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Abstract

I develop methods to analyze multivariate Markov-switching models. Formulas for the evolution

of �rst and second moments are derived and then used to characterize expectations, uncertainty,

impulse responses, sources of uncertainty, and welfare implications of regime changes in general equi-

librium models. The methods can be used to capture the link between uncertainty and the state of

the economy. Campbell�s present value decomposition is generalized to allow for parameter insta-

bility. Taking into account regime changes is shown to be important for expectations, welfare, and

uncertainty. All results are derived analytically and are therefore suitable for structural estimation.
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1 Introduction

Since the seminal contribution of Hamilton (1989), Markov-switching models have become a popular

tool to allow for parameter instability. In recent years, the univariate framework proposed by Hamilton

(1989) has been extended to the multivariate case. Sims and Zha (2006) have used a Markov-switching

vector autoregression (MS-VAR) to investigate the possibility of structural breaks in the conduct of

monetary policy, while Sims et al. (2008) have outlined the methods for inference in this class of

models. Furthermore, a growing literature has moved in the direction of modeling parameter instability

in dynamic stochastic general equilibrium (DSGE) models using Markov-switching processes. While the

methods to estimate multivariate Markov-switching models are by now quite well understood, regimes
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are often studied in isolation and the profession is still missing a framework to systematically analyze

the properties of these models. This paper aims to �ll this gap. I �rst derive a toolbox that can be used

to characterize agents�expectations, model dynamics, and uncertainty in multivariate Markov-switching

models. I then present a wide range of applications meant to highlight the importance of taking into

account the possibility of regime changes when characterizing agents�uncertainty, the link between the

macroeconomy and uncertainty, and the welfare consequences of uncertainty.

In the �rst part of the paper, I derive analytical laws of motion for the �rst and second moments

of the endogenous variables. These are then combined to obtain the evolution of the covariance and

auto-covariance matrices. Means and variances derived in this way take into account all sources of

uncertainty, including the possibility of regime changes. I then state the conditions under which the

moments converge to �nite values. Speci�cally, borrowing from the engineering literature, I make use

of the concept of mean square stability. A process is mean square stable if its �rst and second moments

converge to �nite values as the time horizon goes to in�nity. It is then straightforward to derive ergodic

values for the �rst and second moments and, consequently, for volatilities. Mean square stability is a

desirable condition to impose on a statistical process when thinking about economic applications. First,

it implies that agents�expectations and uncertainty converge as the time horizon increases. Second,

under the assumption of ergodicity of the Markov chain, a Markov-switching (MS) model is mean-square

stable if and only if it is asymptotically covariance stationary.

I make use of these results to emphasize how MS models can be a powerful tool to characterize

the evolution of agents�expectations and uncertainty. I consider a MS-DSGE model that allows for

heteroskedasticity and changes in monetary policy. Once it is linearized and solved, the model returns a

multivariate Markov-switching model of the kind studied by Sims and Zha (2006). As a �rst application,

I show how to characterize the historical evolution of agents�expectations and uncertainty. At each point

in time I compute the expected values and the volatilities for each of the endogenous variables at di¤erent

horizons: Et (Zt+s) and sdt (Zt+s) =
p
Vt (Zt+s). Expectations and uncertainty computed in this way

re�ect all sources of uncertainty faced by an agent in the model. Speci�cally, they take into account the

possibility of regime changes, uncertainty around the state of the economy, uncertainty about the regime

in place, and the possibility of Gaussian shocks. Therefore, they provide an accurate characterization of

agents�expectations and uncertainty, based on the estimates for the model parameters and the regime

probabilities.

The same formulas can be easily adapted to compute impulse responses, taking into account the

possibility of regime changes. When working with models with parameter instability, two di¤erent sets

of results might be of interest. First, it might be useful to understand how shocks propagate under a

speci�c regime. In this case, the evolution of the variables of interest can be computed assuming that

a speci�c regime is in place over the relevant horizon. However, in many other situations it might be

important to take into account the possibility of regime changes. For example, a policy maker might

be interested in the propagation of a shock, taking into account uncertainty about the underlying state

of the economy. Alternatively, a practitioner could �nd it important to control for uncertainty about

the future conduct of �scal and monetary policies. In all of these cases, an impulse response can be
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obtained shocking the economy and then using the law of motion for �rst moments to project the shock

into the future. The resulting impulse response automatically integrates over all possible regime paths.

A similar argument holds for uncertainty. When taking into account the possibility of regime changes

measures of uncertainty can change substantially and surprising results can arise. For example, in the

context of the MS-DSGE model described above, if a very volatile regime is in place today, uncertainty

becomes hump shaped with respect to the time horizon. In other words, agents can be more uncertain

about the short run than the long run. This is because two competing forces are at play. On the one

hand, events that are further into the future are naturally harder to predict. On the other hand, in the

long run the probability of still being in the high volatility regime declines. This latter mechanism also

determines a decline in the upper bound for uncertainty with respect to the case in which the possibility

of regime changes is ruled out: When agents are in a very volatile regime combination, they are aware

that eventually the economy will move to more favorable outcomes.

In other contexts, the upper bound for uncertainty can also increase as a result of regime changes.

This is because regime changes can be regarded as shocks themselves. An increase in volatility is more

likely to occur when regime changes also a¤ect the conditional steady states of the model, i.e., the

values to which the state variables converge if a regime is in place for a prolonged period of time. The

conditional steady states are not necessarily reached by the model, given that convergence can be slow

when compared to the regime persistences. Nevertheless, they generally determine important swings in

the model dynamics. This additional source of volatility cannot be detected if uncertainty is computed

conditioning on a speci�c regime. Therefore, if an economist is interested in characterizing the e¤ective

level of uncertainty implied by an MS model, it is important to take into account the possibility of

regime changes.

The same logic applies if the goal is to understand the sources of uncertainty. Some shocks might

be very important under a speci�c regime, but much less under another one. If regime changes are

ruled out when computing the variance decomposition, the importance of a speci�c shock might be

dramatically overstated. This is because in a model subject to regime changes, it is not only the size

and the contemporaneous impact of a shock that matter. A regime might be characterized by very

large shocks, but such shocks may occur very infrequently or only for a very short period of time.

Alternatively, it might be systematically followed by an o¤setting regime that strongly mitigates the

propagation of the shocks. In both cases, the overall contribution of the shocks associated with such a

regime is going to be very small.

Correctly characterizing the level of uncertainty is extremely important when conducting welfare

analysis in a general equilibrium model. This is because measures of medium- and long-run uncertainty

change substantially when taking into account the possibility of regime changes. As a result, the

importance of the regime that is in place at a particular point in time is substantially reduced. If

welfare were computed assuming a regime in place for a prolonged period of time, the results could be

completely misleading. In other words, it is not enough to account for the size and the contemporaneous

impact of the shocks when evaluating the welfare implications of a regime. The results derived in this

paper can be used to address these issues in a systematic way. Following Rotemberg and Woodford
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(1999), Woodford (2003), and Galí (2008), I use a period welfare loss function that depends on expected

quadratic deviations of in�ation and the output gap from their respective steady states. For each initial

regime, these squared deviations need to be computed by integrating over all possible regime paths.

Under the assumption of mean square stability, this can be done in one step by computing the discounted

present value of the expected second moments as implied by the corresponding law of motion. It is worth

pointing out that this way of calculating welfare takes into account uncertainty around the regime that

is in place today, the current state of the economy, and the possibility of regime changes. In the long

run, the second moments converge to their ergodic steady states, while the �rst moments converge to

zero. Therefore at long horizons, welfare is determined by the ergodic variance. This is in line with

standard results in the literature about welfare calculations in new-Keynesian models.

Markov-switching models can also generate interesting dynamics between uncertainty and the en-

dogenous variables. To make this point, I simulate a bivariate MS-VAR with no Gaussian shocks. In

this context, the only source of variation is represented by swings in the constant. What emerges is a

model in which a variable can experience a sharp drop preceded by a sudden increase in uncertainty.

At the same time, in an MS model uncertainty moves in response to the state of the economy. This

is not the case in a model with �xed coe¢ cients or in which the only source of parameter instability

is due to heteroskedasticity or to shifts in the constant. The intuition for this result stems from the

fact that in an MS-VAR model there is uncertainty for the way the lagged values are projected into

the future because the autoregressive component is subject to changes. If the only source of parame-

ter instability is represented by changes in the constant or in the volatility of the shocks, there is no

uncertainty about the propagation mechanism, but only about the magnitude and the direction of the

innovations. The ability of an MS model to generate non-trivial connections between the dynamics of

the endogenous variables and the level of uncertainty represents a promising feature to study the link

between uncertainty and real activity. This is intriguing in light of the attention that uncertainty has

recently received in the profession following the seminal contribution of Bloom (2009).

The possibility of using a well-de�ned concept of stability should not be undervalued. When working

with models with parameter instability, the problem of how to impose stability for the model-implied

forecasts arises quite often. In the time-varying VAR literature, for example, practitioners have fol-

lowed two alternative approaches. In the �rst approach, anticipated utility, forecasts are performed

disregarding the possibility of parameter changes, simply using the set of parameters that are in place

at a particular point in time. It is easy to see that this approach automatically disregards a very

important source of uncertainty: parameter instability. In the second approach, a sequence for the

parameter values is simulated into the future. Then stability is checked at each point of the sequence.

If at any point, the set of parameters turns out to be unstable when taken in isolation, the entire draw

is disregarded. It is clear that this approach is not completely satisfactory because it does not allow for

the possibility that over a certain period of time the variables are not on a stable path. In MS models,

instead, mean square stability allows for the possibility that some of the regimes are unstable when

taken in isolation, as long as �rst and second moments remain stable. This is a convenient property

when working with economic and �nancial series. For example, when dealing with macroeconomic data
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we might want to allow for the possibility of recurrent episodes of hyperin�ation followed by a painful

disin�ation. Similarly, in �nance we often observe bubbles and crashes. As an illustrative example, I

show how under the assumption of mean square stability it is possible to extend the Campbell�s (1991)

VAR implementation of Campbell and Shiller�s (1988) present value decomposition.

This discussion should also reveal another advantage of using Markov-switching processes to model

parameter instability. All results of this paper are obtained analytically, implying that numerical inte-

gration is not required. This represents a signi�cant advantage of Markov-switching models and opens

the door to the possibility of including the moments at the estimation stage, and not just at the ex post

stage, when analyzing the properties of the model. In a model with smoothly time-varying parameters

the computational burden implied by numerical integration is substantially larger, implying that antici-

pated utility is in many cases the only feasible approach to model agents�expectations inside the model

or to augment the list of observables in an estimation exercise.

Timmermann (2000) derives the moments for a range of univariate Markov-switching models. Three

main di¤erences between the two contributions should be pointed out. First, I derive results for multi-

variate Markov-switching models, while Timmermann (2000) works with univariate processes. Second,

I derive formulas for the dynamic evolution of the objects of interest conditional on a particular in-

formation set, while Timmermann (2000) presents results for the unconditional moments. Finally, the

focus of the two papers is quite di¤erent, given that I illustrate a series of applications in the context

of the macroeconomic and �nance literature. From this point of view, this paper complements the

work of Sims and Zha (2006) and Sims et al. (2008), who illustrate estimations techniques for MS-VAR;

Schorfheide (2005), Liu et al. (2011), Bianchi (2013), and Davig and Doh (2014) who explain how to

estimate MS-DSGE models; Fernandez-Villaverde et al. (2010), Fernandez-Villaverde et al. (2011), and

Justiniano and Primiceri (2008), who work with models in which parameters change smoothly over

time; and Ang and Bekaert (2002) and Pesaran et al. (2006) that use MS models in forecasting �nancial

series.

