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Abstract

There are two variance components embedded in the returns constructed using high frequency

asset prices: the time-varying variance of the unobservable efficient returns that would prevail in a

frictionless economy and the variance of the equally unobservable microstructure noise. Using sample

moments of high frequency return data recorded at different frequencies, we provide a simple and

robust technique to identify both variance components.

In the context of a volatility-timing trading strategy, we show that careful (optimal) separation of

the two volatility components of the observed stock returns yields substantial utility gains.

r 2004 Elsevier B.V. All rights reserved.

JEL classification: G12; C14; C22
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1. Introduction

The logarithm of a recorded asset price can be written as the sum of the logarithm of the
efficient price and a noise component that is induced by microstructure frictions, such as
price discreteness and bid-ask bounce effects. Accordingly, the variance of continuously
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compounded returns based on recorded logarithmic prices depends on the variance of the
underlying efficient returns and the variance of the microstructure noise components in
returns. Both variance measures carry a fundamental economic significance. The variance
of the efficient return process is a crucial ingredient in the practise and theory of asset
valuation and risk management. The variance of the microstructure noise component
reflects the market structure and the price setting behavior of market participants and
thereby contains information about the market’s fine-grain dynamics.
The availability of high frequency data provides researchers with an opportunity to

learn about financial return volatility through robust identification methods that are
simple to implement in that they are based on straightforward descriptive statistics (see the
literature review of Andersen et al., 2002). Nonetheless, the observation that recorded asset
prices sampled at high frequencies contain a nonnegligible microstructure friction
component has imposed theoretical and empirical limitations on the exploitation of the
informational content of high frequency data. This paper contributes to the literature on
nonparametric variance estimation through high frequency data by re-evaluating the
identification potential of high frequency data. Specifically, we show that both unobserved

components of the variance of recorded asset returns can be estimated using high
frequency data sampled at different frequencies. Very high frequency asset price data can
be employed to consistently estimate the microstructure noise variance. Data sampled at
lower frequencies can be utilized to learn about the efficient return variance. While this
latter fact is recognized in the literature, albeit not formally studied (see Andersen et al.,
2001, for instance), we provide a rigorous and easily implementable procedure to purge
high frequency return data of their microstructure components and extract information
about the true variance dynamics by sampling at optimal frequencies. In this context, we
show that the economic benefit of optimal sampling can be substantial.
Our procedure builds directly on the work of French et al. (1987), Schwert (1989,

1990a,b), Schwert and Seguin (1991), and more recently, Andersen et al. (2001), Andersen
et al. (2003), and Barndorff-Nielsen and Shephard (2002, 2004). As in the early literature,
as represented by French et al. (1987) for example, we measure variance by using sample
averages of squared return data. In agreement with the recent work of Andersen et al.
(2001), Andersen et al. (2003), and Barndorff-Nielsen and Shephard (2002, 2004), we
provide robust theoretical justifications for our variance estimates in the context of a
continuous-time specification for the evolution of the underlying logarithmic price and the
availability of high frequency return data. In contrast to both the early approaches to
nonparametric variance identification and the current work on realized variance
estimation, we do not simply focus on the variance dynamics of recorded stock returns;
rather, we aim to identify both the variance of the efficient return component and the
variance of the microstructure contaminations by exploiting the considerable information
potential of high frequency return data.
The first stage of our analysis makes use of data sampled at the highest possible

frequency. In recent work, Bandi and Russell (2004) show that sample second moments
constructed using observed high frequency return data provide consistent estimates of the
second moment of the unobserved microstructure frictions in a canonical model of price
determination with MA(1) microstructure noise. We use this result to identify the
variance of the noise component in the recorded return data. This procedure represents
the substantive core of the identification of the variance of the zero-mean microstructure
noise.
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We then turn to the second stage of our method, namely, the identification of the
genuine variance features of the efficient return process. Should the efficient price process
be observable, then high sampling frequencies would yield consistent estimation through
the conventional realized variance estimator (Andersen et al., 2003; Barndorff-Nielsen and
Shephard, 2002). If the true price process is not observable, as is the case in practise due to
microstructure frictions, then the realized variance estimator is an inconsistent estimate of
the integrated variance of the efficient logarithmic price process (see Bandi and Russell,
2004, and the independent work of Zhang et al., 2004). In effect, frequency increases
provide information about the underlying integrated variance but entail noise accumula-
tion that impacts both the bias and the variance of the realized variance estimator (Bandi
and Russell, 2004; Zhang et al., 2004). Thus, the optimal sampling frequency will be finite
and can be chosen to balance a bias/variance trade-off. Following Bandi and Russell
(2004), we quantify the trade-off by writing the conditional mean-squared error (MSE) of
the realized variance estimator as a function of the sampling frequency. Subsequently, we
use the estimated MSE to evaluate the optimal sampling frequency through a
straightforward minimization problem. In light of this discussion, the identification of
the efficient-price integrated variance is conducted at frequencies that are lower than the
frequencies used to consistently estimate the second moment of the noise process.

In sum, we use sample moments of high frequency return data sampled at different
frequencies to learn about two important quantities, i.e., the time-varying variance of the
unobserved efficient return process and the variance of the unobserved microstructure noise
contaminations. In keeping with recent approaches to model-free volatility estimation as
represented by Andersen et al. (2001), Andersen et al. (2003), and Barndorff-Nielsen and
Shephard (2002, 2004), for example, little structure is required to obtain identification of
the quantities of interest by virtue of robust nonparametric estimators.

Our empirical work focuses on the stocks in the S&P100 index. We employ midpoints of
bid and ask prices. Using cross-sectional estimates of the standard deviations of the
unobserved noise components, we find that a 1% increase in the quoted spreads translates
into a 1% increase in the noise standard deviations. We also find that the median noise
standard deviation is about a quarter of the median spread. Since most trades occur within
the spread and the midpoints contain residual noise, the magnitude of the estimated noise
standard deviations is economically plausible.

Subsequently, we employ estimated features of the noise component (namely, the second
and fourth noise moments) to identify the variance of the efficient return process at
frequencies that are meant to optimally balance the bias and variance of the realized
variance estimator. We show that the optimal sampling frequency of the realized variance
estimator depends positively on a signal-to-noise ratio, i.e., the ratio between the
underlying integrated variance over the period and the second moment of the noise
component. We find that the optimal frequencies are skewed to the right with a mean value
of about four minutes and a median value of 3.4min. The optimal frequencies vary
between approximately 0.4min and 13.8min, with the highest frequencies being generally
associated with the highest ratios. These frequencies are potentially very different from
those used and/or conjectured in the existing literature, such as the 5- and the 15-min
frequencies, and deliver substantial MSE gains. In addition, the optimal frequencies vary
considerably over time. We find that failing to optimally sample realized variance across
periods negatively affects the dynamic and forecasting properties of the nonparametric
variance estimates.
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We also show that the cross-sectional relation between the estimated noise standard
deviations and the square root of the average efficient return variances is positive and
significant as implied by the ‘‘operating cost’’ and ‘‘asymmetric information’’ theories of
bid-ask spread determination.
By implementing the volatility-timing asset allocation strategy of Fleming et al. (2001,

2003), we find that there are significant utility gains to be obtained from our optimal
sampling method. Specifically, we show that a risk-averse investor who is given the option
of choosing volatility forecasts based on our optimal sampling method versus volatility
forecasts based on the proposed frequencies in the literature would be willing to pay
between roughly 25 and 300 basis points per year to achieve the level of utility that is
provided by our optimal sampling procedure.
The paper proceeds as follows. Section 2 lays out the underlying price formation

mechanism. In Section 3 we discuss the use of very high frequency data to identify the
variance of the unobserved noise component of the recorded prices. In Section 4 we move
to lower frequencies and focus on the optimal sampling of high frequency asset price data
for the purpose of identifying the efficient-price integrated variance. Section 5 describes the
data. Section 6 provides estimates of the variances of both unobserved components of the
observed returns, i.e., microstructure noise and efficient returns. Section 7 provides
simulations. Section 8 reports the economic gains of optimal sampling. Section 9
concludes.

2. Price formation mechanism

Let h denote a trading day. Consider n trading days and write the observed logarithmic
price process at time ih asepih ¼ pih þ Zih; i ¼ 1; 2; . . . ; n, (1)

where pih is the logarithmic efficient price, i.e., the price that would prevail in the absence
of market microstructure frictions, and Zih represents logarithmic microstructure noise.
Divide each trading day into M subperiods and define the observed high frequency returns
as erj;i ¼ epði�1Þhþjd � epði�1Þhþðj�1Þd; j ¼ 1; 2; . . . ;M, (2)

where d ¼ h=M. Hence, erj;i is the jth intradaily observed return for day i. Such a return is
defined aserj;i ¼ rj;i þ �j;i, (3)

where

rj;i ¼ pði�1Þhþjd � pði�1Þhþðj�1Þd; j ¼ 1; 2; . . . ;M, (4)

and

�j;i ¼ Zði�1Þhþjd � Zði�1Þhþðj�1Þd; j ¼ 1; 2; . . . ;M, (5)

have obvious interpretations in terms of efficient return and microstructure noise in the
return process. For simplicity, hereafter we set h ¼ 1 without loss of generality. Below we
give the assumptions that we impose on the efficient price process and microstructure
noise.
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Assumption 1 (Efficient price process).
(1)
1F

refe

refe

(200

Jone

non

refe
The efficient logarithmic price process pt is a continuous stochastic volatility local
martingale. Specifically, pt ¼ mt, where mt ¼

R t

0
ss dW s and fW t : tX0g is a standard

Brownian motion.

(2)
 The spot volatility process st is càdlàg and bounded away from zero.

(3)
 The spot volatility process st is independent of W t for all t.R

(4)
 The quarticity process Qt ¼

t

0 s
4
s ds is bounded almost surely for all t.
Assumption 2 (Microstructure noise).
(1)
 The random shocks Z are i.i.d. mean zero with a bounded eighth moment.

(2)
 The true return process rj;i is independent of Zj;i for all i and for all j.
The econometrician does not observe r, i.e., the efficient return, but rather a
contaminated return series er, which is given by r plus an independent random shock �.
The true return process r is a stochastic volatility martingale difference sequence with
bounded variance for all M. The underlying stochastic volatility is permitted to display
jumps, diurnal effects, high persistence (possibly of the long memory type), and
nonstationarities.1 In view of the properties of the microstructure noise component in
the price process Z, we interpret � as being an MA(1) microstructure contamination in the
return series. The MA(1) structure of the noise returns induces both a negative first-order
autocovariance for the return series that is equal to �s2Z, i.e., the variance of the underlying
i.i.d. microstructure noise Z taken with a negative sign, as well as higher-order serial
covariances that are equal to zero.

The canonical MA(1) microstructure model is known to be valid in the case of
decentralized markets. In such markets, the random arrival of traders with idiosyncratic
price setting behavior induces microstructure contaminations in the price process that are
roughly independent, thereby providing validity to an MA(1) structure for the observed
return data. The foreign exchange market is an important example (see Bai et al., 2004).
The MA(1) model is more of an approximation when prices are set by a single specialist, as
is the case for the NYSE, for example. However, even though the serial correlations of
order higher than one can be statistically significant, their economic magnitude is often
considerably smaller than the magnitude of the first-order autocorrelations. Section 5
below confirms this fact in the case of our sample of equities. We refer the reader to Bandi
and Russell (2004) for a general approach to realized variance estimation in the presence of
dependent microstructure noise.

