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Previously Hansen and Jagannathan (1990a) derived and computed mean-standard deviation 
frontiers for intertemporal marginal rates of substitution (IMRS) implied by asset market data. 
These frontiers give the lower bounds on the standard deviations as a function of the mean. In 
this paper we develop a strategy for utilizing conditioning information efficiently, and hence 
improve on the standard deviation bounds computed by Hansen and Jagannathan. We imple- 
ment this strategy empirically by using the seminonparametric (SNP) methodology suggested by 
Gallant and Tauchen (1989) to estimate the conditional distribution of a vector of monthly asset 
payoffs. We use the fitted conditional distributions to calculate both conditional and uncondi- 
tional standard deviation bounds for the IMRS. The unconditional bounds are as sharp as 
possible subject to robustness considerations. We also use the fitted distributions to compute the 
moments of various candidate marginal rates of substitution suggested by economic theory, and 
in particular the time-nonseparable preferences of Dunn and Singleton (1986) and Eichenbaum 
and Hansen (1990). For these preferences, our findings suggest that habit persistence will put the 
moments of the IMRS inside the frontier at reasonable values of the curvature parameter. At 
the same time we uncover evidence that the implied IMRS fails to satisfy all of the restrictions 
inherent in the Euler equation. The findings help explain why Euler equation estimation 
methods typically find evidence in favor of local durability instead of habit persistence for 
monthly data. 

1. Introduction and basic setup 

1.1, Volatility bounds 

The goal of this paper is to use conditional moments of asset payoffs to 
deduce volatility bounds on the intertemporal marginal rates of substitution 
of consumers. Previously, Hansen and Jagannathan (1990a) derived and 
computed mean-standard deviation frontiers for the intertemporal marginal 
rates of substitution. These frontiers give the lower bounds on the standard 
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deviations as a function of the mean and are of interest for a variety of 
reasons. First, they can be used to assess which asset market data sets have 
the most startling implications for a broad class of asset pricing theories. 
Second, they can be used as diagnostics for helping to discriminate among 
various candidate intertemporal asset pricing models. Finally, they can be 
used to assist in isolating the source of failure of particular asset pricing 
models that are diagnosed as being implausible using formal statistical 
methods. 

Following Hansen and Richard (1987) and Hansen and Singleton (1982), 
one tractable way to incorporate conditioning information is to form addi- 
tional portfolios of asset payoffs using information available to economic 
agents when securities are traded. Hansen and Jagannathan (1990a) and 
Hansen and Singleton (1982) used this conditioning information in an ad hoc 
manner. There is typically a great degree of flexibility in the manner in which 
additional portfolio payoffs can be formed using conditioning information. 
For instance, it is typically possible to take a finite set of primitive securities 
and form an infinite-dimensional set of portfolio payoffs using conditioning 
information. In this paper we show how to use the conditioning information 
as efficiently as possible, and hence improve on the standard deviation 
bounds computed by Hansen and Jagannathan (1990a). 

Even though the volatility bounds deduced by Hansen and Jagannathan 
(1990a) apply to uncon&ionaZ moments, we show that efficient use of 
conditioning information requires knowledge of the first two conditional 
moment of the asset payoffs. There are a variety of nonparametric and 
seminonparametric methods that can be used to estimate these conditional 
moments. In this paper we use the seminonparametric (SNP) methodology 
suggested by Gallant and Tauchen (1989) to first estimate the conditional 
distributions of a vector of asset payoffs. The conditional moments of the 
asset payoffs are then inferred from the conditional distributions. 

We also show how to compute the standard deviation bounds on intertem- 
poral marginal rates of substitution conditional on information available to 
economic agents. A potential advantage to looking at conditional frontiers is 
that the conditional distributions of the asset payoffs may have thinner tails 
for most realizations of the conditioning information. Hence, by conditioning, 
it is often possible to control better for the impact of outlier events on the 
moments of the asset payoffs. Among other things, we view conditioning as a 
substitute to the commonly-used practice of splitting the sample into many 
smaller subsamples. 

1.2. Basic setup 

We follow Hansen and Richard (1987) in modeling asset prices. For the 
time being, consider an economy in which asset trades occur at some initial 
date and the payoffs on these assets occur at some future date. Information is 
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available to the consumers at the trading date and reflected in the equilib- 
rium asset prices. We focus on only two time periods, the trading date and 
the payoff date, for notation convenience. We have in mind that the admissi- 
ble asset payoffs and the corresponding prices are replicated over time in a 
manner that is stationary, at least asymptotically, and ergodic. This replica- 
tion is important for our empirical analysis because it permits us to estimate 
consistently conditional and unconditional moments of the asset payoffs. 
Hence, while time subscripts are initially suppressed, they become important 
when we describe methods for estimation and inference in later sections of 
the paper. 

We specify in turn the information, the space of admissible portfolio 
payoffs, and the representation of equilibrium prices. 

Information: Let I be a conditioning information set available to economic 
agents and an econometrician at a particular point in time. Agents are 
presumed to use information in I to form portfolios of asset payoffs. 

Portfolio payoffs: We let P, be a space of payoffs at some future date on 
portfolios of assets. For convenience, we impose the restriction that E(P21Z) 
is finite with probability one for all p in P,. In other words, we focus our 
attention on payoffs that have finite conditional second moments. Given this 
restriction we can define a conditional inner product, 

and a conditional norm, 

IIPII, = [(PlP),l”*. 

(1) 

(2) 

We impose two additional restrictions on P,. The first restriction is: 

Conditional lineatity: For any w, and w2 in I and any p, and p2 in P,, 
w,pl + w2p2 is in PI. 

To state the second restriction, we need to define a notion of a convergent 
sequence and a Cauchy sequence in P,. The sequence {p,) is conditionally 
Cauchy if for any E > 0, 

(3) 

The sequence (pj) converges conditionally to p,, if {llpj -poll,) converges in 
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probability to zero. The second restriction on P, is: 

Conditional completeness: Every sequence in P, that is conditionally Cauchy 
converges conditionally to a point in P,. 

The payoff space P, is constructed so as to be the conditional counterpart 
of a Hilbert space. As indicated in Hansen and Richard (19871, the space of 
all random variables with conditional second moments that are finite almost 
surely is conditionally linear and complete. For the empirical analysis in this 
paper, a smaller space is also of interest. Let x denote a vector of variables 
observed by both the econometrician and economic agents in the current 
time period, and let y, denote an M,-dimensional vector of asset payoffs at 
some future date. Both of these vectors might be constructed from an 
underlying M-dimensional stochastic process {y,} observed by the econome- 
trician. The vector y, is taken to be a subvector of the underlying process at 
some future date and the vector x contains the current and a finite number 
of lags of this same process. 

P, = ( p: p = L’ - y, for some M,-dimensional vector L’ 
of random variables in I). (4) 

It is straightforward to verify that P, as given by (4) is conditionally linear 
and complete. 

1.3. Asset pricing 

We assume that all payoffs in P, have asset prices that are unambiguously 
finite and in the information set I. Hence we model asset prices as a function 
7~ mapping P, into I. Hansen and Richard (1987) imposed the following 
restrictions on r: 

Conditional linearity: For any w, and w2 in I and any p, and p2 in P,, 
7T(w,p, + w2pz) = w,?T(p,) + w,7T(p,). 

Conditional continuity: For any sequence (p,) for which (I/pill,} converges in 
probability to zero, {I) converges in probability to zero. 

Nondegenerate pricing: There exists a payoff p,, in P, for which Pr(&p,) = 
0) = 0. 

