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We study market microstructure noise in high-frequency data and analyze its implications for the real-
ized variance (RV) under a general specification for the noise. We show that kernel-based estimators can
unearth important characteristics of market microstructure noise and that a simple kernel-based estimator
dominates the RV for the estimation of integrated variance (IV). An empirical analysis of the Dow Jones
Industrial Average stocks reveals that market microstructure noise is time-dependent and correlated with
increments in the efficient price. This has important implications for volatility estimation based on high-
frequency data. Finally, we apply cointegration techniques to decompose transaction prices and bid–ask
quotes into an estimate of the efficient price and noise. This framework enables us to study the dynamic
effects on transaction prices and quotes caused by changes in the efficient price.
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The great tragedy of Science—the slaying of a beautiful hypothesis by an ugly
fact (Thomas H. Huxley, 1825–1895).

1. INTRODUCTION

The presence of market microstructure noise in high-frequen-
cy financial data complicates the estimation of financial volatil-
ity and makes standard estimators, such as the realized
variance (RV), unreliable. Thus, from the perspective of volatil-
ity estimation, market microstructure noise is an “ugly fact” that
challenges the validity of theoretical results that rely on the ab-
sence of noise. Volatility estimation in the presence of market
microstructure noise is currently a very active area of research.
Interestingly, this literature was initiated by an article by Zhou
(1996) that was published in this journal a decade ago and was
in many ways 10 years ahead of its time.

The best remedy for market microstructure noise depends on
the properties of the noise, and the main purpose of this arti-
cle is to unearth the empirical properties of market microstruc-
ture noise. We use a number of kernel-based estimators that are
well suited for this problem, and our empirical analysis of high-
frequency stock returns reveals the following ugly facts about
market microstructure noise:

1. The noise is correlated with the efficient price.
2. The noise is time-dependent.
3. The noise is quite small in the Dow Jones Industrial Av-

erage (DJIA) stocks.
4. The properties of the noise have changed substantially

over time.

These four empirical “facts” are related to one another and
have important implications for volatility estimation. The time
dependence in the noise and the correlation between noise and
efficient price arise naturally in some models on market mi-

crostructure effects, including (a generalized version of ) the
bid–ask model by Roll (1984) (see Hasbrouck 2004 for a dis-
cussion) and models where agents have asymmetric informa-
tion, such as those by Glosten and Milgrom (1985) and Easley
and O’Hara (1987, 1992). Market microstructure noise has
many sources, including the discreteness of the data (see Harris
1990, 1991) and properties of the trading mechanism (see, e.g.,
Black 1976; Amihud and Mendelson 1987). (For additional ref-
erences to this literature, see, e.g., O’Hara 1995; Hasbrouck
2004.)

The main contributions of this article are as follows: First,
we characterize how the RV is affected by market microstruc-
ture noise under a general specification for the noise that allows
for various forms of stochastic dependencies. Second, we show
that market microstructure noise is time-dependent and corre-
lated with efficient returns. Third, we consider some existing
theoretical results based on assumptions about the noise that are
too simplistic, and discuss when such results provide reason-
able approximations. For example, our empirical analysis of the
30 DJIA stocks shows that the noise may be ignored when in-
traday returns are sampled at relatively low frequencies, such as
20-minute sampling. Assuming the noise is of an independent
type seems to be reasonable when intraday returns are sampled
every 15 ticks or so. Fourth, we apply cointegration methods
to decompose transaction prices and bid/ask quotations into es-
timates of the efficient price and market microstructure noise.
The correlations between these estimated series are consistent
with the volatility signature plots. The cointegration analysis
enables us to study how a change in the efficient price dynami-
cally affects bid, ask, and transaction prices.
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The interest for empirical quantities based on high-frequency
data has surged in recent years (see Barndorff-Nielsen and
Shephard 2007 for a recent survey). The RV is a well-known
quantity that goes back to Merton (1980). Other empirical
quantities include bipower variation and multipower varia-
tion, which are particularly useful for detecting jumps (see
Barndorff-Nielsen and Shephard 2003, 2004, 2006a,b; Ander-
sen, Bollerslev, and Diebold 2003; Bollerslev, Kretschmer, Pig-
orsch, and Tauchen 2005; Huang and Tauchen 2005; Tauchen
and Zhou 2004), and intraday range-based estimators (see
Christensen and Podolskij 2005). High-frequency–based quan-
tities have proven useful for a number of problems. For ex-
ample, several authors have applied filtering and smoothing
techniques to time series of the RV to obtain time series
for daily volatility (see, e.g., Maheu and McCurdy 2002;
Barndorff-Nielsen, Nielsen, Shephard, and Ysusi 1996; Engle
and Sun 2005; Frijns and Lehnert 2004; Koopman, Jungbacker,
and Hol 2005; Hansen and Lunde 2005b; Owens and Steiger-
wald 2005). High-frequency–based quantities are also use-
ful in the context of forecasting (see Andersen, Bollerslev,
and Meddahi 2004; Ghysels, Santa-Clara, and Valkanov 2006)
and the evaluation and comparison of volatility models (see
Andersen and Bollerslev 1998; Hansen, Lunde, and Nason
2003; Hansen and Lunde 2005a, 2006; Patton 2005).

The RV, which is a sum of squared intraday returns, yields a
perfect estimate of volatility in the ideal situation where prices
are observed continuously and without measurement error (see,
e.g., Merton 1980). This result suggests that the RV should be
based on intraday returns sampled at the highest possible fre-
quency (tick-by-tick data). Unfortunately, the RV suffers from
a well-known bias problem that tends to get worse as the sam-
pling frequency of intraday returns increases (see, e.g., Fang
1996; Andreou and Ghysels 2002; Oomen 2002; Bai, Russell,
and Tiao 2004). The source of this bias problem is known as
market microstructure noise, and the bias is particularly ev-
ident in volatility signature plots (see Andersen, Bollerslev,
Diebold, and Labys 2000b). Thus there is a trade-off between
bias and variance when choosing the sampling frequency, as
discussed by Bandi and Russell (2005) and Zhang, Mykland,
and Aït-Sahalia (2005). This trade-off is the reason that the
RV is often computed from intraday returns sampled at a mod-
erate frequency, such as 5-minute or 20-minute sampling.

A key insight into the problem of estimating the volatil-
ity from high-frequency data comes from its similarity to the
problem of estimating the long-run variance of a stationary
time series. In this literature it is well known that autocorre-
lation necessitates modifications of the usual sum-of-squared
estimator. Those modifications of Newey and West (1987) and
Andrews (1991) provided such estimators that are robust to au-
tocorrelation. Market microstructure noise induces autocorre-
lation in the intraday returns, and this autocorrelation is the
source of the RV’s bias problem. Given this connection to long-
run variance estimation, it is not surprising that “prewhiten-
ing” of intraday returns and kernel-based estimators (including
the closely related subsample-based estimators) are found to
be useful in the present context. Zhou (1996) introduced the
use of kernel-based estimators and the subsampling idea to
deal with market microstructure noise in high-frequency data.
Filtering techniques have been used by Ebens (1999), Ander-
sen, Bollerslev, Diebold, and Ebens (2001), and Maheu and

McCurdy (2002) (moving average filter) and Bollen and In-
der (2002) (autoregressive filter). Kernel-based estimators were
explored by Zhou (1996), Hansen and Lunde (2003), and
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004) and
the closely related subsample-based estimators were used in an
unpublished paper by Müller (1993) and also by Zhou (1996),
Zhang et al. (2005), and Zhang (2004).

The rest of the article is organized as follows. In Section 2
we describe our theoretical framework and discuss sampling
schemes in calendar time and tick time. We also characterize
the bias of the RV under a general specification for the noise.
In Section 3 we consider the case with independent market mi-
crostructure noise, which has been used by various authors, in-
cluding Corsi, Zumbach, Müller, and Dacorogna (2001), Curci
and Corsi (2004), Bandi and Russell (2005), and Zhang et al.
(2005). We consider a simple kernel-based estimator of Zhou
(1996) that we denote by RVAC1 because it uses the first-order
autocorrelation to bias-correct the RV. We benchmark RVAC1

to the standard measure of RV and find that the former is su-
perior to the latter in terms of the mean squared error (MSE).
We also evaluate the implications for some theoretical results
based on assumptions in which market microstructure noise is
absent. Interestingly, we find that the root mean squared er-
ror (RMSE) of the RV in the presence of noise is quite simi-
lar to those that ignore the noise at low sampling frequencies,
such as 20-minute sampling. This finding is important because
many existing empirical studies have drawn conclusions from
20-minute and 30-minute intraday returns, using the results of
Barndorff-Nielsen and Shephard (2002). However, at 5-minute
sampling we find that the “true” confidence interval about the
RV can be as much as 100% larger than those based on an “ab-
sence of noise assumption.” In Section 4 we present a robust
estimator that is unbiased for a general type of noise and dis-
cuss noise that is time-dependent in both calendar time and tick
time. We also discuss the subsampling version of Zhou’s es-
timator, which is robust to some forms of time-dependence in
tick time. In Section 5 we describe our data and present most
of our empirical results. The key result is the overwhelming ev-
idence against the independent noise assumption. This finding
is quite robust to the choice of sampling method (calendar time
or tick time) and the type of price data (transaction prices or
quotation prices). This dependence structure has important im-
plications for many quantities based on ultra-high–frequency
data. These features of the noise have important implications
for some of the bias corrections that have been used in the liter-
ature. Although the independent noise assumption may be fairly
reasonable when the tick size is 1/16, it is clearly not consistent
with the recent data. In fact, much of the noise has “evaporated”
after the tick size is reduced to 1 cent. In Section 6 we present
a cointegration analysis of the vector of bid, ask, and transaction
prices. The Granger representation makes it possible to decom-
pose each of the price series into noise and a common efficient
price. Further, based on this decomposition we estimate impulse
response functions that reveal the dynamic effects on bid, ask,
and transaction prices as a response to a change in the efficient
price. In Section 7 we provide a summary, and we conclude
the article with three appendixes that provide proofs and details
about our estimation methods.
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2. THE THEORETICAL FRAMEWORK

We let {p∗(t)} denote a latent log-price process in continuous
time and use {p(t)} to denote the observable log-price process.
Thus the noise process is given by

u(t)≡ p(t)− p∗(t).

The noise process, u, may be due to market microstructure ef-
fects, such as bid–ask bounces, but the discrepancy between
p and p∗ can also be induced by the technique used to con-
struct p(t). For example, p is often constructed artificially from
observed transactions or quotes using the previous tick method
or the linear interpolation method, which we define and discuss
later in this section.

We work under the following specification for the efficient
price process, p∗.

Assumption 1. The efficient price process satisfies dp∗(t) =
σ(t)dw(t), where w(t) is a standard Brownian motion, σ is
a random function that is independent of w, and σ 2(t) is
Lipschitz (almost surely).

In our analysis we condition on the volatility path, {σ 2(t)},
because our analysis focuses on estimators of the integrated
variance (IV),

IV ≡
∫ b

a
σ 2(t)dt.

Thus we can treat {σ 2(t)} as deterministic even though we
view the volatility path as random. The Lipschitz condition is
a smoothness condition that requires |σ 2(t) − σ 2(t + δ)| < εδ

for some ε and all t and δ (with probability 1). The assump-
tion that w and σ are independent is not essential. The connec-
tion between kernel-based and subsample-based estimators (see
Barndorff-Nielsen et al. 2004), shows that weaker assumptions,
used by Zhang et al. (2005) and Zhang (2004), are sufficient in
this framework.

We partition the interval [a,b] into m subintervals, and
m plays a central role in our analysis. For example, we derive
asymptotic distributions of quantities as m →∞. This type of
infill asymptotics is commonly used in spatial data analysis and
goes back to Stein (1987). Related to the present context is the
use of infill asymptotics for estimation of diffusions (see Bandi
and Phillips 2004). For a fixed m, the ith subinterval is given
by [ti−1,m, ti,m], where a = t0,m < t1,m < · · · < tm,m = b. The
length of the ith subinterval is given by δi,m ≡ ti,m − ti−1,m, and
we assume that supi=1,...,m δi,m = O( 1

m ), such that the length
of each subinterval shrinks to 0 as m increases. The intraday
returns are now defined by

y∗i,m ≡ p∗(ti,m)− p∗(ti−1,m), i = 1, . . . ,m,

and the increments in p and u are defined similarly and denoted
by

yi,m ≡ p(ti,m)− p(ti−1,m), i = 1, . . . ,m,

and

ei,m ≡ u(ti,m)− u(ti−1,m), i = 1, . . . ,m.

Note that the observed intraday returns decompose into yi,m =
y∗i,m + ei,m. The IV over each of the subintervals is defined
by

σ 2
i,m ≡

∫ ti,m

ti−1,m

σ 2(s)ds, i = 1, . . . ,m,

and we note that var(y∗i,m) = E(y∗2
i,m) = σ 2

i,m under Assump-
tion 1.

The RV of p∗ is defined by

RV(m)∗ ≡
m∑

i=1

y∗2
i,m,

and RV(m)∗ is consistent for the IV as m →∞ (see, e.g., Protter
2005). A feasible asymptotic distribution theory of RV (in rela-
tion to IV) was established by Barndorff-Nielsen and Shephard
(2002) (see also Meddahi 2002; Mykland and Zhang 2006;
Gonçalves and Meddahi 2005). Whereas RV(m)∗ is an ideal es-
timator, it is not a feasible estimator because p∗ is latent. The
realized variance of p, given by

RV(m) ≡
m∑

i=1

y2
i,m,

is observable but suffers from a well-known bias problem and
is generally inconsistent for the IV (see, e.g., Bandi and Russell
2005; Zhang et al. 2005).

2.1 Sampling Schemes

Intraday returns can be constructed using different types of
sampling schemes. The special case where ti,m, i = 1, . . . ,m,
are equidistant in calendar time [i.e., δi,m = (b− a)/m for all i]
is referred to as calendar time sampling (CTS). The widely used
exchange rates data from Olsen and associates (see Müller et al.
1990) are equidistant in time, and 5-minute sampling (δi,m =
5 min) is often used in practice.

CTS requires the construction of artificial prices from the
raw (irregularly spaced) price data (transaction prices or quo-
tations). Given observed prices at the times t0 < · · · < tN , one
can construct a price at time τ ∈ [tj, tj+1), using

p(τ )≡ ptj

or

p̃(τ )≡ ptj +
τ − tj

tj+1 − tj

(
ptj+1 − ptj

)
.

The former is known as the previous tick method (Wasserfallen
and Zimmermann 1985), and the latter is the linear interpola-
tion method (see Andersen and Bollerslev 1997). Both methods
have been discussed by Dacorogna, Gencay, Müller, Olsen, and
Pictet (2001, sec. 3.2.1). When sampling at ultra-high frequen-
cies, the linear interpolation method has the following unfortu-

nate property, where “
p→” denotes convergence in probability.

Lemma 1. Let N be fixed and consider the RV based on
the linear interpolation method. It holds that RV(m) p→ 0 as
m →∞.
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The result of Lemma 1 essentially boils down to the fact that
the quadratic variation of a straight line is zero. Although this
is a limit result (as m →∞), the lemma does suggest that the
linear interpolation method is not suitable for the construction
of intraday returns at high frequencies, where sampling may oc-
cur multiple times between two neighboring price observations.
That the result of Lemma 1 is more than a theoretical artifact is
evident from the volatility signature plots of Hansen and Lunde
(2003). Given the result of Lemma 1, we avoid the use of the
linear interpolation and use the previous tick method to con-
struct CTS intraday returns.

