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Abstract

We consider a new class of estimators for volatility functionals in the setting of

frequently observed It	o di�usions which are disturbed by i.i.d. noise. These statistics

extend the approach of pre-averaging as a general method for the estimation of the

integrated volatility in the presence of microstructure noise and are closely related

to the original concept of bipower variation in the no-noise case. We show that this

approach provides e�cient estimators for a large class of integrated powers of volatil-

ity and prove the associated (stable) central limit theorems. In a more general It	o

semimartingale framework this method can be used to de�ne both estimators for the

entire quadratic variation of the underlying process and jump-robust estimators which

are consistent for various functionals of volatility. As a by-product we obtain a simple

test for the presence of jumps in the underlying semimartingale.
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1 Introduction

The last years have seen a rapidly growing literature on the estimation of volatility

in case of high frequency data. Starting from the representation of (log) price pro-

cesses as It	o di�usions, which are widely accepted as a reasonable model for stock

or currency prices, empirical research suggests that the true observations are con-

taminated by microstructure noise, which collects deviations from the true and the

observed prices that are due to bid-ask spreads or round-o� errors, among others.

These e�ects seem to have a huge impact on the performance of the classical esti-

mators in the pure di�usion case, which explains the need for a general theory of

the treatment of microstructure noise.

Throughout this paper we will focus on a general nonparametric setting, thus

the underlying di�usion process is characterised by the equation

Xt = X0 +

∫ t

0

as ds+

∫ t

0

σs dWs, (1.1)

whereas (as) denotes a predictable locally bounded drift and (σs) a càdlàg volatility

process. Since we are dealing with high frequeny data, we assume the process

to live on a �xed time interval, [0,1] say. A typical quantity of interest is the

integrated volatility
∫ 1

0
σ2
sds, for which the realised variance

∑n
i=1 |∆n

iX|2 is a natural
estimator in the case of non-noisy observations. See for example Andersen et al. [3]

or Barndor�-Nielsen and Shephard [6]. Microstructure noise has commonly been

modelled as an additive error, which ful�lls some moment conditions and behaves

essentially like a white noise process. However, a more general setting is possible

and was discussed in Jacod et al. [14].

It was shown in Zhang et al. [22] that the realised variance becomes inconsistent

when dealing with microstructure noise, which started the search for new methods

to solve the problem of volalitity estimation in this context. Up to now, there

exist three approaches to this question. Zhang et al. [22] and Zhang [21] used

linear combinations of increments at di�erent time lags to de�ne a subsampling

estimator, whereas Barndor�-Nielsen et al. [5] proposed a kernel based estimator,

which essentially consists of a weighted sum of autocovariances. The method of

pre-averaging over small intervals was introduced in Podolskij and Vetter [18] and

to a �rst extent generalised in Jacod et al. [14]. Each approach provides consistent
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estimators and achieves the optimal rate of convergence of n−
1
4 in a stable limit

theorem.

In this paper we propose a class of bipower-type estimators which are pre-

averaged analogues of the realised bipower variation

BV (X, l, r)n = n
r+l
2
−1

n−1∑
i=1

|∆n
iX|l|∆n

i+1X|r, (1.2)

which was considered in Barndor�-Nielsen et al. [4]. We prove stochastic conver-

gence and state joint central limit theorems of these bipower-type statistics, both

for any choice of non-negative powers l and r. As in earlier work on pre-averaged

estimators, simple modi�cations of such bipower-type statistics turn out to be con-

sistent for a large class of integrated powers of volatility.

In contrast to the original concept of modulated bipower variation as de�ned in

Podolskij and Vetter [18] this new method also serves as a powerful tool to draw

inference about the underlying price process even in the case, where it is de�ned as

a realisation of an It	o semimartingale

Xt = X0 +B +Xc + κ ? (µ− ν) + κ′ ? µ, (1.3)

which does not necessarily have continuous paths as in (1.1), but allows for jumps

as well. A precise de�nition of the processes involved will be given later.

In this rather general setting we construct both a consistent estimator for the

entire quadratic variation of X and jump-robust estimators which are consistent for

the integrated powers of volatility. In a similar way as in the no-noise case (see

Barndor�-Nielsen and Shephard [7] or Ait-Sahalia and Jacod [1], among others)

we are then able to solve the problem, how to test for jumps of the process X

in the presence of microstructure noise. Based on the estimator for the quadratic

variation of X and the robust one for the integrated volatility we construct two test

statistics, which are given by di�erentiable functions of two bipower-type statistics

with di�erent powers l and r. By means of a joint central limit theorem we obtain

two simple tests for the presence of jumps, both under the null hypothesis of no

jumps.

This paper is organised as follows: In Section 2 we state the assumptions and

de�ne the class of bipower-type statistics. Section 3 is devoted to the asymptotic
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results, whereas Section 4 deals with their applications in a test for jumps. All

proofs are given in Section 5.

2 Assumptions and de�nitions

We assume that the underlying continuous process X = (Xt)t is a di�usion pro-

cess as given in (1.1), which is de�ned on an appropriate �ltered probability space

(Ω(0),F (0), (F (0)
t )t∈[0,1], P

(0)). As noted before, we assume further that the process

lives on the time interval [0,1].

Since we are dealing with microstructure noise we have to de�ne a second process

Z = (Zt)t, which is somehow connected to the underlying It	o semimartingale X.

We restrict ourselves to the case of i.i.d. noise, which means that the observed data

are given by

Ztn,i = Xtn,i + Utn,i (2.1)

at each observation time tn,i, where Ut, t ∈ [0, 1], is an i.i.d. noise process indepen-

dent of X with

E[Ut] = 0 and E[U2
t ] = ω2. (2.2)

Furthermore, we assume that for each n the observation times are given by tn,i =
i
n
, 0 ≤ i ≤ n.

In order to make both X and Z measurable with respect to the same kind of

�ltration, we have to de�ne a new probability space (Ω,F , (Ft)t, P ), which accom-

modates both processes. To this end, we assume similarly to the setting in Jacod et

al. [14] that one has a second space (Ω(1),F (1), (F (1)
t )t∈[0,1], P

(1)), where Ω(1) denotes

R[0,1] and F (1) the product Borel-σ-�eld on Ω(1). Furthermore, for any t ∈ [0, 1] we

de�ne Qt(ω
(0), dz) to be the probability measure, which corresponds to the transition

from Xt(ω
(0)) to the observed process Zt. In the case of i.i.d. noise, this transition

kernel is rather simple, since we have

Qt(ω
(0), dz) = g(z −Xt(ω

(0))) dz

whenever U has a density g. We de�ne at last P (1)(ω(0), dω(1)) to be the product

⊗t∈[0,1]Qt(ω
(0), ·). By construction, (Zt)t can be regarded as the canonical process

on (Ω(1),F (1), P (1)) with the natural �ltration given by F (1)
t = σ(Zs; s ≤ t). The

�ltered probability space (Ω,F , (Ft)t∈[0,1], P ) is then de�ned as
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Ω = Ω(0) × Ω(1), F = F (0) ×F (1), Ft =
⋂
s>tF

(0)
s ×F (1)

s ,

P (dω(0), dω(1)) = P (0)(dω(0))P (1)(ω(0), dω(1)).

}
(2.3)

Remark 1 Note that this setting refers in view of Jacod et al. [14] only to a special

case of a noisy observation scheme. However, even in the more general case presented

therein the process Z exhibits a decomposition of the form

Zt = Xt + htUt,

where ht is F (0)-measurable and conditionally on F (0) the Ut have mean zero, unit

variance and (Ut, Us) are mutually independent for all t 6= s. This representation as

well as the results from Jacod et al. [14] indicate that main results from this paper

may be derived in the general setting as well.

Before we are able to de�ne the class of bipower-type statistics BT (l, r)n we have

to introduce some further items and notations. First, we choose a sequence kn of

integers, for which a positive number θ satisfying

kn√
n

= θ + o(n−
1
4 ) (2.4)

exists, and a nonzero real-valued function g : R → R, which ful�lls the following

conditions:

(i) g vanishes outside of (0, 1)

(ii) g is continuous and piecewise C1

(iii) Its derivative g′ is piecewise Lipschitz.

We associate with g the following real valued numbers:

gni = g( i
kn

), ψ2 =
∫ 1

0
(g(s))2 ds, ψn2 = 1

kn

∑kn−1
i=1 (gni )2,

ψ1 =
∫ 1

0
(g′(s))2 ds, ψn1 = kn

∑kn−1
i=0 (gni+1 − gni )2.

}
(2.5)

Furthermore, for any process V = (Vt) we de�ne the random variables

V n
i = V i

n
, ∆n

i V = V n
i − V n

i−1,

∆n
i V = V n

i+kn
− V n

i , V
n

i =
∑kn

j=1 g
n
j ∆n

i+jV.

}
(2.6)
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Note that V
n

i can be represented as

V
n

i =

∫ i+kn
n

i
n

gn

(
s− i

n

)
dVs with gn(s) =

kn∑
j=1

gnj 1( j−1
n
, j
n

](s). (2.7)

For any process V and two arbitrary positive real numbers l and r the bipower-

type statistic BT (V, l, r)n is then de�ned as

BT (V, l, r)n = n
l+r
4
−1

n−2kn+1∑
i=0

|V n

i |l|V
n

i+kn|
r. (2.8)

If we simply write BT (l, r)n, we assume that we de�ne this statistic with respect to

Z. At least one example for a bipower-type estimator has already been studied, since

in Jacod et al. [14] a slight modi�cation of BT (2, 0)n was shown to be a consistent

estimator of the integrated volatility of the underlying process X.