The techniques developed here can be easily combined with the framework developed by Bianchi

and Melosi (2015) to characterize the evolution of expectations and uncertainty in general equilibrium

models in which agents have to learn the stochastic properties of regimes. The central insight of

Bianchi and Melosi (2015) consists of recognizing that the evolution of agents�beliefs can be captured

by de�ning a set of regimes that are characterized by the degree of agents�pessimism, optimism, and

uncertainty about future equilibrium outcomes. Once this structure has been imposed, the model can

be recast as a Markov-switching dynamic stochastic general equilibrium model with perfect information

and the resulting equilibrium can be analyzed with the toolbox developed in this paper. For example,

Bianchi and Melosi (2013a) apply the methods developed here to characterize the progressive increase

in uncertainty that stems from a deterioration of policy makers�reputation for �scal virtue.

The remainder of the paper is organized as follows. Section 2 presents the class of models considered

in this paper and derives the laws of motion for �rst moments, second moments, and covariance and

auto-covariance matrices. Section 3 introduces the notion of mean square stability, states conditions

under which it holds, and derives conditional and ergodic steady states. Section 4 presents a series
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of applications using an MS-DSGE model. Section 5 illustrates how the methods can be used to

characterize the relation between the endogenous variables and uncertainty and to extend Campbell�s

(1991) VAR implementation of Campbell and Shiller�s (1988) present value decomposition. Section 6

concludes.

2 The Class of Models

Consider the following multivariate Markov-switching model:

Zt = c�t +A�tZt�1 + V�t"t (1)

V�t = R�t��t ; "t � N (0; Ik) (2)

where Zt is an n � 1 vector of variables, c�t is an n � 1 vector of constants, A�t is an n � n matrix

of coe¢ cients, R�t is an n � k matrix of coe¢ cients mapping the k � 1 vector of structural shocks
"t into the n endogenous variables, and the matrix ��t is a diagonal matrix capturing the size of the

di¤erent shocks.1 The hidden Markov process �t controls the regime that is in place at time t, assumes

values from 1 to m; evolves according to the transition matrix H; and is assumed to be ergodic and

independent from "t. The elements of the transition matrix H are de�ned as hji = P
�
�t+1 = jj�t = i

�
:

Therefore the columns of H sum to one.

Changes in coe¢ cients and changes in volatilities are assumed to follow the same chain. This makes

the exposition simpler, as it is straightforward to allow for two independent chains. It might be useful

to think of �t as a composite hidden variable, �t =
�
��t ; �

�
t

�
; where ��t = fc�t ; A�t ; R�tg and �

�
t and �

�
t

summarize the regimes in place for the structural parameters and the stochastic volatilities, respectively.

Furthermore, the assumption of one lag should not be considered restrictive, given that a VAR with

more than a lag can always be recast in this way using the companion form. Finally, the assumption

of independence between �t and "t is less restrictive than what it might seem: If we are interested in

modeling a regime change triggered by a shock, it is enough to discretize the shock and include it in

c�t . For example, Bianchi and Melosi (2013b) use this approach to model zero-lower-bound episodes

triggered by a demand shock.

The vector Zt can be observable or not. In the former case, we have a standard MS-VAR, while

in the latter case the MS model (1)-(2) will be combined with an observation equation mapping the

vector Zt into a set of observable variables (as in DSGE or factor models). Furthermore, while in a

Markov-switching VAR the number of structural shocks k is generally equal to the number of endogenous

variables n, I allow for the possibility that k < n to accommodate the case in which the law of motion

(1) arises as the output of a Markov-switching DSGE model of the kind studied by Schorfheide (2005),

Davig and Leeper (2007), Farmer et al. (2009), Bianchi (2013), and Liu et al. (2011). In such models, the

coe¢ cients describing the law of motion will generally depend on a set of underlying deep parameters

1The matrix ��t could also be assumed to be non diagonal. However, the idea here is that all of the contemporaneous
relations between the shocks are captured by the matrix R�t :
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� ; the regime in place at time t, and the probability of moving across regimes:

Zt = c (�t; �;H) +A (�t; �;H)Zt�1 +R (�t; �;H) � (�t) "t

Notice that in this kind of model the regime-dependent law of motion is a¤ected by the transition

matrix H. While this feature poses some challenges when estimating the model, it does not a¤ect the

derivation of the results shown below. Therefore, without loss of generality we will refer to the law of

motion given by (1)-(2).

In what follows, I will derive laws of motion for �rst and second moments for the �rst order MS-VAR

described in (1)-(2) and state the conditions for stability of these processes following Costa et al. (2004)

(CFM). The formulas derived below can also be used to study the properties of a higher order MS-VAR

insofar as a higher order MS-VAR model can always be written as a �rst order MS-VAR.2 I will then use

these results to construct a toolbox that can be used to characterize agents�expectations and uncertainty,

the welfare implications of regime changes, and the output of a multivariate MS model. The results

presented here for the law of motion of the moments will not coincide with the ones obtained by CFM.

This is because of two reasons. First, CFM do not model the constants and the Gaussian innovations

separately. Second, they study models in which the regimes are known one period in advance. This

implies that when agents form expectations, they do not face uncertainty about the regime that will

prevail in the next period.

2.1 Law of motion for �rst moments

Consider the MS model (1)-(2) and suppose that we are interested in E0 (Zt) = E (ZtjI0) with I0 being
the information set available at time 0. De�ne the mn� 1 column vector qt as:

qt =
�
q10t ; :::; q

m0
t

�0
where qit = E0

�
Zt1�t=i

�
= E

�
Zt1�t=ijI0

�
and 1�t=i is an indicator variable that is one when regime i is

in place. Note that:

qit = E0
�
Zt1�t=i

�
= E0 (Ztj�t = i)�it

where �it = P0 (�t = i) = P (�t = ijI0). Therefore we can express �t = E0 (Zt) as:

�t = E0 (Zt) =
Pm
i=1 q

i
t = wqt

where the matrix w = [In; :::; In] is obtained placing side by side m n-dimensional identity matrices.

Then we can derive the following proposition (see Appendix A for a proof):

Proposition 1 Consider a Markov-switching model whose law of motion can be described by (1)-(2)
and de�ne qit = E0

�
Zt1�t=i

�
for i = 1:::m. Then qjt = cj�

j
t +

Pm
i=1Ajq

i
t�1hji:

2Alternatively, the formulas can be extended to explicitly handle multiple lags, at the cost of increasing complexity in
the notation.
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Using this result, we can write the law of motion of qt as:

qt = C�t +
qt�1 (3)

�t = H�t�1 (4)

with �t =
�
�1t ; :::; �

m
t

�0
; 
 = bdiag (A1; :::; Am) (H 
 In) ; and C = bdiag (c1; :::; cm) ; where 
 represents

the Kronecker product and bdiag is a matrix operator that takes a sequence of matrices and use them

to construct a block diagonal matrix. Finally, if we de�ne the column vector eqt = [q0t; �0t]0 ; the laws of
motion (3) and (4) can be written in a compact form:

eqt = e
eqt�1 where e
 = " 
 CH

H

#
: (5)

The central insight of (5) consists of the fact that while Zt is not Markov, qt is. Section 4 will

illustrate how the previous formulas can be used to compute a series of objects of interest such as

impulse responses and expectations at di¤erent time horizons. For now, notice that it is straightforward

to compute expectations conditional on the information available at a particular point in time. Suppose

we are interested in �t+sjt = Et (Zt+s), i.e. the expected value for the vector Zt+s conditional on the
information set available at time t. If we de�ne:

qt+sjt =
h
q10t+sjt; :::; q

m0
t+sjt

i0
where qit+sjt = Et

�
Zt+s1�t+s=i

�
, we have Et (Zt+s) = wqt+sjt:

If we de�ne eqtjt = [q0tjt; �
0
tjt]

0; where �tjt is a column vector whose i -th element coincides with �itjt,

where �itjt = Pt (�t = i) represents the probability of being in regime i at time t conditional on the

information set available at time t, we can compute the conditional expectations in one step:

�t+sjt = Et (Zt+s) = ewe
seqtjt (6)

where ew = [w; 0n�m] : Note that this expected value re�ects the possibility of regime changes and

uncertainty around the regime in place at time t and the state vector Zt. If Zt is observable at time

t we have qitjt = Et
�
Zt1�t=i

�
= Zt�

i
tjt. Furthermore, if the regime is observable �

i
tjt will be 0 or 1. In

general, �itjt will be the outcome of a �ltering problem.

2.2 Law of motion for second moments

I will now derive the law of motion for the second moments. Before proceeding, let me de�ne the

vectorization operator ' (X) that takes the matrix X as an input and returns a column vector stacking

the columns of the matrix X on top of one another. We will also make use of the following result:

' (X1X2X3) = (X
0
3 
X1)' (X2).
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De�ne the vector n2m� 1 column vector Qt as:

Qt =
�
Q10t ; :::; Q

m0
t

�0
where the n2 � 1 vector Qit is given by Qit = '

�
E0
�
ZtZ

0
t1�t=i

��
. This implies that we can compute the

vectorized matrix of second moments Mt = ' [E0 (ZtZ 0t)] as:

Mt = '
�
E0
�
ZtZ

0
t

��
=
Pm
i=1Q

i
t =WQt

where the matrix W = [In2 ; :::; In2 ] is obtained placing side by side m n2-dimensional identity matrices.

We can then state the following proposition (see Appendix A for a proof):

Proposition 2 Consider a Markov-switching model whose law of motion can be described by (1)-(2)
and de�ne Qit = '

�
E0
�
ZtZ

0
t1�t=i

��
; qit = E0

�
Zt1�t=i

�
; and �it = P0 (�t = i) ; for i = 1:::m. Then

Qjt =
h bccj +dV V j' [Ik]i�jt+Pm

i=1

hdAAjQit�1 +\DACjqit�1ihji; where bccj = (cj 
 cj) ;dV V j = (Vj 
 Vj) ;dAAj = (Aj 
Aj) ; and \DACj = (Aj 
 cj) + (cj 
Aj) :
Using matrix algebra we obtain:

Qt = �Qt�1 +\DACqt�1 + cV c�t (7)

qt = C�t +
qt�1; �t = H�t�1: (8)

where

� = bdiag(dAA1; :::;dAAm)(H 
 In2), cV c = hdV V + bcci ; bcc = bdiag(bcc1; :::; bccm);dV V = bdiag(dV V 1' [Ik] ; :::;dV V m' [Ik]); \DAC = bdiag(\DAC1; :::;\DACm)(H 
 In):

Therefore, if we de�ne the column vector eQt = [Q0t; q
0
t; �

0
t] we can express the law of motion for the

second moments as:

eQt = e� eQt�1 where e� =
264 � \DAC cV cH


 CH

H

375 : (9)

Even in this case, the central insight of (9) consists of the fact that while Zt is not Markov, Qt is.