The case where ti,m denotes the time of a transaction/quota-
tion is referred to as tick time sampling (TTS). An example of
TTS is when ti,m, i = 1, . . . ,m, are chosen to be the time of
every fifth transaction, say.

The case where the sampling times, t0,m, . . . , tm,m, are such
that σ 2

i,m = IV/m for all i = 1, . . . ,m is known as business
time sampling (BTS) (see Oomen 2006). Zhou (1998) referred
to BTS intraday returns as de-volatized returns and discussed
distributional advantages of BTS returns. Whereas ti,m, i =
0, . . . ,m, are observable under CTS and TTS, they are latent
under BTS, because the sampling times are defined from the
unobserved volatility path. Empirical results of Andersen and
Bollerslev (1997) and Curci and Corsi (2004) suggest that BTS
can be approximated by TTS. This feature is nicely captured
in the framework of Oomen (2006), where the (random) tick
times are generated with an intensity directly related to a quan-
tity corresponding to σ 2(t) in the present context. Under CTS,
we sometimes write RV(x sec), where x seconds is the period
in time spanned by each of the intraday returns (i.e., δi,m = x
seconds). Similarly, we write RV(y tick) under TTS when each
intraday return spans y ticks (transactions or quotations).

2.2 Characterizing the Bias of the Realized Variance
Under General Noise

Initially, we make the following assumptions about the noise
process, u.

Assumption 2. The noise process, u, is covariance stationary
with mean 0, such that its autocovariance function is defined by
π(s)≡ E[u(t)u(t + s)].

The covariance function, π, plays a key role because the
bias of RV(m) is tied to the properties of π(s) in the neighbor-
hood of 0. Simple examples of noise processes that satisfy As-
sumption 2 include the independent noise process, which has
π(s)= 0 for all s �= 0, and the Ornstein–Uhlenbeck process.
The latter was used by Aït-Sahalia, Mykland, and Zhang
(2005a) to study estimation in a parametric diffusion model
that is robust to market microstructure noise.

An important aspect of our analysis is that our assumptions
allow for a dependence between u and p∗. This is a generaliza-
tion of the assumptions made in the existing literature, and our
empirical analysis shows that this generalization is needed, in
particularly when prices are sampled from quotations.

Next, we characterize the RV bias under these general as-
sumptions for the market microstructure noise, u.

Theorem 1. Given Assumptions 1 and 2, the bias of the real-
ized variance under CTS is given by

E
[
RV(m) − IV

]= 2ρm + 2m

[
π(0)− π

(
b− a

m

)]
, (1)

where ρm ≡ E(
∑m

i=1 y∗i,mei,m).

The result of Theorem 1 is based on the following decompo-
sition of the observed RV:

RV(m) =
m∑

i=1

y∗2
i,m + 2

m∑
i=1

ei,my∗i,m +
m∑

i=1

e2
i,m,

where
∑m

i=1 e2
i,m is the “realized variance” of the noise process

u responsible for the last bias term in (1). The dependence be-
tween u and p∗ that is relevant for our analysis is given in the
form of the correlation between the efficient intraday returns,
y∗i,m, and the return noise, ei,m. By the Cauchy–Schwarz in-
equality, π(0) ≥ π(s) for all s, such that the bias is always
positive when the return noise process, ei,m, is uncorrelated
with the efficient intraday returns y∗i,m (because this implies that
ρm = 0). Interestingly, the total bias can be negative. This oc-
curs when ρm < −m[π(0)− π(�m)], which is the case where
the downward bias (caused by a negative correlation between
ei,m and y∗i,m) exceeds the upward bias caused by the “realized
variance” of u. This appears to be the case for the RVs that are
based on quoted prices, as shown in Figure 1.

The last term of the bias expression in Theorem 1 shows that
the bias is tied to the properties of π(s) in the neighborhood
of 0, and, as m →∞ (hence δm → 0), we obtain the following
result.

Corollary 1. Suppose that the assumptions of Theorem 1
hold and that π(s) is differentiable at 0. Then the asymptotic
bias is given by

lim
m→∞E

[
RV(m) − IV

]= 2ρ − 2(b− a)π ′(0),

provided that ρ ≡ limm→∞ E(
∑m

i=1 y∗i,mei,m) is well defined.

Under the independent noise assumption, we can define
π ′(0) = −∞, which is the situation that we analyze in detail
in Section 3. A related asymptotic result is obtained whenever
the quadratic variation of the bivariate process, (p∗,u)′, is well
defined, such that [p,p] = [p∗,p∗] + 2[p∗,u] + [u,u], where
[X,Y] denotes the quadratic covariation. In this setting we have
IV = [p∗,p∗] such that

RV(m) − IV
p→ 2[p∗,u] + [u,u] (as m →∞),

where ρ = [p∗,u] and −2(b − a)π ′(0) = [u,u] (almost surely
under additional assumptions).

A volatility signature plot provides an easy way to visually
inspect the potential bias problems of RV-type estimators. Such
plots first appeared in an unpublished thesis by Fang (1996)
and were named and made popular by Andersen et al. (2000b).
Let RV(m)

t denote the RV based on m intraday returns on day t.
A volatility signature plot displays the sample average,

RV(m) ≡ n−1
n∑

t=1

RV(m)
t ,
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Figure 1. Volatility Signature Plots for RV t Based on Ask Quotes ( ), Bid Quotes ( ), Mid-Quotes ( ), and Transaction
Prices ( ). The left column is for AA and the right column is for MSFT. The two top rows are based on calendar time sampling, in contrast
to the bottom rows that are based on tick time sampling. The results for 2000 are the panels in rows 1 and 3, and those for 2004 are in rows 2 and 4.

The horizontal line represents an estimate of the average IV, σ̄ 2 ≡ RV
(1 tick)
ACNW30

, that is defined in Section 4.2. The shaded area about σ̄ 2 represents

an approximate 95% confidence interval for the average volatility.
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as a function of the sampling frequencies m, where the average
is taken over multiple periods (typically trading days).

Figure 1 presents volatility signature plots for AA (left) and
MSFT (right) using both CTS (rows 1 and 2) and TTS (rows
3 and 4) and based on both transaction data and quotation
data. The signature plots are based on daily RVs from the
years 2000 (rows 1 and 3) and 2004 (rows 2 and 4), where
RV(m)

t is calculated from intraday returns spanning the period
9:30 AM to 16:00 PM (the hours that the exchanges are open).
The horizontal line represents an estimate of the average IV,
σ̄ 2 ≡ RV(1 tick)

ACNW30
, defined in Section 4.2. The shaded area about

σ̄ 2 represents an approximate 95% confidence interval for the
average volatility. These confidence intervals are computed us-
ing a method described in Appendix B.

From Figure 1, we see that the RVs based on low and mod-
erate frequencies appear to be approximately unbiased. How-
ever, at higher frequencies, the RV becomes unreliable, and the
market microstructure effects are pronounced at the ultra-high
frequencies, particularly for transaction prices. For example,
RV(1 sec) is about 47 for MSFT in 2000, whereas RV(1 min) is
much smaller (about 6.0).

A very important result of Figure 1 is that the volatility sig-
nature plots for mid-quotes drop (rather than increases) as the
sampling frequency increases (as δi,m → 0). This holds for both
CTS and TTS. Thus these volatility signature plots provide
the first piece of evidence for the ugly facts about market mi-
crostructure noise.

Fact I. The noise is negatively correlated with the efficient
returns.

Our theoretical results show that ρm must be responsible for
the negative bias of RV(m). The other bias term, 2m[π(0) −
π( b−a

m )], is always nonnegative, such that time dependence in
the noise process cannot (by itself ) explain the negative bias
seen in the volatility signature plots for mid-quotes. So Fig-
ure 1 strongly suggests that the innovations in the noise process,
ei,m, are negatively correlated with the efficient returns, y∗i,m.
Although this phenomenon is most evident for mid-quotes, it
is quite plausible that the efficient return is also correlated with
each of the noise processes embedded in the three other price
series: bid, ask, and transaction prices. At this point it is worth
recalling Colin Sautar’s words: “Just because you’re not para-
noid doesn’t mean they’re not out to get you.” Similarly, just
because we cannot see a negative bias does not mean that ρm

is 0. In fact, if ρm > 0, then it would not be exposed in a simple
manner in a volatility signature plot. From

cov(y∗i,m, emid
i,m )= 1

2
cov(y∗i,m, eask

i,m)+ 1

2
cov(y∗i,m, ebid

i,m),

we see that the noise in bid and/or ask quotes must be correlated
with the efficient prices if the noise in mid-quotes is found to
be correlated with the efficient price. In Section 6 we present
additional evidence of this correlation, which is also found for
transaction data.

Nonsynchronous revisions of bid and ask quotes when the
efficient price changes is a possible explanation for the nega-
tive correlation between noise and efficient returns. An upward
movement in prices often causes the ask price to increase before
the bid does, whereby the bid–ask spread is temporary widened.

A similar widening of the spread occurs when prices go down.
This has implications for the quadratic variation of mid-quotes,
because a one-tick price increment is divided into two half-tick
increments, resulting in quadratic terms that add up to only half
that of the bid or ask price [( 1

2 )2 + ( 1
2 )2 versus 12]. Such dis-

crete revisions of the observed price toward the effective price
has been used in a very interesting framework by Large (2005),
who showed that this may result in a negative bias.

Figure 2 presents typical trading scenarios for AA dur-
ing three 20-minute periods on April 24, 2004. The prevail-
ing bid and ask prices are given by the edges of the shaded
area, and the dots represents actual transaction prices. That the
spread tends to get wider when prices move up or down is
seen in many places, such as the minutes after 10:00 AM and
around 12:15 PM.

3. THE CASE WITH INDEPENDENT NOISE

In this section we analyze the special case where the noise
process is assumed to be of an independent type. Our assump-
tions, which we make precise in Assumption 3, essentially
amount to assuming that π(s) = 0 for all s �= 0 and p∗ ⊥⊥ u,
where we use “⊥⊥” to denote stochastic independence. Most
of the existing literature has established results assuming this
kind of noise, and in this section we shall draw on several im-
portant results from Zhou (1996), Bandi and Russell (2005),
and Zhang et al. (2005). Although we have already dismissed
this form of noise as an accurate description of the noise in
our data, there are several good arguments for analyzing the
properties of the RV and related quantities under this assump-
tion. The independent noise assumption makes the analysis
tractable and provides valuable insight into the issues related to
market microstructure noise. Furthermore, although the inde-
pendent noise assumption is inaccurate at ultra-high sampling
frequencies, the implications of this assumptions may be valid
at lower sampling frequencies. For example, it may be reason-
able to assume that the noise is independent when prices are
sampled every minute. On the other hand, for some purposes
the independent noise assumption can be quite misleading, as
we discuss in Section 5.

We focus on a kernel estimator originally proposed by Zhou
(1996) that incorporates the first-order autocovariance. A sim-
ilar estimator was applied to daily return series by French,
Schwert, and Stambaugh (1987). Our use of this estimator has
three purposes. First, we compare this simple bias-corrected
version of the realized variance to the standard measure of
the realized variance, and find that these results are gener-
ally quite favorable to the bias-corrected estimator. Second,
our analysis makes it possible to quantify the accuracy of re-
sults based on no-noise assumptions, such as the asymptotic
results by Jacod (1994), Jacod and Protter (1998), Barndorff-
Nielsen and Shephard (2002), and Mykland and Zhang (2006)
and to evaluate whether the bias-corrected estimator is less sen-
sitive to market microstructure noise. Finally, we use the bias-
corrected estimator to analyze the validity of the independent
noise assumption.

Assumption 3. The noise process satisfies the following:

(a) p∗ ⊥⊥ u, u(s) ⊥⊥ u(t) for all s �= t, and E[u(t)] = 0 for
all t
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Figure 2. Bid and Ask Quotes (defined by the shaded area) and Actual Transaction Prices ( ) Over Three 20-Minute Subperiods on April 24,
2004 for AA.

(b) ω2 ≡ E|u(t)|2 <∞ for all t
(c) µ4 ≡ E|u(t)|4 <∞ for all t.

The independent noise, u, induces an MA(1) structure on the
return noise, ei,m, which is why this type of noise is sometimes

referred to as MA(1) noise. However, ei,m has a very particular
MA(1) structure, because it has a unit root. Thus the MA(1)
label does not fully characterize the properties of the noise.
This is why we prefer to call this type of noise independent
noise.
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Some of the results that we formulate in this section only
rely on Assumption 3(a), so we require only (b) and (c) to hold
when necessary. Note that ω2, which is defined in (b), corre-
sponds to π(0) in our previous notation. To simplify some of
our subsequent expressions, we define the “excess kurtosis ra-
tio”, κ ≡ µ4/(3ω4), and note that Assumption 3 is satisfied
if u is a Gaussian “white noise” process, u(t) ∼ N(0,ω2), in
which case κ = 1.

The existence of a noise process, u, that satisfies Assump-
tion 3, follows directly from Kolmogorov’s existence theo-
rem (see Billingsley 1995, chap. 7). It is worthwhile to note
that “white noise processes in continuous time” are very er-
ratic processes. In fact, the quadratic variation of a white noise
process is unbounded (as is the r-tic variation for any other in-
teger). Thus the “realized variance” of a white noise process
diverges to infinity in probability as the sampling frequency,
m, is increased. This is in stark contrast to the situation for
Brownian-type processes that have finite r-tic variation for
r ≥ 2 (see Barndorff-Nielsen and Shephard 2003).

Lemma 2. Given Assumptions 1 and 3(a) and (b), we have
that E(RV(m)) = IV + 2mω2; if Assumption 3(c) also holds,
then

var
(
RV(m)

)= κ12ω4m+ 8ω2
m∑

i=1

σ 2
i,m

− (6κ − 2)ω4 + 2
m∑

i=1

σ 4
i,m (2)

and

RV(m) − 2mω2

√
κ12ω4m

=
√

m

3κ

(
RV(m)

2mω2
− 1

)
d→ N(0,1),

as m →∞.

Here we “
d→” to denote convergence in distribution. Thus

unlike the situation in Corollary 1, where the noise is time-
dependent and the asymptotic bias is finite [whenever π ′(0)

is finite], this situation with independent market microstructure
noise leads to a bias that diverges to infinity. This result was first
derived in an unpublished thesis by Fang (1996). The expres-
sion for the variance [see (2)] is due to Bandi and Russell (2005)
and Zhang et al. (2005); the former expressed (2) in terms of the
moments of the return noise, ei,m.

In the absence of market microstructure noise and under
CTS [ω2 = 0 and δi,m = (b − a)/m], we recognize a result of
Barndorff-Nielsen and Shephard (2002) that

var
(
RV(m)

)= 2
m∑

i=1

σ 4
i,m = 2

b− a

m

∫ b

a
σ 4(s)ds+ o

(
1

m

)
,

where
∫ b

a σ 4(s)ds is known as the integrated quarticity, intro-
duced by Barndorff-Nielsen and Shephard (2002).