Hansen and Richard showed that when 7 satisfies these restrictions, there 
exists a payoff p* in P, such that 

r(p) = (p*Ip), for all p in P,. (5) 
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Furthermore, since the pricing function is not degenerate I(p*(l, is strictly 
positive with probability one. Result (5) is just the conditional counterpart to 
the familiar Riesz Representation Theorem. 

Although p* is the unique random variable in P, that satisfies (51, typically 
there are many random variables not in P, that also can be used to represent 
7. Some of these other random variables are easier to interpret and have 
more direct links to explicit dynamic models. The payoff space P, is re- 
stricted to be tractable for econometric applications and is often smaller than 
the span of the security market payoffs that economic agents can trade. In 
the special case in which agents can trade a complete set of contingent 
claims, the Arrow-Debreu prices can be presented in terms of a strictly 
positive random variable m that can be used for p* in (5) except that m may 
not be in PI. Since consumers equate marginal rates of substitution to prices, 
m is also a measure of the common (across consumers> intertemporal 
marginal rate of substitution (IMRS). More generally, if agents do not face a 
complete set of securities markets, individual IMRS’s will not necessarily be 
equated. The IMRS of any consumer can be used, however, to represent 7. 

We focus on properties of random variables m that satisfy 

Restriction 1: (m(m), < w and (mlp), = T&P> for all p in P/. 

These random variables are candidates for IMRS’s of consumers.’ When- 
ever Restriction 1 is satisfied, the pricing function is conditionally linear and 
complete. In addition, there exists a random variable p* in P, that satisfies 
(5) even if the pricing function is degenerate on P,. In this paper we analyze 
implications of Restriction 1 for m given the data on asset prices and payoffs. 

2. Conditional analysis 

In this section we derive the conditional counterparts to the results 
reported in Hansen and Jagannathan (1990a). First we compute regressions 
of m onto P, and a constant term conditioned on I. Then we characterize 
the mean-standard deviation frontier for m conditioned on I. 

Since p* satisfies (51, it follows that m -p* is orthogonal to P, conditioned 
on I: 

(m -p*Ip), = 0 for all p in P,. (6) 

‘For the purposes of this discussion we are ignoring the restriction that m be strictly positive. 
Hansen and Jagannathan (1990a) showed that additional implications are obtained by imposing 
positivity. 
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Recall that p* is in P,. As a consequence, p* is the least squares projection 
of m onto P, conditioned on I. 

In many cases P, does not contain a payoff that is riskless conditioned on 
I. In these circumstances, it is of interest to deduce the least squares 
projection of m onto a larger space that is augmented by a riskless payoff. 
Let 

P,+=(p+w:pisinP,andwisinI). (7) 

It is straightforward to show that PF is conditionally linear and complete 
whenever P, is conditionally linear and complete. In addition, P,+ always 
contains a payoff o that is identically equal to one. We compute the 
conditional projection of m onto P,+ by adding to p* the conditional 
projection of m onto the collection of all random variables in P,+ that are 
orthogonal to P, conditioned on I. Let p0 denote the conditional projection 
of o onto P*. Then 

(elp), = 0 for all p in P,, (8) 

where e is the conditional regression error o -pO. Any random variable in 
P+ that is conditionally orthogonal to P, is the product of a random variable 
in I and e. Hence, the conditional projection of m onto PI+ is given by 

p+=p* + we, (9) 

where w is the conditional regression coefficient, 

obtained by regressing m onto e conditioned on 1. In general this regression 
coefficient will depend on conditioning information in I. Notice that the two 
terms on the right side of (9) are conditionally orthogonal [see (811. In 
addition, p+ satisfies the following two conditional moment restrictions: 

(m-p+Ip),=O forallpin P, (11) 

and 

(m -p+ lo), = 0. (12) 

Condition (12) is equivalent to the restriction that m and pt have the same 
mean conditioned on I. It follows from (11) and (12) that the conditional 
covariance of m - p+ and p is zero for any p in P,. As a consequence, the 
standard deviation of m conditioned on I, denoted std(m 111, is greater than 
or equal to std(p+ 11). 
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It turns out that the conditional regression coefficient w depends on the 
conditional mean of m. Taking conditional expectations of both sides of (9) 
yields 

E(mJZ) =E(p*JZ) +wE(e]Z). (13) 

Also, Pr(e = O} is zero whenever Pr{( ele), = O] is zero. In this case, given 
knowledge of E(m ]Z), eq. (13) can be solved for w. Conversely, for any choice 
of w in Z there exists a corresponding random variable E(m]Z) satis- 
fying (13). 

Since E(m]Z) is not specified a priori, we consider the indexed family of 
random variables {m,: w in Z] where 

m, =p* + we. (14) 

Each member of this family satisfies 

(m,lm,),<m and (m,lp)I=7r(p) forall p in P,. (15) 

Hence each member is a valid candidate for m satisfying Restriction 1. 
Without knowledge of E(m]Z), all we can say is that the conditional projec- 
tion of m onto P: is in the set {m ,,,: w in I). Each member of this set is on 
the conditional mean-standard deuiation frontier for m. That is, even without 
knowledge of E(m]Z), the ordered pair [E(m(Z), std(m]Z)] must be in the set 

S, = ((w,, w2) in Z X I: w, = E( m,lZ) and w2 2 std( m,]Z) 

for some w in I}. (16) 

It is of interest to determine when the region S, touches the horizontal 
axis with probability one. This occurs when std(m,]Z) is zero with probability 
one for some w or equivalently m, is equal to w. In this case 

4~) =wE(~lz), (17) 

and therefore we cannot rule out risk-neutral pricing. 
We now illustrate the construction of the indexed family {m,: w in I] 

when P, is given by (4). To construct this set we must compute p* and p“. 
Since p* and p” are in PI, they can be represented as U* *y, and v* ‘y, for 
some vectors v* and v0 of random variables in I. It follows from (5) and (8) 
that 

E(Y,Y;V)V* = OTT and E(~,~;ll)u~=E(~,lz). (18) 
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When E(y,y; II) is nonsingular with probability one, 

L’* = [E(Y,Y;(~] -%Y,) and P= [E(Y,Y;I~)]-'E(Y,IZ). 

(19) 

Hence the conditional mean-standard deviation frontier for m is constructed 
using the first two conditional moments of y, and the vector of prices of yi. 
In particular, 

~,=Y;[E(Y,Y;I~)]-‘[~(Y,) -wE(y~lO] +w. (20) 

3. Unconditional analysis 

In this section we deduce implications for the first two unconditional 
moments of m. The notation )I * II and ( . 1 * ) without an I subscript is used to 
denote the unconditional counterparts to (1) and (2). Let P be the space of 
all random variables in PI with finite unconditional second moments. This 
space can be infinite-dimensional even when P is constructed from a finite- 
dimensional random vector y, as in (4). The fact that consumers use 
conditioning information in I to form portfolios can increase dramatically 
the dimension of P. Hansen and Richard (1987 Lemma A.4) showed that P 
is (unconditionally) linear and complete. Hence P is a Hilbert space. For the 
unconditional analysis to be of interest we must strengthen Restriction 1. 

Restriction 2: (mlm) < 03 and r(p) = (mlp), any p in P. 