Section 4 will illustrate how the formulas can be used to characterize the evolution of uncertainty. For

now, notice that it is straightforward to compute the evolution of second moments conditional on the

information available at a particular point in time. Suppose we are interested in Et
�
Zt+sZ

0
t+s

�
, i.e. the

second moment of the vector Zt+s conditional on the information available at time t. If we de�ne:

Qt+sjt =
h
Q10t+sjt; :::; Q

m0
t+sjt

i0
where Qit+sjt = '

h
Et
�
Zt+sZ

0
t+s1�t+s=i

�i
, we obtain '

�
Et
�
Zt+sZ

0
t+s

��
=WQt+sjt.
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If we de�ne eQtjt = [Q0tjt; q
0
tjt; �

0
tjt]

0; where Qitjt = '
�
Et
�
ZtZ

0
t1�t=i

��
, we can compute the second

moments conditional on the information available at time t in one step:

Mt+sjt = '
�
Et
�
Zt+sZ

0
t+s

��
= fW e�s eQtjt (10)

where fW =
�
W; 0n2�m(n+1)

�
. Note that the result re�ects the possibility of regime changes, the presence

of Gaussian shocks, and uncertainty around the regime in place at time t and the state vector Zt. Finally,

if Zt is observable at time t we have Qitjt = ' [ZtZ
0
t]�

i
tjt:

3

2.3 Variance

With the �rst and second moments at hand, it is then possible to compute the variance implied by the

Markov-switching model, V0 (Zt):

' [V0 (Zt)] =Mt � '
�
�t�

0
t

�
(11)

In many practical applications, we will be interested in the variance s periods ahead conditional on the

information available at time t:

' [Vt (Zt+s)] =Mt+sjt � '
h
�t+sjt�

0
t+sjt

i
(12)

It is worth pointing out that in an MS model the variance will change in response to changes in

the initial values for the endogenous variables, Zt, and for the regime probabilities, �t. Instead, in a

�xed coe¢ cient VAR the initial values of the endogenous variables Zt do not a¤ect the variance. This

is because in an MS-VAR the way the endogenous variables evolve changes over time through the e¤ect

of a multiplicative term: A�t .
4

2.4 Autocovariance

The autocovariance matrix requires some additional work, but it can be useful to characterize the

evolution of autocorrelation. By de�nition cov0 (Zt+s; Zt) = E0 (Zt+sZ 0t) � E0 (Zt+s)E0 (Z 0t) : We have
already derived formulas for E0 (Zt+s)E0 (Z 0t). Then, to compute E0 (Zt+sZ 0t), we will introduce some
additional notation. De�ne:

Qi;jt;t+s = '
h
E0
�
Zt+sZ

0
t1�t=i1�t+s=j

�i
Q�;jt;t+s = '

h
E0
�
Zt+sZ

0
t1�t+s=j

�i
q�;jt;t+s = E0

�
Zt1�t+s=j

�
3 It is worth mentioning that the formulas (6) and (10) can be applied even when the Markov process �t follows a

change-point process with a terminal absorbing state. In this case, �t is not ergodic because all regimes are transient,
except for the last one that is an absorbing state (Chib (1998)). Of course, in this case, limt!1 E0 [Zt] = E0 [Ztjm] and
limt!1 E0 [ZtZ0t] = E0 [ZtZ0tjm], where m is the terminal regime.

4The online appendix presents a simple example for an univariate MS model, showing that if A�t is not subject to
regime changes, then the variance does not depend on the initial values for the endogenous variables.
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and note that q�;jt;t = E0
�
Zt1�t=j

�
= qjt and Q�;jt;t = '

�
E0
�
ZtZ

0
t1�t=j

��
= Qjt : If we de�ne Mt;t+s =

' [E0 (Zt+sZ 0t)] ; we have:
'
�
E0
�
Zt+sZ

0
t

��
=
Pm
j=1Q

�;j
t;t+s:

Then, we can derive the following proposition (see Appendix A for a proof):

Proposition 3 Consider a Markov-switching model whose law of motion can be described by (1)-(2)
and de�ne Q�;jt;t+s = '

�
E0
�
Zt+sZ

0
t1st+s=j

��
and q�;jt;t+s = E0

�
Zt1�t+s=j

�
for j = 1:::m. Then Q�;jt;t+s =bIcjq�;jt;t+s +Pm

i=1
cIAjhjiQ�;it;t+s�1; where bIcj = (In 
 cj) and cIAj = (In 
Aj) :

Then, using the fact that Qt;t = Qt and qt;t = qt, we have:"
Qt;t+s

qt;t+s

#
= e�1;l

"
Qt;t+s�1

qt;t+s�1

#
= e�s1;l

"
Qt

qt

#
; with e�1;l �

"
�1;l bIc (H 
 In)

(H 
 In)

#
(13)

where �1;l = bdiag(cIA1; :::; cIAm)(H
In2); bIc = bdiag( bIc1; :::; bIcm); Qt;t+s = ��Q�;1t;t+s�0 ; :::; �Q�;mt;t+s�0�0 ;
and qt;t+s =

��
q�;1t;t+s

�0
; :::;

�
q�;mt;t+s

�0�0
: Analogous formulas can be derived for E0

�
ZtZ

0
t+s

�
:

3 Mean Square Stability and Steady States

So far we have illustrated how to characterize the evolution of �rst moments, second moments, and

covariance matrices in an MS model. In many applications, it would be useful to know if these objects

converge to �nite values. For example, we might �nd it desirable that as the horizon goes to in�nity,

uncertainty stabilizes. In order to establish whether this is the case, I will borrow the concept of mean

square stability (MSS) from the engineering literature. Once convergence of �rst and second moments

has been established, I will derive formulas for the steady states of expectations and uncertainty.

3.1 Mean square stability

Mean square stability is de�ned as follows:

De�nition 1 An n-dimensional process Zt is mean square stable if and only if there exists an n-vector
� and an n2-vector M such that:

1) limt!1 E0 [Zt] = �

2) limt!1 E0 [ZtZ 0t] =M

for any initial Z0 and �0.

MSS requires that �rst and second moments converge as the time horizon goes to1. MSS has been
used by Svensson and Williams (2007) to study optimal monetary policy in an uncertain environment

and by Farmer et al. (2009) to derive conditions for uniqueness of a solution in DSGE models subject

to regime changes. Farmer et al. (2009) argue that MSS is an appealing stability concept when dealing
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with Markov-switching general equilibrium models. Using MSS in place of bounded stability allows

for the possibility that one or more regimes are unstable, as long as this regime is not too persistent.

This seems to be a desirable property, especially when thinking about asset prices or macroeconomic

models. For example, MSS allows for the possibility of a bubble regime during which stock prices keep

increasing for a prolonged period of time or hyperin�ationary episodes during which in�ation follows

an unstable path. Finally, under the assumptions that the Markov-switching process �t is ergodic and

that the innovation process "t is asymptotically covariance stationary, Costa et al. (2004) show that a

multivariate Markov-switching model as the one described by (1)-(2) is mean-square stable if and only

if it is asymptotically covariance stationary. Both conditions hold for the models studied in this paper

and are usually veri�ed in economic models.

Costa et al. (2004) show that in order to establish MSS of a process such as the one described by

(1)-(2), it is enough to check MSS stability of the correspondent homogeneous process: Zt = A�tZt�1:

In this case, formulas (5) and (9) simplify substantially: qt = 
qt�1 and Qt = �Qt�1: Let r� (X) be the

operator that given a square matrix X computes its largest eigenvalue. We then have:

Proposition 4 A Markov-switching process whose law of motion can be described by (1)-(2) is mean

square stable if and only if r� (�) < 1.

3.2 Steady states

When mean square stability holds, it is possible to compute analytically the unconditional �rst and

second moments that can be used to obtain the steady-state values for the levels and the volatilities of

the endogenous variables taking into account the possibility of regime changes. This is done in Subsection

3.2.1. When the single regimes taken in isolation are stationary, it is also possible to compute steady-

state values for �rst and second moments conditional on a speci�c regime being in place for a prolonged

period of time. This is done in Subsection 3.2.2.

3.2.1 Ergodic steady states

Recall that the law of motion for �rst and second moments is entirely summarized by (9). Notice that

�t evolves independently from the endogenous variables, given that it only depends on the Markov-

switching process. Therefore, we have �t ! �; where � is the m � 1 vector containing the ergodic
probabilities of the m regimes that can be obtained computing the normalized right eigenvector of

the transition matrix H associated with the unit eigenvalue. Furthermore, the law of motion for the

�rst moments does not depend on the law of motion for the second moments. Therefore, under the

assumption of MSS, we obtain q = (Inm � 
)�1C�, implying that the ergodic steady state for the �rst
moments can be easily computed as

� = E (Zt) = wq = w (Inm � 
)�1C� (14)
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For the second moments, using (7), we have Qt ! Q where

Q = (Imn2 � �)�1
�cV c� +\DACq�

and the ergodic steady state for the vectorized second moments can be computed as

M =WQ =W (Imn2 � �)�1
�cV c� +\DACq� (15)

With these formulas at hand, it is then straightforward to compute ergodic values for variances and

correlations. For example, the ergodic (vectorized) covariance matrix of the endogenous variables is

given by:

' [V (Zt)] =M � '
�
��0
�
: (16)

In a model with no Markov-switching constants, these formulas simplify to:

q = 0; Q = (Imn2 � �)�1dV V �; ' [V (Z)] =WQ:

3.2.2 Conditional steady states

For all regimes that are stationary when taken in isolation, we can easily compute conditional steady

states. When conditioning on a single regime, formulas (5) and (9) simplify to:"
Qtji

qtji

#
=

" dV V i' [Ik] + bcci
ci

#
+

" dAAi \DACi
Ai

#"
Qt�1ji

qt�1ji

#
(17)

where qtji = E [Ztj�t = i 8 t] and Qtji = E [ZtZ 0tj�t = i 8 t]. Notice that (17) implies qtji = ci +Aiqt�1ji:

Therefore the conditional steady states can be computed as:

Ei (Zt) = �i = qi = (In �Ai)�1 ci (18)

M i = Qi =
�
In2 �dAAi��1 �dV V i' [Ik] + bcci +\DACiqi� (19)

' [Vi (Zt)] =M i � '
�
�i�

0
i

�
: (20)

It is worth pointing out that, except in some special cases such as Zt = c�t + V�t"t, there is not

an immediate relation between the conditional steady states and the ergodic steady states. Consider

the case of the �rst moments. The conditional steady state is obtained conditioning on the entire

regime path: limt!1 E0 [Ztj�s = i; s = 0; :::; t] : This is generally di¤erent from limt!1 E0 [Ztj�t = i],

the expected value of Zt conditional on being in regime �t = i at time t for t!1. The ergodic steady
state is computed weighing each of these conditional expected values with their ergodic probabilities.

The di¤erence stems from the fact that limt!1 E0 [Ztj�t = i] is computed by conditioning on being in

regime i at time t (for t!1), while when computing the conditional steady state we are conditioning
on being in regime i over the in�nite future.
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4 Applications for a Microfounded Model

The second part of the paper is entirely dedicated to showing how the results derived above can be

used to analyze the features of a Markov-switching model. In this section, I will illustrate a series of

applications using a Markov-switching DSGE model. The solution of the model assumes the form of an

MS-VAR with no constant. In Section 5, I will consider two additional applications for the case of an

MS-VAR with MS conditional steady states. In the interest of brevity, I am not reporting results for

persistences and autocorrelations. These are available upon request.

4.1 A new-Keynesian model with regime changes

In what follows, I describe a small new-Keynesian model of the kind used by Clarida et al. (2000),

Woodford (2003), Lubik and Schorfheide (2004), and Galí (2008), in which the behavior of the monetary

authority and the volatility of the exogenous shocks are subject to regime changes. For the sake of

brevity, I will present the linearized version of the model. The model is not meant to provide a full

characterization of the US economy. Instead, it has been chosen because of its relative simplicity and in

order to illustrate a wide range of applications of the methods developed in the paper. Please refer to

Bianchi (2013) for a model that includes capital and investment and is explicitly derived from agents�

optimizations problems. Finally, it is important to emphasize that the methods illustrated here can be

applied to any model whose solution can be expressed as an MS-VAR.

The private sector can be described by a system of two equations:

�pt = �Et(�pt+1) + �(yt � at) (21)

yt = Et(yt+1)� ��1(Rt � Et(�pt+1)) + dt (22)

where �pt represents in�ation, yt is the output gap, and Rt is the nominal interest rate. The variables

are expressed in deviations from a deterministic steady state that does not depend on regime changes.5

In�ation dynamics are described by the expectational Phillips curve (21) with slope �. This relation

can be derived assuming a quadratic adjustment cost or Calvo pricing. Equation (22) can be derived

starting from an intertemporal Euler equation describing the households�optimal choice of consumption

and bond holdings. The parameter ��1 > 0 can be interpreted as intertemporal substitution elasticity

and 0 < � = 1= (1 + r�) < 1 is the households�discount factor, where r� is the steady-state real interest

rate. The process at can be interpreted as a supply/mark-up shock, while the process dt summarizes

changes in preferences and other demand side disturbances. The two shocks evolve according to:

dt = �ddt�1 + �d;�vot �d;t; �d;t � N (0; 1) (23)

at = �aat�1 + �a;�vot �a;t; �a;t � N (0; 1) (24)

The central bank responds to the output gap and deviations of in�ation from its target level �p�

5See Schorfheide (2005), Liu et al. (2011), and Bianchi et al. (2012) for models in which regime changes a¤ect the steady
state.
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adjusting the monetary policy interest rate. Unanticipated deviation from the systematic component

of the monetary policy rule are captured by �R;t:

Rt = �R;�mpt Rt�1 + (1� �R;�mpt )( �p;�mpt �pt +  y;�mpt yt) + �R;�vot �R;t; �R;t � N (0; 1) (25)

where �mpt is an unobserved state variable capturing the monetary policy regime that is in place at

time t and evolves according to a two state Markov chain with transition matrix Hmp. The hidden

variable �vot allows for changes in the volatility of the exogenous disturbances and evolves according to

an independent two-state Markov chain with transition matrix Hvo.6 Agents in the model know the

probability of moving across regimes and they use this information when forming expectations.