This class of estimators generalises the approach of modulated bipower variation

as proposed in Podolskij and Vetter [18] in a twofold manner:

First, instead of using the simple kernel function

g(x) = (x ∧ (1− x))+

we allow for di�erent types of weights on the increments ∆n
i Z. Similarly to Podolskij

and Vetter [18] the choice of kn ensures that the stochastic orders of X
n

i and U
n

i are

balanced, which explains why characteristics of X and U will both be present in the

stochastic limit and the central limit theorem.

Second, we do not only sum up such statistics Z
n

i , which are de�ned over non-

overlapping intervals of length kn
n
, but use all available statistics up to time 1− 2kn

n
.

This change does not a�ect the behaviour in the stochastic limit, but certainly it

increases the estimator's e�ciency. Most important, however: When the underlying

process allows for jumps as in (1.3), we need estimators that give equal weight to

any increment of lag 1
n
(apart from increments on the boundary of [0,1]) in order to

draw inference about the quadratic variation of the jump part.

A third generalisation towards multipower-type statistics, which can be de�ned

as sums of products of more than two adjacent pre-averaged statistics, will not

be derived in this paper. Inferences about these estimators can be obtained by

extensions of the following results in a straightforward way.
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We �nish this section with some words on the representation of a semimartingale

X as de�ned in (1.3). Its representation is de�ned as in Jacod and Shiryaev [16]: µ

denotes a jump measure and ν its predictable time compensator, whereas integrals

of optional functions V with respect to a random measure µ are denoted by V ? µ.

κ is assumed to be a �xed truncation function, which is continuous, has compact

support and coincides with the identity on a neighbourhood of zero. κ′ is de�ned

via κ′(x) = x − κ(x). Moreover, Xc denotes the continuous martingale part and

(B,C, ν) with C =< Xc, Xc > are the predictable characteristics of X.

3 Asymptotic theory

In this section we study the asymptotic behaviour of the class of bipower-type esti-

mators BT (l, r)n, l, r ≥ 0. In the pure di�usion case we obtain stochastic conver-

gence for each choice of l and r under mild assumptions, since apart from a moment

condition on the noise process U no further assumptions on Z are needed. In order

to prove a central limit theorem we have to modify the setting slighty, but are still

able to derive results for a large class of volatility processes. In the semimartingale

framework we will restrict ourselves to less general choices of l and r.

3.1 Consistency

We start with the statement of the stochastic limit in case X is a continuous It	o

di�usion as de�ned in (1.1).

Theorem 1 Assume that E|U |2(l+r)+ε < ∞ for some ε > 0 and let µr denote the

r-th absolute moment of a standard normal distribution. Then the convergence in

probability

BT (l, r)n
P−→ BT (l, r) = µlµr

∫ 1

0

(θψ2σ
2
u +

1

θ
ψ1ω

2)
l+r
2 du (3.1)

holds.

The moment condition on U is crucial to replace the moments of U
n

i by the corre-

sponding moments of a standard normal distribution which only depend on ω2.
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Remark 2 Theorem 1 indicates that the class of bipower-type estimators is incon-

sistent for any integrated power of volatility. However, when l+r is an even number,

a modi�cation of BT (l, r)n similar to the one in Podolskij and Vetter [18] turns out

to be consistent. This can be illustrated as follows: Since

ω̂2 =
1

2n

n∑
i=1

|∆n
i Z|2 (3.2)

is a constistent estimator for ω2 (see e.g. Zhang et al. [22]), one obtains consistent

estimators for integrated powers of volatility, as long as one is able to estimate and

subtract the bias due to ω2 in the stochastic limit BT (l, r). When l+r
2

is an integer,

this is of course a simple application of the binomial theorem. The special case of

BT (2, 0)n has already been treated in Jacod et al. [14], where

Ĉn =
1

θψ2

BT (2, 0)n − ψ1

θ2ψ2

ω̂2 P−→
∫ 1

0

σ2
s ds (3.3)

was introduced as an estimator of the integrated volatility.

However, if X is supposed to be a semimartingale, Theorem 1 does not hold in

general. Nevertheless, in the spirit of Jacod [12] it is possible to show the stochastic

convergence of BT (l, r)n (or a rescaled version), where the limit depends both on the

choice of l and r and on additional assumptions on the processes involved. We will

investigate the cases which are important in order to derive estimators for the entire

quadratic variation or parts thereof. Since we want to focus on It	o semimartingales

only, we need an additional assumption on the characteristics of X, which ensures

that its drift and its continuous martingale part are given by an It	o di�usion. Fur-

thermore, a certain structure on the compensator ν is imposed.

(H): The characteristics (B,C, ν) of the semimartingale X are as follows:

Bt =

∫ t

0

as ds, Ct =

∫ t

0

σ2
s ds, ν(dt, dx) = dt Ft(dx),

whereas the processes (as) and (Fs(Φ2)) are locally bounded and predictable. Here,

Fs(f) denotes the integral
∫
f(x) Fs(dx) and

Φr(x) = 1 ∧ |x|r,

r > 0. Moreover, (σs) is assumed to be càdlàg.
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This condition is the same condition as in Jacod [12]. It implies that Xt can be

represented in the following way:

Xt = X0 +

∫ t

0

as ds+

∫ t

0

σs dWs (3.4)

+

∫ t

0

∫
R
κ ◦ δ(s, x)(µ− ν) (ds, dx) +

∫ t

0

∫
R
κ′ ◦ δ(s, x) µ(ds, dx),

where µ is a Poisson random measure on R+ × R with its compensator ν(dt, dx) =

dt× dx. δ is a function from Ω× R+ × R to R, such that Ft(ω, dx) is the image of

dx under the mapping x 7→ δ(ω, s, x).

We can now state a result about the stochastic convergence of BT (l, r)n in the

general semimartingale context.

Theorem 2 Assume that the underlying process X is given by (1.3) and that both

(H) and the conditions on U from Theorem 1 are ful�lled. Then

(i)

BT (2, 0)n
P−→
∫ 1

0

θψ2σ
2
u du+ θψ2

∑
s≤1

|∆Xs|2 +
1

θ
ψ1ω

2. (3.5)

(ii) If l ∨ r < 2 then BT (l, r)n is robust to jumps, i.e. it converges in probalility to

BT (l, r) as given in (3.1).

We see that this result provides us with simple estimates for the joint quadratic

variation of the process X, but gives also robust estimators for the integrated volatil-

ity. For example, we may conclude that

1

θψ2

BT (2, 0)n − ψ1

θ2ψ2

ω̂2

is a consistent estimator for

[X,X]1 =

∫ 1

0

σ2
sds+

∑
s≤1

|∆Xs|2,

which is the quadratic variation of the process X at time 1. Moreover, we have

BTV n = BT (2, 0)n − µ−2
1 BT (1, 1)n

P−→ θψ2

∑
s≤1

|∆Xs|2, (3.6)
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since µ−2
1 BT (1, 1)n converges to the integrated volatility even in the presence of

jumps. Thus BTV n (or a slight modi�cation thereof) quanti�es the part of the

quadratic variation, which is due to jumps. Based on this statistic we will in the

following derive feasible tests for the presence of jumps in the latent process X. A

second test will be based on the ratio of BT (2, 0)n and BT (1, 1)n.

Statistics like BTV n are somewhat similar to the ones obtained by applying the

original concept of bipower variation, which serves as an alternative method for the

estimation of the integrated volatility in the presence of jumps, when no market

microstructure noise is present.

3.2 Central limit theorems

In this paragraph we present a central limit theorem for a normalised version of

BT (l, r)n, where for the �rst part of this section X is given by (1.1), thus having

continuous paths. As mentioned before, further assumptions on the process Z are

required. At �rst, we need two structural assumptions on the volatility process σ,

which are already known to be required for the proof of the central limit theorem

for bipower variation in the no-noise-case, but were also used to derive a central

limit theorem for modulated bipower variation (see e.g. Barndor�-Nielsen et al. [4]

or Podolskij and Vetter [18]).

(V): The process σ satis�es the equation

σt = σ0 +

∫ t

0

a′s ds+

∫ t

0

σ′s dWs +

∫ t

0

v′s dVs. (3.7)

Here a′, σ′ and v′ are adapted càdlàg processes, with a′ also being predictable and

locally bounded, and V is a second Brownian motion, independent of W .

(V'): σ2 > 0.

Assumption (V) is ful�lled in many widely used �nancial models (see Black and

Scholes [8], Vasicek [20], Cox et al. [10] or Chan et al. [9] among others), since

whenever X is a unique strong solution of a stochastic di�erential equation with a
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volatility function σt = σ(t,Xt) being smooth enough, condition (V) with v′s = 0

holds as a simple consequence of It	o's formula.

The assumptions on the noise process U are less restrictive than in Podolskij and

Vetter [18], where it was assumed that U follows a normal distribution.

(A): For the noise variables U we have the following conditions:

(i) U is distributed symmetrically around zero.

(ii) For any 0 > a > −1 we have E[|U |a] <∞.

(A'): Cramer's condition is ful�lled, that is lim sup|t|→∞ χ(t) < 1, where χ

denotes the characteristic function of U .

The �rst condition is of fundamental importance, if at least one of the powers

l and r is smaller than one. In this case the corresponding central limit theorem

for the classical bipower variation relies on the fact that the normal distribution

satis�es both properties from (A). We will see later that for our purposes one has

to proceed in a similar way, which explains this additional assumption on the noise

process. (A') will be used in order to remove the intrinsic bias in the pre-averaged

statistic |Zn

i |l, when the power l is not an even number. Typically we replace the

moments of |n 1
4U

n

i |l by the corresponding moments of a normal distribution, but a

priori we have no information about the size of the error due to this replacement.

In order to show that this error becomes su�ciently small, we will use an expansion

of Edgeworth-type, for which (A') is a standard assumption. As in the previous

section, we need an additional moment condition on U as well, depending on the

choice of l and r.