Our strategy in this section is to replicate the analysis in section 2. Using P 
in place of P, and using unconditional projections in place of conditional 
projections. Since m and o have finite second moments, the unconditional 
least squares projections of m and o onto P are the same as the conditional 
projections of these random variables onto P, [see the proof of Theorem A.2 
in Hansen and Richard (198711. Hence p* and p” are the unconditional 
projections of m and o onto P. We define 

P+={p+c:forsomepin PandsomecinR}. (21) 

In this case, the projection of m onto P+ is given by 

p+=p’ + ce, (22) 

where c is the regression coefficient (m le)/( ele). Finally, the unconditional 
standard deviation of m, std(m), is greater than or equal to std(p+). 
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Computing the regression coefficient requires knowledge of the uncondi- 
tional mean of m. When this mean is not known a priori, we consider the 
family of random variables {m,: c in R) where 

m, =p* + ce. (23) 

Notice that each random variable in (m,: c in R) is also in (m,: w in I) 
because random variables that are constant almost surely are in I. Hence m, 
satisfies Restriction 1. Since m, is in P+, (m,lm,) is finite and m, satisfies 
Restriction 2 as well. 

By changing c we vary the unconditional mean because 

E(m,) =E(p*) +cE(e) (24) 

and E(e) is different from zero as long as o is not in P. Therefore, for any m 
satisfying Restriction 2, the ordered pair [E(m), std(m)] is in the region: 

s = {(CI,CZ) E R2: c, = E( m,) and c2 r std( m,) for some c in R}. 

(25) 

In this sense random variables in {m,: c E R) are on the unconditional 
mean-standard deviation frontier for IMRS’s. 

If S touches the horizontal axis, then without restricting Em there are no 
restrictions on std(m) other than the trivial restriction that it be nonnegative. 
The region S touches the horizontal axis if, and only if, there is a real 
number c such that std(m,) = 0 or equivalently m,. is equal to c. In this case, 

(26) 

This is a considerably stronger restriction than (17). It requires that the prices 
on all securities be proportional to their conditional means where the 
proportionality factor cannot depend on conditioning information. 

It is of interest to compare results in this section to related results in 
Hansen and Richard (1987) and Hansen and Jagannathan (1990a). Our 
conclusion that {m,: c in R} is a subset of {m,: w in Z) can be thought of as 
the dual to the result in Hansen and Richard (1987) that asset returns that 
are on the unconditional mean-standard deviation frontier are also on the 
conditional mean-standard deviation frontier. Hansen and Jagannathan 
(1990a) derived a region similar to S given in (25). Their region, however, was 
deduced by regressing m and o onto a space that can be much smaller than 
P. More precisely, they form a finite-dimensional subspace of P and project 
m and o onto this space. As a consequence, the region they derive contains 
the region S given in (25). 
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4. Strategies for estimating mean-standard deviation frontiers 

The M-dimensional process {y,) of observables is assumed to be strict- 
ly stationary and to possess a one-step-ahead conditional density 

h(Y,+1IY:-L+l,Y:-L+2, . . . , y,‘) that depends on at most L lags. For brevity we 
write x,=(Y;-~+~ y:_,+, .*. y/j’, which is ML x 1, and we denote the 
one-step density as h(y,+, Ix,) or h(y 1x1. In the empirical work, y, consists of 
asset payoffs and other variables that contain information about returns. Let 
y,,,, , denote the M,-dimensional subvector of yt+ 1 containing asset payoffs. 
All payoffs are assumed to have unit prices; that is, the payoffs are gross 
returns (1 + net returns). Hence the vector U, of the time t prices of Y~,~+, 
consists of M, ones.* 

For a given x, the conditional mean-standard deviation frontier for m is 
constructed using the first and second moments of Y, under h(y(x). Put 

s(h,x) = /Y,MYI~) dy> 

Q(h,x) =/ Y,Y;~(Y~) dy, 

Vh,x) =Q(h,x) -q(h,x)q(h,x)‘, 

which are the conditional mean, second moment matrix, and covariance 
matrix of y, given x. Let fi denote an estimate of h. As can be checked using 
elementary least squares formulas, the conditional frontier described in 
section 2 can be obtained by tracing out the parabolic-shaped region 

a(m,lx) = ([uI -cq(~,x)]‘V(h,x)-‘[u, -W(fi,~)]}“2, 

E(m,lx) = c, 

as c varies over R. The minimum value of dm,Ix) is 

i 

u;q~, x) -‘q - 
[u;V(L,x)-‘q(h,x)]2 I’* 

i q(~,x)‘v(~,x)_‘q(fi,x) ’ 

21n our empirical analysis we use asset returns, i.e., asset payoffs with unit prices. Scaling 
payoffs to have unit prices is more than just a normalization in our analysis unless the scale 
factors are incorporated into the information set used by the econometrician. A computational 
advantage to using returns is that we do not have to augment the information set with the asset 
prices because these prices are degenerate by construction. 
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which is the length of the residual vec!or from an oblique projection of U, 
onto the space {c&z Ix>}, en using V(hlx)-’ as the weighting matrix; The 
valueA of E(m,lx) at the minimum of the frontier is u;l/(h, xl-‘q(h,x)/ 
u;V(h, x>-‘u, which is the coefficient of the projection. 

The estimate of the unconditional frontier is more involved as it depends 
upon the conditional moments at each data point. Put 

P:(h) =~;Q<kxt-J'Y,t, 

e,(h) = 1 -s(h,x,-,)‘Q(h,x,-,)-‘y,,. 

Then the estimate of the unconditional mean-standard deviation frontier is 
obtained by tracing out 

E(m,) = i i ce,(ii) +p;(h), 
t=1 

dmc) = i ?, [cc,(h) +PF(A) - E(m,)llll’2, 
as c varies over R, where n denotes sample size. An equivalent way to do the 
calculation is, for each scalar E(m), to determine the c such that the first 
equality holds and then calculate the corresponding u from the second 
equation. 

Below, we report estimates of conditional and unconditional frontiers 
using SNP methods to obtain the estimate fi of h. 

5. Data 

Two data sets are used in this paper. The first is a long monthly time series 
on the ex post real returns on stocks and T-bills, 1926-87, and is described 
more fully below. The second is used mainly for some auxiliary calculations. 
It consists of a shorter monthly time series, 1959-84, on a post real returns 
for the same two assets together with consumption data, which become 
available monthly beginning in 1959. This data set is described more fully in 
Gallant and Tauchen (1989). 

The long time series consists of 744 monthly observations, 1926:01-1987:12, 
on the ex post real return on the value-weighted NYSE and the ex post real 
return on a one-month T-bill. (Throughout, the format for referencing dates 
is yyyy:mm where yyyy denotes the year and mm denotes the month.) The 
length of this series appears to be sufficient for reliable estimation of the 
conditional density. Furthermore, the sample period covers several subperi- 
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ods of intense activity on financial markets including, among other things, 
two crashes. 

A deflator must be used to convert nominal returns to real returns. 
Common practice in testing intertemporal asset pricing models is to use the 
consumption deflator. This index has some appeal on theoretical grounds, 
but is only available monthly from 1959 forward. To our knowledge, there are 
only two monthly price indexes available back as far as 1926. One is the 
wholesale price index and the other is the consumer price index. Muoio 
(1988) examines how closely year-to-year percentage changes in annual 
aggregates of each of these price indexes correspond to those of the annual 
consumption deflator over the period 1913-1983. His work (ch. 2, figs. 1 and 
2, p. 33) indicates that percentage movements in the annual consumer price 
index are quite close to those of the consumption deflator, and the agree- 
ment is better than for movements in the wholesale price index. On this 
basis, we elected to use the consumer price index. 

The data are plotted in our figs. 1 through 2. Table 1 displays sample 
means, standard deviations, etc. in the top part of the table and the extreme 
points in the data expressed in units of standard deviation in the bottom part. 
Looking at the figures, the secular movements in the volatility of the two 
series appear to be related and, in particular, the volatilities are higher prior 
to 1947. From the table, the data are seen to be fat-tailed as evidenced by the 
large (raw) sample kurtosis and the magnitudes of the extremes. A sample of 
size 744 from the t-distribution with seven degrees freedom would have 
about 1% of the sample exceeding k3.5, which is in rough agreement with 
the number of extremes in our data. 