Our method exploits the different orders of magnitude of the components of the returns
based on recorded logarithmic prices as implied by the assumptions above. While the
efficient returns are of order Opð

ffiffiffi
d
p
Þ over periods of size d, the microstructure noise returns
or jumps, see Bates (2000), Duffie et al. (2000), Eraker et al. (2003), Pan (2002), among others, and the

rences therein. For diurnal effects, see Andersen and Bollerslev (1997a,b,1998), among others, and the

rences therein. For persistence in volatility, see Alizadeh et al. (2002), Baillie et al. (1996), Bandi and Perron

4), Bollerslev and Mikkelsen (1996, 1999), Chernov et al. (2003), Ding et al. (1993), Engle and Lee (1999),

s (2003), Meddahi (2001) and Ohanissian et al. (2004), among others, and the references therein. For

stationarities in volatility, see Comte and Renault (1998) and Bandi and Perron (2004), among others, and the

rences therein.
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are Opð1Þ over any period of time, however small. This is, of course, an asymptotic
approximation which captures the nature of realistic price formation mechanisms and the
economic difference between true and observed prices. The rounding of recorded prices to
a grid alone makes this feature of the model compelling provided sampling does not occur
between price updates. Below we expand on the economic rationale behind our modelling
design.
The efficient price dynamics are modelled as being driven by a continuous process. Time

is needed for market participants to acquire, digest, and react to new information. With the
exception of discrete responses to important, infrequent public news announcements, the
efficient price is not expected to jump from one level to another. Rather, it is expected to
adjust slowly as the market comes to grips with new information. In agreement with these
observations and standard approaches in the asset pricing and realized variance literatures,
we specify the continuously compounded return process as having an order of magnitude
equal to Opð

ffiffiffi
d
p
Þ over any time interval of size d. The characteristics of the noise process are

different from the true price characteristics since recorded prices inherently reflect
additional information. First, as noted, the observed prices cannot vary continuously;
rather, they fall on a fixed grid of prices or ticks. The changes in the prices and midquotes
are therefore discrete in nature. Furthermore, classic microstructure theory suggests that a
market maker posting prices and quotes will take into consideration the nature of its
operating costs and the needed reward for the provision of liquidity as well as the risks
associated with asymmetric information (see the review by Madhavan, 2000, and the
discussion in Section 6 below). For example, the adjustments that new limit orders
induce are necessarily discrete in nature. Hence, nonnegligible adjustments can occur to the
noise process regardless of how short the time interval is between price updates. It is
therefore natural to consider the departures of the observed returns from the true returns
as being discontinuous processes (i.e., Opð1Þ) and, hence, consistent with our assumed
structure.
In what follows we discuss the identification of the variance of the noise component, s2Z

(Section 3), and the identification of the integrated daily variance of the underlying
efficient price, V i ¼

R i

i�1 s
2
s ds (Section 4). As indicated, the former is conducted

at very high frequencies, namely, the highest frequencies at which transactions
occur. The latter is performed at optimally chosen lower frequencies. Our consistency
arguments rely on asymptotic increases in M, the number of high frequency return data,
over a trading day. Since M ¼ 1=d, where d denotes the distance between intradaily
observations, it is equivalent to write M !1 or d! 0. Hereafter, we use the notation
M !1.
3. Identification at high frequencies: volatility of the unobserved microstructure noise

Sample moments of the observed return data can be used to consistently estimate
moments of both the unobserved noise returns � and, through the specification in Eq. (5)
above, the price contaminations Z. Here we focus on the variance of the noise components,
i.e., Eð�2Þ. Bandi and Russell (2004, Corollary to Theorem 2) show thatPM

j¼1 er2j;i
M

!
p

M!1
Eð�2Þ (6)
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and, consequently,PM
j¼1 er2j;i
2M

!
p

M!1
EðZ2Þ, (7)

since Eð�2Þ ¼ 2EðZ2Þ by virtue of the MA(1) structure of the noise returns �. The intuition is
as follows. The sum of the squared observed returns can be written asXM

j¼1

er2j;i ¼XM
j¼1

r2j;i þ
XM
j¼1

�2j;i þ 2
XM
j¼1

rj;i�j;i, (8)

that is, as the sum of the squared true returns plus the sum of the squared noise returns and
a cross-product term. The price formation mechanism that is discussed and motivated in
the previous section is such that the orders of magnitude of the three terms in Eq. (8) differ
since rj;i ¼ Opð

ffiffiffi
d
p
Þ whereas �j;i ¼ Opð1Þ. Hence, the microstructure noise component

dominates the true return process at high frequencies, i.e., for values of d that are small.
When averaging the observed squared returns as in Eq. (6), the average of the squared
noise returns constitutes the dominating term in the total average. Thus, while the
remaining terms in the total average wash out due to the asymptotic order of the efficient
returns, i.e., Opð

ffiffiffi
d
p
Þ, the average of the squared noise returns converges to the second

moment of the noise returns as implied by Eq. (6). Finally, the result in Eq. (7) simply
follows from the MA(1) structure of the return contaminations. The previous discussion
suggests the following proposition.

Proposition 1a. The arithmetic average of the second powers of the observed return data

within the day,
PM

j¼1 er2j;i=M, consistently estimates the second moment of the noise returns,
Eð�2Þ. The sampling frequency d ¼ 1=M is chosen as the highest frequency at which new

information arrives (Bandi and Russell, 2004, Corollary to Theorem 2).

If the price contaminations are i.i.d. across periods, then the following extension can be
readily justified. Recall, n denotes the number of days in our sample.

Proposition 1b. The arithmetic average of the second powers of the observed return data

within and across days,
Pn

i¼1

PM
j¼1 er2j;i=nM, consistently estimates the second moment of the

noise returns, Eð�2Þ. The sampling frequency d ¼ 1=M is chosen as the highest frequency at

which new information arrives.

We now turn to the identification of the variance of the efficient return process.

4. Identification at low frequencies: volatility of the unobserved efficient return

When microstructure noise plays a role, the standard realized variance estimator loses its
asymptotic validity in that the summation of an increasing (in the limit) number of
contaminated squared return data entails infinite accumulation of noise (Bandi and
Russell, 2004; Zhang et al., 2004).

The intuition for this result comes directly from the decomposition in Eq. (8). Following
Andersen et al. (2001), Andersen et al. (2003), and Barndorff-Nielsen and Shephard (2002),
one can appeal to a standard result in continuous-time process theory to show that the first
term in the sum, namely

PM
j¼1 r2j;i, converges in probability to the daily integrated variance

of the logarithmic price process, i.e.,
R i

i�1 s
2
s ds, as the sampling frequency increases
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asymptotically (i.e., as M !1). Unfortunately, the summation of an increasing number
of contaminated squared returns, i.e.,

PM
j¼1 er2j;i, involves the summation of squared noise

terms as well. Inevitably, the sum of the squared noise contaminations diverges to infinity
almost surely. Hence, the conventional realized variance estimator cannot converge to the
object of interest, i.e., integrated variance, when the return data are affected by
microstructure frictions as implied by a realistic price formation mechanism. Instead, it
grows without bound with increases in the sampling frequency (Bandi and Russell, 2004).
Despite this observation, one can extract information from the traditional realized

variance estimator by sampling the observed return data at frequencies that optimally
balance the finite sample bias and the variance of the estimator as summarized by its
conditional (on the volatility path) MSE. In effect, frequency increases cause finite sample
bias increases due to noise accumulation. At the same time, frequency increases cause
reductions in the theoretical dispersion of the estimator. Conversely, the realized variance
estimator is expected to be less biased at lower frequencies, since noise plays a relatively
smaller role when d is large, but considerably more volatile. Bandi and Russell (2004)
quantify the trade-off between the finite sample bias and variance of the realized variance
estimator at any frequency in terms of a conditional MSE. Under Assumptions 1 and 2
above, they show that the form of the MSE is

Es

XM
j¼1

er2j;i � Z i

i�1

s2s ds

 !2

¼ 2
1

M
ðQi þ oð1ÞÞ þMbþM2aþ g, (9)

where Qi ¼
R i

i�1 s
4
s ds is the bounded (from Assumption 1(4)) quarticity of Barndorff-

Nielsen and Shephard (2002) and the parameters a, b, and g are defined as follows:

a ¼ ðEð�2ÞÞ2, (10)

b ¼ 2Eð�4Þ � 3ðEð�2ÞÞ2, (11)

and

g ¼ 4Eð�2Þ

Z i

i�1

s2s ds

� �
� Eð�4Þ þ 2ðEð�2ÞÞ2. (12)

Thus, the optimal (in a conditional MSE sense) frequency for sampling high frequency
observations to identify the integrated variance of the logarithmic price process through
the contaminated realized variance estimator

PM
j¼1 er2j;i is given by the minimum of the MSE

expansion in Eq. (9). When we specialize the analysis to an underlying price process
modelled as a constant variance diffusion in the presence of Gaussian microstructure
noise, the expansion in Eq. (9) reduces to the MSE expansion in Aı̈t-Sahalia et al. (2005).
The necessary ingredients to compute the minimum of the MSE are the second moment

of the noise process, Eð�2Þ, the fourth moment of the noise process, Eð�4Þ, and the
quarticity,

R i

i�1 s
4
s ds. The second moment of the noise returns can be readily estimated by

using the procedure in Proposition 1b. As for the fourth moment of the noise term, a
similar argument to the one in the previous section suggests the following propositions.

Proposition 2a. The arithmetic average of the fourth powers of the observed return data

within the day,
PM

j¼1 er4j;i=M, consistently estimates the fourth moment of the noise returns,
Eð�4Þ. The sampling frequency d ¼ 1=M is chosen as the highest frequency at which new

information arrives (Bandi and Russell, 2004, Corollary to Theorem 2).
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As before, if the price contaminations are i.i.d. across periods, then the following
extension can be derived. Again, recall that n denotes the number of days in our sample.

Proposition 2b. The arithmetic average of the fourth powers of the observed return data

within and across days,
Pn

i¼1

PM
j¼1 er4j;i=nM, consistently estimates the fourth moment of the

noise returns, Eð�4Þ. The sampling frequency d ¼ 1=M is chosen as the highest frequency at

which new information arrives.

We are now left with the remaining ingredient of the MSE expansion, namely, the
quarticity

R i

i�1 s
4
s ds. The traditional quarticity estimator as introduced by Barndorff-

Nielsen and Shephard (2002), i.e., M=3
PM

j¼1 er4j;i; cannot be a consistent estimator (as
M !1) in the presence of microstructure noise. In fact, as is the case for realized
variance, frequency increases cause infinite noise accumulation. Consequently, we
construct quarticity estimates by sampling at low frequencies. In view of the attention
that the 15-min sampling interval has received in empirical work (see Andersen et al., 2000,
for instance), we choose to sample every 15min. While this sampling frequency can be
conservative (i.e., lower than optimal) in the case of very liquid stocks, plausible alternative
sampling intervals for the quarticity can be shown to have a relatively small effect on the
minimum of the conditional MSE expansion and, consequently, on the optimal sampling
frequency of the realized variance estimator (see the simulations in Section 7). We
summarize the previous discussion with the following remark.

Remark 1. Following Barndorff-Nielsen and Shephard (2002), we employ a rescaled

average of the fourth powers of the observed return data within the day, M=3
PM

j¼1 er 4
j;i, to

estimate the daily quarticity of the underlying logarithmic price process,
R i

i�1 s
4
s ds. In our

empirical work we use 15-min sampling intervals.