All central limit theorems stated below will make use of the concept of stable

convergence of random variables. Let us shortly recall the de�nition. A sequence of

random variables Gn is said to converge stably in law with limit G (throughout this

paper we write Gn
Dst−→ G), de�ned on an appropriate extension (Ω′,F ′, P ′) of the
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original probability space (Ω,F , P ), if and only if for any F -measurable and bounded

random variable H and any bounded and continuous function f the convergence

lim
n→∞

E[Hf(Gn)] = E[Hf(G)]

holds. This is obviously a slightly stronger mode of convergence than convergence

in law (see Renyi [19] or Aldous and Eagleson [2] for more details on stable conver-

gence).

Since we want to use BTV n as de�ned in (3.6) to establish a test for the pres-

ence of jumps in the underlying semimartingale, we state a central limit theorem

for 2-dimensional arrays of bipower-type statistics. Therefore, we �x non-negative

numbers l1, r1, l2, r2 and set

ξ1
n = BT (l1, r1)n −BT (l1, r1),

ξ2
n = BT (l2, r2)n −BT (l2, r2),

ξn = (ξ1
n, ξ

2
n).

Before we proceed with the central limit theorem for ξn, we have to introduce

some further notation. We de�ne

hij(x, y, z) = Cov(|H1|li |H2|ri , |H3|lj |H4|rj), (3.8)

where x is a real number, y and z are a two- and four-dimensional vector, respec-

tively, and (H1, . . . , H4) follows a normal distribution with

(i) E[Hl] = 0 and E[|Hl|2] = y1x
2 + y2ω

2.

(ii) H1⊥H2, H1⊥H4 and H3⊥H4.

(iii)

Cov(H1, H3) = Cov(H2, H4) = z1x
2 + z2ω

2

and

Cov(H2, H3) = z3x
2 + z4ω

2.

Each hij can in principle be computed, but the calculations become rather compli-

cated, except for special cases.
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Moreover, we set t = (θψ2,
1
θ
ψ1) and de�ne the functions

f1(s) = θ

∫ 1−s

0

g(r)g(r + s) dr, f2(s) =
1

θ

∫ 1−s

0

g′(r)g′(r + s) dr,

f3(s) = θ

∫ 2−s

0

g(r)g(r + s− 1) dr, f4(s) =
1

θ

∫ 2−s

0

g′(r)g′(r + s− 1) dr

for s ∈ [0, 2]. Note that both f1 and f2 are 0 for s ∈ [1, 2], according to the

assumptions on g.

The conditional variance in the following limit theorem depends on the functions

hij introduced above and will therefore not be computed explicitly. Nevertheless,

we will explain afterwards, how it can be estimated consistently. This is su�cient

to derive feasible central limit theorems.

Theorem 3 Let l1, r1, l2 and r2 be four positive real numbers and let X be given

by (1.1). We further assume (V) and (A), and impose additionally that U ful�lls

E[|U |s+ε] < ∞ for some s ≥ (3 ∧ 2(r1 + l1) ∧ 2(r2 + l2)) and some ε > 0. If any li

or ri is in (0,1], we postulate (V') as well, otherwise either (V') or (A').

Then

n
1
4 ξn

Dst−→ V (l1, r1, l2, r2),

where the limiting process is given by

V (l1, r1, l2, r2) =

∫ 1

0

vl1,r1,l2,r2(σu) dW
′
u. (3.9)

Here W ′ denotes a 2-dimensional standard Brownian motion, which is de�ned on

an extension of the �ltered probability space (Ω,F , (Ft)t, P ) and is independent of

the σ-�eld F . The conditional variance of the limiting process is given by∫ 1

0

vtl1,r1,l2,r2vl1,r1,l2,r2 (σu) du =

∫ 1

0

(
wl1,r1,l2,r211 wl1,r1,l2,r212

wl1,r1,l2,r212 wl1,r1,l2,r222

)
(σu) du,

where

wl1,r1,l2,r2ij (σu) = 2θ

∫ 2

0

hij(σu, t, f(s)) ds.

In the following we will drop the arguments indicating the dependence of v and

wij on the choice of l1, r1, l2 and r2 for notational convenience. Notice that the
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distribution of the limiting random variable de�ned by (3.9) is mixed normal with

F -conditional variance
∫ 1

0
v2(σu) du. In the following we denote such a distribution

by MN(0,
∫ 1

0
v2(σu) du).

Remark 3 Some of the assumptions can be relaxed, if all powers are even numbers.

In particular, apart from the moment condition of U we only have to postulate

condition (V). This is due to the fact that even moments of the pre-averaged noise

process can be computed explicitly. One can see easily that these moments converge

to the corresponding ones of a standard normal distribution fast enough.

Remark 4 A nice way to quantify the quality of estimators like Ĉn in contrast to

their modulated bipower analogues is to have a look at its performance in a special

setting. Suppose that the latent process is given by

Xt = σWt

for some positive constant σ > 0. It is well-known from Gloter and Jacod [11] that

one has an e�cient parametric bound for the asymptotic variance of any estimator

for σ2, namely 8σ3ω. It was shown in Jacod et al. [14] that in this special case one

can compute the conditional variance in Theorem 3 explicitly and obtains for the

(probably most natural) weight function

g(x) = (x ∧ (1− x))+

an optimal bound, which is roughly 8.5σ3ω (by minimizing the conditional variance

of Ĉn in θ). This is not only rather close to the optimal bound, but also a huge

improvement, since the related estimator discussed in Podolskij and Vetter [18] has

an optimal variance of about 20σ3ω.

As mentioned earlier, we are able to estimate each entry
∫ 1

0
wij(σu) du of the

conditional covariance matrix. To this end, we �x i and j and choose some real

number $ ∈ (0, 1
4
). Moreover, we de�ne

Z̃n
m,i = n

li+ri
4
− 1

2 |Zn

m|li |Z
n

m+kn|
ri1{|Znm|<n−$,|Z

n
m+kn |<n−$}

as well as

χ̂nm,l =
1

2

(
Z̃n
m,i

(
Z̃n
m+l,j − Z̃n

m+2kn,j

)
+ Z̃n

m,j

(
Z̃n
m+l,i − Z̃n

m+2kn,i

))
,

13



for any 0 ≤ m ≤ n− 4kn + 1 and 1 ≤ l < 2kn.

Note that the truncation in the de�nition of Z̃n
m,i is necessary in order to obtain

an estimator for the variance in the central limit theorem, which is robust in the

presence of jumps. It could be removed, if one wants to establish a feasible result

only in model (1.1).

Lemma 1 If all conditions from Theorem 3 hold true and if U further satis�es

E[|U |s′+ε′ ] <∞ for s′ =
max(li,ri,lj ,rj)

4( 1
4
−$)

and some ε′ > 0, then the statistic

ŵnij =
2

n
1
2

n−4kn+1∑
m=0

2kn−1∑
l=0

χ̂nm,l

converges in probability to
∫ 1

0
wij(σu) du, both in model (1.1) and in model (1.3), as

long as condition (H) is satis�ed.

Remark 5 The moment condition on U in Lemma 1 is necessary to ensure that the

probability of n
1
4 |Un

i | exceeding some threshold of the form n
1
4
−$ becomes su�ciently

small. An alternative approach could involve less moments, but the additional

assumption (A') in order to perform a similar type of Edgeworth expansion as in

Theorem 3.

We conclude this section with a second proposition on the asymptotic behaviour

of bipower-type statistics in the general framework of (1.3). As in the case of stochas-

tic convergence we will only show that the proposition from Theorem 3 holds under

the presence of jumps as well, provided that the powers l and r are small enough.

We will prove this result in the one-dimensional case only, since the extension to the

bivariate setting is straightforward.

Before we can proceed with the statement of the result we need an additional

condition on the semimartingale X, which is well-known from Jacod [12] as well.

(L-q): We have (H) and the process δ(s, x) is predictable and left continuous

with right limits. Moreover, there exists a family of functions γk(x) and a sequence

of stopping times Tk converging to in�nity almost surely such that

|δ(s, x)| ≤ γk(x) for all s ≤ Tk

14



and ∫
R

Φq(γk(x)) dx <∞

with q ∈ [0, 2], any k, hold.

Note that (L-q) implies (L-r), whenever q ≤ r ≤ 2. The following claim is closely

related to Theorem 6.2 in Jacod [13] in the no-noise case.

Theorem 4 Let X be given by (1.3) and assume that (L-q) as well as (V), (V')

and (A) are satis�ed. If further q
2−q < l1, r1 < 1 and E[|U |s+ε] < ∞ for some

s ≥ (3 ∧ 2(r1 + l1)) and some ε > 0, then the stable convergence from Theorem 3

holds in the univariate setting. Precisely, we have

n
1
4 (BT (l1, r1)n −BT (l1, r1))

Dst−→ V (l1, r1),

where V (l1, r1) is the �rst component of the limiting variable V (l1, r1, 0, 0) as de�ned

in Theorem 3.

4 Testing for Jumps

In order to derive a test for jumps we have to specify the hypotheses �rst. We assume

throughout this paragraph that the underlying process X is given by (3.4) for some

choice of a, σ and δ, where δ ≡ 0 corresponds to the setting in (1.1). Note however,

that even if δ does not vanish and thus the process X allows in principle for jumps,

the realised path s 7→ Xs(ω
(0)) does not have to have jumps at all. Obviously, in

this case there is no way to tell whether the process comes from model (1.1) or from

the more comprehensive model (1.3), since we are just able to distinguish between

continuous and discontinuous paths of X. We therefore partition the set Ω into the

following two subsets

Ωc = Ω(0)
c × Ω(1) and Ωd = Ω

(0)
d × Ω(1)

with

Ω(0)
c = {ω(0) : s 7→ Xs(ω

(0)) is continuous on [0, 1]},

Ω
(0)
d = {ω(0) : s 7→ Xs(ω

(0)) is discontinuous on [0, 1]}.