Some of these extremes can be associated with distinct events. For in- 
stance, the 1946:07 drop in the T-bill return occurred because the nominal 
T-bill rate was essentially frozen at that time while the price index took a 
sharp rise in July 1946, when price controls were lifted. We have not made 
any special adjustments for this exceptional drop in the T-bill return or any 
other extreme observations. There are other periods in the data set when 
prices were controlled during or after wars and nominal rates were slowly 
changing, though not to the same extent as in 1946. Taken together, these 
special events are, in our view, reasonably modeled as being the outcome of a 
stationary process, and should be included in the data set. The remarks of 
Learner (1978, p. 278) are an interesting commentary on the practice of 
selecting endpoints for the purpose of excluding influential observations. 

One model that is suggested by a theory of speculative markets and that 
can account for data with these characteristics is an ARCH-type model with 
a fat-tailed innovation distribution [Gallant, Hsieh, and Tauchen (1989)I. Our 
estimation strategy, discussed below, can track data that follow this model 
and can accommodate (nonlinear) departures from it, if present. 
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Mean 

Table 1 

Basic statistics, 1926:01-1987:12. 

Std. dev. Skewness Kurtosis Min. Max. 

Stocks 1.006751 0.057370 0.3882 10.8331 0.7153 1.3805 
T-bills 1.000369 0.005765 - 1.6319 17.1875 0.9446 1.0234 

Extremes in units of standard deviation 

Lowest Date Highest Date 

- 5.08394 1931:09 3.50645 1933:05 
-4.21136 1938:03 3.97934 1938:06 
- 3.99084 194o:os 5.58224 1932:07 
- 3.92780 1987:lO 6.48917 1932:08 
- 3.52938 1929:lO 6.51820 1933:04 

- 9.68646 1946:07 2.72965 
- 4.90222 1933:07 2.74393 
- 4.08944 1946:ll 2.80872 
- 3.98466 1947:09 3.82211 
-3.74431 1946:08 3.99518 

Stocks 

T-bills 

1930:07 
1931:Ol 
1932:02 
1927:07 
1932:Ol 

Table 2a 

Summary of bivariate linear vector autoregressive estimation, 1926:07-1987:12.” 

Dep. var. 

Adjusted R2 

Lag 

1 3 6 

Stocks 0.02 0.03 0.03 
T-bills 0.30 0.34 0.35 

Dep. var. 

Granger causality tests 

Lag= 1 Lag = 3 

Stocks T-bills Stocks T-bills 

Lag = 6 

Stocks T-bills 

Stocks ** * *** *** 

T-bills *** *** *** *** *** 

Dep. var. 

Incremental @anger causality tests 

Lag 1 of 1 Lag2,3of3 

Stocks T-bills Stocks T-bills 

Lag 4,5,6 of 6 

Stocks T-bills 

Stocks ** * ** * 

T-bills *** *** *** *** 

“Single asterisk f*) denotes 0.01 <p-value 5 0.05, double asterisk f**) denotes 0.001 < 
p-value I 0.01, triple asterisk f***) denotes p-value I 0.001. 
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Table 2b 

Summary of bivariate autoregressive estimation on squared residuals, 1926:07-1987:12.” 

Adjusted R2 

Lag 

Dep. var. 1 3 6 
-~ 

eeST 0.07 0.10 0.09 
eeTB < 0.01 0.02 0.01 

Dep. var. 

Granger causality tests 

Lag = 1 Lag=3 
.-I__ 

eeST eeTB eeST eeTB 

Lag = 6 

eeST eeTB 

eeST 
eeTB 

*** *** *** 

Dep. var. 

Incremental Granger causality tests 

Lag 1 of 1 Lag2,3of3 
-- 

eeST eeTB eeST eeTB 

Lag 4,5,6 of 6 

eeST eeTB 

eeST 
eeTB 

*** *** 

“Triple asterisk (***) denotes p-value 5 0.001 

Another characteristic that one might note in table 1 is the extent to which 
the mean of the stock return exceeds that of the T-bill return. This reflects 
the so-called equity premium anomaly, which we discuss further in sections 7 
and 8 below. 

Table 2a contains a summary of linear VAR estimation. There is evidence 
for autocorrelation in both variables, though the R*‘s indicate that the linear 
predictability of the stock return is very slight and substantially below that of 
the T-bill series. The Granger tests reveal some evidence of linear feedback 
from the stock return to the T-bill return at the lower-order lags. The 
p-values for the tests shown in the table were computed using the conven- 
tional formulas for linear models, and should thus be interpreted with some 
caution. We do not regard them as precise tools for inference but rather as 
familiar statistics that give a qualitative feel for the underlying characteristics 
of the data. 

Table 2b contains a summary of the results of fitting linear VAR models to 
squared residuals from VAR models in table 2a as a crude indicator of 
conditional heteroskedasticity. The results suggest that relative to the infor- 
mation set comprised of past VAR squared residuals, there is some pre- 
dictability in the magnitude of the stock residual but very little predictability 
in the magnitude of the T-bill residual. The same caveat regarding the 
p-values applies. 
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6. Seminonparametric estimation of the conditional density 

6.1. SNP models 

157 

h(y Ix) 

We utilize seminonparametric (SNP) methods to estimate the conditional 
density of the observed data. In subsequent sections, the fitted density is used 
to derive estimates of conditional moments for the frontier calculations. It is 
also used to compute expectations of certain nonlinear functions that are 
important for the interpretation of the frontiers. 

SNP methods [Gallant and Tauchen (198911 are a nonparametric approach 
fot time series density estimation. The SNP density, denoted by h,(y(x), is 
the Kth term in sequence of approximations to the underlying density 
h(y lx). The leading term of the approximation is a linear vector autoregres- 
sion with Gaussian errors. The higher-order terms accommodate departures 
from Gaussianity and possible conditional nonlinear dependence in mo- 
ments, to the extent these higher-order effects need to be introduced. 

An SNP approximation takes the form 

where 6, is M x 1, B is ML X 1, R is an M x M upper triangular matrix, 
and fK(zlx), z E [W”‘, ’ 1s a modified Hermite density to be defined presently. 
The vector b, and the matrix B are the parameters of the conditional mean 
of a VAR model and R is the upper triangular square root of the error 
covariance matrix. Hence, f,Jzjx> is an approximation to the conditional 
density of the standardized VAR error. Its form is 

where cp(z) is the M-dimensional standardized multivariate normal density, 
I(a, X) is the integral of the numerator over z E [W”“, K = (K,, K,), and the 
rest of the notation is as follows. The vector (Y is a multi-index of length M, 
that is, an M X 1 vector whose elements are nonnegative integers, and 

Za=(zp(z2)~~. . . . .(zM)y 

Ial =a, +a,+ ... +a,. 
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Likewise, p is a multi-index of length ML and 

IPI =P, +p*+ ... +PML* 

The approximation fK(zjx) takes the form of a squared polynomial in z and 
x times the standard normal density. The polynomial is of degree K, in ,Z 
and K, in x, and the coefficients are {a,,,], with a,,. normalized to equal 
unity. 

There are three tuning parameters, L, K,, and K,, of the SNP approxima- 
tion. In the discussion below, we shall use the notation SNP(L, K,, K,) to 
identify the corresponding density h,(y lx). When it is important, we will 
write h(y lx; e), where 0 is a vector containing the polynomial parameters and 
the VAR parameters of the model. The parameter vector 8 is estimated 
using standard maximum likelihood methods. In order to obtain consistency 
using this representation, both K, and K, must grow with sample size, either 
deterministically or adaptively [Gallant and Nychka (1987), Gallant and 
Tauchen (1989)]. 