Next, we consider the estimator of Zhou (1996) given by

RV(m)
AC1

≡
m∑

i=1

y2
i,m +

m∑
i=1

yi,myi−1,m +
m∑

i=1

yi,myi+1,m. (3)

This estimator incorporates the empirical first-order autoco-
variance, which amounts to a bias correction that “works” in

much the same way that robust covariance estimators, such
as that of Newey and West (1987), achieve their consistency.
Note that (3) involves y0,m and ym+1,m, which are intraday
returns outside the interval [a,b]. If these two intraday re-
turns are unavailable, then one could simply use the estimator∑m−1

i=2 y2
i,m +

∑m
i=2 yi,myi−1,m +∑m−1

i=1 yi,myi+1,m that estimates∫ b−δm,m
a+δ1,m

σ 2(s)ds = IV + O( 1
m ). Here we follow Zhou (1996)

and use the formulation in (3) because it simplifies the analysis
and several expressions. Our empirical implementation is based
on a version that does not rely on intraday returns outside the
[a,b] interval. We describe the exact implementation in Sec-
tion 5.

Next, we formulate results for RV(m)
AC1

that are similar to those
for RV(m) in Lemma 2.

Lemma 3. Given Assumptions 1 and 3(a), we have that
E(RV(m)

AC1
)= IV . If Assumption 3(b) also holds, then

var
(
RV(m)

AC1

)= 8ω4m+ 8ω2
m∑

i=1

σ 2
i,m

− 6ω4 + 6
m∑

i=1

σ 4
i,m +O(m−2)

under CTS and BTS, and

RV(m)
AC1

− IV√
8ω4m

d→ N(0,1), as m →∞.

An important result of Lemma 3 is that RV(m)
AC1

is unbiased for
the IV at any sampling frequency, m. Also note that Lemma 3
requires slightly weaker assumptions than those needed for
RV(m) in Lemma 2. The first result relies on only Assump-
tion 3(a); (c) is not needed for the variance expression. This
is achieved because the expression for RV(m)

AC1
can be rewrit-

ten in a way that does not involve squared noise terms, u2
i,m,

i = 1, . . . ,m, as does the expression for RV(m), where ui,m ≡
u(ti,m). A somewhat remarkable result of Lemma 3 is that the
bias-corrected estimator, RV(m)

AC1
, has a smaller asymptotic vari-

ance (as m →∞) than the unadjusted estimator, RV(m) (8mω4

vs. 12κmω4). Usually, bias correction is accompanied by a
larger asymptotic variance. Also note that the asymptotic re-
sults of Lemma 3 are somewhat more useful than those of
Lemma 2 (in terms of estimating IV), because the results of
Lemma 2 do not involve the object of interest, IV, but shed
light only on aspects of the noise process. This property was
used by Bandi and Russell (2005) and Zhang et al. (2005)
to estimate ω2; we discuss this aspect in more detail in our
empirical analysis in Section 5. It is important to note that
the asymptotic results of Lemma 3 do not suggest that RV(m)

AC1
should be based on intraday returns sampled at the highest pos-
sible frequency, because the asymptotic variance is increasing
in m! Thus we could drop IV from the quantity that converges

in distribution to N(0,1) and simply write RV(m)
AC1

/
√

8ω4m
d→

N(0,1). In other words, whereas RV(m)
AC1

is “centered” about
the object of interest, IV, it is unlikely to be close to IV as
m →∞.
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In the absence of market microstructure noise (ω2 = 0), we
note that

var
[
RV(m)

AC1

]≈ 6
m∑

i=1

σ 4
i,m,

which shows that the variance of RV(m)
AC1

is about three times
larger than that of RV(m) when ω2 = 0. Thus, in the absence of
noise, we see an increase in the asymptotic variance as a result
of the bias correction. Interestingly, this increase in the variance
is identical to that of the maximum likelihood estimator in a
Gaussian specification, where σ 2(s) is constant and ω2 = 0 (see
Aït-Sahalia et al. 2005a).

It is easy to show that τ ∗i = c/m, i = 1, . . . ,m, solves the
following constrained minimization problem:

min
τ1,...,τm

m∑
i=1

τ 2
i subject to

m∑
i=1

τi = c.

Thus, if we set τi = σ 2
i,m and c = IV , then we see that

∑m
i=1 σ 4

i,m
(for fixed m) is minimized under BTS. This highlights one of
the advantages of BTS over CTS. This result was shown to hold
in a related (pure jump) framework by Oomen (2005). In the
present context, we have that, under BTS

∑m
i=1 σ 4

i,m = IV2/m,
and specifically it holds that

IV2

m
≤

∫ b

a
σ 4(s)ds

b− a

m
.

The variance expression under CTS [δi,m = (b − a)/m] is ap-
proximately given by

var
[
RV(m)

AC1

]≈ 8ω4m+ 8ω2
∫ b

a
σ 2(s)ds

− 6ω4 + 6
b− a

m

∫ b

a
σ 4(s)ds.

Next, we compare RV(m)
AC1

and RV(m) in terms of their MSEs
and their respective optimal sampling frequencies for a special
case that reveals key features of the two estimators.

Corollary 2. Define λ ≡ ω2/IV , suppose that κ = 1, and let
t0,m, . . . , tm,m be such that σ 2

i,m = IV/m (BTS). The MSEs are
given by

MSE
(
RV(m)

)= IV2
[

4λ2m2 + 12λ2m+ 8λ− 4λ2 + 2
1

m

]
(4)

and

MSE
(
RV(m)

AC1

)= IV2
[

8λ2m+ 8λ− 6λ2 + 6
1

m
−2

1

m2

]
. (5)

The optimal sampling frequencies for RV(m) and RV(m)
AC1

are

given implicitly as the real (positive) solutions to 4λ2m3 +
6λ2m2 − 1 = 0 and 4λ2m3 − 3m+ 2 = 0.

We denote the optimal sampling frequencies for RV(m) and
RV(m)

AC1
by m∗

0 and m∗
1. These are approximately given by

m∗
0 ≈ (2λ)−2/3 and m∗

1 ≈
√

3(2λ)−1.

The expression for m∗
0 was derived in Bandi and Russell (2005)

and Zhang et al. (2005) under more general conditions than

those used in Corollary 2, whereas the expression for m∗
1 was

derived earlier by Zhou (1996).
In our empirical analysis, we often find that λ ≤ 10−3, such

that

m∗
1/m∗

0 ≈ 31/22−1/3(λ−1)1/3 ≥ 10,

which shows that m∗
1 is several times larger than m∗

0 when the
noise-to-signal is as small as we find it to be in practice. In
other words, RV(m)

AC1
permits more frequent sampling than does

the “optimal” RV . This is quite intuitive, because RV(m)
AC1

can
use more information in the data without being affected by a
severe bias. Naturally, when TTS is used, the number of in-
traday returns, m, cannot exceed the total number of trans-
actions/quotations, so in practice it might not be possible to
sample as frequently as prescribed by m∗

1. Furthermore, these
results rely on the independent noise assumption, which may
not hold at the highest sampling frequencies.

Corollary 2 captures the salient features of this problem and
characterizes the MSE properties of RV(m) and RV(m)

AC1
in terms

of a single parameter, λ (noise-to-signal). Thus the simplifying
assumptions of Corollary 2 yield an attractive framework for
comparing RV(m) and RV(m)

AC1
and for analyzing their (lack of )

robustness to market microstructure noise.
From Corollary 2, we note that the RMSEs of RV(m) and

RV(m)
AC1

are proportional to the IV and given by r0(λ,m)IV and
r1(λ,m)IV , where

r0(λ,m)≡
√

4λ2m2 + 12λ2m+ 8λ− 4λ2 + 2

m

and

r1(λ,m)≡
√

8λ2m+ 8λ− 6λ2 + 6

m
− 2

m2
.

Figure 3 plots r0(λ,m) and r1(λ,m) using empirical estimates
of λ. The estimates are based on high-frequency stock returns
of Alcoa (left panels) and Microsoft (right panels) in year the
2000. The details about the estimation of λ are deferred to Sec-
tion 5. The upper panels present r0(λ̂,m) and r1(λ̂,m), where
the x-axis is δi,m = (b − a)/m in units of seconds. For both eq-
uities, we note that the RV(m)

AC1
dominates the RV(m) except at

the very lowest frequencies. The minimums of r0(λ̂,m) and
r1(λ̂,m) identify their respective optimal sampling frequen-
cies, m∗

0 and m∗
1. For the AA returns, we find that the opti-

mal sampling frequencies are m∗
0,AA = 44 and m∗

1,AA = 511
(corresponding to intraday returns spanning 9 minutes and
46 seconds) and that the theoretical reduction of the RMSE is
33.1%. The curvatures of r0(λ̂,m) and r1(λ̂,m) in the neigh-
borhood of m∗

0 and m∗
1 show that RV(m)

AC1
is less sensitive than

RV(m) to the choice of m.
The middle panels of Figure 3 display the relative RMSE of

RV(m)
AC1

to that of (the optimal) RV(m∗
0) and the relative RMSE of

RV(m) to that of (the optimal) RV
(m∗

1)

AC1
. These panels show that

the RV(m)
AC1

continues to dominate the “optimal” RV(m∗
0) for a

wide ranges of frequencies, not just in a small neighborhood of
the optimal value, m∗

1. This robustness of RVAC1 is quite use-
ful in practice, where λ and (hence) m∗

1 are not known with
certainty. The result shows that a reasonably precise estimate
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Figure 3. RMSE Properties of RV and RV AC1
Under Independent Market Microstructure Noise Using Empirical Estimates of λ for 2000. The up-

per panels display the RMSEs for RV and RV AC1
using estimates of λ, r0(λ̂, m) and r1(λ̂,m), and the corresponding RMSEs in the absence of noise,

r0(0, m) and r1(0, m). The middle panels are the relative RMSEs of RV(m) and RV(m)
AC1

to RV (m∗
0 ) and RV

(m∗
1)

AC1
, as defined by r0(λ̂, m)/r1(λ̂, m∗

1) and

r1(λ̂, m)/r0(λ̂, m∗
0). The lower panels show the percentage increase in the RMSE for different sampling frequencies caused by market microstructure

noise. The x-axis gives the sampling frequency of intraday returns as defined by δi ,m = (b − a)/m in units of seconds, where b − a = 6.5 hours
(a trading day).
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of λ (and hence m∗
1) will lead to a RVAC1 that dominates RV.

This result is not surprising, because recent developments in
this literature have shown that it is possible to construct kernel-
based estimators that are even more accurate than RVAC1 (see
Barndorff-Nielsen et al. 2004; Zhang 2004).

A second, very interesting aspect that can be analyzed based
on the results of Corollary 2 is the accuracy of theoretical re-
sults derived under the assumption that λ = 0 (no market mi-
crostructure noise). For example, the accuracy of a confidence
interval for IV, which is based on asymptotic results that ignore
the presence of noise, will depend on λ and m. The expres-
sions of Corollary 2 provide a simple way to quantify the the-
oretical accuracy of such confidence intervals, including those
of Barndorff-Nielsen and Shephard (2002). Figure 3 provides
valuable information on this question. The upper panels of Fig-
ure 3 present the RMSEs of RV(m) and RV(m)

AC1
, using both

λ̂ > 0 (the case with noise) and λ= 0 (the case without noise).
For small values of m, we see that r0(λ̂,m) ≈ r0(0,m) and
r1(λ̂,m) ≈ r1(0,m), whereas the effects of market microstruc-
ture noise are pronounced at the higher sampling frequencies.
The lower panels of Figure 3 quantify the discrepancy between
the two “types” of RMSEs as a function of the sampling fre-
quency. These plots present 100[r0(λ̂,m) − r0(0,m)]/r0(0,m)

and 100[r1(λ̂,m)− r1(0,m)]/r1(0,m) as a function of m. Thus
the former reveals the percentage increase of the RV’s RMSE
due to market microstructure noise, and the second line simi-
larly shows the increase of the RVAC1 ’s RMSE due to noise.
The increase in the RMSE may be translated into a widening of
a confidence intervals for IV (about RV(m) or RV(m)

AC1
). The ver-

tical lines in the right panels mark the sampling frequency cor-
responding to 5-minute sampling under CTS and show that the
“actual” confidence interval (based on RV(m)) is 105.94% larger
than the “no-noise” confidence interval for AA, whereas the en-
largement is 22.37% for MSFT. At 20-minute sampling, the dis-
crepancy is less than a couple of percent, so in this case the
size distortion from being oblivious to market microstructure
noise is quite small. The corresponding increases in the RMSE
of RV(m)

AC1
are 9.41% and 3.07%. Thus a “no-noise” confidence

interval about RV(m)
AC1

is more reliable than that about RV(m) at
moderate sampling frequencies. Here we have used an estima-
tor of λ based on data from the year 2000, before the tick size
was reduced to 1 cent. In our empirical analysis we find the
noise to be much smaller in recent years, such that “no-noise
approximations” are likely to be more accurate after decimal-
ization of the tick size.

Figure 4 presents the volatility signature plots for RV(m)
AC1

,
where we have used the same scale as in Figure 1. When sam-
pling in calender time (the four upper panels), we see a pro-
nounced bias in RV(m)

AC1
when intraday returns are sampled more

frequently than every 30 seconds. The main explanation for this
is that CTS will sample the same price multiple times when m is
large, which induces (artificial) autocorrelation in intraday re-
turns. Thus, when intraday returns are based on CTS, it is nec-
essary to incorporate higher-order autocovariances of yi,m when
m becomes large. The plots in rows 3 and 4 are signature plots
when intraday returns are sampled in tick time. These also re-
veal a bias in RV(x tick)

AC1
at the highest frequencies, which shows

that the noise is time dependent in tick time. For example, the

MSFT 2000 plot suggests that the time dependence lasts for
30 ticks, perhaps longer.

Fact II. The noise is autocorrelated.

We provide additional evidence of this fact, based on other
empirical quantities, in the following sections.

4. THE CASE WITH DEPENDENT NOISE

In this section we consider the case where the noise is
time-dependent and possibly correlated with the efficient re-
turns, y∗i,m. Following earlier versions of the present article,
issues related to time dependence and noise–price correlation
have been addressed by others, including Aït-Sahalia et al.
(2005b), Frijns and Lehnert (2004), and Zhang (2004). The time
scale of the dependence in the noise plays a role in the asymp-
totic analysis. Although the “clock” at which the memory in the
noise decays can follow any time scale, it seems reasonable for
it to be tied to calendar time, tick time, or a combination of the
two. We first consider a situation where the time dependence
is specific to calendar time, then consider the case with time
dependence in tick time.

4.1 Dependence in Calender Time

To bias-correct the RV under the general time-dependent
type of noise, we make the following assumption about the time
dependence in the noise process.

Assumption 4. The noise process has finite dependence in
the sense that π(s)= 0 for all s > θ0 for some finite θ0 ≥ 0, and
E[u(t)|p∗(s)] = 0 for all |t − s|> θ0.

The assumption is trivially satisfied under the independent
noise assumption used in Section 3. A more interesting class of
noise processes with finite dependence are those of the mov-
ing average type, u(t) = ∫ t

t−θ0
ψ(t − s)dB(s), where B(s) rep-

resents a standard Brownian motion and ψ(s) is a bounded
(nonrandom) function on [0, θ0]. The autocorrelation function
for a process of this kind is given by π(s)= ∫ θ0

s ψ(t)ψ(t− s)dt,
for s ∈ [0, θ0].

Theorem 2. Suppose that Assumptions 1, 2, and 4 hold and
let qm be such that qm/m > θ0. Then (under CTS),

E
(
RV(m)

ACqm
− IV

)= 0,

where

RV(m)
ACqm

≡
m∑

i=1

y2
i,m +

qm∑
h=1

m∑
i=1

(yi−h,myi,m + yi,myi+h,m).