15



Fortunately, the properties of bipower-type statistics based on It	o di�usions and

on It	o semimartingales without jumps are comparable. Thus BTV n from (3.6) can

still be regarded as the right quantity to construct test for the presence of jumps

from. If we choose l1 = 2, r1 = 0 and l2 = r2 = 1, we obtain the representation

BTV n = ξ1
n − µ−2

1 ξ2
n.

On the set Ωc (under the null hypothesis of no jumps), exploiting the properties of

stable convergence and the results of Theorem 3, this statistic converges stably in

law, i.e

n
1
4BTV n Dst−→MN(0, τ 2), τ 2 =

∫ 1

0

d2(σu) du,

where d2 is given by

d2 =
(

1 −µ−2
1

)(w11 w12

w12 w22

)(
1

−µ−2
1

)
= w11 − 2µ−2

1 w12 + µ−4
1 w22.

We are now in a position to derive a test for jumps in the underlying process X,

since we know from Lemma 1 how to estimate the conditional variance of the limiting

process V in Theorem 3. For each
∫ 1

0
wpq(σu) du we have a natural estimator using

ŵpq, thus a consistent estimator

τ̂ 2
n = ŵ11 − 2µ−2

1 ŵ12 + µ−4
1 ŵ22

for τ 2 can be de�ned as well. From the properties of stable convergence it follows

that

Sn = n
1
4
BTV n

τ̂n

Dst−→ S,

where S follows a standard normal distribution and is independent of F .

Under the alternative however, BTV n converges to a strictly positive quantity.

Since moreover τ̂ 2
n was shown to be a robust estimator for τ 2 even in the presence

of noise, we see easily that Sn tends to in�nity, if the realisation of X has a discon-

tinuous path. Therefore, if we denote with uα the α-quantile of a standard normal

distribution, we can de�ne

Ln(α) = {Sn > u1−α}

and obtain for the null hypothesis H0 : ω ∈ Ω
(0)
c the following theorem:

16



Theorem 5 Assume that the conditions from Theorem 3 and Lemma 1 hold true.

Then the test de�ned by

ϕ1(ω) =

1, ω ∈ Ln(α)

0, ω /∈ Ln(α)

ful�lls

lim
n→∞

P (ϕ1(ω) = 1|Ωc) = α

in model (1.1), for any choice of the functions a, σ and δ, and has therefore the

asymptotic level α. Moreover, it is consistent, since

lim
n→∞

P (ϕ1(ω) = 1|Ωd) = 1

holds in model (1.3) and under (H) as a result of Theorem 2 and Lemma 1, again

for any choice of a, σ and δ with P (Ωd) > 0.

This result can be proven in the same way as Theorem 6 in Ait-Sahalia and Jacod

[1], where it was shown that the asymptotic behaviour of It	o di�usions and of It	o

semimartingales without jumps is essentially the same.

A second test can be based on the ratio of the two bipower-type statistics

1

θψ2

BT (2, 0)n and
µ−2

1

θψ2

BT (1, 1)n.

Since under the null hypothesis both statistics converge to the same quantity, we

have that

BTRn =
BT (2, 0)n

µ−2
1 BT (1, 1)n

P−→ 1.

Again with the aid of the generalised delta method, we conclude that

n
1
4 (BTRn − 1)

Dst−→MN(0, υ2)

with

υ2 =
1

BT (1, 1)2

∫ 1

0

(µ4
1w11 − 2µ2

1w12 + w22)(σu) du.

By the same arguments as above a consistent estimator υ̂2
n for υ2 is given by

υ̂2
n =

1

(BT (1, 1)n)2
(µ4

1ŵ11 − 2µ2
1ŵ12 + ŵ22).
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Therefore

T n = n
1
4

(BTRn − 1)

υ̂n

Dst−→ T

for a standard normal T , which is independent of F , and the following theorem can

easily be derived.

Theorem 6 Let

Jn(α) = {T n > u1−α}.

Under the assumptions from Theorem 5 the test de�ned by

ϕ2(ω) =

1, ω ∈ Jn(α)

0, ω /∈ Jn(α)

has the asymptotic level α and is consistent as well.

5 Appendix

In the following we assume without loss of generality that a and σ as well as a′, σ′, v′

and Ft(Ψ2) are bounded, which can be justi�ed by a standard localisation procedure

as explained in Barndor�-Nielsen et al. [4] and Jacod [12]. By the same arguments

we can also replace the functions γk in condition (L-q) by a bounded function γ.

Constants appearing in the proofs are usually denoted by C and may be dependent

on the bounds of the various processes in (1.1), (1.3) and (3.7). We write Cp, if

these constants depend on an additional parameter p.

Some parts of the proofs will base upon the concepts and calculations presented

in Podolskij and Vetter [18], hence we will refer to details illustrated therein quite

often. Nevertheless, the proof of Theorem 3 is much more involved, due to the strong

correlation between the summands in (2.8).

We show �rst that replacing ψn1 and ψn2 de�ned in (2.5) by its limits ψ1 and ψ2

does not a�ect both the consistency statement and the central limit theorem.

Lemma 2 It holds∫ 1

0

(θψn2σ
2
u +

1

θ
ψn1ω

2)q du−
∫ 1

0

(θψ2σ
2
u +

1

θ
ψ1ω

2)q du = op(n
− 1

4 )

for all r, l ≥ 0 and all q ≥ 0.
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Proof of Lemma 2 Using the mean value theorem and the boundedness of σ one

obtains the result, if both

ψ1 − ψn1 = o(n−
1
4 ) and ψ2 − ψn2 = o(n−

1
4 )

can be shown. The �rst proposition follows from

ψn1 = kn

kn−1∑
i=0

(gni+1 − gni )2 =
1

kn

kn−1∑
i=0

(g′(ξi))
2 for some ξi ∈

[ i
kn
,
i+ 1

kn

]
=

∫ 1

0

(g′(x))2 dx+O(
1

kn
) = ψ1 + o(n−

1
4 ),

using (2.4) and the approximation error of a Riemann sum, since g′ was assumed to

be piecewise Lipschitz. The second assertion can be proven analogously. �

Proof of Theorem 1

Prior to proving the stochastic convergence of the statistic BT (l, r)n, note that it

can be represented in the following way:

BT (l, r)n = n−
1
2

kn−1∑
m=0

MBV (l, r)nm,

where MBV (l, r)nm is given by

MBV (l, r)nm = n
l+r
4
− 1

2

b nkn c−1∑
i=0

|Zn

ikn+m|l|Z
n

(i+1)kn+m|r1{(i+1)kn+m≤n}. (5.1)

Each of these new statistics turns out to be a slight generalisation of the modulated

bipower estimators as proposed in Podolskij and Vetter [18]. Therefore, Theorem

1 follows from the following proposition, which proves consistency of all quantites

MBV (l, r)nm in a uniform way.

Lemma 3 There exists a sequence of random variables γn converging to zero in

probability, for which

MBV (l, r)nm −
1

θ
BT (l, r) ≤ γn (5.2)

holds for all m ≤ kn.
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Proof of Lemma 3 This proposition can be reduced to Lemma 2 and the corre-

sponding assertion in Podolskij and Vetter [18], up to some minor changes. The

crucial step in the proof of Theorem 1 therein is to assure that n
1
4U

n

i converges

weakly to a normal distribution; however, this follows in our context, since Linde-

berg's condition is satis�ed due to the assumptions on g. Uniform convergence can

be obtained, since the convergence to zero of any statistic MBV (l, r)nm is obtained

by the fact that σ is supposed to be bounded and càdlàg, regardless of m. �

Proof of Theorem 2

The �rst part of this theorem is shown in Theorem 3.2 in Jacod et al. [15]. For the

second proposition observe that up to the choice of κ the semimartingale X can be

written as follows:

Xt = X0 +Qt +N(ε)t +M(ε)t +B(ε)t, (5.3)

for any ε ∈ (0, s], s small enough. The auxiliary processes are de�ned as

N(ε)t = (x1{|x|>ε}) ? µt, M(ε)t = (x1{|x|≤ε}) ? (µt − νt),

B(ε)t = Bt − (κ(x)1{|x|>ε}) ? νt, Qt =

∫ t

0

σs dWs.

We set further

Z ′t = X0 +Qt + Ut and Z ′′t = N(ε)t +M(ε)t +B(ε)t.

We already know from Theorem 1 that BT (Z ′, r, l)n converges in probability to

BT (r, l), which forces us to prove

E[|BT (Z, r, l)n −BT (Z ′, r, l)n|]→ 0.

We have

BT (Z, r, l)n −BT (Z ′, r, l)n =
n−2kn+1∑

i=0

n
l+r
4
−1ρni

with

ρni = |Zn

i |l
(
|Zn

i+kn|
r − |Z ′ni+kn|

r
)

+ |Z ′ni+kn|
r
(
|Zn

i |l − |Z ′
n

i |l
)
.