SNPRX models were developed in Gallant, Hsieh, and Tauchen (1989). 
An SNPRX is similar to an SNP model, except that the leading term is an 
ARCH-type model with Gaussian errors, a linear conditional mean, and a 
conditional covariance matrix that depends upon the past of the process. The 
higher-order terms thus accommodate deviations from this model. The moti- 
vation for introducing this class of models is the extensive set of empirical 
results presented by Rob Engle and his collaborators that document the 
presence of strong conditional heteroskedasticity in financial market data 
[see Engle and Bollerslev (1986) for a review]. To the extent that a good 
parameterization can be found for the conditional covariance matrix, then 
the SNPRX models permit one to subsume into the leading term of the 
model aspects of the data that, on a priori grounds, are likely to be 
important. 

The structure of an SNPRX model is similar to that of an SNP model, 
except that the matrix R is allowed to depend upon x. An SNPRXCL, K,, K,) 
model has as its leading term a linear vector autoregression with mean, 
b, + Bx, and Gaussian errors with conditional covariance matrix R(x)R(xY. 
The higher-order terms capture deviations from that model. In the estima- 
tions reported below, the parameterization 

vech(R(x)) =po+ Epjabs(wj) 
j=I 
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is used, where pj is a parameter vector of length MU4 + 1)/2, j = 
O,l,..., ML. In the estimation, the series {y,) is linearly transformed to have 
mean zero and covariance matrix Z,. Thus, the upper triangular square root 
of the covariance matrix of the leading term depends linearly on the absolute 
values of L lags of the process, after centering and resealing. The parameter- 
ization makes it straightforward to impose positivity on the implied condi- 
tional variance matrix, at the expense of creating multiple peaks in the 
likelihood surface. 

In a multivariate context like this, the optimization algorithm can use an 
extreme value from one series as an explanatory variable for another series. 
This allows it to fit an observation nearly exactly, reduce the corresponding 
conditional variance to near zero, and inflate the likelihood. This problem is 
endemic to procedures that adjust variance on the basis of observed explana- 
tory variables. We have compensated for this effect by an additional transfor- 
mation, 

-f;= (d/C)eXp(CXi)/[l + exp(cx,)] -2/C, i=l ,...,ML, 

with c = i. This is a one-to-one (logistic) transformation that has a negligible 
effect on values of xi between -3.5 and 3.5 but progressively compresses 
values that exceed + 3.5 so they are bounded by rt_ 4. The inverse transforma- 
tion is x = (l/c)ln[(2 + 6)/(2 - &)I. This transformation is roughly equiva- 
lent to variable bandwidth selection in kernel density estimation. Because it 
affects only x, and not y, the asymptotic properties of SNP estimators 
discussed above are unaltered. 

6.2. SNP estimation 

Previous experience [Gallant, Hsieh, and Tauchen (1989)l suggests a rea- 
sonable strategy for choosing the tuning parameters L, K,, and K,. The first 
step is to use the Schwarz criterion [Schwarz (1978)l to select an initial 
tentative model. Since the Schwarz criterion was developed for different 
estimation contexts and is known to be conservative, a second step under- 
takes a battery of specification tests to check for whether the initial mode1 
has missed any important conditional variation in the first two moments. The 
initial model is then expanded, if need be, to the point where the specifica- 
tion tests are passed at conventional significance levels. This strategy gives 
sensible results, though there is certainly a need for further theoretical work 
on strategies for optimally selecting the tuning parameters of these models. 

Table 3a contains a summary of estimated (logistic) VAR and SNPRX 
models fitted on 738, observations on a bivariate process comprised of the 
stock return and the T-bill return, 1926:07-1987:12. The first six observations 
of the 744 available are not used so that values of the objective function 
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Table 3a 

Bivariate models for stocks and T-bills, 1926:07-1987:12.a 

VAR 
VAR 
VAR 
VAR 
VAR 

SNPRX 

SNPRX 
SNPRX 
SNPRX 

SNPRX 
SNPRX 
SNPRX 

SNPRX 

L 

Fitted models 

KZ K.C 

0 
1 
2 
3 
4 

1 

2 
2 
2 

3 
3 
3 

4 

0 0 
0 0 
0 0 
0 0 
0 0 

0 0 

0 0 
4 0 
4 1 

0 0 
4 0 
4 1 

0 0 

Ps S” 

5 2.837857 
9 2.651005 

13 2.636136 
17 2.618241 
21 2.608032 

15 2.482177 

25 2.390109 
34 2.242368 
74 2.177562 

35 2.296991 
44 2.180962 
84 2.125640 

45 2.254970 

Schwarz 

2.860075 
2.690997 
2.693902 
2.693782 
2.701348 

2.54883 1 

2.501199 
2.393449 
2.506386 

2.452516 
2.376479 
2.498900 

2.454931 

“In models with K, > 0 third- and higher-order interactions have been deleted. In models with 
K, > 0 the lag length of the polynomial in x is 2. 

across models with different lag lengths are comparable. The table shows the 
tuning parameters, the number of parameters in each model, the value of the 
objective function, and the Schwarz criterion. Because the objective function 
is proportional to minus the log-likelihood, 

de> = -i 5 ln[h,(y,lx,_,,8)], 
t=1 

the values shown in the table decrease when more parameters are included 
in the model. Due to the sign change, models with smaller values in the 
column labeled ‘Schwarz’ perform better under that criterion. 

In table 3a, the SNPRXCL, 0,O) models are seen to perform substantially 
better under the Schwarz criterion than the VARCL) models, which are 
linear Gaussian vector autoregressive models save for the logit transforma- 
tion to x. Of the SNPRX(L,O,O) models, the preferred model is the 
SNPRX(3,0,0), which indicates that a lag length of three is needed to 
capture the conditional heteroskedasticity. Of all of the models shown in the 
table, the preferred model under the Schwarz criterion is the SNPRX(3,4,0). 
This model has a homogeneous error density with the polynomial component 
being a quartic constrained to include at most quadratic interactions. A 
quartic was chosen because the results of Gallant, Hsieh, and Tauchen (1989) 
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Table 3b 

Bivariate models for stocks and T-bills, 1926:07-1987:12.” 

Specification tests 

Location Scale 

Stocks T-bills Stocks T-bills 

Model L K, K, F p-val. F p-val. F p-val. F p-val. 

VAR 0 0 0 2.93 0.00 13.39 0.00 10.07 0.00 3.43 0.00 
VAR 1 0 0 2.60 0.00 3.49 0.00 9.70 0.00 1.78 0.00 
VAR 2 0 0 2.59 0.00 2.83 0.00 9.69 0.00 1.67 0.01 
VAR 3 0 0 2.32 0.00 2.30 0.00 9.56 0.00 1.62 0.01 
VAR 4 0 0 2.25 0.00 1.90 0.00 9.70 0.00 1.67 0.01 

SNPRX 1 0 0 1.76 0.00 2.41 0.00 4.47 0.00 1.82 0.00 

SNPRX 2 0 0 1.44 0.05 1.80 0.00 2.24 0.00 1.94 0.00 
SNPRX 2 4 0 1.62 0.01 1.81 0.00 2.88 0.00 1.85 0.00 
SNPRX 2 4 1 1.27 0.14 1.72 0.01 1.42 0.05 1.90 0.00 

SNPRX 3 0 0 1.18 0.22 1.09 0.34 1.41 0.06 1.04 0.41 
SNPRX 3 4 0 1.42 0.05 1.08 0.34 1.90 0.00 1.19 0.21 
SNPRX 3 4 1 1.20 0.20 1.11 0.31 0.86 0.71 1.18 0.22 

SNPRX 4 0 0 1.04 0.41 0.70 0.91 1.35 0.09 0.74 0.87 

“The location diagnostic is a regression of residuals from the fit on 6 lags of linear, quadratic, 
and cubic ST TB. The scale diagnostic is a regression of squared residuals on same. The F has 
36 degrees freedom in the numerator and 701 in the denominator. 

indicated that a quartic is needed to make the density assume the 
shape - peaked near zero and thick in the extreme tails - that is characteris- 
tic of the probability density of long time series on movements in financial 
market data. 