A drawback of RV(m)
ACqm

is that it may produce a negative
estimate of volatility, because the covariances are not scaled
downward in a way that would guarantee positivity. This is par-
ticularly relevant in the situation where intraday returns have
a “sharp negative autocorrelation” (see West 1997), which has
been observed in high-frequency intraday returns constructed
from transaction prices. To rule out the possibility of a negative
estimate, one could use a different kernel, such as the Bartlett
kernel. Although a different kernel may not be entirely unbi-
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Figure 4. Volatility Signature Plots for RV AC1
Based on Ask Quotes ( ), Bid Quotes ( ), Mid-Quotes ( ), and Transaction

Prices ( ). The left column is for AA and the right column is for MSFT. The two top rows are based on calendar time sampling; the bot-
tom rows are based on tick time sampling. The results for 2000 are the panels in rows 1 and 3, and those for 2004 are in rows 2 and 4. The
horizontal line represents an estimate of the average IV, σ̄ 2 ≡ RV

(1 tick)
ACNW30

, that is defined in Section 4.2. The shaded area about σ̄ 2 represents an
approximate 95% confidence interval for the average volatility.
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ased, it may result is a smaller MSE than that of RVAC. Inter-
estingly, Barndorff-Nielsen et al. (2004) have shown that the
subsample estimator of Zhang et al. (2005) is almost identical
to the Bartlett kernel estimator.

In the time series literature, the lag length, qm, is typically
chosen such that qm/m → 0 as m → ∞, for example, qm =
�4(m/100)2/9�, where �x� denotes the smallest integer that is
greater than or equal to x. But if the noise were dependent
in calendar time, then this would be inappropriate, because it
would lead to qm = 3 when a typical trading day (390 minutes)
were divided into 78 intraday returns (5-minute returns) and
to qm = 6 if the day were divided into 780 intraday returns
(30-second returns). So the former q would cover 15 minutes,
whereas the latter would cover 3 minutes (6× 30 seconds), and
in fact the period would shrink to 0 as m → ∞. Under As-
sumptions 2 and 4, the autocorrelation in intraday returns is
specific to a period in calendar time, which does not depend
on m; thus it is more appropriate to keep the width of the “au-
tocorrelation window,” qm/m, constant. This also makes RV(m)

AC
more comparable across different frequencies, m. Thus we set
qm = � w

(b−a)/m�, where w is the desired width of the lag win-
dow and b − a is the length of the sampling period (both in
units of time), such that (b − a)/m is the period covered by
each intraday return. In this case we write RV(m)

ACw
in place of

RV(m)
ACqm

. Therefore, if we were to sample in calendar time and
set w = 15 min and b − a = 390 min, then we would include
qm = �m/26� autocovariance terms.

When qm is such that qm/m > θ0 ≥ 0, this implies that
RV(m)

ACqm
cannot be consistent for IV. This property is common

for estimators of the long-run variance in the time series liter-
ature whenever qm/m does not converge to 0 sufficiently fast
(see, e.g., Kiefer, Vogelsang, and Bunzel 2000; and Jansson
2004). The lack of consistency in the present context can be un-
derstood without consideration of market microstructure noise.
In the absence of noise, we have that var(y2

i,m) = 2σ 4
i,m and

var(yi,myi+h,m)= σ 2
i,mσ 2

i+h,m ≈ σ 4
i,m, such that

var
[
RV(m)

ACqm

] ≈ 2
m∑

i=1

σ 4
i,m +

qm∑
h=1

(2)2
m∑

i=1

σ 4
i,m

= 2(1+ 2qm)

m∑
i=1

σ 4
i,m,

which approximately equals

2(1+ 2qm)
b− a

m

∫ 1

0
σ 4(s)ds

under CTS. This shows that the variance does not vanish when
qm is such that qm/m > θ0 > 0.

The upper four panels of Figure 5 represent a new type of
signature plots for RV(1 sec)

ACq
. Here we sample intraday returns

every second using the previous-tick method and now plot q
along the x-axis. Thus these signature plots provide informa-
tion on time dependence in the noise process. The fact that the
RV(1 sec)

ACq
of the four price series differ and have not leveled off

is evidence of time dependence. Thus in the upper four panels,
where we sample in calendar time, it appears that the depen-
dence lasts for as long as 2 minutes (AA, year 2000) or as short

as 15 seconds (MSFT, year 2004). We comment on the lower
four panels in the next section, where we discuss intraday re-
turns sampled in tick time.

4.2 Time Dependence in Tick Time

When sampling at ultra-high frequencies, we find it more nat-
ural to sample in tick time, such that the same observation is not
sampled multiple times. Furthermore, the time dependence in
the noise process may be in tick time rather than calender time.
Several results of Bandi and Russell (2005) allow for time de-
pendence in tick time (while the price–noise correlation is as-
sumed away).

The following example gives a situation with market mi-
crostructure noise that is time-dependent in tick time and corre-
lated with efficient returns.

Example 1. Let t0 < t1 < · · · < tm be the times at which
prices are observed, and consider the case where we sample in-
traday returns at the highest possible frequency in tick time. We
suppress the subscript m to simplify the notation. Suppose that
the noise is given by ui = αy∗i + εi, where εi is a sequence of iid
random variables with mean 0 and variance var(εi)= ω2. Thus
α = 0 corresponds to the case with independent noise assump-
tion, and α = ω2 = 0 corresponds to the case without noise. It
now follows that

ei = α(y∗i − y∗i−1)+ εi − εi−1,

such that

E(e2
i )= α2(σ 2

i + σ 2
i−1)+ 2ω2

and

E(eiy
∗
i )= ασ 2

i ,

where
∑m

i=1 σ 2
i = IV . Thus

E
[
RV(1 tick)

]= IV + 2α(1+ α)IV + 2mω2,

with a bias given by 2α(1 + α)IV + 2mω2. This bias may be
negative if α < 0 (the case where ui and y∗i are negatively cor-
related). Now, we also have

E(eiei−1)=−α2σ 2
i−1 −ω2

and

E(eiy
∗
i−1)=−ασ 2

i−1,

such that
m∑

i=1

E[yiyi+1] = −α2IV − 2mω2 − αIV,

which shows that RV(1 tick)
AC1

is almost unbiased for the IV.

In this simple example, ui is only contemporaneously corre-
lated with y∗i . In practice, it is plausible that ui could also be
correlated with lagged values of y∗i , which would yield a more
complicated time dependence in tick time. In this situation we
could use RV(1 tick)

ACq
, with a q sufficiently large to capture the

time dependence.
Assumption 4 and Theorem 2 are formulated for the case

with CTS, but a similar estimator can be defined under depen-
dence in tick time. The lower four panels of Figure 5 are the
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Figure 5. Volatility Signature Plots of RV (1 sec)
ACq

(four upper panels) and RV (1 tick)
ACq

(four lower panels) for Each of the Price Series: Ask

Quotes ( ), Bid Quotes ( ), Mid-Quotes ( ), and Transaction Prices ( ). The x-axis is the number of autocovariance terms,

q, included in RV (1 sec)
ACq

. The left column is for AA, and the right column is for MSFT. The results for 2000 are the panels in rows 1 and 3, and those

for 2004 are in rows 2 and 4. The horizontal line represents an estimate of the average IV, σ̄ 2 ≡ RV
(1 tick)
ACNW30

, that is defined in Section 4.2. The
shaded area about σ̄ 2 represents an approximate 95% confidence interval for the average volatility.
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signature plots for RV(1 tick)
ACq

, where q is the number of auto-
covariances used to bias correct the standard RV. From these
plots, we see that a correction for the first couple of autoco-
variances has a substantial impact on the estimator, but higher-
order autocovariances are also important, because the volatility
signature plots do not stabilize until q ≥ 30 in some cases (e.g.,
MSFT in 2000). This time dependence was longer than we had
anticipated; thus we examined whether a few “unusual” days
were responsible for this result. However, the upward-sloping
volatility signature (until q is about 30) is actually found in most
daily plots of RV(1 tick)

ACq
against q for MSFT in the year 2000.

In Section 3 we analyzed the simple kernel estimator that
incorporates only the first-order autocovariance of intraday re-
turns, which we now generalize by including higher-order auto-
covariances. We did this to make the estimator, RV(1 tick)

ACq
, robust

to both time dependence in the noise and correlation between
noise and efficient returns. Interestingly, Zhou (1996) also pro-
posed a subsample version of this estimator, although he did not
refer to it as a subsample estimator. As is the case for RV(1 tick)

ACq
,

this estimator is robust to time dependence that is finite in tick
time. Next, we describe the subsample-based version of Zhou’s
estimator.

Let t0 < t1 < · · · < tN be the times at which prices are ob-
served in the interval [a,b], where a = t0 and b = tN . Here
m need not be equal to N (unlike the situation in the previous ex-
ample), because we use intraday returns that span several price
observations. We use the following notation for such (skip-k)
intraday returns:

yti,ti+k ≡ pti+k − pti .

Thus yti,ti+k is the intraday return over the time interval [ti, ti+k].
This leads to the identity

RV(k tick)
AC1

=
∑

i∈{0,k,2k,...,N−k}

(
y2

ti,ti+k
+ yti−k,ti yti,ti+k + yti,ti+k yti+k,ti+2k

)

(assuming that N/k is an integer), which is a sum involving
m = N/k terms. The subsample version RV(m)

AC1
, proposed by

Zhou (1996), can be expressed as

1

k

N−1∑
i=0

(
y2

ti,ti+k
+ yti−k,ti yti,ti+k + yti,ti+k yti+k,ti+2k

)
. (6)

Thus, for k = 2, we have

1

2

N∑
i=1

(yi + yi+1)
2 + (yi−1 + yi−2)(yi + yi+1)

+ (yi + yi+1)(yi+2 + yi+3),

where yi ≡ yti−1,ti . Rearranging the terms, we see that this sum
is approximately given by

1

2

N∑
i=1

2y2
i + 4yiyi+1 + 4yiyi+2 + 2yiyi+3

= γ̂0 + (γ̂−1 + γ̂1)+ (γ̂−2 + γ̂2)+ 1

2
(γ̂−3 + γ̂3),

where γ̂j ≡ ∑N
i=1 yiyi+j. For the general case, k ≥ 2, we can

show that this subsample estimator is approximately given by

RV(1 tick)
ACNWk

≡ γ̂0 +
k∑

j=1

(γ̂−j + γ̂j)+
k∑

j=1

k − j

k
(γ̂−j−k + γ̂j+k).

Thus this estimator equals the RV(1 tick)
ACk

plus an additional term,
a Bartlett-type weighted sum of higher-order covariances. In-
terestingly, Zhou (1996) showed that the subsample version of
his estimator [see (6)] has a variance that is (at most) of order
O( k

N )+O( 1
k )+O( N

k2 ) (assuming constant volatility). This term

is of order O(N−1/3) if k is chosen to be proportional to N2/3,
as was done by Zhang et al. (2005). It appears that Zhou may
have considered k as fixed in his asymptotic analysis, because
he referred to this estimator as being inconsistent (see Zhou
1998, p. 114). Therefore, the great virtues of subsample-based
estimators in this context were first recognized by Zhang et al.
(2005).

5. EMPIRICAL ANALYSIS

We now analyze stock returns for the 30 equities of the DJIA.
The sample period spans 5 years, from January 3, 2000 to De-
cember 31, 2004. We report results for each of the years indi-
vidually, but give some of the more detailed results only for the
years 2000 and 2004 to conserve space. The tick size was re-
duced from 1/16 of 1 dollar to 1 cent on January 29, 2001, and
to avoid mixing mix days with different tick sizes, we drop most
of the days during January 2001 from our sample. The data are
transaction prices and quotations from NYSE and NASDAQ,
and all data were extracted from the Trade and Quote (TAQ)
database.

We filtered the raw data for outliers, and discarded transac-
tions outside the period 9:30 AM–4:00 PM and removed days
with less than 5 hours of trading from the sample. This reduced
the sample to the number of days reported in the last column of
Table 1. The filtering procedure removed obvious data errors,
such as zero prices. We also removed transaction prices that
were more than one spread away from the bid and ask quotes.
(Details of the filtering procedure are described in a techni-
cal appendix available at our website.) The average number of
transactions/quotations per day are given for each year in our
sample; these reveal a steady increase in the number of trans-
actions and quotations over the 5-year period. The numbers in
parentheses are the percentages of transaction prices that dif-
fer from the proceeding transaction price and similarly for the
quoted prices. The same price is often observed in several con-
secutive transactions/quotations, because a large trade may be
divided into smaller transactions, and a “new” quote may sim-
ply reflect a revision of the “depth” while the bid and ask prices
remain unchanged. We use all price observations in our analy-
sis. Censoring all of the zero intraday returns does not affect
the RV, but has an impact on the autocorrelation of intraday
returns.

Our analysis of quotation data is based on bid and ask
prices and the average of these (mid-quotes). The RVs are cal-
culated for the hours that the market is open, approximately
390 minutes per day (6.5 hours for most days). Our tables
present results for all 30 equities, whereas our figures present
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results for two equities, Alcoa (AA) and Microsoft (MSFT),
which represent DJIA equities with low and high trading activ-
ities. The corresponding figures for the other 28 DJIA equities
are available on request.

5.1 Empirical Implementation of Estimators

In practice, we do not rely on the intraday returns outside the
[a,b] interval. Thus in our empirical analysis we substitute (for
h > 0)

γ̃h ≡ m

m− h

m−h∑
i=1

yi,myi+h,m

for the theoretical quantity

γ̂h ≡
m∑

i=1

yi,myi+h,m,

because the latter relies on ym+1,m, . . . , ym+h,m. (For h < 0, we
define γ̃h ≡ γ̃|h|.) In the expression for γ̃h we use an upward
scaling, m/(m − h), of the “autocovariances” to compensate
for the “missing” autocovariance terms. Thus our empirical
implementation of the simplest kernel estimator is given by
RV(m)

AC1
=∑m

i=1 y2
i,m + 2 m

m−1

∑m−1
i=1 yi,myi+1,m.

5.2 Estimation of Market Microstructure
Noise Parameters

Under the independent noise assumption used in Section 3,
we have, from Lemma 2, that

ω̃2 ≡ RV(m)

2m

p→ ω2 as m →∞.

This estimator was proposed by Bandi and Russell (2005)
and Zhang et al. (2005) for different purposes. Bandi and
Russell (2005) used ω̃2

t to determine the optimal sampling fre-
quency m∗

0, whereas Zhang et al. (2005) used it to select the
number of subsamples and to serve as a bias-correction device
of their “second-best” one-scale subsample estimator.

Under the independent noise assumption, we have, from
Lemma 2, that E(RV(m)) = IV + 2mω2. Whereas ω̃2 is as-
ymptotically justified, our empirical results reveal that ω2 is
very small in practice, so small that 2mω2 is small relative to
the IV, with the exception of the most liquid assets, such as
INTC and MSFT. Whenever the IV/2m is nonnegligible, ω̃2

will overestimate ω2. Thus, better estimators are given by

ω̌2 ≡ RV(m) − RV(13)

2(m− 13)

and

ω̂2 ≡ RV(m) − ÎV

2m
,

where RV(13) is based on intraday returns that span about
30 minutes each and ÎV is some unbiased estimator of IV . From
Lemmas 2 and 3, it follows that ω̃2, ω̌2, and ω̂2 are asymptoti-
cally equivalent in the sense that they have the same probability
limit as m →∞. But ω̌2 and ω̂2 are unbiased for ω2 for any
finite m, and we show that ω̃2 is quite biased in many cases.
Another problem is that the independent noise assumption need

not hold at ultra-high frequencies, in which case the asymptotic
bias is not given by 2mω2. Clearly, this is problematic for all
three estimators.