Finally, we turn to the optimal sampling of the realized variance estimator
PM

j¼1 er2j;i.
Proposition 3. The optimal sampling frequency is chosen as the value d� ¼ 1=M� with

fM� ¼M : 2M3baþM2bb� 2 bQi ¼ 0g, (13)

where

ba ¼ Pn
i¼1

PM
j¼1 er2j;i

nM

 !2

, (14)

bb ¼ 2

Pn
i¼1

PM
j¼1 er4j;i

nM
� 3

Pn
i¼1

PM
j¼1 er2j;i

nM

 !2

, (15)

and,

bQi ¼
M

3

XM
j¼1

er4j;i. (16)

(See Bandi and Russell, 2004, Second Corollary to Theorem 3.) The sampling frequency for

estimating the quantities in the terms ba and bb follows from Propositions 1b and 2b. The

relevant sampling frequency for the quarticity estimator bQi is discussed in Remark 1.
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When the optimal sampling frequency is high, the following rule-of-thumb applies:

M��
Qi

ðEð�2ÞÞ2

� �1=3

. (17)

From a theoretical perspective, the approximation in Eq. (17) is useful in that it highlights
the main components of the optimal frequency, namely, the underlying quarticity and the
squared second moment of the noise process. The larger the squared second moment of the
noise process with respect to the quarticity of the underlying efficient price, the stronger is
the relative noise and the smaller M should be to avoid substantial contaminations. From
an applied perspective, the rule-of-thumb represents a valid and immediate methodology
for choosing the optimal frequency for a variety of stocks with different liquidity
properties. Section 6 provides empirical evidence for this result. In general, the higher the
true optimal frequency, the better the approximation.

Proposition 4. The approximate optimal sampling frequency is chosen as the value d� ¼
1=M� with

M� ¼
bQiba

 !1=3

, (18)

where

ba ¼ Pn
i¼1

PM
j¼1 er2j;i

nM

 !2

(19)

and

bQi ¼
M

3

XM
j¼1

er4j;i. (20)

(See Bandi and Russell, 2004, Remark 8.) The sampling frequency for estimating the term ba
follows from Proposition 1b. The relevant sampling frequency for the quarticity estimator bQi

is discussed in Remark 1.

The conditional MSE in Eq. (9) applies to each individual period, thereby requiring
repeated applications of the procedure. In our empirical work in Section 6 we obtain an
estimated optimal frequency (as in Proposition 3) as well as an approximate optimal
frequency (as in Proposition 4) that are valid for the entire data set by working with an
integrated version of the conditional MSE in Eq. (9). This is done by minimizing the
average (over i) of the individual conditional MSEs. Specifically, we implement the
procedure in Propositions 3 and 4 by simply replacing the individual bQi’s (as defined in
Remark 1) with 1=n

Pn
i¼1
bQi.

Before turning to a description of the data, we should mention recent contributions that
provide solutions to the issue of integrated variance estimation through the use of high
frequency data in the presence of market microstructure noise. Following early work by
Garman and Klass (1980), Parkinson (1980), and Beckers (1983), among others, Alizadeh
et al. (2002) and Brandt and Diebold (2004) suggest the use of the so-called range, i.e., the
difference between the highest and the lowest logarithmic price over a fixed sampling
interval (see, also, Andersen and Bollerslev, 1998). While the estimated range does not
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entail infinite noise accumulation since its average deviation from the underlying ‘‘efficient
range’’ is roughly equal to the average bid-ask bounce, it is a less efficient volatility
measure than the conventional realized volatility estimator. Zhang et al. (2004) provide a
consistent estimator of the integrated variance of the logarithmic price process in
Assumption 1 in the presence of market frictions as described in Assumption 2 above.
Their method is based on subsampling. Specifically, it relies on a variance estimator that
entails taking an arithmetic average of (bias-corrected) realized variance estimates
constructed on the basis of different, appropriately chosen, sampling grids. Under an
MA(1) microstructure model and ideal conditions, the estimator in Zhang et al. (2004) is
theoretically more efficient than both the range and the standard realized variance
estimator. However, the finite sample properties of this estimator are unknown in practise.
In addition, the subsampling approach partly foregoes the simplicity and empirical appeal
of the more conventional approaches as discussed by Andersen, Bollerslev, and Diebold in
their 2002 survey paper. Hansen and Lunde (2004a) propose a Newey–West bias
correction for realized variance in presence of correlated noise.

This paper remains in the confines of standard variance estimates constructed as simple
averages of squared return data as recommended in early work by French et al. (1987),
Schwert (1989, 1990a,b), and Schwert and Seguin (1991), and as more recently justified by
Andersen et al. (2001), Andersen et al. (2003), and Barndorff-Nielsen and Shephard (2002,
2004). In this context, we explicitly address an issue that the extant literature has raised but
never tackled explicitly, namely, how to preserve the simplicity of the realized variance
estimator while optimally trading off efficiency versus robustness to market microstructure
frictions. In their 2001 paper, Andersen, Bollerslev, Diebold, and Ebens write ‘‘Following
the analysis in Andersen and Bollerslev (1997a), we rely on artificially constructed five-
minute returns....The five-minute horizon is short enough that the accuracy of the
continuous record asymptotics underlying our realized volatility measures work well, and
long enough that the confounding influences from market microstructure frictions are not
overwhelming.’’ This paper provides theoretical content to the previous statement as well
as to similar statements in the applied finance literature. We offer a straightforward
methodology to optimally sample high frequency return data for the purpose of exploiting
the information potential of the classical realized variance estimator. Additionally, we
provide a characterization of the economic benefit of optimal sampling (see Section 8).

Hansen and Lunde (2004b) and Oomen (2004a,b) have recently provided interesting
theoretical extensions of the optimal sampling methods discussed in Bandi and Russell
(2004) and the present work. Hansen and Lunde (2004b) study the MSE properties of a
bias-corrected estimator for realized variance in the presence of MA(1) noise and discuss
its finite sample benefits. The Hansen and Lunde estimator is in the tradition of Zhou’s
first-order bias-corrected estimator (Zhou, 1996). Oomen (2004a) conducts optimal
sampling by considering conditional MSE expansions for biased and bias-corrected (as in
Hansen and Lunde, 2004b) realized variance estimates in the presence of an underlying
efficient price process modelled as a pure jump process of finite variation. The analysis in
Oomen (2004a,b) is in both calendar and transaction time. We now describe the data.

5. The data: S&P100 stocks

It is common practise in the realized variance literature to use midpoints of bid-ask
quotes as measures of the true prices. While these measures are affected by residual noise in
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Table 1

Descriptive statistics for the S&P100 stocksa

Symbol Avg. Dur. Avg. Sprd. Avg. Price Mid. Var. Mid. 4th Da D� V�

AA 16.19 0.00206 36.04 6:71E� 07 1:36E� 11 4.71 5.2 0.00044

AEP 23.57 0.00183 41.71 4:02E� 07 5:63E� 12 5.06 5.8 0.00023

AES 28.80 0.00421 8.27 7:46E� 06 3:07E� 10 2.11 2.2 0.01148

AIG 13.46 0.00148 72.82 1:71E� 07 3:59E� 13 2.11 2.2 0.00036

ALL 18.78 0.00248 33.95 3:74E� 07 1:16E� 12 2.98 3 0.00043

AMGN� 2.71 0.00053 57.82 3:07E� 08 4:83E� 15 0.62 0.6 0.00043

AOL 9.31 0.00290 25.24 1:38E� 06 7:56E� 12 3.73 3.8 0.00105

ATI 60.96 0.00308 15.64 1:08E� 06 1:21E� 11 5.67 6 0.00053

AVP 24.06 0.00161 49.07 2:05E� 07 1:33E� 12 3.87 4.2 0.00020

AXP 12.83 0.00202 34.13 4:63E� 07 1:87E� 12 3.30 3.4 0.00051

BA 14.04 0.00190 43.52 2:81E� 07 7:91E� 13 2.60 2.6 0.00037

BAC 8.13 0.00150 61.15 1:50E� 07 8:88E� 13 2.25 2.4 0.00030

BAX 22.30 0.00158 55.36 3:04E� 07 4:93E� 12 4.29 5 0.00022

BCC 29.42 0.00259 34.96 4:37E� 07 3:30E� 12 4.08 4.4 0.00034

BDK 20.96 0.00194 43.13 2:58E� 07 7:58E� 13 2.54 2.6 0.00032

BHI 17.58 0.00251 34.51 4:04E� 07 1:25E� 12 2.70 2.8 0.00073

BMY 10.51 0.00201 45.11 3:02E� 07 1:09E� 12 3.06 3.2 0.00036

BNI 26.44 0.00261 27.90 5:36E� 07 2:86E� 12 4.87 5 0.00033

BUD 25.99 0.00149 48.70 2:49E� 07 1:85E� 12 5.44 6.2 0.00015

C 8.00 0.00194 44.48 3:44E� 07 8:45E� 13 2.60 2.6 0.00055

CCU 15.48 0.00202 47.11 3:14E� 07 1:54E� 12 2.38 2.4 0.00060

CI 17.57 0.00133 92.69 1:58E� 07 1:02E� 12 1.10 1.2 0.00046

CL 15.28 0.00159 55.66 1:41E� 07 1:31E� 12 2.33 2.6 0.00020

CPB 27.09 0.00274 27.00 1:11E� 06 1:51E� 11 8.23 8.8 0.00038

CSC 18.46 0.00236 47.18 4:27E� 07 2:44E� 12 2.99 3 0.00067

CSCO� 4.63 0.00086 16.85 1:05E� 07 4:45E� 14 0.82 0.8 0.00105

DAL 19.34 0.00238 32.76 3:73E� 07 1:29E� 12 2.68 2.8 0.00058

DD 14.13 0.00170 45.04 2:74E� 07 8:05E� 13 3.05 3.2 0.00034

DIS 10.18 0.00276 23.26 9:45E� 07 3:98E� 12 5.08 5.2 0.00055

DOW 21.45 0.00251 30.03 6:93E� 07 3:27E� 12 4.43 4.6 0.00040

EK 20.32 0.00253 29.17 6:47E� 07 2:83E� 12 3.72 3.8 0.00051

EMC 11.86 0.00286 13.49 9:87E� 07 7:25E� 12 2.49 2.6 0.00156

EP 21.25 0.00253 37.04 5:01E� 07 2:51E� 12 3.03 3 0.00070

ETR 31.37 0.00174 41.05 2:04E� 07 1:41E� 12 3.38 3.6 0.00021

EXC 23.66 0.00165 49.94 2:81E� 07 2:44E� 12 4.15 4.6 0.00031

F 19.92 0.00241 14.69 2:28E� 06 2:02E� 11 10.32 10.6 0.00041

FDX 12.97 0.00181 54.83 2:48E� 07 1:12E� 12 3.51 3.6 0.00030

G 21.44 0.00247 33.20 3:80E� 07 1:43E� 12 4.14 4.2 0.00031

GD 20.63 0.00127 89.12 1:87E� 07 1:94E� 12 2.64 3 0.00023

GE 5.79 0.00182 37.42 5:20E� 07 1:10E� 12 3.45 3.4 0.00050

GM 19.02 0.00135 51.81 2:35E� 07 1:89E� 12 2.83 3 0.00022

GS 10.41 0.00139 82.40 1:74E� 07 1:25E� 12 1.98 2.2 0.00042

HAL 16.25 0.00288 15.21 2:02E� 06 2:11E� 11 2.51 2.6 0.00153

HCA 20.04 0.00199 42.25 3:63E� 07 2:29E� 12 2.25 2.4 0.00040

HD 10.69 0.00142 50.37 2:54E� 07 3:11E� 12 2.98 3.4 0.00031

HET 25.76 0.00273 38.39 6:12E� 07 3:96E� 12 3.28 3.4 0.00049

HIG 19.86 0.00152 65.93 1:98E� 07 7:34E� 13 2.77 2.8 0.00031

HNZ 18.67 0.00219 40.93 2:75E� 07 1:07E� 12 4.10 4.2 0.00020

HON 12.94 0.00253 34.34 6:44E� 07 3:98E� 12 1.48 1.4 0.00104

HWP 16.91 0.00217 20.60 1:13E� 06 1:31E� 11 5.03 5.2 0.00063

IBM 7.85 0.00106 103.05 1:77E� 07 1:99E� 12 2.38 2.6 0.00029

INTC� 2.62 0.00053 31.89 3:90E� 08 3:84E� 15 0.51 0.6 0.00073

IP 15.02 0.00167 42.93 2:85E� 07 1:25E� 12 3.49 3.6 0.00033

JNJ 16.33 0.00134 57.91 1:88E� 07 6:70E� 13 3.45 3.6 0.00021

JPM 10.23 0.00254 29.76 1:10E� 06 1:16E� 11 3.50 3.6 0.00114

KO 16.10 0.00162 46.33 2:65E� 07 2:82E� 12 4.69 5.4 0.00024

LEH 12.07 0.00179 59.25 2:83E� 07 3:31E� 12 2.05 2.2 0.00062

F.M. Bandi, J.R. Russell / Journal of Financial Economics 79 (2006) 655–692666
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Table 1 (continued )