Table 3b shows the outcome of the battery of specification tests for each of 
the models in table 3a. The tests for homogeneous location are the regression 
F-tests from regressions of the standardized residuals (the residuals divided 
by the square roots of the predicted conditional variances) on constants and 
six lags of linear terms, squared terms, and cubic terms of the two series. The 
tests for homogeneous scale are similar except that the dependent variables 
are the squared standardized residuals. Because of the ‘Durbin effects’ of 
prefitting discussed in Newey (1985) and Tauchen (1985), the p-values 
reported in table 3a are probably too large and certainly should be inter- 
preted with caution. However, they do suggest that there is additional 
conditional scale variation in the stock return that is not accounted for by the 
SNPRX(3,4,0) specification and that a SNPRX(3,4,1) specification is pre- 
ferred. Because the Schwarz criterion is known to be conservative, we accept 
this implication and adopt the SNPRX(3,4,1> model as the preferred speci- 
fication. 
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7. Conditional frontier estimates 

We begin with a discussion of the general properties of the conditional 
frontiers and then proceed to an analysis of their economic implications. 

7.1. Location and shape properties of conditional frontiers 

Fig. 3 shows mean-standard deviations frontiers conditional on x equaling 
its unconditional mean over the data set. Conditioning on this particular x 
value confines the analysis to the central part of the data and thereby helps 
circumvent the effects of the influential observations. The conditional fron- 
tiers shown in fig. 3 (and subsequent figures) were computed using the 
method described in section 4 above. The figure shows frontiers calculated 
from four estimated specifications of the conditional density of the bivariate 
stock and T-bill returns series: 

(A) Y&_ , - SNPRX(3,4,1), 

(B) y,lx,_, - SNPRX(3,0,0), 

(C) Y,/x,_, - SW3,0,0), 

(D) y, Ix, _ , - mu constant, sigma constant. 

Specification (A) is the preferred specification obtained in section 6 above. 
This specification entails conditional heteroskedasticity and a conditionally 
dependent non-Gaussian error density. Specification (B) entails only condi- 
tional heteroskedasticity with a conditionally homogeneous Gaussian error 
density. Specification (C) is essentially the standard VAR model with a linear 
mean and constant conditional covariance matrix, except for the logit trans- 
formation to x (see section 6 above); the logit transformation essentially has 
no effect in the central part of the data. Specification (D) uses no condition- 
ing information at all and is obtained by calculating the unconditional first 
two moments of the series. The figure also shows points corresponding to 
conditional mean and standard deviations of the reciprocals of the (gross) 
stock and T-bill returns. The expectations were computed from the preferred 
SNPRX(3,4,1) specification. These points are shown because they help 
provide a visual sense of scale and because the reciprocal of the stock return 
is a candidate IMRS under certain assumptions about preferences. 

Some interesting features of fig. 3 are the similarities between the frontiers 
computed under specifications (A) and (B) together with the contrasts 
between these two frontiers and those computed under specifications (0 and 
CD). Both the (A) and (B) specifications account for conditional het- 
eroskedasticity, while the (Cl and (D) specifications do not. The similarity 
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between the (Al and (B) frontiers indicates that, in the central part of the 
data, the estimate of the conditional frontier is quite robust with respect to 
the specification of the model, once conditional heteroskedasticity is taken 
into account. Some confirmatory evidence on robustness is the frontier 
computed under an SNPRX(3,4,0) specification, which is not shown in fig. 3 
but is shown in fig. 4 (to be discussed below). The fact that the extra 
complications entailed in specification (A) relative to (B) do not have notice- 
able effects on the frontiers is due to ignoring tail behavior by conditioning 
on a point in the central part of the data. 

In fig. 3 the minimum of all of the frontiers occur at a value for E(mJx) 
very near the conditional mean of the reciprocal of the T-bill return. The 
minimum of the conditional frontier corresponds to the oblique projection of 
a vector of ones onto the conditional mean vector, with the weighting matrix 
being the inverse of the conditional variance matrix. (See section 4 above.) 
Because of low variability of the T-bill return relative to the stock return, the 
T-bill component dominates that projection. 

As discussed in section 2 above, the conditional frontier touches the 
horizontal axis if the conditional means of the returns are equal. In this case 
risk-neutral asset pricing cannot be ruled out. The simplest way to test the 
hypothesis of equal unconditional means is to test for equal unconditional 
means using the paired r-test on the difference between the stock and T-bill 
returns. There are advantages to this approach: Any errors in converting 
nominal returns to real returns net out (approximately) and the r-statistic is 
asymptotically normally distributed even in the presence of heteroskedastic- 
ity. (The null hypothesis implies all autocorrelations are zero so serial 
correlation need not be taken into account in computing standard errors.) 
The paired t-test rejects the hypothesis of equal conditional returns at a 
p-value of 0.003. We are relying on the large sample (744 observations) and 
have not done simulation to determine if the fat tails or heteroskedasticity 
are severe enough to affect this conclusion. 

The hypothesis can also be viewed as a conditional moment restriction on 
the density which can be tested using the methods in Gallant and Tauchen 
(1989). The top part of table 4 shows the outcome of tests of this restriction 
when imposed on the bivariate fits. When imposed on the SNPRXO,O,Ol 
specification, the restriction is rejected at the same p-value as the paired 
t-test. This specification allows for conditional heteroskedasticity but imposes 
a normal innovation distribution. When a fat-tailed innovation distribution is 
allowed, an SNPRX(3,4,0), the p-value increases to 0.1096 and one would 
accept the restriction at conventional significance levels. Due to problems 
with numerical stability the restriction was not fully imposed on the 
SNPRX(3,4,1> specification. Thus the p-value is overstated and is only 
suggestive of the consequence of allowing for additional nonlinearities in the 
fit. The bottom part of table 4 shows the results of testing the restriction that 
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Table 4 

Bivariate tests that frontiers touch the horizontal axis.” 

Model 

Conditional frontier 

L K, K, PS Schwarz p-val. 

Constrainted 3 0 0 28 2.311790 2.436210 0.0027 
SNPRX .3 0 0 35 2.296991 2.452516 

Constrained 3 4 0 31 2.194144 2.331895 0.1096 
SNPRX 3 4 0 44 2.180962 2.376479 

Constrained 3 4 1 67 2.139290 2.437010 0.2668 
SNPRX 3 4 1 84 2.125640 2.498900 

Model 

Unconditional frontier 

L K, K, PS Schwarz p-val. 