Recall (2.7). Since

E[|Z ′ni |q|F i
n
] ≤ Cqn

− q
4
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for any positive q such that E[|U |q] <∞ and

E[|Z ′′ni |q|F i
n
] ≤ Cqn

− q
4

for all 0 < q ≤ 2 and by taking successive conditional expectations, it su�ces to

show that

sup
i
n
q
4E
[∣∣∣|Zn

i |q − |Z ′
n

i |q
∣∣∣|F i

n

]
≤ αn

for some deterministic sequence αn converging to zero and all 0 < q < 2. However,

it has been shown in the proof of equation (15) in Ait-Sahalia and Jacod [1] that

this property follows from

E[|Z ′′ni |2 ∧ n−
1
2 |F i

n
] ≤ n−

1
2βn (5.4)

for another deterministic sequence βn, which goes to zero. In order to prove (5.4)

we de�ne

αni (y) = E
[ ∫ i+kn

n

i
n

∫
{|x|≤y}

Φ2(x) Ft(dx) dt
]
,

which is bounded due to the condition on Ft(Φ2) stated in (H). Let us now study

the impact of the last three summands in (5.3). Again by (2.7) we have

M(ε)
n

i ≤ C

∫ i+kn
n

i
n

dM(ε)s = C∆n
iM(ε),

and a similar result holds for N(ε) and B(ε). Therefore, these quanitites can be

treated as increments of processes over small intervals, whose properties have al-

ready been studied in the proof of Lemma 4.1 in Jacod [12]. We conclude from the

observations therein that the following two inequalities are valid

E[|M(ε)
n

i |
2] ≤ Cαni (ε) and |B(ε)

n

i | ≤ C
kn
nε
.

Moreover, we can prove

P (∆n
iN(ε) 6= 0) ≤ Cε−2n−

1
2

analogously to the related statement in Jacod [12] as well. Therefore, we can con-

clude along the lines of Lemma 5.12 in the same paper that

E[|Z ′′ni |2 ∧ η2|F i
n
] ≤ Cn−

1
2

(η2 + n−
1
2

δ2
+ Γ(δ)

)
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holds for all η > 0 and δ ∈ (0, 1), and with Γ(δ) → 0 as δ → 0. This �nishes the

proof of (5.4), and Theorem 2 follows. �

Before we come to the proof of Theorem 3, we introduce an auxiliary result on

Edgeworth-type expansions for triangular arrays of random variables Xn,i, where

the Xn,i are independent, but not identically distributed. Recall �rst that the ν-th

cumulant κν of a random variable X is de�ned to be the coe�cient of 1
ν!

(it)ν in a

power series expansion of the cumulant generating function log(χ(t)), that is

log(χ(t)) =
∞∑
l=0

1

l!
κl(it)

l,

provided such a series exists, at least up to order ν. In the case of a triangular array,

each Xn,i has di�erent cumulants κν,n,i, which makes standard results on Edgeworth

expansions unavailable. Nevertheless, we will state a result closely related to a

theorem in Lahiri [17], for which we need some additional notation.

Consider a series of real constants (γi). We then de�ne for any integer s the

formal polynomial

P̃s(z : (γi)) =
s∑

m=1

1

m!

( ∗∑
j1,...,jm

m∏
i=1

γji+2

)
z2m+s,

where
∑∗

j1,...,jm
denotes the sum over all m-tupels of positive integers j1, . . . , jm with

m∑
i=1

ji = s

and an empty sum is de�ned to be 1. We see easily that the coe�cients only involve

such γi with i ≤ s+ 2. Moreover, P̃s is even, if and only if s is even. We set further

Ps(−ϕ : (γi)) = P̃s(−D : (γi)) ϕ,

where D is the di�erential operator, applied to the normal density ϕ. At last, we

de�ne Ps(−Φ : (γi)) to be the signed measure on R, whose density is given by

Ps(−ϕ : (γi)). As usual, P
X denotes the distribution of a random variable X.

By de�nition, P0(−Φ : (γi)) is Φ itself, whereas any other measure Ps(−Φ : (γi))

has an even density for even s and an odd density for odd s. The following Lemma

22



is a re�nement of Theorem 6.1 in Lahiri [17], which can be proven in the same way

as Theorem 6.2 therein.

Lemma 4 Let (Xn,j) be a triangular array of row-wise independent real-valued ran-

dom variables Xn,1, . . . , Xn,n with zero mean and 1
n

∑n
j=1E[X2

n,j] = 1 for each n.

Suppose further that the following conditions are satis�ed for some integer s ≥ 3

and some δ ∈ (0, 1
2
):

(i) limn→∞ n
−1
∑n

j=1 E[|Xn,j|s 1
{|Xn,j |>n

1
2−δ}

] = 0.

(ii) lim supn→∞ ρ̄n,s <∞ with ρ̄n,s = 1
n

∑n
j=1E[|Xn,j|s].

(iii) For some positive sequence (ηn) with ηn = o(n−
s−2
2 ) we have

lim sup
n→∞

sup{|χjn(t)|; 16(ρ̄n,3)−1 ≤ |t| ≤ η−4
n , j = 1, . . . , n} < 1,

where χjn denotes the characteristic function of Xn,j.

Then for every real-valued, Borel-measurable function f satisfying

Ms(f) = sup
x∈R

(1 + |x|2b
s
2c)−1|f(x)| <∞

we have∣∣∣ ∫ f d
(
P Sn −

s−2∑
r=0

n−
r
2Pr(−Φ : (κ̄ν,n))

)∣∣∣ ≤ C Ms(f) δn + Cs ω̄(2ηn; f,Φ), (5.5)

where Sn = n−
1
2

∑n
j=1 Xn,j, κ̄ν,n is the average ν-th cumulant of Xn,j for j = 1, . . . , n,

C and Cs are suitable constants, δn = o(n−
s−2
2 ) and

ω̄(ε; f,Φ) =

∫
ωf (ε, x) ϕ(x) dx, ωf (ε, x) = sup

y,z∈(x−ε,x+ε)

|f(y)− f(z)|.

(5.5) holds uniformly over a class of triangular arrays, as long as the conditions (i)

- (iii) hold uniformly as well.

Note that the existence of the s-th moment implies that all cumulants up to

order s exist as well. Therefore, any Pr(−Φ : (κ̄ν,n)) is well-de�ned for r ≤ s− 2.

Lemma 4 can be used to prove that the error due to the approximation of mo-

ments of pre-averaged statistics by the corresponding ones of a normal distribution
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is of a smaller order than n−
1
4 . Let us �rst introduce some further notation. For

any m ≤ i we de�ne the class of random variables

Y
n

i,m =
kn−1∑
j=1

gnj (σm
n

∆n
i+jW + ∆n

i+jU). (5.6)

These quantities are approximations for the random variable Z
n

i , since we exchanged

the increments of X over small intervals by the associated increments of the under-

lying Brownian motion W times σ evaluated at some time point m
n
. Moreover, we

set

ηni,m = n
l+r
4 |Y n

i,m|l|Y
n

i+kn,m|
r.

for arbitrary non-negative powers l and r.

Lemma 5 Let X be given by (1.1) and assume that U satis�es condition (A) as

well as E[|U |s+ε] < ∞ for some s ≥ (3 ∧ 2(r + l)) and some ε > 0. Moreover, we

have either (V') or (A'). Then

E[ηni,m|F i
n
] = µrµl(σ

2
m
n
θψ2 +

1

θ
ψ1ω

2)
l+r
2 + op(n

− 1
4 ), (5.7)

uniformly in i and m.

Proof of Lemma 5 Note �rst that without loss of generality is su�ces to prove

the result in the case r = 0, since Y
n

i,m and Y
n

i+kn,m are conditionally independent.

We set f(x) = |x|l and �nd that

E[ηni,m|F i
n
] =

∫
f dPU ′i,m,n ,

where

U ′i,m,n = n
1
4

kn∑
j=1

( 1√
n
σm
n
gnjNi+j + (gnj−1 − gnj )Ui+j

)
=: kn

− 1
2

kn∑
j=1

Γm,ni+j ,

σm
n
can be treated as a non-random quantity and the Nl are i.i.d. standard normal

variables. By de�nition, U ′i,m,n has mean zero and a variance of

τ 2
m,n = σ2

m
n

kn

n
1
2

ψn2 +
n

1
2

kn
ψn1ω

2,
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which converges to σ2
m
n
θψ2 + 1

θ
ψ1ω

2 for any �xed m. Therefore (5.7) follows from a

similar argument as in the proof of Lemma 2, once we have proven that∣∣∣ ∫ f d(PU ′i,m,n − Φ)
∣∣∣ = o(n−

1
4 ), (5.8)

uniformly in i and m, where U ′i,m,n =
U ′i,m,n
τm,n

is a standardised sum with mean zero

and unit variance.

Let us �rst add some comments on Lemma 4. For the choice of f as above, a

simple calculation shows that

ω̄(ε; f,Φ) = O(ε).

We conclude that whenever Lemma 4 holds,∣∣∣ ∫ f d
(
P Sn −

s−2∑
r=0

n−
r
2Pr(−Φ : (κ̄ν,n))

)∣∣∣ = o(n−
s−2
2 )

follows for such a function f , provided the conditions s ≥ 3 and
⌊
s
2

⌋
≥ l

2
are satis�ed.

For our purposes it is su�cient to use the expansion to �rst order. If we assume

that the conditions for an application of Lemma 4 are satis�ed for an integer s as

speci�ed in Lemma 5, we can conclude∣∣∣ ∫ f d
(
PU ′i,m,n − Φ− kn−

1
2P1(−Φ : (κ̄1,i,m,n))

)∣∣∣ = o(kn
− 1

2 ) = o(n−
1
4 ),

where κ̄ν,i,m,n denotes the average ν-th cumulant of
Γm,ni+j

τm,n
, j ≤ kn. Since P1(−Φ :

(κ̄1,i,m,n)) has an odd density and f is an even function, we have∫
f dP1(−Φ : (κ̄1,i,m,n)) = 0

and (5.8) follows. We are therefore left to prove that the assumptions (i)− (iii) on

U ′i,m,n are ful�lled, uniformly in i and m.