If we de�ne the matrix ��vot � diag
�
�2R;�vot

; �2d;�vot
; �2a;�vot

�
and the DSGE state vector Zt as:

Zt = [yt;�pt; Rt; dt; at;Et(yt+1);Et(�pt+1)]0

we can rewrite the system of equations (21)-(25) in a more compact form:

�0;�mpt Zt = �1;�mpt Zt�1 +	�mpt ��vot �t +��t (26)

with �t a vector containing the expectations errors. The model can be solved with any of the solution

methods developed to solve MS-DSGE models: Davig and Leeper (2007), Farmer et al. (2009), Cho

(2012), and Foerster et al. (2010). I make use of Farmer et al. (2009).7 When a solution exists, it can

be characterized as a regime-switching vector-autoregression, of the kind studied by Hamilton (1989),

Chib (1996), and Sims and Zha (2006):

Zt = A�mpt Zt�1 +R�mpt ��vot �t (27)

Therefore, the model solution assumes the same form of the MS process described in (1), with the only

notable di¤erence being that there is no MS constant. It is worth emphasizing that the law of motion

of the DSGE states depends on the structural parameters, the regime in place, and the probability of

moving across regimes. This is because the model is solved under the assumption that while agents can

observe the regime they are in, they are uncertain about the regime that will prevail in the future. While

this assumption makes the estimation of the model challenging, it will not prevent us from applying the

methods described in this paper.

4.2 Parameter values and regime probabilities

Once the law of motion (27) is combined with a system of observation equations, the model can be

estimated with the methods described in Bianchi (2013). The time series are extracted from the Global

Insight database. The output gap is measured as the percentage deviations of real per capita GDP from

6Here and later on, mp and vo stand, respectively, for monetary policy and volatilities.
7The method proposed by Davig and Leeper (2007) can only be applied to purely forward looking models, while I have

an autoregressive component in the Taylor rule.
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Figure 1: Posterior mode smoothed probabilities for the Hawk regime and the High volatility regime.

a trend obtained with the HP �lter. In�ation is the annualized quarterly percentage change of CPI

(Urban, all items). The nominal interest rate is the average federal funds rate in percentage points.

Table 1 reports the posterior mode estimates for the parameters of the model with the 90% error

bands obtained using a Metropolis-Hastings algorithm. Concerning the parameters of the Taylor rule,

we �nd that under Regime 1 (�mpt = 1) the federal funds rate reacts strongly to deviations of in�ation

from its target, while the output gap does not seem to be a major concern. The opposite occurs under

Regime 2, under which the response to in�ation is substantially weaker. The degree of interest rate

smoothing turns out to be similar across regimes. In what follows, I will refer to Regime 1 as the Hawk

regime, while Regime 2 will be the Dove regime.

Figure 1 shows the smoothed probabilities assigned to �mpt = 1 (top panel) and �vot = 1 (lower

panel). The Hawk regime prevails over the early years, during the second half of the �60s and for a

large part of the second half of the sample. Over the period 1961-1965 and during the �70s the Dove

regime was dominant, while over the second half of the sample its probability is close to one only during

the �91 recession. The timing of regime changes roughly coincides with the narrative evidence that

suggests the Fed was passive in the �70s and very aggressive against in�ation after the appointment of

Paul Volcker in August �79. As for the stochastic volatilities, it emerges that Regime 1, characterized

by large volatilities for all shocks, prevails for a long period that goes from the early �70s to 1985, with

a break between the two oil crises. I will refer to Regime 1 as the high volatility regime. Finally, it is

worth pointing out that all regimes have relatively low persistence, except for the low volatility regime.

All the applications that follow are based on the posterior mode estimates in order to facilitate

the comparison across regimes and to highlight the importance of taking into account the possibility of

regime changes. As explained in the introduction, the methods proposed in this paper can be used at the

estimation stage, for example to augment the observation variables with model consistent measures of

expectations or uncertainty, or ex post, to analyze the estimates. In this latter case, a practitioner might

also be interested in computing error bands for the applications considered in this paper. This can be
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Parameter �mp = 1 �mp = 2 Parameter �vo = 1 �vo = 2

 � 2:4047
(1:4677;2:7375)

0:5148
(0:4364;1:0267)

�R 0:3043
(0:2582;0:3884)

0:0667
(0:0612;0:0852)

 y 0:2949
(0:1446;0:4509)

0:2892
(0:2159;0:5538)

�d 0:3576
(0:2867;0:4711)

0:1521
(0:1295;0:1958)

�R 0:7798
(0:4678;0:8148)

0:7535
(0:7398;0:9035)

�a 1:3731
(1:1500;2:9879)

0:4450
(0:3681;0:8450)

� 2:5943
(2:1640;4:0056)

�� 0:2982
(0:2462;0:3220)

� 0:0293
(0:0167;0:0406)

Hmp
11 0:9680

(0:9256;0:9816)

�d 0:8341
(0:7772;0:8683)

Hmp
22 0:9251

(0:8130;0:9544)

�a 0:9178
(0:8667;0:9401)

Hvo
11 0:9033

(0:8370;0:9553)

Hvo
22 0:9345

(0:6999;0:9514)

100r� 0:4812
(0:3557;0:5359)

100�p� 0:7811
(0:0062;0:0085)

Table 1: Posterior mode and 90% error bands of the model parameters.

done by using standard Bayesian methods: The procedures described below are repeated for each draw

from the posterior distribution. Speci�cally, if the object of interest is a function of the parameters g (�) ;

say expected in�ation, such a function can be computed for each draw from the posterior distribution.

Once a distribution for g (�) is obtained, summary statistics such as median, mean, standard deviations,

and error bands can be computed.8 Finally, if an econometrician is interested in computing expectations

and uncertainty in real time, the parameter estimates can be updated recursively as new data become

available.

4.3 Historical evolution of expectations and uncertainty

Given that agents are rational and aware of regime changes, the possibility of moving across regimes

should have a signi�cant impact on expectations and uncertainty. Therefore, given the parameter

estimates and the probabilities assigned to di¤erent regimes, a researcher might be interested in char-

acterizing the historical evolution of expectations and uncertainty at di¤erent horizons. In other words,

the researcher could be interested in computing Et (Zt+s) and Vt (Zt+s) for s > 0 from the point of view
of an agent living in the economy described by equations (21)-(25).

The �rst step consists of de�ning the composite regime �t = [�
mp
t ; �vot ] and the corresponding tran-

sition matrix H = Hmp 
 Hvo: We then have a total of four regimes corresponding to all possible

combinations of �mpt and �vot . Then, given the smoothed estimates for the DSGE states and the regime

probabilities, we can construct qtjt =
h
q10tjt; :::; q

40
tjt

i0
and Qtjt =

h
Q10tjt; :::; Q

40
tjt

i0
, where qitjt = Zt�

i
tjt and

Qitjt = ' [ZtZ
0
t]�

i
tjt for i = 1; 2; 3; 4:9 Finally, we can use (5) and (9) to compute �t+sjt = wqt+sjt and

8Some applications require an estimate for the DSGE state vector ZT and the regime probabilities; but these are
generally a by-product of the Bayesian estimation algorithm or can be easily computed ex-post. The online appendix
reports error bands for the applications considered in the paper and provides more details about how to handle parameter
uncertainty.

9Here and thereafter ZT = fZtgTt=1. In what follows, the results are obtained using the smoothed means for Z
T and
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Figure 2: Historical evolution of the expected values for output, in�ation, and FFR for horizons going
from 1 quarter to 5 years. The light blue areas correspond to the short horizons.
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Figure 3: Historical evolution of uncertainty for output, in�ation, and FFR for horizons going from 1
quarter to 5 years. The light blue areas correspond to the short horizons.
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' [Vt (Zt+s)] =Mt+sjt � '
h
�t+sjt�

0
t+sjt

i
with Mt+sjt =WQt+sjt.

Figure 2 reports the evolution of model-implied expectations at each point in time. For a variable

xt 2 Zt and a horizon s, expectations are measured by Et (xt+s).10 The time horizon goes from one

quarter, light blue area, to �ve years, dark red area. In the long run all macroeconomic variables return

to the unique deterministic steady state. However, this requires an extended period of time: After �ve

years the expected values for the variables of interest are often di¤erent from zero. Not surprisingly,

persistent deviations can be detected during the Great In�ation of the �70s.

Figure 3 reports the evolution of uncertainty. For a variable xt 2 Zt and a horizon s, uncertainty

is measured by its conditional standard deviation: sdt (xt+s) = [Vt (xt+s)]:5. The horizons are still
from one quarter to �ve years. It is clear that the volatility regime that is in place heavily a¤ects

the evolution of uncertainty. To see this, notice that even at a �ve-year horizon uncertainty is above

the ergodic steady state when the high volatility regime is in place. Furthermore, the fact that agents

are aware of regime changes determines an hump shape in uncertainty when the high volatility regime

is in place: Short run uncertainty can be larger than long run uncertainty. As carefully explained in

subsection 4.5, this is because two competing forces a¤ect uncertainty as the horizon increases. On the

one hand, events further into the future are harder to predict. On the other hand, as the time horizon

increases, the probability of still being in the high volatility regime declines. Finally, the monetary

policy regime does not seem to be very important. As it will be emphasized in subsections 4.5 and 4.7,

this result stems from the fact that agents are aware of regime changes.

It is worth pointing out that the possibility of analytically characterizing uncertainty in a model with

stochastic volatility and regime changes in policy makers�behavior represents a useful tool, especially

in light of the recent attention given to uncertainty following the seminal contribution of Bloom (2009).

When modeling parameter instability with smoothly time-varying coe¢ cients as in Primiceri (2005) and

Cogley and Sargent (2006), a researcher has only two options when trying to characterize expectations

and uncertainty. She can decide to ignore parameter instability and use anticipated utility, or she can

decide to use numerical integration (Bianchi et al. (2009)). The �rst approach is often used in the

learning literature or when agents� expectations are used as additional observables in an estimation

exercise. The second approach is generally used ex post to carefully characterize expectations for a

given set of estimated parameters. What cannot be easily done is to use numerical integration to

compute agents�expectations while at the same time estimating the model, given that this would lead

to an unsustainable computational burden. The results presented here suggest that when parameter

the smoothed probabilities for �T . Agents in the model know the state of the economy, Zt; and the regime in place, �t.
However, the econometrician does not. The smoothed probabilities and the smoothed means for the DSGE state vector
represent the most accurate estimates of which regime was in place at time t and of the state of the economy. Alternatively,
I could make draws for the series �T and ZT and repeat the procedure for each single draw in a way to re�ect uncertainty
faced by the econometrician about the state of the economy. This would deliver a distribution for agents�expectations and
uncertainty. Notice that the econometrician uses the entire sample to obtain the best estimates of the underlying state
vector and of the regime probabilities. However, expectations and uncertainty are computed from the point of view of
the agent in the model that has only the information set available at time t. This is why I use the notation qtjt and Qtjt
instead of qtjT and QtjT .
10The variables of interest are directly observable. If they were not, a simple transformation could be used to obtain the

corresponding moments. Suppose that Xt = BZt, where B is a matrix mapping the DSGE state vector into the observable
vector Xt: Then, Et (Xt+s) = BEt (Zt+s) and ' [Et (Xt+sX

0
t+s)] = (B 
B)' [Et (Zt+sZ0t+s)] :
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instability is modeled with an MS process, agents�uncertainty and expectations can be easily computed

and used as observables in an estimation algorithm. For example, the observation equation could be

augmented with a measure of in�ation expectations as in Del Negro and Eusepi (2011) or long term

interest rates as in De Graeve et al. (2009) while allowing for regime changes.11

4.4 Impulse responses

An important and useful application of the methods outlined above is given by impulse responses.