Table 2 presents annual sample averages of ω̃2, ω̌2, and ω̂2

for the 5 years of our sample. Here we use RV(1 tick)
AC1

as our
choice for ÎV , which is unbiased under the independent noise
assumption. The first estimator, ω̃2, assumes that IV/2m is neg-
ligible, in which case all three estimators should be similar. Be-
cause ω̌2 and ω̂2 generally agree, whereas ω̃2 is typically much
larger, it is evident that ω̃2 overestimates ω2. A related obser-
vation was made by Engle and Sun (2005).

Fact III. The noise is smaller than one might think.

Here, by small we mean that the bias of the RV due to noise is
small. This is particularly so in the more recent years (see, e.g.,
the 2004 volatility signature plot for AA in Fig. 1). By small,
we do not mean that the noise is unimportant, but rather that it
has a less dramatic impact than suggested by the independent
noise assumption.

The fact that the noise in each of the intraday returns is rela-
tively small (even when sampling occurs at the highest possible
frequency) will likely affect the properties of the suggested im-
plementation of the two-scale estimator by Zhang et al. (2005).
In fact, the one-scale estimator proposed by Zhang et al. (2005)
may be more accurate when the noise is small, as Table 2 sug-
gests. Similarly, when determining the optimal sampling fre-
quency for RV (as in Bandi and Russell 2005), one should be
careful not to overestimate ω2, which would lead to a lower-
than-optimal sampling frequency. The important message is
that one should incorporate RVAC1 , or some other unbiased es-
timator of IV, when estimating ω2 from RV.

Another observation from Table 2 is that the noise has
changed. For example, our 2001 estimates of ω2 (using ω̂2)

are on average <20% of those of 2000, and are even smaller
in subsequent years. A large portion of this reduction is due to
decimalization. We discuss the changed empirical properties of
the noise in more detail in our discussion of the results in Fig-
ures 6 and 7.

Now, if we were to believe the independent noise assumption
(which is less of a stretch in 2000 than in subsequent years),
then we could construct the following estimate of λ:

λ̂≡ ω̄2/IV,

where ω̄2 ≡ n−1 ∑n
t=1 ω̂2

t and IV ≡ n−1 ∑n
t=1 RV(1 tick)

AC1,t
. The

latter is an estimate of the average daily IV over the sample
t = 1, . . . ,n, because RVAC1 is unbiased for IV under the inde-
pendent noise assumption. Similarly, ω̄2 is an estimate of the
average daily noise. If both ω2 and IV are constant across days,
such that λ is the same for all days, then λ̂ is consistent for λ

whenever a law of large numbers applies to ω̂2
t and RV(1 tick)

AC1,t
,

t = 1, . . . ,n. In practice, both ω2 and IV are likely to vary across
days, so λ̂ should be viewed only as a proxy for the noise-to-
signal ratio.

Table 3 contains empirical results for all 30 equities using
both transaction and quotation data from 2000. Several inter-
esting observations can be made based on these results. For the
transaction data, we note that λ̂ is typically found to be <.1%,
and the theoretical reduction of the RMSE, 100[r0(λ̂,m∗

0) −
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Figure 6. The ACF ( ) and PACF ( ) for Four Different Tick-by-Tick Price Series: Transaction Prices, Bid Quotes, Ask Quotes, and
Mid-Quotes. The left column is for AA, and the right column is for MSFT. The plotted series are the annual averages over the days in the year 2000.
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Figure 7. The ACF ( ) and PACF ( ) for Four Different Tick-by-Tick Price Series: Transaction Prices, Bid Quotes, Ask Quotes, and
Mid-Quotes. The left column is for AA, and the right column is for MSFT. The plotted series are the annual averages over the days in the year 2004.
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Table 3. Estimated Noise-to-Signal Ratios and “Optimal” Sampling Frequencies
for the Year 2000

Trades Quotes
Asset ω̂2 · 100 IV λ̂ · 100 m∗

0 m∗
1 ∆RMSE ω̂2 · 100

AA 1.0400 6.141 .1693 44 511 33.1% .0026
AXP .2605 5.244 .0497 100 1,743 43.6% −.0351
BA .6807 4.181 .1628 45 531 33.5% −.0207
C .4383 4.610 .0951 65 910 38.2% −.0367
CAT .8344 5.239 .1593 46 543 33.7% −.0192
DD .6756 5.769 .1171 56 739 36.4% −.0274
DIS 1.2050 4.322 .2789 31 310 28.7% −.0292
EK .4133 3.495 .1183 56 732 36.3% −.0153
GE .3609 4.740 .0762 75 1,137 40.1% −.0221
GM .2249 3.242 .0694 80 1,248 40.9% −.0338
HD .6125 5.883 .1041 61 831 37.4% −.0513
HON .5991 6.669 .0898 67 964 38.7% −.0671
HPQ .2457 10.31 .0238 163 3,632 49.4% −.0643
IBM .1493 5.120 .0292 143 2,969 47.8% −.0042
INTC .2077 5.884 .0353 126 2,453 46.3% −.0446
IP 1.1560 7.520 .1538 47 563 34.0% −.0286
JNJ .2116 2.445 .0866 69 1,000 39.0% −.0254
JPM .0212 5.726 .0037 566 23,350 62.0% −.0387
KO .4978 3.656 .1361 51 636 35.1% −.0346
MCD 1.4660 4.557 .3218 28 269 27.4% .0098
MMM .0707 3.377 .0209 178 4,134 50.3% −.0549
MO 2.4870 4.092 .6078 18 142 21.6% .0276
MRK .2883 3.287 .0877 68 987 38.9% −.0143
MSFT .2063 3.557 .0580 90 1,493 42.3% −.0256
PG .3145 4.719 .0667 82 1,299 41.2% −.0104
SBC .6617 3.912 .1691 44 512 33.1% −.0415
T 1.7560 4.748 .3698 26 234 26.1% −.0504
UTX .1204 5.691 .0212 177 4,094 50.3% −.0743
WMT .5454 5.857 .0931 66 929 38.4% −.0535
XOM .2046 2.160 .0947 65 914 38.2% −.0259

NOTE: Estimates of ω2, IV, and the noise-to-signal ratio, λ (annual averages for 2000). Columns five and six are the op-
timal sampling frequencies for RV (m) and RV (m)

AC1
based on the listed value of λ̂. The corresponding reduction in the RMSE,

100[r 0(λ̂,m∗
0 ) − r 1(λ̂,m∗

1 )]/r 0(λ̂, m∗
0 ) is listed in column seven. The last column contains estimates of ω̂2 (annual average) using

mid-quotes, where negative values are indicative of negative correlation between noise and efficient returns.

r1(λ̂,m∗
1)]/r0(λ̂,m∗

0), is typically in the 25–50% range. For ex-
ample, for Alcoa, that ω̂2

AA = 1.04% and λ̂AA = 1.04%/6.14 =
.1693%, which leads to the optimal sampling frequencies
m∗

0 = 44 and m∗
1 = 511. For a typical trading day spanning

6.5 hours, this corresponds to intraday returns that (on average)
span 9 minutes and 46 seconds. Bandi and Russell (2005) and
Oomen (2005, 2006) reported “optimal” sampling frequencies
for RV(m) that are similar to our estimates of m∗

0. By plugging
these numbers into the formulas of Corollary 2, we find the re-

duction of the RMSE (from using RV
(m∗

1)

AC1
rather than RV(m∗

0))
to be 33%.

The noise-to-signal ratio, λ, is likely to differ across days,
in which case the optimal sampling frequencies, m∗

0 and m∗
1,

will also differ across days. Thus λ̂ should be viewed as a
proxy for λ on a typical trading day, and our estimates should
be viewed as approximations for “daily average values,” in the
sense that m0 = 90 and m1 = 1,493 appear to be sensible sam-
pling frequencies to use with the MSFT transaction data. For-
tunately, Figure 1 shows that RV(m)

AC1
is relatively insensitive

to small deviations from m∗
1, such that a reasonable estimate

for λ does produce a more accurate estimator based on RVAC1

than one based on RV.
For the quotation data, almost all of our estimates of

ω2 are negative, which occurs whenever the sample average of
RV(1 tick) is smaller than that of RV(1 tick)

AC1
. This is obviously in

conflict with the results of Lemmas 2 and 3, which dictate that
the population difference, E[RV(1 tick)−RV(1 tick)

AC1
], be positive.

The expected difference is 2ω2 times a number that is propor-
tional to the average number of transactions/quotations per day.
One explanation for the observation that ω̂2 < 0 is that ω2 � 0,
such that the “wrong” sign occurs simply by chance. But this is
highly improbable, because all but two of the estimates of ω2

(not just about half of them) are found to be negative for the
quotation data. Thus these negative estimates provide additional
evidence against the independent noise assumption.

The autocorrelation function (ACF) and the partial autocor-
relation function (PACF) for intraday returns provide a sim-
ple eyeball test of the independent noise assumption. Figures
6 and 7 present annual averages of the ACF and PACF estimated
for each day using one-tick sampling. The results for 2000 are
given in Figure 6; those for 2004, in Figure 7. The upper pan-
els are those for transaction prices, and the subsequent panels
correspond to ask, mid, and bid quotes.

The results for AA in 2000 suggest that time dependence
in the noise process may be specific to tick time and that the
memory in transaction prices lasts only a few ticks, slightly
longer for quoted prices. In 2004 the time dependence in trans-
action prices appears to be longer—at least 10 transactions—
and because we are looking at an annual average, it may be
even longer for some days. The duration between transactions
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in 2004 was about a third of what it was in 2000. Thus when the
time dependence in tick time is converted into calendar time,
the time dependence in 2000 and 2004 is about the same. The
results for MSFT are in some respects very different from those
for AA. The average ACF and PACF for the transaction data
may suggest that the independent noise assumption is appro-
priate for this price series; however, many of the higher-order
autocovariances are nontrivial, which explains why RV(1 tick)

AC1
is

often very different from RV(1 tick)
AC30

. For the quoted price series,
the time dependence is slightly more involved, particularly for
mid-quotes.

Comparing the results in Figures 6 and 7 shows that the
noise properties have changed after decimalization of the tick
size. For transaction data, the change in the noise properties is
most evident for AA, whereas in quoted prices the change is
most pronounced for MSFT. For example, the first-order au-
tocovariances for bid and ask quotes have opposite signs in
2000 and 2004. Thus, based on the results in Table 2 and Fig-
ures 6 and 7, we are led to the following fact.

Fact IV. The properties of the noise have changed over time.

Because the ACFs and PACFs plotted in Figures 6 and 7 are
averages over daily estimates, there may be a great deal of vari-
ation across days, although we did not find this to be the case
in the daily ACFs and PACFs. (For formal hypothesis tests that
address properties of market microstructure noise [day-by-day],
see Awartani, Corradi, and Distaso 2004.)

6. PRICE DECOMPOSITION BY
COINTEGRATION METHODS

Empirical studies on volatility estimation from contaminated
high-frequency returns have typically used univariate price se-
ries, such as transaction prices, ask quotes, bid quotes, or mid-
quotes. All of these series are proxies for the same efficient
price, and thus it is natural to incorporate the information from
all series when estimating the volatility of the latent efficient
price.

One way to combine the information from multiple series is
to compute an RV-type measure for each series and take the
average of these, as was done by Hansen and Lunde (2005b),
who took the average of estimators based on bid and ask quotes.
Here we take a different approach and use cointegration meth-
ods to extract the efficient price (and noise) from a vector
consisting of bid and ask quotes and transaction prices. This
approach can be extended to include additional price series, for
example, limit order books can be used to define additional bid
and ask price series that depend on the volume offered at var-
ious prices, and prices from multiple exchanges could also be
included in the analysis.

The purpose of this analysis is threefold. First, the method
makes it possible to decompose the different prices into a com-
mon stochastic trend (efficient price) and transitory components
(one noise process for each price series). This makes it possi-
ble to compare the properties of these series with those that we
observe in our volatility signature plots. Second, the decom-
position reveals how the efficient price is tied to innovations
in the different price series. This shows which price series are
most informative about the efficient price. Third, we can study

the dynamic impact on quotes and transaction prices as a re-
sponse to a change in the efficient price. This can be done with
standard impulse response analysis. (For alternative ways of de-
composing the observed price series, see, e.g., Engle and Sun
2005, who used a ACD–GARCH specification where the noise
process has a two-component ARMA structure; also see Frijns
and Lehnert 2004.)

We use the vector autoregressive framework that was used
to analyze price discovery (from multiple markets) by Harris,
McInish, Shoesmith, and Wood (1995), Hasbrouck (1995), and
Harris, McInish, and Wood (2002), among others. Our analysis
differs from this literature because we apply cointegration tech-
niques to quotes and transactions in conjunction, not to transac-
tion prices from different exchanges. Because it is possible to
obtain the prevailing bid and ask prices at the time at which a
transaction occurs, we avoid issues related to nonsynchronous
trading. Our impulse response analysis, which we believe to be
novel, shows how bid, ask, and transaction prices dynamically
respond to a change in the efficient price.

We let ti, i = 0,1, . . . ,m, denote the times when transactions
occur during some trading day and drop the subscript m to sim-
plify the notation. We define the vector of “prices” by

pti =

 transaction price at time ti

prevailing ask price at time ti
prevailing bid price at time ti


 ,

where we use log-prices as in the previous sections.
Suppose that the dynamics of the vector of prices, pti , can

be approximated by the vector autoregressive error correction
model,

�pti = αβ ′pti−1 +
k−1∑
j=1

�j�pti−j +µ+ εti, (7)

where εti , i = 1, . . . ,m, is a sequence of uncorrelated error
terms. It is reasonable to assume that each of the three observed
price series shares the same stochastic trend such that any pair
of prices cointegrate, because the spread is presumed to be sta-
tionary. This implies that α and β are 3 × 2 matrices with full
column rank and that we may impose the two natural cointegra-
tion vectors,

β = (β1,β2)=



1 0
− 1

2 1

− 1
2 −1


 . (8)

The space spanned by the two columns of β defines the set
of cointegration relations. Thus any two linearly independent
vectors in this subspace can be used to define β . We choose
these two vectors because they are simple to interpret; β ′

1pti is
the difference between the transaction price and the mid-quote,
and β ′

2pti is the bid–ask spread.
Key to this analysis are the 3× 1 vectors, α⊥ and β⊥, which

are orthogonal to α and β . [Thus α′⊥α = β ′⊥β = (0,0).] As is
the case for α and β , these vectors are not fully identified, so
we impose the normalizations

β⊥ = ι and α′⊥ι= 1,

where ι≡ (1,1,1)′.
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It follows from the Granger representation theorem that

pt = β⊥(α′⊥�β⊥)−1α′⊥
t∑

s=1

εs +C(L)(εt +µ)+A0,

where � ≡ I − �1 − · · · − �k−1 and A0 is a that depending on
initial values of pt. The Granger representation theorem is due
to Johansen (1988) and Hansen (2005), who obtained a recur-
sive formula for the coefficients of C(L) (and details about A0),
which we use in our analysis.