(i) and (ii) follow easily from an application of Hölder's inequality, whereas in

order to prove assumption (iii) we �x i and m and denote by χnj the characteristic

function of Γm,ni+j /τm,n. With

Γ
′m,n
i+j = n−

1
4k

1
2
nσm

n
gnjNi+j and Γ

′′n
i+j = n

1
4k

1
2
n (gnj−1 − gnj )Ui+j
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we have

|χnj (t)| = |E[exp(itΓm,ni+j /τm,n)]| (5.9)

= |E[exp(itΓ
′m,n
i+j /τm,n)]| |E[exp(itΓ

′′n
i+j/τm,n)]|,

since Γ
′m,n
i+j and Γ

′′n
i+j are independent.

If we additionally have (V'), we can assume that σ is bounded away from zero

as well. This is again justi�ed by a standard localising procedure, since one can �nd

a sequence of stopping times Tk, converging to in�nity, such that σ2
s > Ck > 0 for

all s < Tk. Thus we can use the fact that the latter term on the right hand side

of (5.9) is bounded by one, whereas the �rst quantity is the absolute value of the

characteristic function of a normal distribution with variance

v2
m,j,n =

knσ
2
m
n

(gnj )2

n
1
2 τ 2
m,n

.

Therefore we have

|χnj (t)| ≤ |E[exp(itΓ
′m,n
i+j /τm,n)]| = exp

(
−
v2
m,j,nt

2

2

)
.

Since v2
m,j,n is now bounded from below, (iii) follows immediately. On the other

hand, if we impose assumption (A'), we can focus on the characteristic function of

Γ
′′n
i+j. We set hnj = n

1
4k

1
2
n (gnj−1 − gnj ) and obtain

|χnj (t)| ≤ |E[exp(itΓ
′′n
i+j/τm,n)]| = |E[exp(i(hnj /τm,n)tUi+j)]|.

Since hnj /τm,n is bounded both from above and below, uniformly in m, j and n, we

readily obtain the result. �

Proof of Theorem 3

Here we will use the same "small blocks - big blocks"-technique as presented in Jacod

et al. [14], which unfortunately needs a lot of additional notation. Precisely, we �rst

choose an integer p, which later will go to in�nity, and partition the n observations

into several subsets: Set

ai(p) = 2i(p+ 1)kn and bi(p) = 2i(p+ 1)kn + 2pkn

and let Ai(p) denote the set of integers l satisfying ai(p) ≤ l < bi(p) and Bi(p) the

integers between the two sets Ai(p) and Ai+1(p), namely those ful�lling bi(p) ≤ l <
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ai+1(p). We further de�ne jn(p) to be the largest integer j such that bj(p) ≤ n holds

(that means: Ai(p) and Bi(p) can be accomodated in the set 1, . . . , n jn(p)+1 times

each), which gives the identity

jn(p) =
⌊ n

2kn(p+ 1)

⌋
− 1. (5.10)

Moreover, we use the notation in(p) = 2(jn(p) + 1)(p+ 1)kn.

We set further

Υn
j,m = |Y n

j,m|l1|Y
n

j+kn,m|
r1 − E[|Y n

j,m|l1|Y
n

j+kn,m|
r1|Fm

n
],

Υ′
n
j,m = |Y n

j,m|l2|Y
n

j+kn,m|
r2 − E[|Y n

j,m|l2|Y
n

j+kn,m|
r2|Fm

n
]

and de�ne

Ỹ n
j =


n
l1+r1

4
− 1

2 Υn
j,ai(p)

, j ∈ Ai(p)

n
l1+r1

4
− 1

2 Υn
j,bi(p)

, j ∈ Bi(p)

n
l1+r1

4
− 1

2 Υn
j,in(p), j ≥ in(p)

Ỹ ′
n

j =


n
l2+r2

4
− 1

2 Υ′nj,ai(p), j ∈ Ai(p)

n
l2+r2

4
− 1

2 Υ′nj,bi(p), j ∈ Bi(p)

n
l2+r2

4
− 1

2 Υ′nj,in(p), j ≥ in(p)

as well as

ζ(p, 1)nj =

bj(p)−1∑
l=aj(p)

Ỹ n
l and ζ(p, 1)′

n
j =

bj(p)−1∑
l=aj(p)

Ỹ ′
n

l ,

ζ(p, 2)nj =

aj+1(p)−1∑
l=bj(p)

Ỹ ′
n

l and ζ(p, 2)′
n
j =

aj+1(p)−1∑
l=bj(p)

Ỹ ′
n

l .

We set at last

M(p)n = n−
1
2

∑jn(p)
j=0 ζ(p, 1)nj M(p)′n = n−

1
2

∑jn(p)
j=0 ζ(p, 1)′nj

N(p)n = n−
1
2

∑jn(p)
j=0 ζ(p, 2)nj N(p)′n = n−

1
2

∑jn(p)
j=0 ζ(p, 2)′nj

C(p)n = n−
1
2

∑n
j=in(p) Ỹ

n
j C(p)′n = n−

1
2

∑n
j=in(p) Ỹ

′n
j


and note that

E[ζ(p, 1)nj |Faj(p)

n

] = 0 = E[ζ(p, 2)nj |F bj(p)

n

] (5.11)

by construction. The same property holds for the corresponding prime variables.

The outline of the proof is as follows: We will �rst show that

n
1
4 (BT (l1, r1)n −BT (l1, r1)) = n

1
4H(p)n + F (p)n
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holds, where F (p)n has the property

lim
p→∞

lim sup
n→∞

P (|F (p)n| > ε) = 0 (5.12)

and H(p)n is given by

H(p)n = M(p)n +R(p)n with R(p)n = N(p)n + C(p)n.

In a second step we will prove

lim
p→∞

lim sup
n→∞

P (|n
1
4R(p)n| > ε) = 0 (5.13)

for each ε > 0. Similar results hold for n
1
4 (BT (l2, r2)n − BT (l2, r2)) as well. These

steps ensure that it is su�cient to derive a joint limit theorem forM(p)n andM(p)′n

for any �xed p. The proof of this claim is given in the third step. Precisely, we will

obtain

n
1
4 (M(p)n,M(p)′

n
)
Dst−→ V (p) =

∫ 1

0

v(σu, p) dW
′
u, (5.14)

where the 2× 2-dimensional process v(σu, p) is bounded and converges pointwise in

p to the limiting process v(σu) as de�ned in Theorem 3. Therefore

V (p)
P−→V (l1, r1, l2, r2) =

∫ 1

0

v(σu) dW
′
u, (5.15)

which will �nish the proof.

Lemma 6 It holds

n
1
4 (BT (l1, r1)n −BT (l1, r1)) = n

1
4H(p)n + F (p)n,

where F (p)n satis�es (5.12).

Proof of Lemma 6 First, we introduce some auxiliary random variables. Let

ξni = n
l1+r1

4 |Zn

i |l1|Z
n

i+kn|
r1

and de�ne

Λn
m =

jn(p)∑
j=0

Ỹ n
aj(p)+m

+ Ỹ n
in(p)+m1{in(p)+m≤n}
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as well as

Ξn
m = n−

1
2

( jn(p)∑
j=0

ξnaj(p)+m + ξnin(p)+m1{in(p)+m≤n}

)
for any 0 ≤ m < 2(p+ 1)kn.

We �rst rewrite the two statistics in the following way:

BT (l1, r1)n −BT (l1, r1) = n−
1
2

2(p+1)kn−1∑
m=0

(
Ξn
m −

1

2(p+ 1)θ
BT (l1, r1)

)
+ op(n

− 1
4 )

and H(p)n = n−
1
2

2(p+1)kn−1∑
m=0

Λn
m.

Thus we are left to prove

lim
p→∞

lim sup
n→∞

sup
m
P
(∣∣∣n 1

4

(
(2(p+ 1)Ξn

m −
1

θ
BT (l1, r1))− 2(p+ 1)Λn

m

)∣∣∣ > ε
)

= 0.

We see easily that the claim follows, once we have proven the following two equations:

lim
p→∞

lim sup
n→∞

sup
m

(5.16)

P
(∣∣∣n 1

4

(
2(p+ 1)n−

1
2

jn(p)∑
j=0

E[ηnaj(p)+m,aj(p)|Faj(p)

n

]− 1

θ
BT (l1, r1)

)∣∣∣ > ε
)

= 0

and

lim
p→∞

lim sup
n→∞

sup
m
P
(

2(p+ 1)n
1
4

∣∣∣Ξn
m − n−

1
2

jn(p)∑
j=0

ηnaj(p)+m,aj(p)

∣∣∣ > ε
)

= 0. (5.17)

The convergence in (5.16) can be concluded from an application of Lemma 5, (2.4)

and the approximation error of a Riemann sum.

For the proof of (5.17), we will use related propositions in Barndor�-Nielsen et

al. [4]. Note that by the same arguments as in their work the result follows from

lim
p→∞

lim sup
n→∞

sup
m
P
(

2(p+ 1)n−
1
4

jn(p)∑
j=0

E[|ξnaj(p)+m − η
n
aj(p)+m

||Fmkn
n

] > ε
)

= 0.

A close look at the sections 7 and 8 of Barndor�-Nielsen et al. [4] shows that the

proof of this claim works in the same way, provided one uses assumption (A) in two
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places. One has to de�ne a quantity similar to the one in (7.11), whose absolute

moments have to exist for all powers s ∈ [0, 1), which holds in our context due to

(ii) in (A). Secondly, one needs the symmetry of U to conclude similarly as in part

(4) of Section 8. �

We start our computations on H(p)n with a simple result on C(p)n.