In a model with Markov-switching changes a researcher might be interested in both conditional and

unconditional impulse responses (see also Koop et al. (1996)). The former are computed assuming that

over the relevant horizon a speci�c regime path will prevail; the latter are derived taking into account

the possibility of regime changes. In what follows, I will show that the two approaches can lead to very

di¤erent results.

When conditioning on a speci�c regime path �S , impulse responses to the shock x over the time

horizon S can be computed recursively:

Z1j1;�S = c�1 +A�1��1 +R�1��1"
x

Zsj1;�S = c�s +A�sZs�1j1;�S for 1 < s � S

where "x is a k�1 vector with all elements equal to zero, except for the x-th element that is equal to the
size of the shocks in terms of standard deviations. The initial value ��1 is the conditional steady state

associated with the regime in place at the time of the shock. This can be replaced with the ergodic steady

state. I choose the conditional steady state because in practice it is often useful to understand how the

economy behaves once it has spent a signi�cant amount of time in a speci�c regime. Furthermore, in a

model that allows for a constant, the initial regime change becomes a shock itself if the ergodic steady

state is chosen as the starting endogenous variable. This point will be illustrated in Section 5.

To compute impulse responses taking into account the possibility of regime changes, we can use

Equation (5). Once again, it can be assumed that the economy has spent a signi�cant amount of time

under the regime in place at the time of the shock:

eq1j1;�1 = ��e�1 
 �c�1 +A�1��1 +R�1��1"x��0 ; e0�1�0
E1;�1 (Zs) = �sj1;�1 = ewe
s�1eqsj1;�1 for 1 � s � S

where E1;�1 (Zs) represents the expected value of the variable s� 1 periods ahead. The regime in place
at the time of the shock is captured by e�1 ; a column vector with all elements equal to zero except

for the one at position �1. Notice that even in this case we can consider a di¤erent starting value, for

example, the ergodic steady state �. In that case, if the model allows for an MS constant, the regime in

place at time t would become a shock itself, since it would determine a shift with respect to the ergodic

11Notice that the alternative approach of expanding the state space to recursively model the evolution of in�ation
expectations would lead to a substantial increase of the time required to solve the MS-DSGE model.
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Figure 4: Impulse responses to an adverse supply shock. The blue solid line and the dashed black line
assume that a particular regime is in place over the entire sample. The red dotted line and plus green
line take into account the possibility of regime changes. The initial shock is equal to minus two standard
deviations under the high volatility regime.

steady state �. Alternatively, e�1 can be replaced with the probability vector �tjt. For example, the

probabilities could be obtained by �ltering the data and would re�ect the uncertainty around the regime

prevailing at time t. Notice that this approach would be appropriate if an economist were interested in

studying the impact of a speci�c intervention without fully knowing the current economic environment.

Furthermore, if the econometrician is only interested in the marginal e¤ect of the shock "x; with no

reference to the "level e¤ect" captured by the constants or the initial values, both the unconditional

and conditional impulse responses can be computed setting all the constants and starting values to zero.

This is equivalent to computing the di¤erence between the expected paths with and without the shock.

Finally, in the case of the MS-DSGE model described above, the constant drops out and the conditional

steady state coincides with the ergodic steady state. In Section 5, I will present results for a model in

which the conditional steady states do not coincide with the ergodic steady state. Finally,

Figure 4 reports the responses to an adverse supply shock. The solid blue line assumes that the

Hawk regime prevails over the entire sample, while the dashed black line corresponds to the case in

which the Dove regime is in place. The red dotted line and the green plus line instead take into account

the possibility of regime changes. The former assumes that the Hawk regime is in place at the time

of the shock, while the latter conditions on the Dove regime being in place at the time of the shock.

By construction, the impulse responses do not di¤er on impact. However, the dynamics that follow

are substantially di¤erent if conditioning or not to a speci�c regime being in place over the relevant

horizon. The behavior of the Federal Reserve di¤ers substantially across the two regimes. Under the

Hawk regime, the Fed is willing to accept a recession in order to �ght in�ation. The FFR reacts strongly

on impact and keeps rising for one year. On the contrary, under the Dove regime the response of the

policy rate is much weaker because the Fed tries to keep the output gap around zero, at the cost of

higher in�ation. Note that on impact the economy experiences a boom: The increase in expected

in�ation determines a decline in the real interest rate that boosts the economy in the short run. When
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Figure 5: For each possible regime combination, the three panels report the evolution of uncertainty
at di¤erent horizons. The measures of uncertainty take into account the possibility of regime changes.
The horizontal line represents the ergodic steady state for uncertainty.

taking into account the possibility of regime changes the impulse responses become very similar after

three or four years. This is because the regimes are not very persistent. Therefore, before the shock is

completely reabsorbed there is a high probability that regime changes will occur.

The choice between conditional and unconditional impulse responses clearly depends on the goal of

the analysis. Conditioning on a particular regime highlights the regime-speci�c features. It is generally

useful when trying to understand the properties of the model and when trying to infer how the economy

will behave if a speci�c regime will be in place over the relevant horizon. On the other hand, an agent

that does not have control over regime changes, such as a market operator, might be more interested

in a path that re�ects all sources of uncertainty. In that case, the unconditional responses are more

appropriate. If an economist is also uncertain about which regime is currently prevailing, she can decide

to control for such uncertainty by assigning some probability to each of the regimes and allowing for

the possibility of regime changes.

4.5 Evolution of uncertainty

Di¤erent regimes tend to have very di¤erent implications for the evolution of uncertainty. It is therefore

very informative to understand how uncertainty evolves across di¤erent regimes. In Subsection 4.3, I

showed how to characterize the historical evolution of uncertainty taking into account regime uncertainty.

A similar exercise can be conducted conditional on an initial regime. Once again, I assume that the

economy has spent a signi�cant amount of time under a speci�c regime and I therefore use the conditional

steady state for the regime of interest. I further assume that no Gaussian shocks have occurred in the

economy, implying that the initial level of uncertainty only re�ects the possibility of future shocks.

Conditional on an initial regime �1, the evolution of uncertainty taking into account the possibility

of regime changes can be computed using (5) and (9):

Msj1;�1 = '
�
E1;�1

�
ZsZ

0
s

��
= fW eQ1j1;�1 = fW e�s�1 eQ1j1;�1
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Figure 6: For each possible regime combination, the three panels report the evolution of uncertainty at
di¤erent horizons. The measures of uncertainty are computed under the assumption that a particular
regime combination is in place over the entire horizon. The horizontal lines represent the conditional
steady states for uncertainty.

E1;�1 (Zs) = �sj1;�1 = ewe
s�1eq1j1;�1
'
�
V1;�1 (Zs)

�
=Msj1;�1 � '

h
�sj1;�1�

0
sj1;�1

i
(28)

for 1 � s � S. The initial values eq1j1;i and eQ1j1;�1 are de�ned as follows
eq1j1;�1 = he0�1 
 �0�1 ; e0�1i0 and eQ1j1;�1 = hQ01j1;�1 ; eq01j1;�1i0

where Q1j1;�1 = e�1 
 M �1 : As the time horizon s increases, uncertainty measures will converge to

their corresponding ergodic values, independently of the regime from which the economy started. The

ergodic value for uncertainty can be derived in one step using (16). Finally, for the starting value, the

conditional steady state �sj1;�1 could be replaced with the ergodic steady state, �. In this case, the

regime occurring at time one would become a shock itself. This is because volatility moves in response

to a change in the probabilities assigned to di¤erent regimes.

Figure 5 reports the evolution of uncertainty for each of the possible starting regime combinations.

When evaluating these measures of uncertainty, there are three e¤ects that should be taken into account.

First, events that are more distant in the future tend to be more uncertain because shocks cumulate

and propagate over time. In fact, uncertainty is zero at time t, when agents can observe the variables

of interest (we do not report time t in the graphs). Second, di¤erent regimes have di¤erent implications

for the magnitude of the shocks (high volatility vs. low volatility) and the way these shocks propagate

through the economy (Hawk vs. Dove). Third, over time the initial regime becomes irrelevant, while the

relative regimes�frequencies start to matter more as the regime probabilities converge to their ergodic

probabilities. These three aspects are clearly re�ected in the results. Notice that uncertainty tends to

always increase in the beginning, as agents tend to forecast variables further into the future. However,

when the low volatility regime is in place, uncertainty always remains below its ergodic value for all
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three variables. Instead, when the high volatility regime is in place uncertainty becomes hump-shaped,

crosses the long-term ergodic value, and converges to it from above. It is interesting to note that the

peak of uncertainty occurs fairly soon, around the two-year horizon. This is because uncertainty results

from the combined e¤ect of the relatively long horizon and the high probability of the high volatility

regime. As the horizon increases, the probability of the high volatility regime keeps declining to �nally

converge to its ergodic value.

In many empirical papers, we are interested in evaluating the importance of policy makers�behavior

vis-a-vis changes in the volatility of the exogenous disturbances. It is obvious that policy makers�

behavior does not seem to have a dramatic impact on uncertainty across all horizons when the low

volatility regime is in place, while it determines a visible reduction in uncertainty when the high volatility

regime is in place. The importance of the monetary policy regime tends to disappear as the horizon

increases because the probabilities of the di¤erent regimes converge to their ergodic values. While a

more hawkish monetary policy leads to a reduction in the volatility of in�ation, it also leads to an

increase in the volatility of the monetary policy interest rate.

We might also be interested in characterizing the evolution of uncertainty conditional on a speci�c

path for the regimes.12 The law of motion for �rst and second moments can then be obtained using a

simpli�ed version of (9):"
Qsj1;�S

qsj1;�S

#
=

" dV V �s' [Ik] + bcc�s
c�s

#
+

" dAA�s \DAC�s
A�s

#"
Qs�1j1;�S

qs�1j1;�S

#
; s > 0 (29)

where the initial values are obtained as described above. Notice that the measures of uncertainty

computed in this way do not re�ect any regime uncertainty, given that we are conditioning on a speci�c

path. Furthermore, if the same regime is assumed to be in place over the entire period, the horizon is

long enough, and the regime is stationary when taken in isolation, then uncertainty will converge to

its corresponding conditional steady state. For each of the stationary regimes, this can be obtained by

taking the square root of (20).

Figure 6 reports this alternative measure of uncertainty. Now, regime uncertainty has been removed

with the result that events further in the future are always more uncertain than events close in time.

When comparing the two sets of results, it is clear that the monetary policy regime turns out to be much

more important when disregarding the possibility of regime changes, especially for in�ation volatility.

When the low volatility regime is in place, the conduct of monetary policy is basically irrelevant for

output volatility, but not for in�ation and the FFR. A more hawkish monetary policy always implies

an important reduction in in�ation volatility and an increase in interest rate volatility. When the high

volatility regime is in place, it also determines a visible increase in output volatility. Finally, comparing

Figures 5 and 6, it is important to point out the upper bound for uncertainty is greatly reduced when

the possibility of regime changes is taken into account. This is because even when the economy is under

the most volatile regime, agents form expectations taking into account the possibility of moving to

12 If we were interested in computing expectations and uncertainty assuming a certain probability for di¤erent regimes
being in place in the future, (5) and (9) could be easily modi�ed to re�ect a speci�c path for the regime probabilities.
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Figure 7: Variance decomposition taking into account the possibility of regime changes and conditioning
on a speci�c starting regime. In the long run, the variance decomposition converges to the values
reported in Table 2 under the column labeled TOT.