6.1 Common Stochastic Trend

There are a number of ways to define the common stochastic
trend from the Granger representation (see Johansen 1996). The
most natural definition in this framework is

p∗ti ≡ (α′⊥�β⊥)−1
i∑

j=1

α′⊥εtj + initial value.

This definition has the desired martingale property, because the
corresponding intraday returns,

y∗ti ≡
α′⊥εti

α′⊥�β⊥
,

are uncorrelated. Thus the Granger representation can be ex-
pressed as

pti =



p∗ti
p∗ti
p∗ti


+C(L)εti +A0.

This definition of the common stochastic trend, p∗ti , corresponds
to that of Hasbrouck (1995, 2002). Johansen (1996) also dis-
cussed alternative definitions of the common stochastic trend,
such as β ′⊥pti and α′⊥�pti , which are linear combinations of
the observed price vector; these are known as Granger–Gonzalo
stochastic trends in the literature (see Gonzalo and Granger
1995). The connection between p∗ti and a linear combination
of pti follows directly from the Granger representation, be-
cause the latter involves a component that is proportional
to p∗ti and a second component that relates to the station-
ary part of the Granger representation. This relation was dis-
cussed by Johansen (1996) (see also Hansen and Johansen
1998, pp. 27–28), and similar arguments were given by de Jong
(2002) and Baillie, Booth, Tse, and Zabotina (2002) (see also
Harris et al. 2002; Lehmann 2002).

It is the martingale property of p∗ti that makes p∗ti the most
natural definition of the efficient price, and the RV of p∗ti is given
by

RVp∗ ≡
m∑

i=1

(y∗ti)
2 =

∑m
i=1(α

′⊥εti)
2

(α′⊥�β⊥)2
.

Naturally, the parameters need to be estimated in practice, so
we rely on

p̂∗ti = (α̂′
⊥�̂β⊥)−1

i∑
j=1

α̂′
⊥ε̂tj,

where ε̂ti are the residuals from (7). The estimation is described
in Appendix C. Given p̂∗ti , we can now define

RVp̂∗ ≡
m∑

i=1

(
ŷ∗tj

)2 =
∑m

i=1(α̂
′
⊥ε̂ti)

2

(α̂′
⊥�̂β⊥)2

.

6.2 Empirical Results

We estimate the parameters in (7) for each of the days indi-
vidually, with the number of lags, k, chosen to be the smallest
number (≤10) that made Ljung–Box tests at lags 5, 10, 15, and
30 insignificant at the 5% significance level. Some additional
details about the estimation are given in Appendix C.

Assuming that the ultra-high–frequency price observations
are well described by (7) is problematic for several reasons.
The duration between observations is an important aspect of the
data ignored by model (7), and the discreteness of the data has
implications for the properties of the “errors” εti , i = 1, . . . ,m,
and the interdependence with the vector of prices. The reader
should be aware that we have ignored all such issues, and thus
the results that we draw from this analysis should be viewed as
a rough approximation.

A key parameter in our analysis is α⊥ (3 × 1 vector) that
shows how the efficient price is related to “innovations” in the
different price series. In our empirical analysis the elements
of α⊥ correspond to transaction prices, ask quotes, and bid
quotes, and so we use the following notation:

α′⊥ = (α⊥,tr, α⊥,ask, α⊥,bid).

Table 4 reports a summary of our empirical estimates, which
are averages of the daily estimates, α̂⊥, and RVp̂∗ . For com-

parison, we also report the average RVquantities RV
(1 tick)

ACNW15
,

RV
(1 tick)

ACNW30
, and RV

(13)
. To get a sense of the dispersion of the

daily estimates, we also report the 5% and 95% quantiles in
brackets below each of the averages.

It is striking how similar the average α̂⊥ is across equities
listed on the NYSE; the average point estimates are generally
quite close to α⊥ = ( 1

2 , 1
4 , 1

4 )′. In contrast, the two NASDAQ
stocks, INTC and MSFT, produce average estimates that stand
out by being closer to α⊥ = ( 1

4 , 3
8 , 3

8 )′. Thus the instantaneous
correlation between innovations in the transaction price and the
efficient price is larger for NYSE stocks, and, consequently, the
quoted prices are more closely related to the efficient price for
NASDAQ stocks than to that for NYSE stocks. We find this
to be a very interesting empirical observation that is likely tied
to the differences by which the two exchanges operate. Specifi-
cally, quotes on the NASDAQ are competitive and binding, such
that movements in these are more likely to be tied to movements
in the efficient price than are movements in the specialist quotes
on the NYSE.

The estimated model allows us to compute the daily esti-
mates,

m∑
i=1

ê2
ti and

m∑
i=1

ŷ∗ti êti,

where êti is an element of êti ≡ ûti − ûti−1 and ûti = pti − p∗ti .
(De-meaning the elements of ûti is not required because it does
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Table 4. Cointegration Results for the Year 2004

Lags α̂⊥, tr α̂⊥, ask α̂⊥, bid RV p̂∗ RV
(1 tick)
ACNW 15

RV (1 tick)
ACNW 30

RV (13)

AA 5.59 .51 .26 .22 2.30 2.52 2.50 2.21
[2.00; 1.0] [.35; .68] [.09; .41] [.04; .37] [1.00; 4.61] [1.03; 4.70] [.90; 4.89] [.50; 5.30]

AXP 4.09 .46 .29 .26 .67 .71 .70 .69
[1.00; 10.0] [.33; .63] [.13; .45] [.08; .40] [.29; 1.33] [.28; 1.46] [.24; 1.53] [.13; 1.91]

BA 5.06 .46 .29 .24 1.46 1.52 1.53 1.49
[2.00; 10.0] [.33; .61] [.17; .44] [.07; .39] [.63; 2.84] [.66; 3.01] [.58; 3.35] [.34; 3.60]

C 4.18 .48 .27 .25 1.01 .99 .91 .83
[1.00; 10.0] [.33; .63] [.16; .38] [.14; .35] [.43; 2.06] [.40; 2.05] [.35; 2.10] [.19; 1.80]

CAT 5.00 .45 .29 .26 1.61 1.64 1.59 1.49
[2.00; 10.0] [.33; .57] [.16; .42] [.13; .42] [.72; 3.08] [.73; 3.29] [.67; 3.27] [.42; 3.51]

DD 4.28 .44 .29 .27 1.12 1.11 1.03 1.02
[1.40; 10.0] [.32; .56] [.13; .43] [.15; .39] [.52; 2.06] [.49; 2.02] [.42; 2.00] [.22; 2.50]

DIS 4.21 .41 .31 .29 1.68 1.64 1.51 1.36
[1.00; 10.0] [.30; .53] [.18; .44] [.12; .41] [.70; 3.07] [.68; 3.23] [.55; 3.07] [.31; 3.31]

EK 5.37 .47 .29 .24 2.30 2.41 2.44 2.46
[2.00; 10.0] [.28; .69] [.07; .48] [−.04; .43] [.79; 4.72] [.84; 4.76] [.69; 4.73] [.40; 6.27]

GE 3.90 .46 .28 .26 .87 .96 .97 .87
[1.00; 8.00] [.26; .62] [.15; .43] [.13; .40] [.39; 1.80] [.39; 1.94] [.36; 2.01] [.26; 1.93]

GM 5.33 .48 .26 .26 1.28 1.39 1.42 1.45
[2.00; 10.0] [.33; .67] [.10; .41] [.10; .42] [.54; 2.36] [.57; 2.83] [.50; 3.27] [.33; 3.53]

HD 4.93 .47 .27 .26 1.37 1.47 1.48 1.37
[2.00; 10.0] [.31; .63] [.11; .40] [.10; .40] [.60; 2.67] [.65; 2.80] [.61; 2.94] [.32; 3.06]

HON 5.15 .47 .28 .25 2.03 2.02 1.92 1.82
[1.00; 10.0] [.33; .64] [.12; .44] [.09; .40] [.85; 3.94] [.83; 4.06] [.77; 4.19] [.48; 3.55]

HPQ 4.36 .40 .31 .29 2.07 2.08 1.97 1.84
[1.00; 10.0] [.28; .54] [.17; .42] [.15; .42] [.80; 4.07] [.72; 4.60] [.66; 4.47] [.37; 4.35]

IBM 4.92 .43 .29 .27 .90 .88 .81 .71
[2.00; 10.0] [.33; .56] [.18; .42] [.16; .39] [.36; 1.77] [.32; 1.69] [.30; 1.64] [.18; 1.53]

INTC 4.60 .25 .37 .38 2.36 2.34 2.30 2.01
[2.00; 9.00] [.18; .34] [.21; .50] [.24; .52] [1.07; 4.21] [1.02; 4.03] [.95; 3.94] [.59; 4.17]

IP 4.69 .45 .28 .27 1.19 1.27 1.26 1.27
[1.00; 10.0] [.30; .62] [.12; .42] [.11; .44] [.46; 2.50] [.51; 2.58] [.42; 2.44] [.32; 3.11]

JNJ 4.45 .45 .29 .26 .81 .82 .80 .79
[2.00; 10.0] [.32; .58] [.14; .43] [.08; .39] [.33; 1.66] [.34; 1.62] [.29; 1.71] [.15; 1.96]

JPM 3.87 .46 .28 .26 1.08 1.13 1.11 1.08
[1.00; 9.60] [.30; .62] [.12; .42] [.13; .38] [.46; 2.43] [.47; 2.64] [.44; 2.93] [.28; 2.67]

KO 4.19 .41 .29 .30 .95 .97 .92 .81
[1.00; 10.0] [.28; .55] [.16; .40] [.15; .42] [.42; 1.85] [.43; 1.84] [.36; 1.89] [.22; 1.95]

MCD 4.55 .42 .31 .27 1.39 1.43 1.45 1.38
[1.00; 10.0] [.27; .60] [.16; .46] [.09; .41] [.60; 3.14] [.52; 3.19] [.49; 3.26] [.32; 3.45]

MMM 4.86 .45 .28 .26 1.09 1.11 1.07 .96
[2.00; 10.0] [.33; .57] [.14; .44] [.13; .40] [.43; 2.11] [.44; 2.17] [.39; 2.37] [.23; 2.10]

MO 5.04 .48 .28 .25 1.48 1.51 1.51 1.52
[2.00; 10.0] [.33; .67] [.09; .42] [.09; .39] [.34; 3.17] [.29; 3.35] [.25; 3.31] [.17; 3.55]

MRK 4.60 .48 .27 .25 1.30 1.38 1.36 1.30
[2.00; 10.0] [.33; .63] [.12; .40] [.08; .40] [.42; 3.84] [.45; 3.79] [.40; 3.55] [.28; 3.94]

MSFT 4.43 .24 .40 .36 1.16 1.16 1.12 .89
[2.00; 9.00] [.16; .32] [.21; .59] [.16; .54] [.50; 2.19] [.50; 2.22] [.48; 2.18] [.21; 2.18]

PG 5.06 .49 .28 .23 .87 .87 .83 .75
[2.00; 10.0] [.36; .64] [.15; .45] [.10; .34] [.34; 1.64] [.33; 1.67] [.29; 1.67] [.18; 1.65]

SBC 4.00 .38 .31 .30 1.36 1.44 1.38 1.28
[1.00; 10.0] [.21; .55] [.15; .47] [.14; .45] [.56; 2.64] [.52; 2.83] [.44; 2.87] [.26; 3.12]

T 4.12 .34 .34 .32 1.65 1.77 1.86 2.00
[1.00; 10.0] [.21; .49] [.21; .46] [.17; .47] [.62; 3.32] [.69; 3.87] [.67; 4.43] [.48; 4.81]

UTX 5.16 .46 .28 .26 1.19 1.17 1.11 1.06
[2.00; 10.0] [.33; .62] [.15; .42] [.12; .38] [.45; 2.47] [.45; 2.51] [.38; 2.39] [.23; 2.70]

WMT 4.98 .55 .23 .21 1.11 1.14 1.10 1.04
[2.00; 10.0] [.42; .72] [.09; .36] [.08; .34] [.53; 2.22] [.57; 2.21] [.50; 2.05] [.30; 2.30]

XOM 4.09 .47 .27 .26 .78 .85 .85 .84
[1.00; 9.65] [.29; .62] [.16; .40] [.13; .39] [.34; 1.60] [.34; 1.61] [.30; 1.68] [.23; 1.71]

NOTE: Annual averages of the selected lag length, α̂⊥ , realized variance of p̂∗
t , two measures of RV (1 tick)

ACNWq
, and the standard RV based on 30-minute sampling, where RV (1 tick)

ACNWq
≡

1
n
∑n

t = 1 (RV (1 tick), tr
ACNWq,t

+RV (1 tick), bid
ACNWq,t

+RV (1 tick), ask
ACNWq,t

)/3, and similarly for RV (13). The numbers in the squared bracket are the 5% and 95% quantiles for the different statistics.

not affect êti .) Table 5 reports daily averages for the different
price series.

Figure 8 plots our estimate of the efficient price, p̂∗ti , for the
same window of time plotted in Figure 2. It is comforting to see
that our estimate of the efficient price is in line with the quoted
bid and ask prices. Rarely is p̂∗ti outside the bid–ask bounds, so

there is no immediate evidence that a profit can be made from
the discrepancies between p̂∗ti and the observed prices.

6.3 Impulse Response Function

Define the two matrices,

�= αβ ′ and C = β⊥(α′⊥�β⊥)−1α′⊥.
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Figure 8. The Estimated Efficient Price Over Three 20-Minute Subperiods on April 24, 2004 for AA. The shaded area shows the best bid and
ask quotes, and the star ( ) represent actual transaction prices.

As shown by Hansen (2005), the coefficients of C(L) = C0 +
C1L+C2L2+· · · are given recursively by the Yule–Walker type
equation

�Ci =�Ci−1 +�1�Ci−1 + · · · + �k−1�Ci−k+1 for i ≥ 1,

(9)

where �Ci = Ci − Ci−1, C0 = I − C, and C−1 = C−2 =
· · · = −C. An interesting question is how transaction prices and
quotes are affected by a change in the efficient price. This ques-
tion can be addressed with reference to the Granger representa-
tion.
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Although the Granger representation theorem is an algebraic
result that does not rely on distributional assumptions, inter-
pretations drawn from it do rely on additional assumptions
(see Hansen 2005). Under the restrictive Gaussian assumptions,
with homoscedastic innovations, �≡ var(εti), it follows that

dpti+h

dp∗ti
= dpti+h

dεti
× dεti

d(α′⊥εti)
× d(α′⊥εti)

dp∗ti

= (C+Ch)×�α⊥
1

α′⊥�α⊥
× α′⊥�β⊥

= δ(C+Ch)�α⊥ = ι+ δCh�α⊥,

where

δ ≡ α′⊥�β⊥
α′⊥�α⊥

.

Given the lack of results that hold under weaker (and more ap-
propriate) assumptions, we compute estimates of ι+ δCh�α⊥,
h = 0,1, . . . , and interpret these as approximate impulse re-
sponse functions (IRFs). Thus these “projections” should be
viewed as only indicative of the dynamic effect on bid, ask,
and transaction prices as a response to a change in the efficient
price. The long-run effect is unity for all prices, as it should be,
because dpti+h/dp∗ti → ι as h →∞. This follows from Ch → 0
as h →∞, which holds under the standard I(1) assumptions
(see, e.g., Hansen 2005).