Constrained 3 0 0 22 2.414714 2.512473 0.0000 
SNPRX 3 0 0 35 2.296991 2.452516 

Constrained 3 4 0 31 2.284002 2.421752 0.0000 
SNPRX 3 4 0 44 2.180962 2.376479 

Constrained 3 4 1 54 2.199811 2.439764 0.0000 
SNPRX 3 4 1 84 2.125640 2.498900 

“In models with K. > 0 third- and higher-order interactions have been deleted. In models with 
K, > 0 the lag length of the polynomial in x is 2. 

the conditional means are equal and constant, 
risk neutrality that implies a constant IMRS. 
substantial evidence against this hypothesis. 

which is a stronger form of 
The test outcomes provide 

Fig. 4 shows the conditional frontiers computed from the unrestricted 
SNPRX(3,4,0) specification and the same specification restricted to have 
equal conditional means, both fitted using the bivariate series. The 
SNPRX(3,4,0) is the most liberally parameterized model for which the 
restriction could be fully imposed. Since the p-value for the restriction when 
tested against the SNPRX(3,4,0) model is about 0.11, the downward shift in 
the frontier indicates the width of an approximate 10 percent confidence 
about the frontier in the vicinity of E(m Ix) = 1. In view of the other p-values 
reported in table 4, a 10 percent confidence band about the frontier com- 
puted under the SNPRX(3,0,0) specification would be narrower, while a 
band for the frontier computed under the SNPRX(3,4,1) would probably be 
somewhat wider. 

Each of the conditional frontiers shown in figs. 3 and 4 was computed at an 
x value set to the unconditional means of the series. Figs. 5 and 6 provide 
some indication as to extent to which the time series variation in x shifts the 
conditional frontier. Each of the two figures pertain to the SNPRX(3,4,1) 
specification fitted to the bivariate stock and T-bill returns. Fig. 5 is a plot of 
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the minimum value of o(m(x,) along the conditional frontier, while fig. 6 is a 
plot of the value of E(m]x,) at which the minimum occurs. Fig. 5 indicates 
that nearly all of the time series variation in the minimal o(m]x) is concen- 
trated in a band between 0.00 and 0.30. Fig. 6 indicates the value of E(m 1x1 
where the minimum occurs is substantially more volatile in the period 
1926-1951 than in the subsequent period. 

7.2. Conditional first and second moment properties of IMRS’s based on time- 
separable utility 

Under certain aggregation conditions [Eichenbaum and Hansen (199011 the 
intertemporal marginal rate of substitution can be related to the preference 
function of a fictitious representative agent. Under further assumptions about 
time separability and homotheticity, the IMRS between time t and t + 1 can 
be expressed as m,,r+l = P(c,+~/c,>-~, where p is a subjective discount 
factor between zero and unity, y 2 0 is a curvature parameter, and {c,] is the 
equilibrium consumption process. This is the IMRS based on the CRR 
or power utility specification, which has been used in empirical work by 
Grossman and Shiller (1981). Hansen and Singleton (19821, Grossman, 
Melino, and Shiller (1987), and many others. 

In this subsection we examine the extent to which the conditional first and 
second moments of this candidate IMRS violate the bounds implicit in 
estimated conditional mean-standard deviation frontiers. Because the analy- 
sis is conditioned at the mean of the data, the moment bounds we examine 
are, in one sense, weaker than those examined by Hansen and Jagannathan 
(1990). The reason is that this candidate, like any other, could conceivably 
satisfy the moment bounds in the central part of the data while not in the 
extremes. 

We begin with the special case y = 1, which is logarithmic preferences. In 
this case one can arguably measure the implied IMRS without utilizing 
consumption data. In particular, one can show [Rubinstein (1976)] that 
m = l/r*, where r* is the return on an aggregate wealth portfolio. This 
measure of m is also implied by a particular version of preferences that are 
not state-separable [Epstein and Zin (198911. In this case, though, the implied 
m is not necessarily representable as a consumption ratio as is the case for 
state-separable preferences. Figs. 3 and 4 give an indication of the extent to 
which this candidate IMRS violates the conditional moment bounds when we 
take r* to be the stock return variable of the long time series. 

More generally, though, conducting a conditional analysis of the first two 
moment properties of consumption-based IMRS’s using monthly data re- 
quires that we confine attention to a period beginning in 1959, which is when 
monthly consumption data first becomes available. Fig. 7 shows the condi- 
tional frontier implied by the SNP(2,2,1> specification that Gallant and 
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Tauchen (1989) estimated for a trivariate series comprised of stock and T-bill 
returns together with consumption growth, 1959:05-1984:12. The asterisks 
are points indicating the conditional mean and standard deviation of 
p(c,+,/c,)Yy implied by the fitted SNP model, with numerical integration 
used to compute required conditional expectations. The parameter p is set to 
unity and y varies from zero to 19 in increments of one. Lower values of p 
simply translate the set of asterisks leftwards. The asterisk at (1.0,O.O) 
corresponds to y = 0.0, and the points move up and to the left as y increases. 
The asterisks trace out a parabola laid on its side, and ultimately pass back 
through the frontier at y values in excess of 200. The figure suggests that this 
candidate IMRS can accommodate large conditional risk premiums only with 
very high values of y. This finding is the conditional analogue of findings by 
Mehra and Prescott (1985) and others. 

8. Conclusion 

We conclude by using unconditional frontier analysis to interpret recent 
empirical work utilizing time-nonseparable preference specifications in asset 
pricing applications. A discussion of some robustness considerations precedes 
the analysis. 

8.1. Robustness 

Estimates of unconditional frontiers that fully utilize the conditioning 
information in the data turn out to be fairly sensitive to model specification, 
and are thus not reported. The reason for the lack of robustness is both 
subtle and interesting. The calculations entail computing sample moments of 
quantities that depend directly on the data and on the conditional second 
moment matrix of the asset returns at each data point. That matrix can be 
written as p.,p; + Z,, where CL, is the predicted conditional mean vector and 
2, is the predicted conditional variance matrix. Because returns fluctuate in a 
relatively narrow band about unity, the matrix p,p; is very close to the matrix 
whose elements are unity. Furthermore, the elements of .Z, are fairly small, 
being on the order of 10e3 to 10m5. Hence, in a few places in the data the 
conditional second moment matrix can become very close to being a rank one 
matrix. For example, the 1984:08 observation is an otherwise innocuous 
looking observation, but the ratio of the largest to the smallest eigenvalue of 
the conditional second moment matrix of returns is 2319, which is a very 
large condition number. A large condition number means that the elements 
of (pip; + Z:,)-’ will be very sensitive to small changes in the elements of X,, 
which appears to be the cause of the lack of robustness. 

This difficulty is intrinsically multi-dimensional and will not arise when pLt 
and 2, are scalars. We can therefore circumvent it by estimating separate 
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mean-standard deviation frontiers, each based on the implied conditional 
marginal distributions from the long series estimation, and then take their 
intersections.3 The strategy still exploits conditioning information, but not to 
its full extent. The individual frontiers are estimated using the method 
outlined in section 4. In each case, the {y,} process is the bivariate stock and 
T-bills series, and the fitted conditional density is the preferred SNPRX(3,4,1) 
specification. One frontier is obtained by taking the {y,,} process to be the 
stock return alone, while the other is obtained by taking {y,,) process to be 
the T-bill return. Additional work suggested that these individual frontiers 
are reasonably robust. 

Fig. 8 shows these separately estimated frontiers along with pointwise 
two-sigma confidence bands. The one on the left corresponds to stocks, while 
the other corresponds to T-bills. The confidence bands were computed using 
the method described in Hansen and Jagannathan (1989). Covariance terms 
to lag seven and Parzen’s weights were employed in the weighted covariance 
estimation. The confidence bands only give a rough indication of the estima- 
tion uncertainty and should be interpreted with caution, as they do not take 
account of the estimation of the incidental parameters of the fitted condi- 
tional density. Doing so in a reliable manner appears to entail some extensive 
Monte Carlo work, which we defer to subsequent research. 