Lemma 7 We have

lim
p→∞

lim sup
n→∞

P (|C(p)n| > ε) = 0. (5.18)

Proof of Lemma 7 For any �xed p ≥ 1 is the number of summands in C(p)n

bounded above by Cpn
1
2 . Moreover, each summand as well as the factor in front of

the sum is of order n−
1
2 . This gives the result. �

The next auxiliary result gives information about the order of N(p)n, this time

depending on the integer p.

Lemma 8 Assume that p is �xed. Then

E[(n
1
4N(p)n)2] ≤ C

p
(5.19)

is valid.

Proof of Lemma 8 We know from (5.11) that the process

Lnk = n−
1
2

k∑
j=0

ζ(p, 2)nj

is a martingale with respect to the �ltration G(p)nj = F bj(p)

n

, which implies

E[(n
1
4N(p)n)2] ≤ 4n−

1
2

jn(p)∑
j=0

E[(ζ(p, 2)nj )2] (5.20)

via Doob's inequality. Due to the assumptions on a and σ we have

E[(Ỹ n
j )2] ≤ Cn−1,
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independent of j and p. This yields

E[(ζ(p, 2)nj )2] ≤ C.

Hence we obtain the result, since jn(p) ≤ C
√
n
p

holds. �

It remains to show the stable convergence of n
1
4 (M(p)n,M(p)′n).

Lemma 9 For any �xed p ≥ 2 we have

n
1
4 (M(p)n,M(p)′

n
)
Dst−→

∫ 1

0

v(σu, p) dW
′
u, (5.21)

where W ′ is a standard Brownian motion independent of F . We have

vt(σu, p)v(σu, p) =

(
w11 w12

w12 w22

)
(σu, p)

with

wij(σu, p) = θ

∫ 2

0

(
2 +

1− s
p

)
hij(σu, t, f(s)) ds,

where hij was de�ned in (3.8). Moreover, vt(σu, p)v(σu, p) converges pointwise in p

to vt(σu)v(σu).

Proof of Lemma 9 We de�ne ζ(p)nj = (ζ(p, 1)nj , ζ(p, 1)′nj ). Due to Theorem IX

7.28 in Jacod and Shiryaev [16] the following conditions have to be shown

n−
1
2

jn(p)∑
j=0

E[(ζ(p)nj )tζ(p)nj |Faj(p)

n

]
P−→
∫ 1

0

vt(σu, p)v(σu, p) du (5.22)

n−1

jn(p)∑
j=0

E[||ζ(p)nj ||4|Faj(p)

n

]
P−→ 0 (5.23)

n−
1
4

jn(p)∑
j=0

E[ζ(p)nj ∆W (p)nj |Faj(p)

n

]
P−→ 0 (5.24)

n−
1
4

jn(p)∑
j=0

E[ζ(p)nj ∆N(p)nj |Faj(p)

n

]
P−→ 0 (5.25)
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with ∆V (p)nj = V n
bj(p)
− V n

aj(p)
for any process V and (5.25) holding for any bounded

martingale N being orthogonal to W .

(5.24) is obvious, since ζ(p)nj is an even functional in W and the distribution of

U is symmetric. Moreover, with the same arguments as in the proof of Lemma 8 we

obtain

E[||ζ(p)nj ||4] ≤ C,

which implies (5.23). (5.25) can be shown by the same methods as in the proof of

Lemma 5.7. in Jacod et al. [14].

We prove (5.22) only for the �rst entry of the matrix, since analogous proofs

hold in the other cases. Note �rst that Lemma 5 secures that we may proceed as if

U were normally distributed. We apply the fact that Ỹ n
i and Ỹ n

l are conditionally

independent for |i− l| ≥ 2kn, from which

E[(ζ(p, 1)nj )2|Faj(p)

n

] = 2

bj(p)−1∑
l=aj(p)

bj(p)−1∑
i=l

E[Ỹ n
i Ỹ

n
l |Faj(p)

n

] +Op(n
−1)

= 2

bj(p)−2kn−1∑
l=aj(p)

l+2kn−1∑
i=l

E[Ỹ n
i Ỹ

n
l |Faj(p)

n

]

+ 2

bj(p)−1∑
l=bj(p)−2kn

bj(p)−1∑
i=l

E[Ỹ n
i Ỹ

n
l |Faj(p)

n

] +Op(n
−1)

=: ϑn1 (σaj(p)
n

, p) + ϑ′
n
1 (σaj(p)

n

, p) +Op(n
−1)

follows. By construction, the conditional expectation of Ỹ n
i and Ỹ n

l depends only

on |i− l| and can be expressed in terms of h11, which was introduced in (3.8). Thus

we have for i, l ∈ Aj(p)

E[Ỹ n
i Ỹ

n
l |Faj(p)

n

] = E[Ỹ n
aj(p)

Ỹ n
aj(p)+|i−l||Faj(p)

n

] =
1

n
h11

(
σaj(p)

n

, tn, f
n
( |i− l|

kn

))
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with tn = ( kn
n

1
2
ψn2 ,

n
1
2

kn
ψn1 ) and

fn1 (s) = n−
1
2

kn(1−s)∑
j=0

gnj g
n
j+skn ,

fn2 (s) = n
1
2

kn(1−s)∑
j=0

(gnj − gnj+1)(gnj+skn − g
n
j+1+skn)

fn3 (s) = n−
1
2

kn(2−s)∑
j=0

gnj g
n
j+skn−kn ,

fn4 (s) = n
1
2

kn(2−s)∑
j=0

(gnj − gnj+1)(gnj+skn−kn − g
n
j+skn−kn+1).

We can conclude that

n−
1
2

jn(p)∑
j=0

ϑn1 (σaj(p)
n

, p) = (4p− 2)
kn

n
3
2

jn(p)∑
j=0

2kn−1∑
i=0

h11(σaj(p)
n

, tn, f
n(

i

kn
))

holds. We will show that the quantity on the right side converges in probability to

(2− 1

p
)θ

∫ 1

0

∫ 2

0

h11(σu, t, f(s)) ds du =:

∫ 1

0

∫ 2

0

ρ(u, s) ds du .

Remember that t and f were de�ned following Theorem 3. In order to prove this

proposition we have to take a closer look at the function h11. Note �rst that the

random vector H in the de�nition of h11 follows a representation

H = Σ(x, y, z) U,

where U ∼ N4(0, I) and Σ(x, y, z) is a lower triangular matrix, which is continuous

in all arguments. Since due to Lebesgue's theorem Σ 7→ E[η(ΣU)] is for all functions

η, which are continuous and of at most polynomial growth, a continuous mapping

as well, we readily obtain that h11 itself is continuous. Therefore, and since σ was

assumed to be bounded, we deduce that

ρn(u, s) := (2− 1

p
)
jn(p)

mn(p)

kn

n
1
2

h11

(
σ bumn(p)c

mn(p)

, tn, f
n(
bknsc
kn

)
)

with mn(p) = n
2knp

is itself bounded. Since

(4p− 2)
kn

n
3
2

jn(p)∑
j=0

2kn−1∑
i=0

h11(σaj(p)
n

, tn, f
n(

i

kn
)) =

∫ 1

0

∫ 2

0

ρn(u, s) ds du ,
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its convergence to the quantity de�ned in (5.26) follows from Lebesgue's theorem, as

long as ρn converges pointwise to ρ for almost all (u, s) ∈ [0, 1]× [0, 2]. However, this

follows from both (2.4) and (5.10) and from the fact that fn is càdlàg and converges

pointwise to f , σ is càdlàg as well and tn converges to t.

A similar reasoning yields

n−
1
2

jn(p)∑
j=0

ϑ′
n
1 (σaj(p)

n

, p) = n−
3
2

jn(p)∑
j=0

2kn−1∑
i=0

(4kn − 2i)h11(σaj(p)
n

, tn, f
n(

i

kn
))

P−→ θ

p

∫ 1

0

∫ 2

0

(2− s)h11(σu, t, f(s)) ds du .

Hence (5.22) follows with the �rst entry of vt(σu, p)v(σu, p) being equal to

θ

∫ 2

0

(
2 +

1− s
p

)
h11(σu, t, f(s)) ds.

The convergence stated in (5.15) can now be concluded easily. The processes w12

and w22 as the other entries of the matrix vtv are obtained by the same arguments. �

Proof of Lemma 1 Without loss of generality we prove Lemma 1 for i = j = 1.

Recall the notation from the proof of Theorem 2, such that we can write

Zt = Z ′t + Z ′′t ,

where the �rst process basically consists of the Brownian part of the semimartingale

plus the noise process and the second process contains the drift part and the jump

part of the semimartingale. We de�ne the random quantities

χ̃ni,j = n
r1+l1

2
−1|Y n

i,i|l1 |Y
n

i+kn,i|
r1
(
|Y n

i+j,i|l1|Y
n

i+kn+j,i|r1 − |Y
n

i+2kn,i|
l1 |Y n

i+3kn,i|
r1
)

and note from standard arguments that the stochastic convergence

2

n
1
2

n−4kn+1∑
m=0

2kn−1∑
l=0

E[χ̃nm,l|F i
n
]

P−→
∫ 1

0

wij(σu) du

holds. With

χ̌ni,j = n
r1+l1

2
−1|Z ′ni |l1|Z ′

n

i+kn|
r1
(
|Z ′ni+j|l1 |Z ′

n

i+kn+j|r1 − |Z ′
n

i+2kn|
l1|Z ′ni+3kn|

r1
)
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it remains to prove that both

2

n
1
2

n−4kn+1∑
m=0

2kn−1∑
l=0

E[χ̌nm,l − χ̃nm,l|F i
n
]

P−→ 0 (5.26)

and

2

n
1
2

n−4kn+1∑
m=0

2kn−1∑
l=0

E[χ̂nm,l − χ̌nm,l|F i
n
]

P−→ 0. (5.27)

For the �rst result we can refer to the proof of Theorem 1 in Podolskij and Vetter

[18] once again, but this time we take a closer look on the proof than in Lemma 3.