Figure 9 displays the estimated IRFs for transaction prices,
bid and ask quotes as a response to a change in the efficient
price. These results are based on the daily estimates for 2004.
The solid lines correspond to the average IRFs, the dashed lines
are the median IRF, and the shaded area is bounded by the
5% and 95% quantiles across the days in 2004. Although most
of the price change occurs instantaneously, the estimated IRFs
suggest that it takes about 10 transactions before the full ef-
fect is absorbed into transaction and quoted prices for AA, and
only 3–5 transactions for MSFT. Also note that the instanta-
neous effect on quotes is larger for MSFT than for AA (≈.9
compared with ≈.8), and the total effect on quoted prices is
absorbed quicker. This is likely explained by the differences
between specialist quotes on the NYSE and the competitive
quotes on NASDAQ.

7. SUMMARY AND CONCLUDING REMARKS

We have analyzed the properties of market microstructure
noise and its effect on empirical measures of volatility. Our use
of kernel-based estimators revealed several important proper-
ties about market microstructure noise, and we have shown that
kernel-based estimators are very useful in this context.

More importantly, our empirical analysis uncovered several
characteristics of market microstructure noise, the most notable
of which are that the noise process is time-dependent and that
the noise process is correlated with the latent efficient returns.
These results were established for both transaction data and
quotation data and were found to hold for intraday returns based
on both calendar time and tick time sampling.

We also evaluated the accuracy of distributional results based
on an assumption that there is no market microstructure noise.
We showed that a “no-noise” RMSE based on the results of

Barndorff-Nielsen and Shephard (2002) provides a reasonably
accurate approximation when intraday returns are sampled at
low frequencies, such as 20-minute sampling. At low sam-
pling frequencies, small-sample issues can arise such that cov-
erage probabilities may be inaccurate (see, e.g., Gonçalves and
Meddahi 2005), but market microstructure noise is not to be
blamed for such issues. When intraday returns are sampled at
higher frequencies, the accuracy of “no-noise” approximations
is likely to deteriorate. The analogous “no-noise” confidence in-
terval about RV(m)

AC1
yields a more accurate approximation than

that of RV(m), but both are very misleading when intraday re-
turns are sampled at high frequencies.

Several results in the literature (including our theoretical re-
sults given in Sec. 3) that analyze volatility estimation from
high-frequency data contaminated with market microstructure
noise have assumed that the noise process is independent of
the efficient price and uncorrelated in time. Our empirical re-
sults suggest that the implications of these assumptions may
hold (at least approximately) when intraday returns are sam-
pled at relatively low frequencies. Thus the conclusions of these
articles may hold as long as intraday returns are not sampled
more frequently than, say, every 30 ticks. On the other hand,
our empirical results have also shown that sampling at ultra-
high frequencies, such as every few ticks, necessitates more
general assumptions about the dependence structure of market
microstructure noise. We established these results in Section 4,
where we used a general specification for the noise process
that can accommodate both types of dependency. Our cointe-
gration analysis produced results consistent with both forms
of dependencies. Volatility signature plots revealed a negative
noise–price correlation in quoted price series, and the cointe-
gration analysis showed that the negative correlation is found
in all price series, including transaction prices.

Although the main focus of our analysis has been on the
properties of market microstructure noise, our analysis also pro-
vides some insight into the problem of volatility estimation in
the presence of market microstructure noise. Under the inde-
pendent noise assumption, our comparison of RV(m)

AC1
to the

standard measure of realized variance revealed a substantial im-
provement in the precision, because the theoretical reduction of
the RMSE is about 25–50%. These gains were achieved with
a simple bias correction that incorporates the first-order autoco-
variance, and additional improvements are possible with more
sophisticated corrections of the realized variance. For example,
the kernel estimators of Barndorff-Nielsen et al. (2004) and sub-
sample estimators of Zhang et al. (2005) and Zhang (2004) have
better asymptotic properties than RV(m)

AC1
. Among the estimators

that we have analyzed in this article, RV(1 tick)
ACNW30

appears to cap-
ture the time dependence found in the noise. However, there are
potential gains from allowing for some bias in exchange for a
reduction of the variance. This may particularly be the case in
recent years, where we find the noise (and hence the bias) to
be very small. Thus, correcting for a smaller number of auto-
covariances may be better in terms of the RMSE, so RV(1 tick)

ACNW10

may be a better estimator than RV(1 tick)
ACNW30

, although the former
is more likely to be biased.

Although the literature has made great progress on the prob-
lem of estimating the quadratic variation in the presence of
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Figure 9. The Estimated IRFs (average over days in the year 2004) for Transaction Prices and Bid and Ask Quotes That Show the Dynamic Effect
of an Increase in the Efficient Price. The left panels are for AA, and the right panels are for MSFT. The solid lines correspond to the average IRFs,
the dashed lines are the median IRF, and the shaded area is bounded by the 5% and 95% quantiles.

noise, many aspects of this problem are not yet fully under-
stood, mainly because market microstructure noise appears to
be more complex than can be accommodated by a simple spec-

ification for the noise. Furthermore, the existing estimators of
volatility may be improved on by incorporating additional in-
formation, such as volume, number of transactions per day, and
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the information from limit order books. Exploiting the discrete-
ness of the data (as in Large 2005; Oomen 2006) is another
possible avenue for improving existing estimators.
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APPENDIX A: PROOFS

As stated earlier, we condition on {σ 2(t)} in our analysis.
Thus, without loss of generality, we treat σ 2(t) as a determinis-
tic function in our derivations.

Proof of Lemma 1

First, we note that p̃(τ ) is continuous and piecewise linear
on [a,b]. Thus p̃(τ ) satisfies the Lipschitz condition, ∃ δ > 0,
such that |p̃(τ ) − p̃(τ + ε)| ≤ δε for all ε > 0 and all τ . With
ε = (b− a)/m, we have that

m∑
i=1

y2
i,m ≤

m∑
i=1

δ2(b− a)2m−2 = δ2(b− a)2

m
,

which demonstrates that RV(m) p→ 0 as m →∞ and that the
QV of p̃(τ ) is 0 with probability 1.

Proof of Theorem 1

From the identities RV(m) = ∑m
i=1[y∗2

i,m + 2y∗i,mei,m + e2
i,m],

and E(
∑m

i=1 y∗i,mei,m) = ρm it follows that the bias is given by∑m
i=1 2E(y∗i,mei,m) + E(e2

i,m) = 2ρm + mE(e2
i,m). The result of

the theorem now follows from the identity

E(e2
i,m)= E

[
u(iδm)− u((i− 1)δm)

]2 = 2[π(0)− π(δm)],
given Assumption 2.

Proof of Corollary 1

Because m = (b− a)/δm, we have that

lim
m→∞m[π(0)− π(δm)] = lim

m→∞(b− a)
π(0)− π(δm)

δm

= −(b− a)π ′(0),

under the assumption that π ′(0) is well defined.

Proof of Lemma 2

The bias follows directly from the decomposition y2
i,m =

y∗2
i,m + e2

i,m + 2y∗i,mei,m, because E(e2
i,m) = E(ui,m − ui−1,m)2 =

E(u2
i,m) + E(u2

i−1,m) − 2E(ui,mui−1,m) = 2ω2, where we have
used Assumption 3(a) and (b). Similarly, we see that

var
(
RV(m)

)= var

(
m∑

i=1

y∗2
i,m

)
+ var

(
m∑

i=1

e2
i,m

)

+ 4 var

(
m∑

i=1

y∗i,mei,m

)
,

because the three sums are uncorrelated. The first sum involves
uncorrelated terms such that var(

∑m
i=1 y∗2

i,m)=∑m
i=1 var(y∗2

i,m)=
2
∑m

i=1 σ 4
i,m, where the last equality follows from the Gaussian

assumption. For the second sum, we find that

E(e4
i,m) = E(ui,m − ui−1,m)4 = E(u2

i,m + u2
i−1,m − 2ui,mui−1,m)2

= E(u4
i,m + u4

i−1,m + 4u2
i,mu2

i−1,m + 2u2
i,mu2

i−1,m)+ 0

= 2µ4 + 6ω4

and

E(e2
i,me2

i+1,m) = E(ui,m − ui−1,m)2(ui+1,m − ui,m)2

= E(u2
i,m + u2

i−1,m − 2ui,mui−1,m)

× (u2
i+1,m + u2

i,m − 2ui+1,mui,m)

= E(u2
i,m + u2

i−1,m)(u2
i+1,m + u2

i,m)+ 0

= µ4 + 3ω4,

where we have used Assumption 3(a)–(c). Thus var(e2
i,m) =

2µ4 + 6ω4 − [E(e2
i,m)]2 = 2µ4 + 2ω4 and cov(e2

i,m, e2
i+1,m) =

µ4 − ω4. Because cov(e2
i,m, e2

i+h,m) = 0 for |h| ≥ 2, it follows
that

var

(
m∑

i=1

e2
i,m

)
=

m∑
i=1

var(e2
i,m)+

m∑
i,j=1
i �=j

cov(e2
i,m, e2

j,m)

= m(2µ4 + 2ω4)+ 2(m− 1)(µ4 −ω4)

= 4mµ4 − 2(µ4 −ω4).

The last sum involves uncorrelated terms such that

var

(
m∑

i=1

ei,my∗i,m

)
=

m∑
i=1

var(ei,my∗i,m)= 2ω2
m∑

i=1

σ 2
i,m.

By the substitution 3κω4 = µ4, we obtain the expression for the
variance. The asymptotic normality has been proven by Zhang
et al. (2005) using with an argument similar to one that we use
for RV(m)

AC1
in our proof of Lemma 3, and that 2

∑m
i=1 σ 4

i,m +
2ω2 ∑m

i=1 σ 2
i,m − 4ω4 = O(1).
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Proof of Lemma 3

First, note that RV(m)
AC1

= ∑m
i=1 Yi,m + Ui,m + Vi,m + Wi,m,

where

Yi,m ≡ y∗i,m(y∗i−1,m + y∗i,m + y∗i+1,m),

Ui,m ≡ (ui,m − ui−1,m)(ui+1,m − ui−2,m),

Vi,m ≡ y∗i,m(ui+1,m − ui−2,m),

and

Wi,m ≡ (ui,m − ui−1,m)(y∗i−1,m + y∗i,m + y∗i+1,m),

because yi,m(yi−1,m + yi,m + yi+1,m)= (y∗i,m + ui,m − ui−1,m)×
(y∗i−1,m + y∗i,m + y∗i+1,m + ui+1,m − ui−2,m) = Yi,m + Ui,m +
Vi,m +Wi,m. Thus the properties of RV(m)

AC1
are given from those

of Yi,m, Ui,m, Vi,m, and Wi,m. Given Assumptions 1 and 3(a),
it follows directly that E(Yi,m)= σ 2

i,m and E(Ui,m)= E(Vi,m)=
E(Wi,m) = 0, demonstrating E[RV(m)

AC1
] =∑m

i=1 σ 2
i,m. Note that

E(Ui,m) consists of terms E(ui,muj,m), where i �= j, so Assump-
tion 3(a) suffices to establish that the expected value is 0. Given
Assumptions 1 and 3(a) and (b), the variance of RV(m)

AC1
is given

by

var
[
RV(m)

AC1

] = var

[
m∑

i=1

Yi,m +Ui,m + Vi,m +Wi,m

]

= (1)+ (2)+ (3)+ (4)+ (5).

Because all other sums are uncorrelated, the five parts are
given by (1) = var(

∑m
i=1 Yi,m), (2) = var(

∑m
i=1 Ui,m), (3) =

var(
∑m

i=1 Vi,m), (4) = var(
∑m

i=1 Wi,m), and (5) = 2 ×
cov(

∑m
i=1 Vi,m,

∑m
i=1 Wi,m). We derive the expressions of these

five terms as follow:

1. Yi,m = y∗i,m(y∗i−1,m + y∗i,m + y∗i+1,m), and, given Assump-

tion 1, it follows that E[y∗2
i,my∗2

j,m] = σ 2
i,mσ 2

j,m for i �= j and

E[y∗2
i,my∗2

j,m] = E[y∗4
i,m] = 3σ 4

i,m for i = j, such that

var(Yi,m) = 3σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m − [σ 2

i,m]2

= 2σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m.

The first-order autocorrelation of Yi,m is

E[Yi,mYi+1,m]
= E

[
y∗i,m(y∗i−1,m + y∗i,m + y∗i+1,m)

× y∗i+1,m(y∗i,m + y∗i+1,m + y∗i+2,m)
]

= E[y∗i,m(y∗i,m + y∗i+1,m)y∗i+1,m(y∗i,m + y∗i+1,m)] + 0

= 2E[y∗2
i,my∗2

i+1,m] = 2σ 2
i,mσ 2

i+1,m,

such that cov(Yi,m,Yi+1,m) = σ 2
i,mσ 2

i+1,m, whereas cov(Yi,m,

Yi+h,m)= 0 for |h| ≥ 2. Thus

(1) =
m∑

i=1

(2σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m)

+
m∑

i=2

σ 2
i,mσ 2

i−1,m +
m−1∑
i=1

σ 2
i,mσ 2

i+1,m

= 2
m∑

i=1

σ 4
i,m + 2

m∑
i=1

σ 2
i,mσ 2

i−1,m + 2
m∑

i=1

σ 2
i,mσ 2

i+1,m

− σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m

= 6
m∑

i=1

σ 4
i,m − 2

m∑
i=1

σ 2
i,m(σ 2

i,m − σ 2
i−1,m)

+ 2
m∑

i=1

σ 2
i,m(σ 2

i+1,m − σ 2
i,m)− σ 2

1,mσ 2
0,m − σ 2

m,mσ 2
m+1,m

= 6
m∑

i=1

σ 4
i,m − 2

m∑
i=2

σ 2
i,m(σ 2

i,m − σ 2
i−1,m)

+ 2
m−1∑
i=1

σ 2
i,m(σ 2

i+1,m − σ 2
i,m)

− σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m − 2σ 2
1,m(σ 2

1,m − σ 2
0,m)

+ 2σ 2
m,m(σ 2

m+1,m − σ 2
m,m)

= 6
m∑

i=1

σ 4
i,m − 2

m−1∑
i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m)

+ σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m.

2. Ui,m = (ui,m − ui−1,m)(ui+1,m − ui−2,m), and, from
E(U2

i,m)= E(ui,m −ui−1,m)2E(ui+1,m −ui−2,m)2, it follows that
var(Ui,m) = 4ω4. The first- and second-order autocovariances
are given by

E(Ui,mUi+1,m) = E
[
(ui,m − ui−1,m)(ui+1,m − ui−2,m)

× (ui+1,m − ui,m)(ui+2,m − ui−1,m)
]

= E[ui−1,mui+1,mui+1,mui−1,m] + 0

= ω4

and

E(Ui,mUi+2,m) = E
[
(ui,m − ui−1,m)(ui+1,m − ui−2,m)

× (ui+2,m − ui+1,m)(ui+3,m − ui,m)
]

= E[ui,mui+1,mui+1,mui,m] + 0

= ω4,

whereas E(Ui,mUi+h,m) = 0 for |h| ≥ 3. Thus (2) = m4ω4 +
2(m− 1)ω4 + 2(m− 2)ω4 = 8ω4m− 6ω4.