Symbol Avg. Dur. Avg. Sprd. Avg. Price Mid. Var. Mid. 4th Da D� V�

LTD 31.81 0.00225 17.69 1:19E� 06 1:01E� 11 4.50 4.6 0.00059

LU 21.11 0.00403 5.71 5:18E� 06 1:66E� 10 8.88 9.2 0.00116

MAY 24.02 0.00238 35.56 3:19E� 07 1:82E� 12 3.22 3.4 0.00034

MCD 14.55 0.00268 26.81 5:62E� 07 1:78E� 12 6.96 7.2 0.00023

MDT 13.81 0.00169 46.96 2:92E� 07 1:87E� 12 3.34 3.6 0.00034

MEDI� 4.21 0.00121 40.90 1:10E� 07 8:70E� 14 0.66 0.6 0.00102

MER 9.00 0.00194 47.72 3:58E� 07 3:63E� 12 2.75 3 0.00067

MMM 13.28 0.00104 114.76 3:54E� 07 9:98E� 12 4.00 5 0.00025

MO 13.27 0.00157 51.20 1:92E� 07 2:41E� 13 5.09 5.2 0.00012

MRK 13.79 0.00134 59.96 2:19E� 07 6:10E� 13 3.69 3.8 0.00019

MSFT� 1.96 0.00035 60.19 1:74E� 08 1:14E� 15 0.47 0.4 0.00043

MWD 9.90 0.00171 49.87 2:93E� 07 3:29E� 12 2.15 2.2 0.00059

NSC 25.73 0.00263 21.76 9:40E� 07 7:43E� 12 5.05 5.2 0.00055

NSM 14.44 0.00306 26.63 1:05E� 06 8:84E� 12 4.36 4.4 0.00103

NXTL� 7.49 0.00323 5.23 1:39E� 06 4:27E� 12 0.41 0.4 0.01272

ONE 16.05 0.00218 35.65 3:93E� 07 2:05E� 12 3.28 3.4 0.00047

ORCL� 5.52 0.00097 16.00 1:19E� 07 2:52E� 14 0.97 1 0.00095

PEP 12.72 0.00149 49.68 3:42E� 07 2:85E� 12 4.71 5.2 0.00023

PFE 7.43 0.00190 41.05 2:76E� 07 4:07E� 13 4.81 4.8 0.00024

PG 10.36 0.00115 83.91 9:70E� 08 3:38E� 13 2.79 3 0.00019

ROK 42.41 0.00299 18.73 1:41E� 06 2:42E� 11 5.88 6.2 0.00071

RSH 27.96 0.00247 27.74 1:13E� 06 1:50E� 11 4.03 4.2 0.00078

RTN 23.66 0.00211 37.91 4:57E� 07 1:85E� 12 3.82 4 0.00032

S 15.60 0.00169 52.78 2:05E� 07 1:11E� 12 3.71 4 0.00025

SBC 11.55 0.00205 36.52 3:79E� 07 1:33E� 12 3.42 3.4 0.00041

SLB 11.31 0.00163 55.80 2:34E� 07 1:51E� 12 2.32 2.4 0.00046

SLE 27.75 0.00247 21.34 1:38E� 06 1:94E� 11 12.66 13.8 0.00021

SO 24.60 0.00270 24.99 7:09E� 07 2:41E� 12 11.38 11.8 0.00016

T 19.34 0.00256 15.60 2:06E� 06 2:20E� 11 5.54 5.6 0.00082

TOY 40.21 0.00246 17.64 1:21E� 06 1:05E� 11 5.07 5.2 0.00079

TXN 7.89 0.00278 30.53 5:94E� 07 2:47E� 12 3.01 3 0.00091

TYC 6.95 0.00288 29.32 1:41E� 06 1:71E� 11 1.22 1.2 0.00382

UIS 39.75 0.00304 11.69 2:12E� 06 2:58E� 11 9.87 10.2 0.00048

USB 24.45 0.00249 19.95 1:24E� 06 8:01E� 12 8.23 8.4 0.00039

UTX 15.75 0.00130 69.45 1:97E� 07 1:11E� 12 2.57 2.8 0.00024

VIAB 12.36 0.00237 42.26 3:04E� 07 2:46E� 12 2.05 2.2 0.00065

VZ 9.86 0.00188 45.85 2:93E� 07 7:69E� 13 3.52 3.6 0.00031

WFC 12.68 0.00161 46.14 1:82E� 07 2:82E� 13 4.28 4.4 0.00019

WMB 16.66 0.00319 16.03 2:91E� 06 4:14E� 11 3.23 3.2 0.00251

WMT 11.00 0.00108 60.01 1:33E� 07 3:05E� 13 2.79 2.8 0.00023

WY 17.34 0.00170 59.66 2:46E� 07 1:68E� 12 2.80 3 0.00033

XOM 8.91 0.00191 39.38 4:33E� 07 6:75E� 13 6.47 6.6 0.00018

XRX 38.93 0.00305 10.11 3:74E� 06 6:60E� 11 8.17 8.4 0.00088

aThe sample covers the month of February 2002. For NYSE stocks we use quotes posted on two exchanges, the

NYSE and the MIDWEST. Nasdaq stocks are denoted by an asterisk. The data come from the TAQ data set. The

table contains average durations in seconds (Avg. Dur.), average differences between logarithmic dollar ask prices

and logarithmic dollar bid prices (Avg. Sprd.), average prices in dollar values (Avg. Price), estimated variances of

the return noise components from Proposition 1b in the main text (Mid. Var.), estimated fourth moments of the

return noise components from Proposition 2b in the main text (Mid. 4th), estimated approximate optimal

sampling intervals in minutes from Proposition 4 in the main text ðDaÞ, estimated true optimal sampling intervals

in minutes from Proposition 3 in the main text (D�), and average, optimally sampled, daily realized variances

(V�). The variances of the noise components, the fourth moments of the noise components, and the realized

variance estimates are based on continuously compounded returns constructed using midpoint bid-ask quotes.

The second and fourth moments of the noise components are sample averages of second and fourth powers of

continuously compounded returns calculated at the highest frequency. The optimally sampled realized variances

are computed by summing squared continuously compounded returns sampled every D� min.

F.M. Bandi, J.R. Russell / Journal of Financial Economics 79 (2006) 655–692 667
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that there is no theoretical guarantee that the midpoints coincide with the underlying
efficient prices, they are generally less noisy measures of the efficient prices than are
transaction prices since they do not suffer from bid-ask bounce effects. Thus, in agreement
with the realized variance literature, in this paper we use midpoints of bid-ask quotes to
measure prices. Accordingly, the specification in Eq. (1) should be interpreted as a model
of midquote determination based on efficient price and residual microstructure noise.
We study the stocks in the S&P100 index. The data come from the Trade and Quote

(TAQ) database. The observations refer to the month of February 2002 and correspond to
quotes posted on two exchanges, the NYSE and the MIDWEST. Ideally, for NYSE-listed
stocks we would like to use all available quotes from the consolidated market to construct
the midquote return series. However, quotes from the satellite markets tend to be far more
noisy than those generated by the NYSE specialist. A notable exception is the MIDWEST
exchange, which delivers quotes whose variability is comparable to the variability of the
NYSE quotes. We therefore construct midquote return series for the NYSE stocks by
using quote updates obtained from both the NYSE and the MIDWEST exchange. Only
NASDAQ quotes are available for NASDAQ stocks. We use a mild filter and remove
quotes whose associated price changes and/or spreads were larger than 10%.
In what follows we estimate the moments of the noise component using quote-to-quote

continuously compounded returns. The realized variance estimates and the quarticity
estimates are constructed using fixed calendar time intervals. The prevailing quote method
is used when there is no quote available.
Table 1 contains information on the individual stocks. We report the average duration,

the average spread, the average price, the estimated variance of the noise component (from
Proposition 1b), the estimated fourth moment of noise component (from Proposition 2b),
the estimated approximate optimal sampling interval, the estimated true optimal sampling
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Fig. 1. Histogram of the first-order autocorrelations of the S&P100 stock returns. The figure shows the histogram

of the first-order autocorrelations of the (quote-to-quote) midquote returns of the S&P100 stocks for the month of

February 2002. For NYSE stocks we use quotes posted on two exchanges, the NYSE and the MIDWEST. The

data come from the TAQ database.
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interval, and the average daily variance of the efficient return process as computed using
the optimal sampling frequency from Proposition 3.

In Fig. 1 we represent the histogram of the return first-order autocorrelations of the 100
stocks in our sample. In agreement with our assumed MA(1) structure, virtually all of the
first-order serial correlations are negative. Furthermore, they are generally highly
statistically significant. While the higher-order (up to order four) autocorrelations are
sometimes significant, their economic relevance is marginal in that their absolute values are
substantially smaller than the absolute values of the first-order serial correlations. The
second-order autocorrelations, for example, are smaller, on average, than the first-order
autocorrelations by a factor of three. Hence, the model in Section 2 captures the main
economic effects in our data.

6. Separating microstructure noise from volatility: the cross-section of S&P100 stocks

6.1. The noise variance

We use the estimator in Proposition 1b to consistently identify the variance of the
contaminations in the logarithmic midquotes of our cross-section of S&P100 stocks.

Fig. 2 contains a histogram of the estimated standard deviations, sZ. The reported values
should be roughly interpreted as standard deviations of the percentage differences between
the midpoint bid-ask quotes and the corresponding efficient prices. The cross-sectional
distribution of the standard deviations is skewed to the right with a mean value of 0.000732
and a median value of 0.000597. The numbers show that the bid-ask midpoints contain
residual noise that needs to be taken into consideration when estimating the genuine
volatility dynamics of the underlying efficient prices; we do this in the next subsection.
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Fig. 2. Histogram of the standard deviations of the noise components of the midquotes of the S&P100 stocks. The

standard deviations of the noise components are the square root of half the sample second moment of the quote-

to-quote continuously compounded returns. The sample of S&P100 stocks covers the month of February 2002.