MP DEM SUP

Variable Std LV HV TOT LV HV TOT LV HV TOT

GDP 1:54 0:32 2:88 3:20 21:38 50:46 71:84 4:92 20:03 24:95
In�ation 1:97 0:03 0:23 0:26 3:34 7:88 11:21 17:47 71:06 88:53
FFR 2:66 1:03 9:13 10:16 13:61 32:12 45:74 8:70 35:41 44:11

Table 2: For each variable, the table reports the ergodic standard deviation and the ergodic variance
decomposition. For each shock, the total contribution is reported together with the contributions of the
low and high volatility shocks.

more favorable outcomes. These patterns will be important when considering the welfare implications

of regime changes in subsection 4.7.

4.6 Variance decomposition

The previous section has shown how to characterize the dynamic evolution of uncertainty and its ergodic

counterpart. However, in many economic applications it is also very important to be able to detect which

shocks play a key role in determining such uncertainty. A variance decomposition is a simple way to

summarize this information. This can be computed taking into account the possibility of regime changes

or conditioning on a particular regime path.

In order to de�ne the contribution of the k-th shock, occurring under the �t-th regime, it is useful to

de�ne the n�k matrix V�t;k = R�t��t;k, where ��t;k is obtained restricting all coe¢ cients of the diagonal

matrix ��t to zero except the k-th diagonal element. Suppose that the goal is to obtain a dynamic

variance decomposition that takes into account the possibility of regime changes, only conditioning on

an initial regime �1. We can proceed in two steps. First, we can use (28) to derive the evolution of

the variance associated with the shock of interest. Then, the contribution of the shock is obtained
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Figure 8: Variance decomposition conditional on a speci�c regime being in place over the entire horizon.
In the long run, the variance decomposition converges to the values reported in Table 3.

by dividing the variance associated with the matrix V�t;k by the overall variance derived using the

full matrix V�t = R�t��t : For short horizons, the importance of the shocks will vary across regimes.

However, as the time horizon goes to in�nity, the importance of the initial regime declines and the

variance decomposition converges to its ergodic counterpart. Notice that this can be obtained in one

step using (16) to compute the ergodic variance associated with V�t;k and dividing it by the overall

ergodic variance implied by V�t .

Figure 7 reports the dynamic variance decomposition, while Table 2 illustrates the contribution of

the shocks to the ergodic volatility. While for short horizons some di¤erences across regimes can be

detected, the convergence to the asymptotic values occurs quite fast, re�ecting the fact that the regimes

are not very persistent. For each shock, Table 2 reports the overall contribution (see the column labeled

TOT ) and the relative contribution of the shocks that occur under the high and low volatility regimes.

The results show that supply shocks are very important for in�ation volatility, while GDP volatility is

mostly explained by demand shocks. The shocks that occur under the high volatility regime explain a

larger fraction of the overall volatility. Notice this does not have to be the case: If the high volatility

regime has a much lower persistence than the low volatility regime, then the result would be reverted. In

other words, it is not only the size of the shocks that matter, but also the frequency with which a speci�c

regime occurs. Furthermore, in some applications the sequence of the regimes might be important as

well. For example, when a policy makers�behavior is always triggered by a speci�c state of the world,

the overall volatility is going to be a¤ected. The methods illustrated in this paper take these aspects

into account.

It might also be interesting to assess what the contributions of the shocks would be conditional on

a speci�c regime path or if the economy were to spend a prolonged period of time in a speci�c regime.

In order to do this, it is enough to replace V�t with V�t;k and compute the evolution for �rst and second

moments described by the law of motion (29). We can then compute the shock contribution at di¤erent
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Hawk Dove
Variable Std MP DEM SUP Std MP DEM SUP Volatility
GDP 2:52 3:49 52:57 43:94 2:29 4:53 94:86 0:61
In�ation 2:76 0:38 10:99 88:62 3:78 0:22 9:11 90:67 High
FFR 4:89 8:77 37:96 53:28 3:20 21:95 53:36 24:69

GDP 0:95 1:17 66:56 32:27 0:96 1:25 98:39 0:37
In�ation 0:93 0:16 17:59 82:25 1:26 0:09 14:75 85:16 Low
FFR 1:75 3:27 53:32 43:41 1:17 7:92 72:59 19:48

Table 3: For each variable, the table reports the standard deviation and the variance decomposition
conditioning on each of the possible regime combinations.

horizons, taking the ratio between the variance implied by the single shock and the total variance.

If all regime combinations are stationary when taken in isolation, we can also compute the long-run

variance decomposition conditional on a speci�c regime. In this case, we can use (20) to compute the

conditional steady-state value of the variance when only the k-th shock is active and divide it by the

overall conditional steady-state variance, still obtained using (20).

The results, reported in Figure 8, assume that a single regime is in place over the entire horizon.

Fixing the sequence of regimes has important e¤ects on the contribution of the shocks. The most notable

di¤erence with respect to Figure 7 is obtained when imposing the Dove regime over the entire sample.

In this case, no matter the volatility regime in place, GDP is substantially una¤ected by supply shocks

at each horizon. As the horizon increases, the variance decomposition stabilizes around the long-run

values obtained using (20). The long-run variance decomposition is reported in Table 3. As pointed

out before, the monetary policy regime plays an important role for the volatility of in�ation, while the

impact on output volatility is much more modest (see the column labeled Std). The table con�rms that

when the central bank behaves according to the Hawk regime, the contribution of the supply shocks to

the overall volatility of output is quite large. On the other hand, when the Dove regime is in place,

the e¤ect of the shock is almost totally absorbed by in�ation and the contribution of supply shocks to

output volatility is close to zero, in line with what is illustrated in Figure 4. This is because under this

scenario agents disregard the possibility of moving to the Hawk regime.

Summarizing, in this section I have illustrated two alternative ways to characterize the sources of

uncertainty in an MS model. If the researcher is interested in describing the properties of the di¤erent

regimes, it might be useful to condition on a speci�c regime being in place for a prolonged period of

time. If instead the goal is to capture the e¤ective level of uncertainty, it is more appropriate to take

into account regime changes. In general, the two approaches might return quite di¤erent results, and

it is therefore important to understand what the goal of the analysis is. Finally, it is important to

keep in mind that if the model also includes changes in the constant, such changes would represent

an additional source of volatility. This implies that even when restricting all Gaussian shocks to zero,

there will still be uncertainty deriving from the Markov-switching innovations in the constant. Section

5 illustrates this point.

27



4.7 Welfare calculations

In this section, I show how the formulas presented in this paper can be used to correctly characterize

the welfare implications of the di¤erent regimes. Following Rotemberg and Woodford (1999), Woodford

(2003), and Galí (2008), the period welfare loss is obtained by taking a log-quadratic approximation of

the representative household�s utility function:13

Lt =
P1
s=0 �

s
�
Et
�
�p2t+s

�
+ (�=�)Et

�
y2t+s

��
(30)

where � is the elasticity of substitution between two di¤erentiated goods. The output gap enters the

welfare function because it re�ects the di¤erence between the marginal rate of substitution and the

marginal product of labor, which is a measure of the economy�s aggregate ine¢ ciency. In�ation devia-

tions from its steady-state level reduce welfare by raising price dispersion. The elasticity of substitution

between two di¤erentiated goods � raises the weight of in�ation �uctuations relative to the output gap

because it ampli�es the welfare losses associated with any given price dispersion. Nominal rigidities,

whose size is inversely related to the slope of the New Keynesian Phillips curve �, raise the degree

of price dispersion resulting from any given deviation from the steady-state in�ation rate. In what

follows, I �x the value of � to 6, a value in line with what is used in the literature. However, given the

estimated low value for the slope of the Phillips curve �, the results are robust to di¤erent values for

this parameter.

In order to compute the welfare loss taking into account the possibility of regime changes, recall

that, for a variable xt+s, the evolution of second moments is pinned down by:

Et
�
x2t+s

�
= exMt+sjt = exfW e�s eQtjt

Therefore, the welfare loss (30) becomes (see Appendix B):

Lt = (e�p + (�=") ey)fW �
I � �e���1 eQtjt (31)

where the column vectors e�p and ey select the appropriate elements. It is worth pointing out that

this way of calculating welfare takes into account uncertainty around the regime that is in place, the

current state of the economy, and the possibility of regime changes. In the long run, the second moments

converge to their ergodic steady states, while the �rst moments converge to zero. Therefore at long

horizons, welfare is determined by the model ergodic variance. This is in line with standard results in

the literature about welfare calculations in new-Keynesian models. In fact, if we were only interested in

computing welfare conditional on a speci�c initial regime, the law of motion of the second moments would

coincide with the law of motion of the variance at each point in time, given that the �rst moments are in

this case always zero. Finally, if the goal is to compute an unconditional measure of welfare, the di¤erent

regimes can be weighed according to their ergodic probabilities. This is the approach taken by Bianchi

13Recall that regime changes do not a¤ect the unique deterministic steady state, but only the way shocks propagate
around it.
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DM;HV DM;LV HM;HV HM;LV

Benchmark: Loss*100 0:5551 0:5051 0:5466 0:5025
Benchmark: % change � �9:01 �1:54 �9:48
Anticipated: Loss*100 1:8630 0:2118 1:0315 0:1188
Anticipated: % change � �88:63 �44:63 �93:63

Table 4: For each regime combination, the table reports the rescaled welfare loss and the percentage
change with respect to the worst case scenario in which volatility is high and monetary policy is dovish.
The �rst two rows refer to the benchmark case in which agents take into account the possibility of regime
changes, the third and fourth rows assume that agents disregard the possibility of regime changes. This
corresponds to the anticipated utility assumption.
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Figure 9: Historical welfare losses. In both panels, the solid blue line plots the benchmark historical
welfare losses that take into account the possibility of regime changes and the state of the economy. In
the �rst panel, the benchmark case is compared with an alternative measure that re�ects the welfare
losses implied by the regimes themselves (red dashed line). In the second panel, the benchmark case
is compared with an alternative measure that assumes that agents disregard the possibility of regime
changes (red dashed line). This second case corresponds to the assumption of anticipated utility.

and Melosi (2012) to analyze the welfare implications of central bank reputation and transparency.

The �rst row of Table 4 reports the (rescaled) welfare losses conditional on a speci�c regime combi-

nation being in place at time t and assuming that the economy starts from the ergodic steady state. In

order to obtain such a measure of welfare loss, it is enough to replace eQtjt in (31) with eQ1j1;�1 as de�ned
in Subsection 4.5 and assume eq1j1;�1 = 0. Given the large weight assigned to the squared deviations

of in�ation in the loss function and the results shown in Subsection 4.5, it is not surprising that the

worst case scenario corresponds to the case in which the high volatility regime is combined with dovish

monetary policy. To facilitate the interpretation of the results, for each alternative regime combination,

the second row of the table reports the percentage change in the welfare loss with respect to this worst

case scenario. The results con�rm that a change in the volatility of the exogenous shocks has a large

impact on welfare, with a reduction in welfare loss of more than 9%. On the other hand, moving from

the Dove regime to the Hawk regime is much less e¤ective, with a reduction in welfare loss of 1:54%:

The third and fourth rows of Table 4 repeat the same exercise under the anticipated utility assumption
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according to which agents disregard the possibility of regime changes. Notice that in this second case

regime changes turn out to be substantially more important and monetary policy plays a key role for

agents�welfare when the high volatility regime is in place.

Figure 9 reports the historical evolution of welfare losses based on the posterior mode estimates. In

both panels, the solid blue line measures the e¤ective loss, given that it takes into account both the state

of the economy and the regime probabilities at each point in time. The dashed red line in the �rst panel

reports the evolution of the welfare loss that is implied by the regime probabilities, assuming that the

economy starts from the ergodic steady states. This can be considered a useful benchmark to capture

the relative contribution of the regime combination with respect to the state of the economy. Two

lessons can be learned. First, the actual state of the economy played a very large role in determining

the extent of the welfare losses in correspondence to the two run-ups in in�ation that occurred in the

mid and late �70s. Second, the losses implied by the regime combination closely track the occurrence of

the high volatility regime.