3. Vi,m = y∗i,m(ui+1,m − ui−2,m) such that E(V2
i,m) = σ 2

i,m ×
2ω2 and E[Vi,mVi+h,m] = 0 for all h �= 0. Thus (3) =
var(

∑m
i=1 Vi,m)= 2ω2 ∑m

i=1 σ 2
i,m.

4. Wi,m = (ui,m − ui−1,m)(y∗i−1,m + y∗i,m + y∗i+1,m) such that

E(W2
i,m)= 2ω2(σ 2

i−1,m +σ 2
i,m +σ 2

i+1,m). The first-order autoco-
variance equals

cov(Wi,m,Wi+1,m) = E[−u2
i,m(y∗2

i,m + y∗2
i+1,m)]

= −ω2(σ 2
i,m + σ 2

i+1,m),
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whereas cov(Wi,m,Wi+h,m)= 0 for |h| ≥ 2. Thus

(4) =
m∑

i=1

[
2ω2(σ 2

i−1,m + σ 2
i,m + σ 2

i+1,m)

−
m∑

i=2

ω2(σ 2
i,m + σ 2

i−1,m)−
m−1∑
i=1

ω2(σ 2
i,m + σ 2

i+1,m)

]

= ω2
m∑

i=1

(σ 2
i−1,m + σ 2

i+1,m)

+ω2[σ 2
1,m + σ 2

0,m + σ 2
m,m + σ 2

m+1,m]

= 2ω2
m∑

i=1

σ 2
i,m +ω2[σ 2

0,m − σ 2
m,m + σ 2

m+1,m − σ 2
1,m]

+ω2[σ 2
1,m + σ 2

0,m + σ 2
m,m + σ 2

m+1,m]

= 2ω2
m∑

i=1

σ 2
i,m + 2ω2[σ 2

0,m + σ 2
m+1,m].

5. The autocovariances between the last two terms are given
by

E[Vi,mWi+h,m] = E
[
y∗i,m(ui+1,m − ui−2,m)(ui+h,m − ui−1+h,m)

× (y∗i−1+h,m + y∗i+h,m + y∗i+1+h,m)
]
,

showing that cov(Vi,m,Wi±1,m)= ω2σ 2
i,m, whereas all other co-

variances are 0. From this, we conclude that

(5) = 2

[
2

m∑
i=1

ω2σ 2
i,m −ω2(σ 2

1,m + σ 2
m,m)

]

= 4ω2
m∑

i=1

σ 2
i,m − 2ω2(σ 2

1,m + σ 2
m,m).

Adding up the five terms, we find that

6
m∑

i=1

σ 4
i,m − 2

m−1∑
i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m)

+ σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m + 8ω4m− 6ω4

+ 2ω2
m∑

i=1

σ 2
i,m + 2ω2

m∑
i=1

σ 2
i,m + 2ω2[σ 2

0,m + σ 2
m+1,m]

+ 4ω2
m∑

i=1

σ 2
i,m − 2ω2[σ 2

1,m + σ 2
m,m]

= 8ω4m+ 8ω2
m∑

i=1

σ 2
i,m − 6ω4 + 6

m∑
i=1

σ 4
i,m + Rm,

where

Rm ≡ −2
m∑

i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m)

+ σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m

+ 2ω2(σ 2
0,m − σ 2

1,m + σ 2
m+1,m − σ 2

m,m).

Under BTS, it follows immediately that Rm = O(m−2). Un-
der CTS, we use the Lipschitz condition, which states that
∃ ε > 0 such that |σ 2(t)−σ 2(t+h)| ≤ εh for all t and all h. This
shows that |σ 2

i,m| = | ∫ ti,m
ti−1,m

σ 2(s)ds| ≤ δ supti−1,m≤s≤ti,m σ 2(s)=
O(m−1), because δ = δi,m = (b − a)/m = O(m−1) under CTS,
and

|σ 2
i,m − σ 2

i−1,m| =
∣∣∣∣
∫ ti,m

ti−1,m

σ 2(s)− σ 2(s− δ)ds

∣∣∣∣

≤
∫ ti,m

ti−1,m

|σ 2(s)− σ 2(s− δ)|ds

≤ δ sup
ti−1,m≤s≤ti,m

|σ 2(s)− σ 2(s− δ)|

≤ δ2ε = O(m−2).

Thus
∑m

i=1(σ
2
i+1,m − σ 2

i,m)2 ≤ m · (δ ε
m )2 = O(m−3), which

proves that Rm = O(m−2), under CTS.
The asymptotic normality is established by expressing RV(m)

AC1
as a sum of a martingale difference sequence. Let ui,m = u(ti,m),
and define the sigma algebra Fi,m = σ(y∗i,m, y∗i−1,m, . . . ,ui,m,

ui−1,m, . . .). First, note that yi,m(yi−1,m + yi,m + yi+1,m) =
σ 2

i,m + ξ
(1)
i−1,m + ξ

(2)
i,m + ξ

(3)
i+1,m, where

ξ
(1)
i−1,m ≡ −ui−1,my∗i−1,m + ui−1,mui−2,m,

ξ
(2)
i,m ≡ y∗i,my∗i,m − σ 2

i,m + y∗i,my∗i−1,m − y∗i,mui−2,m

+ ui,my∗i−1,m + ui,my∗i,m − ui,mui−2,m − ui−1,my∗i,m,

and

ξ
(3)
i+1,m ≡ y∗i,my∗i+1,m + y∗i,mui+1,m + ui,my∗i+1,m

+ ui,mui+1,m − ui−1,my∗i+1,m − ui−1,mui+1,m.

Thus, if we define ξi,m ≡ (ξ
(1)
i,m + ξ

(2)
i,m + ξ

(3)
i,m) (and use the con-

ventions ξ
(2)
0,m = ξ

(3)
0,m = ξ

(3)
1,m = ξ

(1)
m,m = ξ

(1)
m+1,m = ξ

(2)
m+1,m = 0),

then it follows that [RV(m)
AC1

− IV] = ∑m+1
i=0 ξi,m, where {ξi,m,

Fi,m }m+1
i=0 is a martingale difference sequence that is squared-

integrable, because

E(ξ2
i,m)=




ω2σ 2
0 +ω4 <∞ for i = 0

2ω4 + σ 2
0 σ 2

1 +ω2σ 2
0 + 2ω2σ 2

1 + σ 4
1 <∞

for i = 1

2σ 4
i,m + 4σ 2

i,mσ 2
i−1,m + 4σ 2

i,mω2

+ 4σ 2
i−1,mω2 + 8ω4 <∞ for 1 < i < m

σ 4
m + 4σ 2

mσ 2
m−1 + 6ω2σ 2

m + 4ω2σ 2
m−1 + 5ω4 <∞

for i = m

σ 2
mσ 2

m+1 + 2ω2σ 2
m+1 + 2ω4 <∞

for i = m+ 1.

Because m−1/2[RV(m)
AC1

− IV] = m−1/2 ∑m+1
i=0 ξi,m, we can ap-

ply the central limit theorem for squared-integrable martingales
(see Shiryaev 1995, p. 543, thm. 4) where the only remain-
ing condition to be verified is the conditional Lindeberg con-



Hansen and Lunde: Realized Variance and Market Microstructure Noise 159

dition,

m+1∑
i=0

E
[
m−1ξ2

i,m1{|m−1/2ξi,m|>ε}
∣∣Fi−1,m

] p→ 0 as m →∞.

Because E[ξ2
i,m1{|m−1/2ξi,m|>ε}] is bounded by E[ξ2

i,m] < ∞
and supi P(1{|ξi,m|>ε

√
m } = 0) → 0, for all ε > 0, it follows

that

E

∣∣∣∣∣m−1
m+1∑
i=0

ξ2
i,m1{|m−1/2ξi,m|>ε} − 0

∣∣∣∣∣

≤ m−1
m+1∑
i=0

∣∣E[
ξ2

i,m1{|m−1/2ξi,m|>ε}
]− 0

∣∣

→ 0 as m →∞.

The Lindeberg condition now follows because convergence
in L1 implies convergence in probability.

Proof of Corollary 2

The MSEs are given from Lemmas 2 and 3, because BTS
implies that the O(m−2) term in Lemma 3 (see the proof of
Lemma 3) is given by

Rm = 0− 2

(
IV2

m2
+ IV2

m2

)
+ IV2

m2
+ IV2

m2
+ 0 =−2IV2

m2
.

Equating ∂ MSE(RV(m))/∂m ∝ 4λ2m + 6λ2 − m−2 with 0
yields the first-order condition of the corollary, and the sec-
ond result follows similarly from ∂ MSE(RV(m)

AC1
)/∂m ∝ 4λ2 −

3m−2 + 2m−3.

Proof of Theorem 2

Under CTS, we can define δm = (b−a)/m = ti,m − ti−1,m for
all i = 1, . . . ,m. To simplify our notation, let ui,m ≡ u(ti,m) and
note that

E(ei,mei+h,m) = E[ui,m − ui−1,m][ui+h,m − ui+h−1,m]
= 2π(hδm)− π((h− 1)δm)− π((h+ 1)δm)

= [
π(hδm)− π((h+ 1)δm)

]
− [

π((h− 1)δm)− π(hδm)
]
,

such that
qm∑

h=1

E(ei,mei+h,m)

= [
π(qmδm)− π((qm + 1)δm)

]− [π(0)− π(δm)],
where the first term equals 0 given Assumption 4. Further, by
Assumption 4, we have that y∗i,m is uncorrelated with the noise
process when separated in time by at least θ0. Therefore,

0 = E
[
y∗i,m

(
ui+qm,m − ui−qm−1,m

)]
= E

[
y∗i,m

(
ei+qm,m + · · · + ei−qm,m

)]
and, similarly,

0 = E
[
ei,m

(
y∗i+qm,m + · · · + y∗i−qm,m

)]
,

which implies that

ρm =
m∑

i=1

E[y∗i,mei,m] = −
m∑

i=1

qm∑
h=1

E[y∗i,mei+h,m + y∗i,mei−h,m]

and

ρm =
m∑

i=1

E[y∗i,mei,m] = −
m∑

i=1

qm∑
h=1

E[ei,my∗i+h,m + ei,my∗i−h,m].

For h �= 0, we have that E(yi,myi+h,m)= (E[y∗i,mei+h,m + ei,m ×
y∗i+h,m]+E(ei,mei+h,m), because E(y∗i,my∗i+h,m)= 0 by Assump-
tion 4. It now follows that

E

[ qm∑
h=1

m∑
i=1

yi,myi−h,m + yi,myi+h,m

]

=−2ρm − 2m[π(0)− π(δm)],
which proves that RV(m)

ACqm
is unbiased.

APPENDIX B: CONFIDENCE INTERVAL FOR
VOLATILITY SIGNATURE PLOTS

In our empirical analysis, we seek a measure that is informa-
tive about the precision of our bias-corrected RVs. A minimum
requirement is that the sample average of RVAC is in a neigh-
borhood of average integrated variance,

σ̄ 2 ≡ n−1
n∑

t=1

IVt,

which may be estimated by

̂̄σ 2 = n−1
n∑

t=1

ÎVt,

where we use RV(1 tick)
ACNW30,t

≡ (RV(1 tick), tr
ACNW30,t

+ RV(1 tick), bid
ACNW30,t

+
RV(1 tick), ask

ACNW30,t
)/3 as our choice for ÎVt, because it is likely to

be conditionally unbiased for IVt. Next, we consider the prob-
lem of constructing a confidence interval for σ̄ 2. Andersen,
Bollerslev, Diebold, and Labys (2000a, 2003) have shown that
the realized variance is approximately log-normally distributed.
Here we follow this idea and assume that log ÎVt ∼ N(ξ,ω2),
such that the unconditional expected value is given by E[ÎVt] =
σ̄ 2 = exp(ξ + ω2/2) and var(ÎVt) = [exp(ω2) − 1] exp(ω2 +
2ξ).

Now ξ̂ ± σ
ξ̂
c1−α/2 is a (1 − α)-confidence interval for ξ,

where ξ̂ = n−1 ∑n
t=1 log ÎVt, σ 2

ξ̂
≡ var(ξ̂ ), and c1−α/2 is the ap-

propriate quantile from the standard normal distribution. Be-
cause ξ = log(µ)−ω/2, it follows that

P[l ≤ ξ ≤ u] = P[l+ω/2 ≤ log(σ̄ 2)≤ u+ω/2]
= P

[
exp(l+ω/2)≤ σ̄ 2 ≤ exp(u+ω/2)

]
,

such that the confidence interval for ξ can be converted into one
for σ̄ 2. These calculations require that ω2 be known, whereas in
practice we must estimate ω2. Thus we define ηt ≡ log ÎVt − ξ̂
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and use the Newey–West estimator,

ω̂2 ≡ 1

n− 1

n∑
t=1

η2
t + 2

q∑
h=1

(
1− h

q+ 1

)
1

n− h

n−h∑
t=1

ηtηt+h,

where q = int
[
4(n/100)2/9],

and subsequently set σ̂ 2
ξ̂
≡ ω̂2/n. An approximate confidence

interval for σ̄ 2 is now given by

CI(σ̄ 2)≡ exp
(
log(̂̄σ 2

)± σ̂
ξ̂
c1−α/2

)
,

which we recenter about log(̂̄σ 2
) (rather than ξ̂+ ω̂/2), because

this ensures that the sample average of ÎVt is inside the confi-

dence interval, ̂̄σ 2 ∈ CI(σ̄ 2).

APPENDIX C: ESTIMATION OF COINTEGRATION
VECTOR AUTOREGRESSION

To avoid a linear deterministic trend in the price series, we
impose the constraint µ = αρ, where ρ = (ρ1, ρ2)

′. (Although
a linear deterministic trend may be quite sensible over a very
long period, an estimate of such would be mostly spurious
within a single day.) On the other hand, we do not want to
entirely exclude the constant, because we want to allow for a
bid–ask spread to have a nontrivial expected value, and this is
fully accommodated by the restriction µ= αρ.

Although the model is simple to estimate by least squares
when the constant in unrestricted or set to 0, the estimation un-
der a restricted constant is slightly more complicated.

1. Regress �pti on (p′ti−1
β, ι,�p′ti−1

, . . . ,�p′ti−k+1
)′ by least

squares and obtain (α̂, µ̂, �̂1, . . . , �̂k−1).
2. Now set ρ̂ = (α̂′α̂)−1α̂′µ̂. (−ρ̂1 captures average dif-

ference between transaction prices and the mid-quotes,
and −ρ̂2 captures “average” spread between ask and bid
quotes.)

3. Regress �pti on (p′ti−1
β + ρ̂′,�p′ti−1

, . . . ,�p′ti−k+1
)′ by

least squares and obtain (α̂, �̂1, . . . , �̂k−1).

Define α̂⊥ ≡ 1
ς
[ι − α̂(α̂′α̂)−1α̂′ι], where ς ≡ ι′ι − ι′α̂ ×

(α̂′α̂)−1α̂′ι. Then it follows that α̂′α̂⊥ = 1
ς
[α̂′ι− α̂′α̂(α̂′α̂)−1×

α̂′ι] = 1
ς
[α̂′

ι− α̂′
ι] = 0 and ι′α̂⊥ = 1

ς
[ι′ι− ι′α̂(α̂′α̂)−1α̂′ι] = 1.

In the impulse response analysis, we use the estimator �̂ ≡
1
m

∑m
i=1(ε̂ti − ε̂)(ε̂ti − ε̂)′.

[Received February 2004. Revised September 2005.]
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