Observe that it su�ces to show

2

n
3
2

n−4kn+1∑
i=0

2kn∑
j=0

n
r1+l1

2

(
E[|Z ′ni |l1|Z ′

n

i+kn|
r1|Z ′ni+j|l1|Z ′

n

i+kn+j|r1|F i
n
]

− E[|Y n

i,i|l1|Y
n

i+kn,i|
r1|Y n

i+j,i|l1|Y
n

i+kn+j,i|r1 |F i
n
]
)

P−→ 0.

in order to obtain (5.26). However, since

|Z ′ni |l1|Z ′
n

i+kn|
r1|Z ′ni+j|l1|Z ′

n

i+kn+j|r1 − |Y
n

i,i|l1|Y
n

i+kn,i|
r1 |Y n

i+j,i|l1|Y
n

i+kn+j,i|r1

= (|Z ′ni |l1 − |Y
n

i,i|l1)|Z ′
n

i+kn|
r1|Z ′ni+j|l1|Z ′

n

i+kn+j|r1 (5.28)

+ |Y n

i,i|l1(|Z ′
n

i+kn|
r1|Z ′ni+j|l1|Z ′

n

i+kn+j|r1 − |Y
n

i+kn,i|
r1|Y n

i+j,i|l1 |Y
n

i+kn+j,i|r1)

we can conclude from Lemma 3 in Podolskij and Vetter [18] and through a recursive

argument that (5.26) is proven, as long as

2

n
3
2

n−4kn+1∑
i=0

2kn∑
j=0

E[n
1
2 (Z ′

n

i − Y
n

j,i)
2]

P−→ 0.

However, this follows in the same manner as in Podolskij and Vetter [18].

We will establish (5.27) solely in model (1.3), which is enough to obtain the result

in model (1.1) as well. Note that the claim reduces to the following two steps:

2

n
3
2

n−4kn+1∑
i=0

2kn∑
j=0

n
r1+l1

2 E[(|Z ′ni |l1 |Z ′
n

i+kn|
r1|Z ′ni+j|l1|Z ′

n

i+kn+j|r1

− |Zn

i |l1|Z
n

i+kn|
r1|Zn

i+j|l1|Z
n

i+kn+j|r1)1Aci,j |F i
n
]

P−→ 0
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and

2

n
3
2

n−4kn+1∑
i=0

2kn∑
j=0

n
r1+l1

2 E[|Z ′ni |l1|Z ′
n

i+kn|
r1|Z ′ni+j|l1|Z ′

n

i+kn+j|r11Ai,j |F i
n
]

P−→ 0,

where Ai,j is the set on which at least one of the random variables |Z ′nm| with
m = i, i+ kn, i+ j, i+ kn + j is larger than n−$. Since

1{|Znm|≥n−$} ≤ 1{|Z′nm|≥n
−$
2
} + 1{|Z′′nm|≥n

−$
2
},

the second result is an easy application of Markov's and Hölder's inequality, due to

E[|Z ′ni ||F i
n
] ≤ Cn−

1
4 and E[|Z ′′ni ||F i

n
] ≤ Cn−

1
4

and the moment assumption on U .

The proof of the �rst claim is more involved. Note �rst that from a similar

argument as in (5.28) one can deduce the result from

2

n
3
2

n−4kn+1∑
i=0

2kn∑
j=0

n
r1+l1

2 E[|Z ′′ni |l1|Z ′′
n

i+kn |
r1|Z ′′ni+j|l1|Z ′′

n

i+kn+j|r11Aci,j |F i
n
]

P−→ 0,

which can easily be reduced to the proof of

n
l1
4 E[|Z ′′ni |q1{|Zni |<n−$}|F i

n
]
1
δ

P−→ 0

for some q = l1 · δ with δ > 1 small enough and uniformly in i. Since

1{|Zni |<n−$} ≤ 1{|Z′′ni |<2n−$} + 1{|Z′′ni |≥2n−$}1{|Z′ni |≥n−$},

the claim can further be reduced to

n
l1
4 E[|Z ′′ni |q1{|Z′ni |≥n−$}|F i

n
]
1
δ

P−→ 0,

uniformly in i. By means of Hölder's inequality and for some p large enough we

obtain

E[|Z ′′ni |q1{|Z′ni |≥n−$}|F i
n
]
1
δ ≤ E[|Z ′′ni |qp|F i

n
]

1
pδ P (|Z ′ni | ≥ n−$|F i

n
)
p−1
pδ .

Since the �rst term is bounded (uniformly in i), but not necessarily of order n−
l1
4 as

for qp ≤ 2, we see that we are left to prove that

P (|Z ′ni | ≥ n−$|F i
n
) = o(n−

pq
4(p−1) ),
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uniformly in i. From

|Z ′ni | ≤ |Q
n

i |+ |U
n

i | ≤ C|∆n
iW |+ |U

n

i |

the claim can further be reduced to

P (|Un

i | ≥ n−$) = o(n−
qp

4(p−1) ) and P (|∆n
iW | ≥ n−$) = o(n−

qp
4(p−1) ).

Both results follow easily form Markov's inequality. For the �rst one we have

P (|Un

i | ≥ n−$) = P (|n
1
4U

n

i | ≥ n
1
4
−$).

Thus for some t > qp

4(p−1)( 1
4
−$)

and some η > 0 we obtain

P (|Un

i | ≥ n−$) ≤ E[|n 1
4U

n

i |t]
nt(

1
4
−$)

≤ Cn−( qp
4(p−1)

+η),

since the t-th moment of U is �nite by assumption. The result for the Brownian

part follows in the same way. �

Proof of Theorem 4

We start with some results that can easily be concluded from condition (L-q), q < 1.

Recall that it is su�cient to replace the family of functions γk by a bounded function

γ. Note then that (L-q) implies∫
R
|γ(x)|r dx <∞

for all q ≤ r < 1, since with A0 = {|γ(x)| ≤ 1} and A1 = {|γ(x)| > 1} we have∫
A0

|γ(x)|q dx <∞ and λ(A1) <∞,

where λ denotes the Lebesgue measure. Therefore∫
A0

|γ(x)|r dx ≤
∫
A0

|γ(x)|q dx <∞

and ∫
A1

|γ(x)|r dx ≤ Crλ(A1) <∞,

since γ is assumed to be bounded.
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Let further v(X)t denote the variation process of some process X up to time t.

By assumption, κ is a truncation function with bounded support, from which we

can conclude that

κ(x) ≤ C1{|x|≤b}(x)

for some constants b and C. We see easily that κ ? νt is of �nite variation for any t,

since due to condition (H)

v(κ ? ν)t ≤
∫ t

0

∣∣∣ ∫
R
κ ◦ δ(s, x) dx

∣∣∣ ds
≤

∫ t

0

∫
R
|δ(s, x)|1{|δ(s,x)|≤1} dx ds +

∫ t

0

∫
R
|δ(s, x)|1{1<|δ(s,x)|≤b} dx ds.

For the �rst integral we have∫ t

0

∫
R
|δ(s, x)|1{|δ(s,x)|≤1} dx ds ≤

∫ t

0

∫
R
(|δ(s, x)| ∧ 1) dx ds

≤
∫ t

0

∫
R

Φ1(γ(x)) dx ds

≤ t

∫
R

Φq(γ(x)) dx <∞.

The latter one satis�es∫ t

0

∫
R
|δ(s, x)|1{1<|δ(s,x)|≤b} dx ds ≤

∫ t

0

∫
R
|γ(x)|1{|γ(x)|>1} dx ds

= t

∫
A1

|γ(x)| dx <∞

for the same reason as above. Therefore, X can be decomposed as

Xt = X0 +Bt +Qt +
∑
s≤t

∆Xs,

with Bt = Bt−κ?νt being of �nite variation. Qt denotes the continuous martingale

part of X as in (5.3).

Let us now come to the proof of Theorem 4. It is easy to see that Bt inherits

all properties of a typical drift process. Therefore, we know that the assertion from

Theorem 3 holds for the process

Z
′′′

t = X0 +Bt +Qt + Ut.
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It remains to show

n
1
4E[|BT (Z, l, r)n −BT (Z

′′′
, l, r)n|] P−→ 0,

which similarly to the proof of Theorem 2 can be reduced to

sup
i
n
p+1
4 E

[∣∣∣|Zn

i |p − |Z
′′′n

i |p
∣∣∣|F i

n

]
≤ αn

for all q
2−q < p < 1 and some αn → 0. From

∣∣∣|x + y|p − |x|p
∣∣∣ ≤ |y|p for p ≤ 1 we

conclude that it is su�cient to prove

sup
i
n
p+1
4 E

[
|Jni |p|F i

n

]
≤ αn (5.29)

with Jt =
∑

s≤t ∆Xs. But

E
[
|Jni |p|F i

n

]
≤ CE

[
|∆n

i J |p|F i
n

]
≤ CE

[ ∑
i
n
<s≤ i+kn

n

|∆Xs|p|F i
n

]

≤ C

∫ i+kn
n

i
n

∫
R
|δ(s, x)|p ds dx ≤ C

∫ i+kn
n

i
n

∫
R
|γ(x)|p ds dx

≤ Cn−
1
2 ,

whenever p ≥ q. (5.29) is then equivalent to q ≤ p < 1. On the other hand, for

q > p we conclude from Hölder's inequality that

E
[
|Jni |p|F i

n

]
≤ E

[
|Jni |q|F i

n

] p
q ≤ Cn−

p
2q .

Therefore (5.29) holds in this case, provided q
2−q < p < q. We conclude that (5.29)

holds, as long as q
2−q < p < 1. This proves the result. �
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