For NYSE stocks we use quotes posted on two exchanges, the NYSE and the MIDWEST. The data come from

the TAQ database.
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Fig. 3. Histogram of the average bid-ask spreads of the S&P100 stocks. The average bid-ask spreads are the

average differences between logarithmic dollar ask prices and logarithmic dollar bid prices. The sample of S&P100

stocks covers the month of February 2002. For NYSE stocks we use quotes posted on two exchanges, the NYSE

and the MIDWEST. The data come from the TAQ database.
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It is interesting to compare the standard deviations of the noise terms to the average
quoted spreads, namely, the average differences between the quoted logarithmic ask prices
and the corresponding logarithmic bid prices. We report the histogram of the average
quoted spreads in Fig. 3. The cross-sectional distribution of the spreads is fairly symmetric
with a mean of 0.002 and a standard deviation of 0.0007. The relation between the noise
standard deviations and the average spreads is nonlinear and heteroskedastic (see Fig. 4).
Not surprisingly, wider spreads are associated with larger market microstructure
contaminations in the observed return process. A log–log regression of the estimated
standard deviations on the average quoted spreads indicates that the elasticity between the
standard deviations of the unobserved noise components in the recorded midquotes and
the average spreads is close to one, thereby implying that a 1% increase in the latter
translates into a 1% increase in the former (see Table 2). More importantly, the median
noise standard deviation is about a quarter of the median average spread. Since most
trades occur within the spread and the midpoints contain residual noise, the magnitude of
the estimated noise standard deviations is economically meaningful.

6.2. The efficient return variance

Figs. 5 and 6 are histograms of the optimal sampling intervals and the approximate
optimal sampling intervals from Propositions 3 and 4, respectively.2 The mean and median
values of the optimal sampling intervals are 3.98 and 3.4min. The minimum value is
2As indicated in Remark 1, we use 15-min sampling intervals to compute the quarticity. However, we find that

using 10- or 20-min intervals for the quarticity has no significant effect on the resulting optimal sampling

frequencies of the realized variance estimator in our sample. This issue is considered further in the simulations in

Section 7.
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Fig. 4. The standard deviations of the noise components of the midquotes of the S&P100 stocks versus the

corresponding average bid-ask spreads. The standard deviations of the noise components are the square root of

half the sample second moments of the quote-to-quote continuously compounded returns. The average bid-ask

spreads are the average differences between logarithmic dollar ask prices and logarithmic dollar bid prices. The

sample of S&P100 stocks covers the month of February 2002. For NYSE stocks we use quotes posted on two

exchanges, the NYSE and the MIDWEST. The data come from the TAQ database.

Table 2

Outcome of a regression of the standard deviations of the noise components of the S&P100 stocks on the

corresponding average bid-ask spreadsa

Coefficients Std. errors T-statistics P-values

Intercept �0.4488 0.3627 �1.237 0.2189

Avg. Sprd. 1.1027 0.0578 19.077 0.0000

R2 ¼ 78:75% adjR2 ¼ 78:54%

aThe table contains the result of a regression of the logarithmic standard deviations of the noise components of

the midquotes of the S&P100 stocks on the corresponding logarithmic average bid-ask spreads (Avg. Sprd.). The

standard deviations of the noise components are the square root of half the sample second moments of the quote-

to-quote continuously compounded returns. The average bid-ask spreads are the average differences between

logarithmic dollar ask prices and logarithmic dollar bid prices. The sample of S&P100 stocks covers the month of

February 2002. For NYSE stocks we use quotes posted on two exchanges, the NYSE and the MIDWEST. The

data come from the TAQ database.
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0.40min whereas the estimated maximum value in our sample is 13.8min. The mean and
median values of the approximate optimal sampling intervals are 3.8 and 3.35min,
respectively. The minimum value is again about 0.40. The maximum value is 12.6min.
Hence, the rule-of-thumb has a slight tendency to understate the true optimal interval. A
further comparison between the two measures is contained in the scatterplot in Fig. 7.
Fig. 8 contains a scatterplot of the logarithmic values of the MSE of the quadratic
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Fig. 5. Histogram of the estimated optimal sampling intervals (in min) for the S&P100 stocks. The figure shows

the histogram of the number of minutes that, based on Proposition 3 in the main text, should be used to construct

continuously compounded returns for the purpose of realized variance estimation when using our sample of

S&P100 stocks. The sample of S&P100 stocks covers the month of February 2002. For NYSE stocks we use

quotes posted on two exchanges, the NYSE and the MIDWEST. The data come from the TAQ database.
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Fig. 6. Histogram of the estimated, approximate, optimal sampling intervals (in min) for the S&P100 stocks. The

figure shows the histogram of the approximate number of minutes that should be used, based on Proposition 4 in

the main text, to optimally construct continuously compounded returns for the purpose of realized variance

estimation when using our sample of S&P100 stocks. The sample of S&P100 stocks covers the month of February

2002. For NYSE stocks we use quotes posted on two exchanges, the NYSE and the MIDWEST. The data come

from the TAQ database.
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variation estimator based on the optimal sampling intervals plotted against the
corresponding logarithmic MSE values obtained by employing the rule-of-thumb. Virtually
all estimates fall on the 45� line. Hence, even when the approximation that the rule-of-thumb
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Fig. 7. The estimated optimal sampling intervals (in min) for the S&P100 stocks versus the corresponding

approximate optimal sampling intervals (in min). The figure shows the scatter-plot of the number of minutes that

should be used, based on Proposition 3 in the main text, to optimally construct continuously compounded returns

for the purpose of realized variance estimation when using our sample of S&P100 stocks versus the corresponding

approximate sampling intervals from Proposition 4. The sample of S&P100 stocks covers the month of February

2002. For NYSE stocks we use quotes posted on two exchanges, the NYSE and the MIDWEST. The data come

from the TAQ database.
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delivers is not very accurate, in the sense that the optimal and approximate intervals do not
appear to be extremely close, the MSE loss is minimal. In our sample, therefore, the rule-of-
thumb gives an immediate feel for the kind of frequencies that one should utilize in order to
optimally balance the bias and variance of the realized variance estimator.

It is interesting to notice that the optimal intervals are related to an obvious noise-to-
signal ratio, i.e., the ratio between the variance of the noise component and the variance of
the underlying efficient price (see Fig. 9). Fig. 10 represents the estimated MSEs of three
stocks with different noise-to-signal ratios. Specifically, we consider GS (Goldman Sachs),
SBC (SBC Communications), and XOM (Exxon Mobile Corporation). The ratio is
smallest for GS (GS corresponds to the first decile of the distribution of the ratios) and
highest for XOM (XOM corresponds to the ninth decile of the distribution of the ratios).
The SBC ratio constitutes the median value of the ratios in our sample. The estimated
MSEs unambiguously show that different noise properties induce different optimal
sampling frequencies (2.2min for GS, 3.42min for SBC, and 6.6min for XOM; see also
Table 1). Furthermore, they show that the potential loss that would be brought about by
suboptimal sampling frequency choices changes across stocks. The loss depends on the
steepness of the MSE around its minimum value.

We now turn to the loss that would be induced by employing possibly suboptimal
frequencies for the totality of the S&P100 stocks in our sample. We focus on the
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Fig. 8. The logarithmic MSE values of the realized variance estimator based on optimal sampling intervals versus

the corresponding values based on approximate optimal sampling intervals for the S&P100 stocks. The figure

shows the scatter-plot of the logarithmic MSE values associated with daily realized variance estimates obtained by

sampling continuously compounded returns optimally (as in Proposition 3 in the main text) versus the logarithmic

MSE values of daily realized variance estimates obtained by sampling continuously compounded returns

approximately optimally (as in Proposition 4 in the main text). The sample of S&P100 stocks covers the month of

February 2002. For NYSE stocks we use quotes posted on two exchanges, the NYSE and the MIDWEST. The

data come from the TAQ database.
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comparison between our optimal frequency from Proposition 3 and two sampling
frequencies that have been either used or suggested in empirical work on integrated
variance estimation to avoid strong contaminations induced by market microstructure
frictions. These two frequencies are 5min (Andersen et al., 2001, among others) and 15min
(Andersen et al., 2000, among others). Specifically, we plot the ratios between the MSE
values obtained by using the 5-min frequency and our optimal frequency from Proposition
3 (Fig. 11) as well as the ratios between the MSE values obtained by using the 15-min
frequency and, again, our optimal frequency (Fig. 12). Since many optimal sampling
intervals are near 5min, the loss is not substantial when a 5-min interval is used. Exactly
50% of the MSE ratios are between 1 and 1.17, thereby implying that for 50% of the
stocks in our sample the upper bound on the MSE loss is 17%. The average MSE ratio is
1.53. The maximum ratio is about eight. Thus, if one had to choose one frequency for all
stocks and all periods, choosing the 5-min frequency would be a reasonable approximation
to invoke. Of course, substantial losses are possible for individual stocks as testified by a
mean loss that is higher than 50%. Given the average magnitudes of our estimated optimal
frequencies, we expect monotonically increasing losses as we move from the 5-min
frequency to the 15-min frequency. When considering the 15-min frequency, the median
value of the ratios is 2.6 whereas the mean value is 3.67. The minimum value is one while
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Fig. 9. The optimal sampling intervals versus the ratios between the second moment of the noise process and the

average integrated variance of the efficient price for the S&P100 stocks. The figure shows the scatter-plot of the

optimal sampling intervals (in min) to be used to construct continuously compounded returns for the purpose of

variance estimation (as detailed in Proposition 3) versus the ratios between the variances of the noise components

and the average (optimally sampled) daily realized variances. The variances of the noise components are the

sample second moments of the quote-to-quote continuously compounded returns. The optimally sampled realized

variances are computed by summing squared continuously compounded returns constructed using midpoint bid-

ask quotes sampled every D� min, where D� is the optimal sampling interval from Proposition 3 in the main text.

The sample of S&P100 stocks covers the month of February 2002. For NYSE stocks we use quotes posted on two

exchanges, the NYSE and the MIDWEST. The data come from the TAQ database.
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the maximum value is 24.2. Fig. 13 presents the empirical distribution of our average daily
variance estimates based on the optimal sampling frequency in Proposition 3.

6.3. The noise variance versus the efficient return variance

We quantify the relation between the standard deviations of the noise components
and the square root of the average daily variances of the efficient prices by running
a regression of the latter on the former (see Table 3). The relation is positive
and significant. The intercept and slope coefficient are equal to 0.000333 (with a t-statistic
of 5.12) and 0.017 (with a t-statistic of 7.23), respectively. The R2 of the regression
is 34.8%.

Interestingly, conventional theories of transaction cost determination provide a
justification for the positive cross-sectional relation between noise standard deviation
and efficient price volatility. The ‘‘operating cost’’ theory states that measures that are
positively correlated with liquidity and ease of inventory adjustment have a negative
impact on the magnitude of the quoted spreads. This is due to the fact that the market
maker has to be compensated for providing liquidity. Furthermore, a risk-averse market
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data come from the TAQ database.
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maker prefers to make all profits off the bid-ask spread and avoid exposure to adverse
movements in the price due to short or long positions. The market maker, therefore,
adjusts the spreads to offset positions that are overly long or short with respect to a desired
inventory target. The ‘‘asymmetric information’’ theory recognizes that the market-maker
is likely to trade with investors that have superior information. Hence, the market maker
modifies the spreads to extract a profit from uninformed traders in order to obtain
compensation for the expected loss to informed traders. We refer the interested reader to
Stoll (2000) and the reference therein for further discussions. Hence, lower liquidity and
higher risk of asymmetric information have a positive impact on the magnitude of the
spreads as well as on the frequency of the quote updates (Easley and O’Hara, 1992).
Everything else equal, i.e., given a certain efficient price, lower liquidity and higher
asymmetric information risk should have a positive impact on sZ, the standard deviation
of the noise component in the midquotes. The efficient price variance plays the same role in
both theories of quoted spread determination. Higher uncertainty about the asset’s value
implies higher likelihood of adverse price movements and, in turn, higher inventory risk,
mostly in the presence of severe imbalances that must be offset. Equivalently, higher
uncertainty about the fundamental value of the asset increases the risk of transacting with
traders with superior information. Hence, high efficient price volatility should be
associated with a high standard deviation of the midquote noise. Indeed, this is what
we find.
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Fig. 11. Histogram of the ratios between the MSE values associated with the 5-min daily realized variances and

the MSE values associated with the optimally sampled daily realized variances for the S&P100 stocks. The

optimally sampled realized variances are computed by summing squared continuously compounded returns

constructed using midpoint bid-ask quotes sampled every D� min, where D� is the optimal sampling interval from

Proposition 3 in the main text. The 5-min realized variances are computed by summing squared continuously

compounded returns constructed by sampling every 5min. The sample of S&P100 stocks covers the month of

February 2002. For NYSE stocks we use quotes posted on two exchanges, the NYSE and the MIDWEST. The

data come from the TAQ database.
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7. Simulations

Bandi and Russell (2004) perform simulations to show that very high sampling
frequencies allow one to consistently estimate the second and fourth moments of the
microstructure noise by virtue of sample analogues based on continuously compounded
observed returns (as implied by Propositions 1b and 2b). The remaining ingredient of the
conditional MSE expansion in Eq. (9) is the quarticity Qi. In this section we show that
quarticity estimates based on the empirically appealing, but often suboptimal, 15-min
frequency deliver rather precise measurements of the optimal frequency of the realized
variance estimator as well as very reasonable sampling distributions. Specifically, by
simulating processes with different noise features, we show that the 15-min sampling
interval is a valid, albeit possibly conservative, interval to use to identify the quarticity of
the logarithmic price process for the purpose of variance estimation. We show that this
observation is true for a variety of stocks with different noise characteristics, thereby
confirming the validity of Remark 1.