The second panel of Figure 9 compares the benchmark historical welfare losses (solid blue line)

with the alternative measure of welfare in which agents are assumed to disregard regime changes (red

dashed line). This second case corresponds to the assumption of anticipated utility and clearly leads

to overstating the welfare consequences of the regime in place at each point in time and the e¤ects of

changes in monetary policy. Both sets of results are consistent with the evidence presented in Table 4.

Finally, it is worth emphasizing that the results presented in this subsection are perfectly in line with

the evolution of uncertainty under the two di¤erent assumptions presented in Figures 5 and 6.

Summarizing, in this subsection I have shown how welfare can be characterized in models in which

agents are aware of regime changes. This is not a matter of secondary importance, because, as shown

in subsection 4.5, measures of medium- and long-run uncertainty change substantially when taking into

account the possibility of regime changes. In this context, the contribution of the di¤erent regimes to

the overall volatility does not depend only on the size of the shocks or on policy makers�behavior, but

also on the shocks�frequency and persistence. As a result, the importance of the regime that is in place

at a particular point in time is substantially reduced when taking into account the possibility of regime

changes. If welfare were computed assuming a regime in place for a prolonged period of time, then more

substantial di¤erences would arise, but this would be completely misleading. In other words, it is not

enough to account for the size and the contemporaneous impact of the shocks when evaluating welfare

because agents are likely to take into account the possibility of moving across regimes.

5 Applications for Uncertainty and Asset Pricing

In this last section, I describe two additional applications. The �rst application shows how MS models

can generate interesting interactions between uncertainty and the endogenous variables of the model,

while the second one describes how to use the methods of this paper to generalize Campbell�s (1991)

VAR implementation of Campbell and Shiller�s (1988) present value decomposition.14

14See Ang and Timmermann (2012) for a comprehensive review of the use of Markov-switching models in �nance. See
Bansal et al. (2004) for a multivariate MS term structure model.
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c� A� H�� V�; Sim. 1 V�; Sim. 2

� = 1
:1
:2

0:9 �:1
:1 :7

:90 0
:1 0
�:05 :3

� = 2
:3
:1

0:5 �:1
:1 :9

:95 0
:05 0
:02 :1

Table 5: Parameter values for an MS-VAR with switches in all parameters. Two calibrations are
considered: with and without Gaussian shocks.
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Figure 10: Evolution of levels and standard deviations for a MS-VAR with changes in the constant c�
and the autoregressive matrix A�. The values for A�; c�; and the diagonal elements of the transition
matrix H are reported in Table 5. The matrices V� are restricted to zero in this simulation (Sim 1).
The gray areas mark the occurrence of Regime 1, the least persistent regime.

5.1 Regime changes and uncertainty

Since the seminal contribution by Bloom (2009), the need for modeling the link between real activity

and uncertainty has become more and more acknowledged in the profession. As highlighted in Section

4.5, the methods described in this paper allow for a convenient characterization of agents�uncertainty

that takes into account the possibility of changes in the structure of the economy. In this section, I

extend the analysis to show how an MS-VAR can generate interesting interactions between the levels

and the volatility of the variables of interest. Speci�cally, I consider a bivariate Markov-switching VAR

with one lag in which the constant is also moving over time. The parameter values are reported in

Table 5. I consider two calibrations. In the �rst one, all Gaussian shocks are set to zero, imposing the

constraint V�t = 0, while in the second calibration a lower triangular structure is assumed.

Figure 10 simulates the model under the �rst calibration in which the matrices V�t are restricted to

zero. The left panel reports the evolution of the two variables. The horizontal dashed red lines report

the conditional steady states computed according to (18), while the gray areas mark the occurrence of

Regime 1, the less persistent of the two regimes. The right panel reports the corresponding evolution

of uncertainty, measured by sdt (xt+s) =
p
Vt (xt+s), where Vt (xt+s) is computed using (12). The time

horizon runs from 1 to 12 periods, with the light blue areas denoting the short run. The simulation

31



Horizon
5 10 15 20 25 30

C
on

tri
bu

tio
n

0

0.2

0.4

0.6

0.8

1
Variable 1

Horizon
5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1
Variable 2

Shock 1
Shock 2
Constant

Figure 11: Dynamic variance decomposition for an MS-VAR in which all parameters change. The
white area corresponds to the contribution of the initial values and the constant. The values for the
parameters are reported in Table 5 (Sim 2).

considers three occurrences of Regime 1. The three deviations last ten, �ve, and �fteen periods, respec-

tively. Given that the expected duration of Regime 1 is ten periods, its �rst occurrence is representative

of the typical realization of this regime, whereas the second and third realizations are unusually short

and unusually long, respectively.

Several properties of the model are worth commenting on. First, as a result of the switches in the

constant, uncertainty is still positive for both variables, even if all Gaussian shocks have been restricted

to zero. This illustrates that the possibility of movements in the constant generates uncertainty. Second,

whenever Regime 1 occurs, we observe a quite sharp drop in the �rst variable associated with an increase

in its volatility. Notice that uncertainty moves faster than the variable itself. Uncertainty increases

sharply at each horizon and then starts declining as more time is spent under Regime 1. It is also

possible to detect a hump shape in the evolution of uncertainty with respect to the time horizon, with

medium-run uncertainty larger than short- and long-run uncertainty. Similarly, when the system moves

back to Regime 2, the decline in uncertainty occurs before the variable reaches its peak. These two

facts determine a strong negative correlation between the level and the one-period-lagged measures of

uncertainty: from �:95 to �:85 depending on the time horizon for uncertainty. The ability of an MS
model to generate this kind of dynamics is intriguing in light of the documented link between uncertainty

and real activity. Third, the behavior of the two variables shows an interesting asymmetry. The �rst

variable overshoots before approaching its conditional steady states, while the second variable tends to

bounce between them. Furthermore, the �rst variable generally does not reach the conditional steady

states, especially when the less persistent Regime 1 occurs. This result highlights the importance of

simulating an MS model. Only by studying the typical behavior of the model is it possible to uncover

the interaction between the regime persistences and the statistical properties of the regimes themselves.

Finally, it is worth emphasizing that uncertainty keeps moving even when no regime changes occur.

This is because in an MS model the evolution of uncertainty depends on the starting value Zt. As

pointed out in Subsection 2.3, this is not the case in a model with �xed coe¢ cients.
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Figure 12: Impulse responses based on a two-variable MS-VAR. The starting point is always given by
one of the two conditional steady states (dashed blue horizontal lines). Then, two impulse responses
are considered: Unconditional (blach dashed line) and conditional on the same regime being in place
over the entire horizon (solid blue line). In the former case, the economy converges to the ergodic mean
represented by the dotted red horizontal line. I also report the expected path in absence of the Gaussian
shock but taking into account the possibility of regime changes (red dotted line).

Figure 11 further elaborates on the role played by an MS constant in determining uncertainty. We

now allow for both Gaussian and Markov-switching shocks (Sim. 2 in Table 5). For each variable, the

�gure reports the dynamic variance decomposition assuming that the economy starts from the ergodic

steady state. The contribution of the Gaussian shocks to the overall uncertainty is obtained using

(12) twice. First, set the constants and the initial values to zero and replace V�t with the matrix V�t;k
obtained excluding all but the k-th shock. Then consider the law of motion for the overall variance.

The ratio between these two quantities is used to compute the shock contributions. The contribution of

the MS constant and the initial values is obtained in a similar way by setting all the Gaussian shocks to

zero. Finally, it is also possible to isolate the part of the conditional variance that does not depend on

the state vector Zt by setting the initial values to zero. The �gure highlights the fact that even when

Gaussian shocks are allowed for, changes in the constant can explain a sizeable fraction of the overall

volatility at all horizons.

Figure 12 reports impulse responses for this second calibration. Impulse responses are computed

assuming that the economy starts from one of the two conditional steady states.15 In each row, the

�rst two panels refer to the �rst shock, while the remaining two consider the second shock. For each of

the four pairs of panels, the �rst panel assumes that initially Regime 1 is prevailing, while the second

panel assumes that Regime 2 is prevailing. In each case, the blue solid line shows the evolution of the

economy conditional on the starting regime prevailing, the black dashed line represents the impulse

response taking into account the possibility of regime changes, while the red dotted line represents the

15This is possible because the two regimes are both stable when taken in isolation.
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expected path taking into account the possibility of regime changes in absence of the Gaussian shock.

For the unconditional case, the marginal e¤ect of the Gaussian shock is then given by the di¤erence

between the black dashed line and the red dotted line. It is worth pointing out that if the econometrician

is only interested in the marginal e¤ect of the shock "x; with no reference to the "level e¤ect" captured

by the constants or the initial values, both the unconditional and conditional impulse responses can be

computed setting all the constants and starting values to zero.

The calibration is chosen to illustrate how all sorts of outcomes can arise. For example, under

Regime 1, following Shock 1, the �rst variable, associated with the lowest conditional steady state, can

increase to the point of overshooting with respect to the largest conditional steady state. The dynamics

that follow are then substantially di¤erent depending on whether the regime that was in place at the

time of the shock is assumed to be in place over the entire horizon. As for the second variable, the

shock implies only very small �uctuations when assuming that the regime will stay constant, while when

taking into account the possibility of regime changes, we observe signi�cant swings. This does not have

to always be the case, as under some circumstances the shock brings the endogenous variables closer to

the ergodic steady state, as is the case for the second variable in response to Shock 2 under Regime 1.

5.2 Present value decomposition

In their seminal contribution Campbell and Shiller (1988) propose a loglinear approximation to study

movements in the dividend price ratio as a result of changes in forecasts about future cash �ows and

future discount rates. Campbell (1991) uses this framework and a VAR to decompose market returns

into cash-�ow news and discount-rate news. Since then, the idea has spread beyond the boundaries of the

asset pricing literature. For example, building on Campbell and Shiller�s (1988) methods, Gourinchas

and Rey (2007) show that current trade imbalances must be o¤set by future improvements in trade

surpluses, or excess returns on the net foreign portfolio, or both.

At the same time, it is often the case that the relations between the variables of interest are not

stable over time. For example, in �nancial markets we can observe a smooth and prolonged increase

in stock prices followed by a sudden crash. Alternatively, when dealing with macroeconomic data, we

might want to allow for the possibility of prolonged periods of persistent and high in�ation followed

by a painful disin�ation. Agents are likely to keep the possibility of these scenarios in mind when

forming expectations. Therefore, it would seem desirable to be able to extend Campbell�s (1991) VAR

implementation of Campbell and Shiller�s (1988) present value decomposition to analyze economic

environments subject to parameter instability. In this section, I show how this can be done for the case

in which the law of motion of the state variables is described by a Markov-switching VAR. I derive my

results in the context of the "Bad Beta, Good Beta" asset pricing model that has been introduced by

Campbell and Vuolteenaho (2004) (see Bianchi (2015) for an application to US data). However, the

approach shown here can be applied to any model in which the present value of a variable depends on

agents�expectations about future outcomes that can be modeled using an MS-VAR.

Campbell and Vuolteenaho (2004) point out that returns on the market portfolio can be split into

two components. An unexpected change in excess returns can be determined by news about future
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cash �ows or by a change in the discount rate that investors apply to these cash �ows. While a fall in

expected cash �ows is simply bad news, an increase in discount rates implies at least an improvement in

future investment opportunities. This means that the single capital asset pricing model (CAPM) beta

can be decomposed into two sub-betas: one re�ecting the covariance with news about future cash �ows

(bad beta), the other linked to news about discount rates (good beta). The previous argument suggests

that given two assets with the same CAPM beta, the one with the highest cash-�ow beta should have a

larger return. Using an intertemporal CAPM along the lines of the one proposed by Merton (1973), it

can be shown that the price of risk for the discount-rate beta should equal the variance of the market

return, while the price of risk for the cash-�ow beta should be  times greater, where  is the investor�s

coe¢ cient of relative risk aversion. Campbell and Vuolteenaho (2004) show that the Bad Beta, Good

Beta ICAPM is able to explain the cross section of asset returns.

