 observations.  We calculate the quarterly realized variance from daily returns.
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Figure 8
Sample Autocorrelations of Quarterly Realized Covariances Prefiltered by 

Notes:  The figure shows the first 36 sample autocorrelations of quarterly realized covariances prefiltered by .  The dashed
lines denote Bartlett’s approximate 95 percent confidence band in the white noise case.   denotes the Ljung-Box portmanteau
statistic for up to twelfth-order autocorrelation.  The sample covers the period from 1962:3 through 1999:3, with the 1987:4 outlier
excluded, for a  total of 148 observations.  We calculate the quarterly realized covariances from daily returns.
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Figure 9
Sample Autocorrelations of Quarterly Realized Betas Prefiltered by 

Notes:  The figure shows the first 36 sample autocorrelations of quarterly realized betas prefiltered by .  The dashed lines
denote Bartlett’s approximate 95 percent confidence band in the white noise case.   denotes the Ljung-Box portmanteau statistic
for up to twelfth-order autocorrelation.  The sample covers the period from 1962:3 through 1999:3, with the 1987:4 outlier excluded,
for a  total of 148 observations.  We calculate the quarterly realized betas from daily returns.
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Figure 10
Sample Autocorrelations of Quarterly Realized Betas Prefiltered by 

Notes:  The figure shows the first 36 sample autocorrelations of quarterly realized betas prefiltered by ,
where  are the least squares estimates of the parameters of AR(p) models fit to the realized betas, with p selected by the
AIC.  The dashed lines denote Bartlett’s approximate 95 percent confidence band in the white noise case.   denotes the Ljung-Box
portmanteau statistic for up to twelfth-order autocorrelation.  The sample covers the period from 1962:3 through 1999:3, with the
1987:4 outlier excluded, for a  total of 148 observations.  We calculate the quarterly realized variance, covariances and betas from
daily returns.
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Figure 11
Predictability of Market Volatility, Individual Equity Covariances with the Market, and Betas 
 

Notes:  We define predictability as , where ,  is the variance of the innovation ,

and the ’s are moving average coefficients; i.e., the Wold representation is .  We approximate the

dynamics using a pure long-memory model, , in which case and   and plot  for

 in the solid line.  Moreover, because we take  for market volatility and for all covariances with the market, all of
their predictabilities are the same at all horizons.  As one approximation for the dynamics of the betas we use a pure long-memory
model, , in which case  and  and plot  for  in the dotted line.  We also

approximate the beta dynamics using an AR(p) model, with the autoregressive lag order p determined by the AIC and plot the
median of  for  among all 25 stocks in the mixed dotted line.  The sample covers the period from 1962:3 through 1999:3,

with the 1987:4 outlier excluded, for a  total of 148 observations.
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Figure 12
Predictability of Betas based on AR(p) Sieve Approximation of Dynamics

Notes:  We define predictability as , where , ,  is the variance of the

innovation , so that the ’s correspond to the moving average coefficients in the Wold representation for .   We approximate the
dynamics using an AR(p) model, with the autoregressive lag order p determined by the AIC, and plot  for .    The sample
covers the period from 1962:3 through 1999:3, with the 1987:4 outlier excluded, for a  total of 148 observations.  We calculate the
quarterly realized betas from daily returns.
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Figure 13
Ninety-Five Percent Confidence Intervals for Quarterly Beta, Long Sample, Daily Sampling

Notes:  The figure shows the time series of ninety-five percent confidence intervals for the underlying quarterly integrated beta,
calculated using the results of Barndorff-Nielsen and Shephard (2003).  The sample covers the period from 1962:3 through 1999:3,
with the 1987:4 outlier excluded.  We calculate the realized quarterly betas from daily returns.
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Figure 14
Ninety-Five Percent Confidence Intervals for Quarterly Beta, Short Sample, Daily Sampling

Notes:  The figure shows the time series of  ninety-five percent confidence intervals for the underlying quarterly integrated beta,
calculated using the results of Barndorff-Nielsen and Shephard (2003).  The sample covers the period from 1993:2 through 1999:3. 
We calculate the realized quarterly betas from daily returns.
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Figure 15
Ninety-Five Percent Confidence Intervals for Quarterly Beta, Short Sample, Fifteen-Minute
Sampling

Notes:  The figure shows the time series of  ninety-five percent confidence intervals for the underlying quarterly integrated beta,
calculated using the results of Barndorff-Nielsen and Shephard (2003).  The sample covers the period from 1993:2 through 1999:3. 
We calculate the realized quarterly betas from fifteen-minute returns.
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Figure 16
Ninety-Five Percent Confidence Intervals for Quarterly Beta, Long Sample, Daily Sampling (Newey-
West) 

Notes:  The figure shows the time series of Newey-West ninety-five percent confidence intervals for the underlying quarterly
integrated beta.  The sample covers the period from 1962:3 through 1999:3, with the 1987:4 outlier excluded.  We calculate the
realized quarterly betas from daily returns.