We simulate a data generating process for the logarithmic efficient price process whose
dynamics are driven by the stochastic differential equation

dpt ¼ st dW t, (21)

with

ds2t ¼ kðu� s2t Þdtþ$
ffiffiffiffiffi
s2t

q
dBt, (22)
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Fig. 12. Histogram of the ratios between the MSE values associated with the 15-min realized variances and the

MSE values associated with the optimally sampled daily realized variances for the S&P100 stocks. The optimally

sampled realized variances are computed by summing squared continuously-compounded returns constructed

using midpoint bid-ask quotes sampled every D� min, where D� is the optimal sampling interval from Proposition

3 in the main text. The 15-min realized variances are computed by summing squared continuously compounded

returns constructed by sampling every 15min. The sample of S&P100 stocks covers the month of February 2002.

For NYSE stocks we use quotes posted on two exchanges, the NYSE and the MIDWEST. The data come from

the TAQ database.
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where fW t;Bt : tX0g denotes Brownian motion on the plane. We set the persistence
parameter k of the time-varying spot variance equal to 0:01. We normalize the mean spot
variance to one and hence set u equal to one. The parameter $ is set to 0:05. We assume
that the logarithmic noise Z is normally distributed3 with mean zero and variance equal to
x2, where x can take one of three possible values, as follows. We compute the average daily
realized variances for the stocks in the sample (V ) and calculate the median ratio between
the variance of the noise return and V , i.e., 2bs2Z=V , as well as the equivalent ratios
corresponding to the first and the ninth decile of the distribution of the ratios. These ratios
correspond to SBC, GS, and XOM, respectively. Finally, we choose x equal to
1=

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2bs2Z=V
q

. Since the mean spot variance is normalized to one, our choices of x
replicate extreme and median features of the data. When ordered from the smallest to the
largest, the three values of the ratio 2bs2Z=V are 0:00041; 0:00092, and 0.0024. We simulate
1000 contaminated return series around a single realization of the spot variance over a
period of 6.5 hours. More precisely, we employ the specification in Eq. (22) to simulate
second-by-second a variance path given an initial value of s2t equal to the unconditional
mean of one. Holding the variance path fixed, we then simulate second-by-second true
returns using Eq. (21) and second-by-second observed returns as in Eq. (2) given the
normality assumption on the logarithmic noise process.
3Without loss of generality, we assume Gaussianity only for simplicity in the simulations. Our theory is robust

to alternative distributional assumptions.
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Fig. 13. Histogram of the average (optimally sampled) daily realized variances for the S&P100 stocks. The

optimally sampled realized variances are computed by summing squared continuously compounded returns

constructed using midpoint bid-ask quotes sampled every D� min, where D� is the optimal sampling interval from

Proposition 3 in the main text. The sample of S&P100 stocks covers the month of February 2002. For NYSE

stocks we use quotes posted on two exchanges, the NYSE and the MIDWEST. The data come from the TAQ

database.

Table 3

Outcome of a regression of the standard deviations of the noise components of the S&P100 stocks on the

corresponding (average) daily realized volatilitiesa

Coefficients Std. errors T-statistics P-values

Intercept 0.000333 0.0000649 5.129 0.000ffiffiffiffiffiffi
V�
p

0.016915 0.002339 7.230 0.000

R2 ¼ 34:79% adjR2 ¼ 34:12%

aThe table contains the result of a regression of the standard deviations of the noise components of the

midquotes of the S&P100 stocks on the corresponding square roots of the (average) daily realized variances

ð
ffiffiffiffiffiffi
V�
p
Þ. The standard deviations of the noise components are the square root of half the sample second moments

of the quote-to-quote continuously compounded returns. The realized variances are optimally sampled, i.e., they

are computed by summing squared continuously compounded returns sampled every D� min, where D� is the

optimal sampling interval from Proposition 3 in the main text. The sample of S&P100 stocks covers the month of

February 2002. For NYSE stocks we use quotes posted on two exchanges, the NYSE and the MIDWEST. The

data come from the TAQ database.
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For any assumed model, the simulated series is used to find an optimal (from an MSE
perspective) sampling interval for the quarticity. We then compare the distribution of the
estimated optimal sampling intervals for the realized variance estimator obtained by using
the 15-min frequency for the quarticity to the corresponding distribution obtained by using
the quarticity optimal frequency. We start with GS. When using the quarticity optimal
sampling interval (i.e., 2.13min), the empirical distribution of the realized variance optimal
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contaminations on the basis of a ratio between microstructure noise variance and average quadratic variation of

the underlying efficient price process which mimics the empirical features of Goldman Sachs (GS). The price

process is simulated 1000 times. For every simulation we compute the optimal sampling interval of the realized

variance estimator as described in Proposition 3 in the main text. The quarticity used as an input to compute the

optimal sampling interval is obtained by sampling continuously compounded returns at the quarticity optimal

frequency (i.e., 2.13min in our case). The true optimal sampling interval of the realized variance estimator is

2.8min in our case.
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intervals (Fig. 14) is fairly concentrated around the true optimal value (i.e., 2.8min)
and is extremely informative about the types of frequencies that one should employ.
The minimum value is 2.4min while the maximum value is only four minutes. While
there is an upward bias (the mean and median values are 3.17 and 3.2, respectively), the
bias goes in the right direction in that it prevents us from sampling at frequencies that
would entail substantial accumulation of noise. We now consider the same simulated
distribution for a suboptimal value of sampling frequency for the quarticity, namely the
15-min frequency. Even though the variability of the estimated intervals increases slightly,
the bias increase, as represented by the mean and median values of the empirical
distribution (i.e., 3.66 and 3.6), is small (Fig. 15). Furthermore, the MSE loss induced by
sampling at the estimated mean and median values rather than at the true optimal value is
minimal.
Using a suboptimal 15-min frequency for the quarticity is a conservative choice for a

stock such as GS whose quarticity optimal sampling interval is close to two minutes. Our
findings should (and do) improve when using the 15-min frequency for stocks whose
optimal sampling frequency for the quarticity is lower than two minutes. The SBC and
XOM optimal sampling intervals for the quarticity are 4.26 and 8.53min, respectively. In
these cases, we find that the biases induced by suboptimal sampling choices for the
quarticity are smaller, in percentage terms, than in the GS case. Such biases are smaller for
XOM than for SBC in percentage terms. As earlier in the case of GS, the MSE losses due
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Fig. 15. Histogram of the simulated distribution of the optimal sampling intervals of the realized variance

estimator. As we detail in Section 7, we simulate an observed price process affected by microstructure noise

contaminations on the basis of a ratio between microstructure noise variance and average quadratic variation of

the underlying efficient price process which mimics the empirical features of Goldman Sachs (GS). The price

process is simulated 1000 times. For every simulation we compute the optimal sampling interval of the realized

variance estimator as described in Proposition 3 in the main text. The quarticity used as an input to compute the

optimal sampling frequency is obtained by sampling continuously compounded returns every 15min. The true

optimal sampling interval of the realized variance estimator is 2.8min in our case.
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to sampling at the estimated mean and median optimal intervals rather than at the true
optimal intervals are immaterial.4

8. The economic benefit of optimal sampling

One way to assess the economic benefit of optimal sampling is to consider a volatility
timing trading strategy. This procedure requires moving from a cross-sectional analysis, as
in the previous sections, to a time-series perspective. In general, the optimal frequencies
may vary over time. In this section we allow for time-varying optimal frequencies.
Specifically, we evaluate the daily optimal frequencies in Proposition 3 by constructing
estimates of the second and fourth noise moments using averages of observed returns
within days, as in Propositions 1a and 2a. In other words, we do not average observed
return data across days when computing the noise moments and the quarticity. Based on
an estimated time series of optimal sampling frequencies we construct daily realized
variance estimates. Out-of-sample forecasts of optimally sampled realized variance
estimates are then employed in the context of a volatility timing-based asset allocation
procedure to show the utility gains that are provided by optimal sampling versus
suboptimal sampling choices.

In this exercise we use 11 years’ worth of high frequency data for the representative stock
SBC. Recall that SBC corresponds to the median value of the empirical noise-to-signal
4The corresponding figures can be provided by the authors upon request.



ARTICLE IN PRESS

0

40

80

120

160

200

93 94 95 96 97 98 99 00 01 02 03
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continuously compounded midquote returns for the purpose of realized variance computation in the case of SBC

communications (SBC). The optimal intervals are obtained as detailed in Proposition 3 in the main text. The SBC

data consists of quotes posted on two exchanges, the NYSE and the MIDWEST, between January 1993 and

December 2003. The data come from the TAQ data set.
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ratios for the month of February 2002, i.e., the month used in our previous cross-sectional
analysis. The relevant quotes pertain to the period between January 1993 and December
2003. We use the same filter as in the previous sections. Furthermore, because in this
expanded sample some days around holidays are not full trading days, we remove these
days (fewer than 20). In Fig. 16 we report the time series of daily optimal sampling
intervals. We notice that the magnitude and variability of the optimal intervals have been
decreasing since 1993. Specifically, optimal intervals higher than 20min were not
uncommon at the beginning of the sample. The optimal intervals that prevail since the
beginning of 1997 are smaller in magnitude and more stable than those at the beginning of
the sample. Hence, using a single sampling frequency across periods might alter the
statistical properties of the resulting variance estimates.
We employ the optimally sampled realized variance estimates, variance estimates

obtained by using the 5-min frequency, and variance estimates obtained by using the
15-min frequency to construct out-of-sample forecasts of daily variances based on an
ARFIMA model as in Andersen et al. (2003). We set the orders of the autoregressive and
moving average representations equal to two. While the ARMA parameters are re-
estimated in real time, the fractional parameter is fixed at the estimated value obtained on
the basis of the full sample. We use the traditional Geweke and Porter-Hudak (GPH)
estimator to estimate the d parameter (Geweke and Porter-Hudak, 1983). The estimated d

values are equal to 0.45 in the case of the optimally sampled realized variance estimates,
0.44 in the case of the realized variance estimates constructed using 5-min intervals, and
0.37 in the case of the realized variance estimates constructed using 15-min intervals. We
utilize almost a year’s worth of data, i.e., 200 observations, to construct the first forecast.
The total number of out-of-sample forecasts m is equal to 1870.
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variances and 5-min daily realized variances. We use quote data for SBC communications (SBC) over the period

between January 1993 and December 2003. The data come from the TAQ database. The optimally sampled daily

realized variances are computed by summing squared continuously compounded returns constructed using

midpoint bid-ask quotes sampled every D� min, where D� is the optimal sampling interval from Proposition 3 in

the main text. The 5-min daily realized variances are computed by summing squared continuously compounded

returns constructed by sampling every 5min. The one-day-ahead forecasts are obtained by virtue of an

ARFIMAð2; d; 2Þ model. We use GPH estimates of the d parameter. The estimated d values are equal to 0.45 in

the case of the optimally sampled realized variances and 0.44 in the case of the 5-min realized variances. We

employ 200 observations to construct the first forecast. The total number of one-day-ahead forecasts is 1875.
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In Fig. 17 we plot the realized variance forecasts obtained on the basis of time-varying
optimal sampling frequencies and the corresponding forecasts obtained by using the
ubiquitous 5-min interval. Our theory suggests that using 5-min intervals results in
sampling that is too frequent in periods during which microstructure noise is substantial
and the corresponding optimal frequencies are considerably lower than 5min. Not
surprisingly, using 5-min intervals during the beginning of our sample results in substantial
accumulation of noise and, therefore, upward-biased variance forecasts.