8.2. Time-nonseparable preferences 

Sims (1980), Novales (19891, and many others have argued that time-non- 
separable preferences might be needed to reconcile the time series proper- 
ties of asset returns and consumption. A particularly convenient specification 
for time-nonseparable preferences was introduced by Dunn and Singleton 
(1986) and Eichenbaum and Hansen (1990). In their specification, the IMRS 
is 

mt,l+l =P(c,+,/C,)-Y(~r+l/~,), 

A = E( [&-,/CA + I]-’ + 41 + 4c,+,/c,)l -‘v,}1 
where c, is consumption goods acquired in period t, I, is time t information, 
p is a subjective discount factor, y is a curvature parameter, and (Y is a 
parameter capturing the intertemporal service flow from previously acquired 
consumption goods. 

The sign of the parameter (Y reflects the nature of the time nonseparability 
of preferences. When (Y is positive, then newly acquired consumption goods 

‘Notice that volatility bounds on the IMRS could also be obtained by examining the univariate 
law of motion for a single security return. Cochrane (1988) exploited this observation in deducing 
bounds implied by market-wide returns from the New York Stock Exchange. 
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have a locally durable component. Acquisitions of consumption goods in 
nearby periods are thus substitutable, which is a characteristic of preferences 
consistent with the arguments of Huang and Kreps (1987). On the other 
hand, when LY is negative, then consumption goods are complementary across 
adjacent time periods. This characterstic of preferences is consistent with 
notions of adjustment costs and habit persistence. Constantinides (1988) 
argues that IMRS’s based on preferences displaying habit persistence can 
account for the equity premium anomaly. 

When this preference specification is estimated using GMM-Euler equa- 
tion methods, then the estimates of LY are generally statistically significant 
and in the range 0.10 to 0.50 [Dunn and Singleton (19861, Eichenbaum and 
Hansen (1990)]. This evidence is consistent with local durability of consump- 
tion. Gallant and Tauchen (1989) likewise examine the empirical implications 
of time nonseparability, though using a different preference specification and 
estimation strategy. Their estimation strategy enables them to produce esti- 
mates of the means of asset returns subject to the Euler equation restrictions. 
They find that sets of preferences that best fit the data, in the sense of not 
failing tests of overidentifying restrictions, also display local durability but at 
the same time predict an equity premium that is too small relative to the 
observed premium. 

Fig. 9 is useful for interpreting these empirical findings. The figure displays 
evidence on the impact that various assumptions regarding local durability 
and habit persistence have on the first two moment properties of the IMRS. 
The frontier shown in the figure is the intersection of the two separately 
estimated frontiers presented in fig. 8. The figure also shows the points 
corresponding to (E(m),a(m)) for the IMRS implied by the time-nonsep- 
arable preferences under various assumptions about y and LY. We calculated 
the coordinates of these points using the SNP(2,2,1> model fitted by Gallant 
and Tauchen to the shorter 1959-84 data set. We used numerical integration 
to compute the conditional expectations required for I/I,, and we then formed 
sample moments of p(c,+ i/~,)-~($~+ ,/I,/J,). This calculation presumes that 
agents’ information set Z, is current and lagged values of the two asset 
returns and consumption growth. The (E(m),a(m)) points in fig. 8 are for 
these candidate IMRS’s when (Y is set to -0.50, 0.00, and 0.50, and are 
indicated by minus signs, zeros, and plus signs, respectively. The y values 
increase from zero in increments of 1. The points for (Y = 0.00 and (Y = 0.50 
leave the left edge of the diagram for y above 12 and then cut back through 
the frontier at y values in excess of 100. In all work /3 is set to unity; other 
values for p will simply rescale the calculated means and variances equipro- 
portionally. 

When (Y equals 0.00, these preferences are time separable. For modest 
values of y, the associated (E(m, a(m)) points are seen in fig. 9 to violate the 
moment restrictions embodied in our frontier estimate based on the long 
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time series. This is consistent with the findings of Hansen and Jagannathan 

(1989) and Mehra and Prescott (1985). The same is true in fig. 10, which 
shows the means and standard deviations for these candidate IMRS’s com- 
pared to the frontier Hansen and Jagannathan estimated using monthly 
scaled returns, 1959-1986. 

When local durability is introduced by setting (Y equal to 0.50, then the 
extent of the violation of the moment bounds is exaggerated relative to the 
case (Y = 0. This is interesting in view of the fact that Euler equation methods 
generally give positive estimates of (Y. Apparently, the statistical characteris- 
tics of the data are such that Euler equation methods will place more weight 
on fitting other moments, in particular the cross-serial correlation structure 
of the IMRS and the observables, and relatively less weight on fitting the first 
two moment properties of the IMRS. 

When habit persistence is introduced by setting (Y equal to - 0.50, then the 
first two moment properties of these candidate IMRS’s are seen to change 
rather dramatically. In this case the (E(m), u(m)) points come closer to 
satisfying the moment restrictions with much smaller values of y, and in 
particular will enter the frontier when y equals to 14. The pattern is 
consistent with an argument that habit persistence can account for the 
apparent anomalies regarding the unconditional first two moments of asset 
returns. In light of the previously discussed empirical work, however, one 
might expect that candidate IMRS’s with (Y negative might not do well on 
Euler equation checks. We computed the R2’s from regressions of the 
associated Euler equation errors on three lags each of the stock return, T-bill 
return, and consumption growth, using the 1959-1984 monthly data set. With 
(Y = -0.50, y = 14, the calculation gives R 2 = 0 37 for the stock return error . 
and R2 = 0.35 for the T-bill equation error, and suggests that there is 
predictability in the Euler equation errors. The p-values of the regression 
F-statistics are below 0.0001. Because of prefitting effects, one should not 
take the p-values too seriously, and we prefer to view the R2’s as simple 
estimates of population quantities. By way of contrast, for the time-separable 
logarithmic preferences, y = 1, (Y = 0, the Euler equation check gives much 
smaller R2’s: 0.04 (p-value = 0.28) for stocks and 0.19 (p-value < 0.0001) for 
T-bills. 

Appendix 

We first describe the construction of the variables in the data set and then 
give the detailed sources. 

Stock return: This is the real value-weighted return on the NYSE computed 
as 

Gross : cl+ uw,)(wi,-l/CPi,)> 
Net: (I + UW,)(CPi,_,/CPi,) - I, 
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where uw, is the net nominal value-weighted return from the end of month 
t - 1 to the end of month t and cpi, is the consumer price index in month t. 

T-bill return: This is the real one-month return on a one-month T-bill 
computed as 

Gross : (1 +tb,)(cpi,-,/wi,), 
Net: (1 + tb,)(cpi,-,/cH,) - 1, 

where tb, is the net nominal return on a one-month T-bill and cpi, is the 
consumer price index in month t. 

Sources 

Both the nominal stock and T-bill returns were obtained from the Center 
for Research in Security Prices (CRSP), University of Chicago, Illinois. The 
nominal stock return is the CRSP Value-Weighted Index for the New York 
Stock Exchange. The nominal T-bill return is the Ibbottson and Sinquefeld 
series on the one-month return on one-month Treasury bills. 

The price index is the Consumer Price Index - All Urban Consumers 
(CPI-U, 1967 = 100). The specific sources are as follows: 

1986:12-1987: ,12 - U.S. Department of Commerce, Bureau of Economic 
Analysis, Survey of Current Business, January 1988, Vol. 
68, No. 1, p. S-5. 

1925:12-1986: 11 - Computer printout supplied by U.S. Department of La- 
bor, Bureau of Labor Statistics, Washington, DC 20212. 
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