Campbell and Vuolteenaho (2004) use a VAR to model the expectation formation mechanism and

to derive the news. Using the loglinear approximation for returns introduced by Campbell and Shiller

(1988), unexpected excess returns can be approximated by:

rt+1 � Etrt+1 = NCF;t+1 �NDR;t+1 = (Et+1 � Et)
P1
j=0 �

j�dt+1+j � (Et+1 � Et)
P1
j=1 �

jrt+1+j (32)

where rt+1 is a log stock market excess return, dt+1 is the log dividend paid by the stock, � denotes a one

period change, and � < 1 is the discount coe¢ cient. NCF;t+1 and NDR;t+1 represent news about future

market cash �ows and news about future market discount returns, respectively. Following Campbell

(1991), agents�expectations are modeled by a VAR: Zt+1 = c+AZt+ut+1, where Zt is a vector of state

variables with the excess return ordered �rst and ut+1 = V "t+1; "t+1 � N (0; I) is the vector of reduced-

form residuals. The two types of news can then be obtained according to the following transformation

of the residuals:

rt+1 � Etrt+1 = e01ut+1 (33)

NCF;t+1 =
�
e01 + e

0
1�
�
ut+1 (34)

NDR;t+1 = e01�ut+1 (35)

where � = �A (I � �A)�1 and e01 = [1; 0; :::; 0]0.
Suppose that the law of motion of the �nancial variables is instead given by an MS-VAR:

Zt+1 = c�t+1 +A�t+1Zt + ut+1

where ut+1 = R�t+1��t+1"t+1; "t+1 � N (0; I) is the vector of reduced-form residuals, and the unobserved

state �t evolves according to the transition matrixH. When MSS holds, given a sequence of probabilities

�T or a posterior draw for the regime sequence �T , it is straightforward and computationally e¢ cient
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to compute the entire sequences of discount rate news and cash-�ow news in one step:

NT
DR = e01w

�
�qvq;T + ��v�;T

�
(36)

NT
CF = e01w

�
(Ir + �

q) vq;T + ��v�;T
�

(37)

uT = e01wv
q;T (38)

where �q = (Inm � �
)�1 �
; �� = (Inm � �
)�1 �CH (Ir � �H)�1 ; vqt = qt+1jt+1 � qt+1jt, and v�t+1 =

�t+1jt+1��t+1jt. It is worth emphasizing that now news has two components. The �rst one is represented
by the standard Gaussian innovation, while the second component derives from the revision in beliefs

about the regime that is in place: v�t+1 = �t+1jt+1� �t+1jt: For a given Gaussian innovation, the change
in beliefs determines a change in the way the shocks are mapped into the future. When the two

regimes coincide, formulas (36)-(38) collapse to (33)-(35). So the above formulas can be treated as a

generalization of the ones used in Campbell and Vuolteenaho (2004).

It is worth pointing out that the approach described above can model situations in which not all

m regimes are stable. This is because in order to be able to compute the news we only need the

discounted expectations to be stable. Mean square stability guarantees stability for �rst and second

moments. Notice that this is in fact more than what is actually necessary for two reasons. First, the

VAR implementation does not require the variance to be stable, but only that agents� expectations

converge. Second, even if �rst moments are not stable, discounted �rst moments might be. However,

it might be argued that imposing MSS is still desirable, given that it implies that agents�uncertainty

converges to a �nite value no matter the regime that is in place today.

Summarizing, the MS approach seems very appealing when thinking about modeling agents�expecta-

tions formation mechanism because it allows for temporary deviations from the stationarity assumption.

Instead, this assumption is assumed to hold at each point in time when computing the news in a �xed

coe¢ cient framework. At the same time, the MS approach retains the convenience of having analytical

expressions for the news. In other words, numerical integration is not necessary. This is a key ingredi-

ent if an economist were interested in jointly estimating the MS-VAR and the news series using GMM

(Hansen (1982)). I regard this as a promising area for future research.

6 Conclusions

In this paper, I develop a toolbox for multivariate Markov-switching models. The building blocks are

represented by the laws of motion for the �rst and second moments of the endogenous variables. Once

these have been derived, they can be used to characterize the evolution of expectations and uncertainty,

taking into account the possibility of regime changes. If mean square stability holds, these objects

converge to �nite values as the time horizon goes to in�nity. In this case, it is possible to derive

analytical formulas for the ergodic steady state and uncertainty.

The results can then be used to derive a series of objects of interest such as the historical evolution

of expectations and uncertainty, impulse responses, the dynamic evolution of uncertainty, and variance

decompositions. In the context of a general equilibrium model in which agents are aware of regime
36



changes, these formulas provide the building blocks to derive the welfare implications of regime changes

and to describe the historical evolution of welfare losses. Furthermore, the methods can be used to

derive the joint evolution of the state variables and uncertainty. Finally, under the assumption of

mean square stability, it is possible to extend Campbell�s (1991) VAR implementation of Campbell and

Shiller�s (1988) present value decomposition to the case in which the law of motion of the state variables

is described by a Markov-switching VAR.

Along the way, I have highlighted why this toolbox will be very useful for economists. First, all results

are derived analytically, implying that agents�expectations and uncertainty can be computed repeatedly

without requiring numerical integration. Therefore, the measures of expectations and volatilities can be

easily included in an estimation exercise. Second, the toolbox allows the relationship between the levels

and the volatilities of the endogenous variables to be characterized in a very parsimonious way. Third,

the toolbox can be used to construct forecasts that take into account the possibility of changes in the

macroeconomic environment or that allow for temporary deviations from the assumption of stationarity.
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A Proofs

In this appendix I report the proofs for Propositions 1-3. Please, refer to Costa et al. (2004) for a proof

of Proposition 4.
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A.1 Proposition 1

Consider a Markov-switching model whose law of motion can be described by (1) and de�ne qit =

E0
�
Zt1�t=i

�
for i = 1:::m, then:

qjt = cj�
j
t +

Pm
i=1Ajq

i
t�1hji or equivalently q

j
t =

Pm
i=1

�
cj�

i
t�1 +Ajq

i
t�1
�
hji:

Proof. By de�nition, qjt = E0
�
Zt1�t=j

�
: Then:

qjt = E0
��
c�t +A�tZt�1

�
1�t=j

�
=

Pm
i=1 E0

��
c�t +A�tZt�1

�
j�t = j; �t�1 = i

�
P0 (�t = j)P0

�
�t�1 = ij�t = j

�
=

Pm
i=1 E0

�
(cj +AjZt�1) j�t�1 = i

�
P0
�
�t = jj�t�1 = i

�
P0
�
�t�1 = i

�
=

Pm
i=1

�
cj�

i
t�1 +Ajq

i
t�1
�
hji

where we have used the fact that hji = P0
�
�t = jj�t�1 = i

�
and the de�nition of qit�1:

A.2 Proposition 2

Consider a Markov-switching model whose law of motion can be described by (1) and de�ne Qit =

'
�
E0
�
ZtZ

0
t1�t=i

��
for i = 1:::m, then:

Qjt = [(cj 
 cj) + (Vj 
 Vj)' [Ik]]�jt +
Pm
i=1

�
(Aj 
Aj)Qit�1 + [(Aj 
 cj) + (cj 
Aj)] qit�1

�
hji

or equivalently

Qjt =
Pm
i=1

"
[(cj 
 cj) + (Vj 
 Vj)' [Ik]]�it�1 + (Aj 
Aj)Qit�1

+ [(Aj 
 cj) + (cj 
Aj)] qit�1

#
hji

where Qit = '
�
E0
�
ZtZ

0
t1�t=i

��
; qit = E0

�
Zt1�t=i

�
; �it = P0 (�t = i) :

Proof. By de�nition, Qjt = '
�
E0
�
ZtZ

0
t1�t=j

��
. Then:

Qjt = '
hPm

i=1 E0
h
(cj +AjZt�1 + Vj"t) (cj +AjZt�1 + Vj"t)

0 1�t=j1�t�1=i
ii

= '
hPm

i=1 E0
h�
cjc

0
j +AjZt�1Z

0
t�1A

0
j + Vj"t"

0
tV

0
j + cjZ

0
t�1A

0
j +AjZt�1c

0
j

�
1�t�1=i

i
hji

i
=

Pm
i=1 E0

" 
(cj 
 cj) + (Aj 
Aj)'

�
Zt�1Z 0t�1

�
+ (Vj 
 Vj)' ("t"0t)

+ [(Aj 
 cj) + (cj 
Aj)]' (Zt�1)

!
1�t�1=i

#
hji

=
Pm
i=1

"
(cj 
 cj)�it�1 + (Aj 
Aj)Qit�1 + (Vj 
 Vj)' [Ik]�it�1

+ [(Aj 
 cj) + (cj 
Aj)] qit�1

#
hji

where we have used the fact that hji = P0
�
�t = jj�t�1 = i

�
and the de�nitions of Qit�1 and q

i
t�1:
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A.3 Proposition 3

Consider a Markov-switching model whose law of motion can be described by (1) and de�ne Q�;jt;t+s =

'
�
E0
�
Zt+sZ

0
t1st+s=j

��
and q�;jt;t+s = E0

�
Zt1�t+s=j

�
for j = 1:::m. ThenQ�;jt;t+s = bIcjq�;jt;t+s+Pm

i=1
cIAjhjiQ�;it;t+s�1

where bIcj = (In 
 cj) and cIAj = (In 
Aj) :
Proof. By de�nition, Q�;jt;t+s = '

h
E0
�
Zt+sZ

0
t1�t+s=j

�i
. Then:

Q�;jt;t+s = '
h
E0
h�
c�t+s +A�t+sZt+s�1

�
Z 0t1�t+s=j

ii
= '

hPm
i=1 E0

h�
cjZ

0
t +AjZt+s�1Z

0
t

�
1�t+s=j1�t+s�1=i

ii
= '

hPm
i=1 E0

h�
cjZ

0
t +AjZt+s�1Z

0
t

�
1�t+s�1=i

i
hji

i
=

Pm
i=1 '

h
cjE0

h
Z 0t1�t+s�1=i

i
hji

i
+
Pm
i=1 '

h
AjE0

h
Zt+s�1Z

0
t1�t+s�1=i

i
hji

i
= bIcjPm

i=1 q
�;i
t;t+s�1hji +

Pm
i=1

cIAjQ�;it;t+s�1hji
where we have used the fact that hji = P0

�
�t = jj�t�1 = i

�
and the de�nitions of Q�;it;t+s�1 and q

�;i
t;t+s�1:

Finally, we can use the fact that q�;jt;t+s =
Pm
i=1 q

�;i
t;t+s�1hji:

B Welfare Calculations

In this appendix, I report an extended derivation of the welfare calculations of Section 4.7. Following

Rotemberg and Woodford (1999), Woodford (2003), and Galí (2008), the period welfare loss is obtained

by taking a log-quadratic approximation of the representative household�s utility function:

Lt =
P1
s=0 �

s
�
Et
�b�2t+s�+ (�=�)Et �by2t+s�� (39)

where � is the elasticity of substitution between two di¤erentiated goods and � is the slope of the Phillips

curve. In order to compute the welfare loss, taking into account the possibility of regime changes, recall

that for a variable bxt the evolution of second moments is pinned down by:
Et
�bx2t+s� = exMt+sjt = exfW e�s eQtjt

Therefore each element of (39) can be computed as:

P1
s=0 �

sEt
�bx2t+s� =P1

s=0 �
sexfW e�s eQtjt = exfWP1

s=0

�
�e��s eQtjt = exfW �

I � �e���1 eQtjt
implying that Lt = (e� + (�=") ey)fW �

I � �e���1 eQtjt.
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