Before turning to asset allocation, we implement a forecasting exercise in the spirit of
Andersen et al. (2003). Namely, we evaluate the forecasting power of our optimally
sampled realized variance, of the variance constructed using 5-min intervals, and of the
variance constructed using 15-min intervals. Since true variance is unobserved, we regress
each variance measure on one-day-ahead forecasts obtained by virtue of all three
measures. Of course, one should expect a model built directly for a specific variance series
to deliver superior forecasts of the same series. The results are reported in Tables 4–6.
Remarkably, we find that (1) our optimally sampled realized variance helps forecast both
realized variance sampled every 5min and realized variance sampled every 15min, (2) the
forecasting power of our optimally sampled realized variance is only slightly smaller than
the forecasting power of realized variance sampled every five (15) min when forecasting
realized variance sampled every five (15) min, (3) our optimally sampled realized variance
can only be forecasted using optimally sampled realized variance, and (4) our optimally
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Table 4

One-day-ahead predictive regression of daily optimally sampled realized variance using optimally sampled

realized variance, 5-min realized variance, and 15-min realized variance for SBCa

Coefficients Std. errors T-statistics P-values

Intercept 3:4e� 06 6:83e� 06 0.498 0.618

V� 0.881 0.079 11.121 0.000

5mV 0.172 0.091 1.883 0.059

15mV �0.036 0.070 �0.510 0.609

R2 ¼ 61:3% adjR2 ¼ 61:29%

aThe table contains the results of a regression of daily optimally sampled realized variances on one-day-ahead

forecasts constructed using daily optimally sampled realized variances (V�), daily 5-min realized variances (5mV),

and daily 15-min realized variances (15mV). We use quote data for SBC communications (SBC) over the period

between January 1993 and December 2003. The data come from the TAQ database. The optimally sampled

realized variances are computed by summing squared continuously compounded returns constructed using

midpoint bid-ask quotes sampled every D� min, where D� is the optimal sampling interval from Proposition 3 in

the main text. The 5-min realized variances are computed by summing squared continuously compounded returns

constructed by sampling every 5min. The 15-min realized variances are computed by summing squared

continuously compounded returns constructed by sampling every 15min. The one-day-ahead forecasts are

obtained by virtue of an ARFIMAð2; d; 2Þ model. We use GPH estimates of the d parameter. The estimated d

values are equal to 0.45 in the case of the optimally sampled realized variances, 0.44 in the case of the 5-min

realized variances, and 0.37 in the case of the 15-min realized variances. We use 200 observations to construct the

first forecast. The total number of one-day-ahead forecasts is 1875.
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sampled realized variance can be forecasted more accurately using optimally sampled
realized variance than the other two measures using a combination of predictors. Results
(1) and (2) suggest that the information content of optimally sampled realized variance is
substantial. Result (3) and (4) suggest that our optimally sampled measure is less noisy
than competing measures and, hence, more predictable.
We now turn to asset allocation. Fleming et al. (2001, 2003) provide a methodology to

evaluate the economic benefits of asset allocation strategies relying on volatility timing. We
adapt their procedure to our framework and use the out-of-sample forecasts to assess the
utility gains that are furnished by optimal sampling versus sampling based on 5- and 15-
min intervals. We denote by Rf and R the net risk-free return and the net return on a
generic risky asset (SBC, in our case), respectively. Assume the representative investor has
a conditional mean-variance utility given by

EtðR
p
t;tþ1Þ �

l
2

V tðR
p
t;tþ1Þ, (23)

where R
p
t;tþ1 is the return on a portfolio that invests a share of wealth $t in the risky asset

between time t and time tþ 1, i.e.,

R
p
t;tþ1 ¼ R

f
t;tþ1 þ$tðRt;tþ1 � R

f
t;tþ1Þ. (24)

The relevant time interval is one day. The optimal allocation to the risky asset ise$t ¼ ðEtðRt;tþ1 � R
f
t;tþ1ÞÞ=ðlV tðRt;tþ1ÞÞ. To abstract from complications induced by

expected stock return predictability, and thus to solely focus on volatility timing, we set
R

f
t;tþ1 equal to 0:06 (converted to a daily value by dividing by 365) and EtðRt;tþ1Þ equal to

the unconditional average of the daily SBC returns over the forecasting horizon. As noted,
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Table 5

One-day-ahead predictive regression of daily 5-min realized variance using optimally sampled realized variance,

5-min realized variance, and 15-min realized variance for SBCa

Coefficients Std. errors T-statistics P-values

Intercept 2:48e� 05 7:43e� 06 3.334 0.000

V� 0.404 0.086 4.697 0.000

5mV 0.590 0.099 5.920 0.000

15mV �0.001 0.076 �0.013 0.982

R2 ¼ 55:29% adjR2 ¼ 55:24%

aThe table contains the results of a regression of daily 5-min realized variances on one-day-ahead forecasts

constructed using daily optimally sampled realized variances ðV�Þ, daily 5-min realized variances (5mV), and daily

15-min realized variances (15mV). We use quote data for SBC communications (SBC) over the period between

January 1993 and December 2003. The data come from the TAQ database. The optimally sampled realized

variances are computed by summing squared continuously compounded returns constructed using midpoint bid-

ask quotes sampled every D� min, where D� is the optimal sampling interval from Proposition 3 in the main text.

The 5-min realized variances are computed by summing squared continuously compounded returns constructed

by sampling every 5min. The 15-min realized variances are computed by summing squared continuously

compounded returns constructed by sampling every 15min. The one-day-ahead forecasts are obtained by virtue of

an ARFIMAð2; d ; 2Þmodel. We use GPH estimates of the d parameter. The estimated d values are equal to 0.45 in

the case of the optimally sampled realized variances, 0.44 in the case of the 5-min realized variances, and 0.37 in

the case of the 15-min realized variances. We use 200 observations to construct the first forecast. The total number

of one-day-ahead forecasts is 1875.

Table 6

One-day-ahead predictive regression of daily 15-min realized variance using optimally sampled realized variance,

5-min realized variance, and 15-min realized variance for SBCa

Coefficients Std. errors T-statistics P-values

Intercept 1:18e� 05 7:99e� 06 1.471 0.141

V� 0.281 0.092 3.033 0.002

5mV 0.085 0.107 0.798 0.424

15mV 0.595 0.082 7.212 0.000

R2 ¼ 44:96% adjR2 ¼ 44:90%

aThe table contains the results of a regression of daily 15-min realized variances on one-day-ahead forecasts

constructed using daily optimally sampled realized variances (V�), daily 5-min realized variances (5mV), and daily

15-min realized variances (15mV). We use quote data for SBC communications (SBC) over the period between

January 1993 and December 2003. The data come from the TAQ database. The optimally sampled realized

variances are computed by summing squared continuously compounded returns constructed using midpoint bid-

ask quotes sampled every D� min, where D� is the optimal sampling interval from Proposition 3 in the main text.

The 5-min realized variances are computed by summing squared continuously compounded returns constructed

by sampling every 5min. The 15-min realized variances are computed by summing squared continuously-

compounded returns constructed by sampling every 15min. The one-day-ahead forecasts are obtained by virtue of

an ARFIMAð2; d ; 2Þmodel. We use GPH estimates of the d parameter. The estimated d values are equal to 0.45 in

the case of the optimally sampled realized variances, 0.44 in the case of the 5-min realized variances, and 0.37 in

the case of the 15-min realized variances. We use 200 observations to construct the first forecast. The total number

of one-day-ahead forecasts is 1875.
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for each t the conditional variance VtðRt;tþ1Þ is computed as an out-of-sample forecast
from an ARFIMA(2; d; 2) model. The absolute risk aversion parameter l is set to three
conventional values, namely, 2; 7, and 10.
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All variance measures are computed over a 6:5-h period. Before obtaining the forecasts,
we apply the bias-correction procedure in Fleming et al. (2001, 2003) and multiply the
realized variance estimates by a factor that is defined as

z ¼
1=n
Pn

t¼1 R2
t;tþ1

1=n
Pn

t¼1
bVt;tþ1

, (25)

where bV t;tþ1 is the realized variance estimate prevailing between t and tþ 1. This method
guarantees that the average of the bias-corrected daily realized variances coincides with the
variance of the daily returns. To compensate for the lack of high frequency overnight
returns, we consider two procedures. The first procedure adds the square of each overnight
return to each daily variance estimate. The second procedure simply relies on the
correction provided by z. In this case, in fact, the multiplicative factor z is larger than in the
case with overnight returns since the average in the denominator of the ratio is smaller.
Below we show that the two procedures deliver similar results. For simplicity, we refer to
the first procedure as ‘‘With overnights’’ and to the second procedure as ‘‘Without
overnights.’’
Call e$t the optimal (time-t) allocation determined by a certain variance forecast. We

wish to evaluate the economic significance of fe$t : t ¼ 1; . . . ;mg. We use the investor’s
long-run utility as our relevant economic metric, that is,

gAU ¼
1

m

Xm

t¼1

ð eRp

t;tþ1Þ �
l
2

1

m

Xm

t¼1

ð eRp

t;tþ1 �
eRp

Þ
2 (26)

with eRp

t;tþ1 ¼ R
f
t;tþ1 þ e$tðRt;tþ1 � R

f
t;tþ1Þ (27)

and eRp

¼ 1=m
Pm

t¼1
eRp

t;tþ1. Specifically, following Fleming et al. (2001, 2003), we interpret
the difference between gAU computed on the basis of our optimally sampled realized
variances and gAU computed on the basis of an alternative variance estimate as the
maximum daily return that the investor would sacrifice to use optimally sampled variance
estimates.
One should keep in mind that the mean portfolio return for a given trading strategy

might be imprecisely estimated. This imprecision can translate into noisy estimates of the
utility gains (see Fleming et al., 2003, for further discussions of this issue). Nevertheless,
the consistency of our results (as reported below) across realized variance estimates and
across methods of dealing with the overnight returns is an important sign of robustness of
our findings.
Tables 7 and 8 contain the results corresponding to procedure ‘‘With overnights’’ and

procedure ‘‘Without overnights,’’ respectively. The aforementioned ‘‘maximum return’’ is
reported in the tables as an annualized fee. Since the main differences between variance
estimates occur in the first part of the sample, i.e., before the beginning of 1997, we split the
forecasting horizon in half, where the first half ends on June 30th, 1998.
The procedure ‘‘With overnights’’ indicates that an investor would forego between 27

basis points (when l ¼ 10) and 96 basis points (when l ¼ 2) per year to use our optimally
sampled realized variance versus realized variance relying on 5-min intervals. The same
investor would pay twice as much to use optimally sampled realized variance rather than
realized variance relying on 15-min intervals. The highest fees would be paid during the
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Table 7

Annualized fees (in basis points) that a mean-variance investor would be willing to pay to perform a volatility

timing trading strategy using optimally sampled realized variances versus 5-min variances, 15-min variances, and

variances obtained by subsampling (‘‘with overnights’’)a

l ¼ 2 l ¼ 7 l ¼ 10

V�=5mV V�=15mV V�=SubV V�=5mV V�=15mV V�=SubV V�=5mV V�=15mV V�=SubV

1st half 104 264 189 52 106 83 37 75 59

2nd half 89 177 112 25 50 32 18 35 22

Full 96 218 148 38 76 56 27 54 39

aThe table contains the annualized fees (in basis points) that a mean-variance investor with absolute risk-

aversion parameter l ¼ 2; 7, and 10 would be willing to pay to perform a volatility timing trading strategy using

optimally sampled realized variances (V�) versus 5-min realized variances (5mV), 15-min realized variances

(15mV), and realized variances obtained by subsampling (SubV). We use quote data for SBC communications

(SBC) over the period between January 1993 and December 2003. We split the sample in half with a break date of

the end of June 1998. The data come from the TAQ database. The optimally sampled realized variances are

computed by summing squared continuously compounded returns constructed using midpoint bid-ask quotes

sampled every D� min, where D� is the optimal sampling interval from Proposition 3 in the main text. The 5-min

realized variances are computed by summing squared continuously compounded returns constructed by sampling

every 5min. The 15-min realized variances are computed by summing squared continuously compounded returns

constructed by sampling every 15min. The subsampled realized variances are derived as in Zhang et al. (2004). We

follow Fleming et al. (2001, 2003) in performing a volatility timing trading exercise as detailed in the main text.

The one-day-ahead variance forecasts are obtained by virtue of an ARFIMAð2; d; 2Þ model. We use GPH

estimates of the d parameter. The estimated d values are equal to 0.45 in the case of the optimally sampled realized

variances, 0.44 in the case of the 5-min realized variances, 0.37 in the case of the 15-min realized variances, and

0.27 in the case of the subsampled realized variances. We employ 200 observations to construct the first forecast.

The total number of one-day-ahead forecasts is equal to 1875. We account for the fact that all variance measures

are computed over a 6.5-h period by implementing the ’’With overnights’’ procedure in the main text, namely, we

add the square of the overnight returns to the daily variance estimates.
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first part of the sample. This result is hardly surprisingly when comparing optimally
sampled realized variance to variance sampled every 5min in that the latter contains a
large noise components and is severely biased in the first half of the sample (see Fig. 17).
The procedure ‘‘Without overnights’’ confirms these findings. Specifically, an investor
would sacrifice between 41 basis points (when l ¼ 10) and 211 basis points (when l ¼ 2)
per year to use our optimally sampled realized variance versus realized variance relying on
5-min intervals. As before, the same investor would pay even more to switch from
suboptimal variance estimates based on 15-min intervals to our optimal values.

It is also interesting to compare optimal sampling to a methodology that has been shown
to be consistent, namely, the subsampling methodology of Zhang et al. (2004). We use the
optimal method to select the subsamples in Zhang et al. (2004, Eq. (39)–p. 13). In the case
of our procedure ‘‘With overnights,’’ we find that the investor would give up between 39
basis points (when l ¼ 10) and 148 basis points (when l ¼ 2) per year to use our optimally
sampled realized variance versus realized variance based on subsampling. In the case of
our procedure ‘‘Without overnights,’’ we find that the investor would be willing to forego
between 50 basis points (when l ¼ 10) and 264 basis points (when l ¼ 2) per year to use
our optimally sampled realized variance versus realized variance based on subsampling.
We attribute this result to the fact that Zhang, Mykland, and Aı̈t-Sahalia’s optimal
method to select the subsamples produces little averaging across subsampled variance
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Table 8

Annualized fees (in basis points) that a mean-variance investor would be willing to pay to perform a volatility

timing trading strategy using optimally sampled realized variances versus 5-min variances, 15-min variances, and

variances obtained by subsampling (‘‘without overnights’’)a

l ¼ 2 l ¼ 7 l ¼ 10

V�=5mV V�=15mV V�=SubV V�=5mV V�=15mV V�=SubV V�=5mV V�=15mV V�=SubV

1st half 363 468 231 100 125 57 70 88 40

2nd half 75 165 293 22 47 84 15 33 59

Full 211 307 264 58 84 71 41 59 50

aThe table contains the annualized fees (in basis points) that a mean-variance investor with absolute risk-

aversion parameter l ¼ 2; 7, and 10 would be willing to pay to perform a volatility timing trading strategy using

optimally sampled realized variances (V�) versus 5-min realized variances (5mV), 15-min realized variances

(15mV), and realized variances obtained by subsampling (SubV). We use quote data for SBC communications

(SBC) over the period between January 1993 and December 2003. We split the sample in half with a break date of

the end of June 1998. The data come from the TAQ database. The optimally sampled realized variances are

computed by summing squared continuously compounded returns constructed using midpoint bid-ask quotes

sampled every D� min, where D� is the optimal sampling interval from Proposition 3 in the main text. The 5-min

realized variances are computed by summing squared continuously-compounded returns constructed by sampling

every 5min. The 15-min realized variances are computed by summing squared continuously-compounded returns

constructed by sampling every 15min. The subsampled realized variances are derived as in Zhang et al. (2004). We

follow Fleming et al. (2001, 2003) in performing a volatility timing trading exercise as detailed in the main text.

The one-day-ahead variance forecasts are obtained by virtue of an ARFIMAð2; d ; 2Þ model. We use GPH

estimates of the d parameter. The estimated d values are equal to 0.45 in the case of the optimally sampled realized

variances, 0.44 in the case of the 5-min realized variances, 0.37 in the case of the 15-min realized variances, and

0.27 in the case of the subsampled realized variances. We employ 200 observations to construct the first forecast.

The total number of one-day-ahead forecasts is equal to 1875. We account for the fact that all variance measures

are computed over a 6.5-h period by implementing the ‘‘Without overnights’’ procedure in the main text, namely,

we simply multiply the daily variance estimates by a factor which guarantees that the average of the ‘‘corrected’’

realized variances coincides with the variance of the daily returns.
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estimates in our sample. Little averaging may be associated with a (bias-corrected) realized
variance estimator whose variance is not minimized in our sample. Furthermore, the bias-
correction that the estimator requires yields negative variance estimates for 10% of the
days. To circumvent this problem, we replace these values with the most recent
nonnegative values. The final time series of daily estimates results in less persistence than
for the other series. The long-memory parameter estimate is 0.27 in this case. We believe
the subsampling approach should work well in large samples. Our results suggest the need
for further research on implementing this technique on data such as those used in our
work.
Finite sample performance is always the appropriate empirical benchmark. We show

that the methods in Bandi and Russell (2004) and the present paper perform well along this
dimension.5
5SBC is chosen as a moderately liquid representative stock. We compare optimally sampled realized variance

estimates to the same alternative estimates in the case of two other stocks, one very liquid, Merrill Lynch (MER),

and one relatively illiquid, XOM. Merrill Lynch is used as a substitute for GS (previously discussed) since it has

the same liquidity and, unlike GS, has data going back to 1993. The results for both these stocks are similar to the

SBC results. However, the results for the most liquid stock, namely MER, appear less strong.
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9. Conclusions

Since the early work on nonparametric variance estimation of French et al. (1987),
Schwert (1989, 1990a,b), and Schwert and Seguin (1991), among others, substantial
attention has been devoted to model-free measurements of variance through sample
averages of continuously compounded return data. In particular, the recent contributions
of Andersen et al. (2001, 2003), and Barndorff-Nielsen and Shephard (2002, 2004) provide
theoretical justifications for using sums of high frequency return data to consistently
estimate the integrated variance of the efficient price process.

Building on recent work by Bandi and Russell (2004), this paper pushes the use of high
frequency data a step forward and argues that accurately sampled high frequency data can
provide valuable information about both the conventional object of interest, namely, the
integrated variance of the efficient price process, and the variance of the market
microstructure frictions generated by the trading process. In keeping with the simplicity
and empirical appeal of the early work, and with recent developments as indicated above,
we employ (possibly rescaled) sample averages of return data. However, we argue that
observations sampled at high frequencies provide consistent estimates of the variance (and
higher-order moments) of the noise process, whereas appropriately chosen low frequencies
allow us to optimally balance the bias and variance of the conventional realized variance
estimator for the purpose of estimating the efficient price integrated variance. Our cross-
sectional results, which are based on a sample of S&P100 stock midquotes for the month of
February 2002, can be summarized as follows:
(1)
 The standard deviations of the unobserved midquote noise components are positively
related to the quoted spreads. Furthermore, the median noise standard deviation is about
a quarter of the median spread. Since most trades occur within the spread and the
midpoints contain a residual noise component, both results are economically meaningful.
(2)
 When choosing a single optimal sampling frequency to estimate the efficient price
variance, we find optimal frequencies that are smaller than frequencies generally
employed in empirical work on nonparametric variance estimation through realized
variance. While in our sample the 5-min frequency can be a reasonable approximation
in practise, in that the associated MSE loss is small on average, the often-conjectured
15-min interval might render the variance estimates excessively volatile.
(3)
 The cross-sectional relation between estimated noise variance and efficient price
variance in our sample is positive and significant. This result is consistent with both the
‘‘operating cost’’ theory and the ‘‘asymmetric information’’ theory of execution cost
determination.
Our time-series results rely on a sample of midquotes of the representative stock SBC for
the period between January 1993 and December 2003. These results can be summarized as
follows:
(1)
 When allowing for time-varying optimal frequencies, we show the need for lower
frequencies at the beginning of our sample. This finding is likely due to lower market
liquidity and larger microstructure frictions in the past.
(2)
 Failing to account for time variation in the optimal frequencies might result in either
biased or excessively volatile variance forecasts. Variations in the noise properties
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translate into variations in the bias when short, fixed intervals are used. Alternatively,
if long fixed intervals are used, the bias will be small but the estimates can be
excessively volatile.
(3)
 The economic benefit of optimal sampling can be substantial, as we show in the context
of an asset allocation problem à la Fleming et al. (2001, 2003). Specifically, we find that
a risk-averse investor is willing to pay between 25 and 300 basis points per year to
employ variance forecasts based on optimal intervals versus variance forecasts based
on fixed intervals. While these magnitudes depend on SBC, this result provides useful
guidance about the practical benefits of our procedure. The examination of the
economic benefit of optimal sampling in the presence of a large number of stocks is left
for future research.
The statistical and economic importance of optimal sampling suggests numerous
directions for future research. First, the natural next step is to study the dynamic properties
of optimally sampled variance estimates. Second, the optimal sampling methods in Bandi
and Russell (2004) and the present work can be extended to realized covariances and
realized betas. We expect these extensions to provide a rich set of tools to
nonparametrically estimate fundamental ingredients in the theory and practise of asset
pricing, portfolio choice, and risk management. Turning to the other unobserved
component of the observed return variance, i.e., the noise variance, our methods render
it observable in practise. In light of the relation between noise standard deviations and
transaction costs, when applied to transaction prices our procedures can be utilized to
study the cross-sectional and dynamic features of central measures of market quality,
namely, execution costs. Research on these subjects is being conducted by the authors and
will be reported in later work.
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