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Abstract

We develop methods to solve general equilibrium models in which forward-looking agents are subject

to waves of pessimism, optimism, and uncertainty that turn out to critically affect macroeconomic

outcomes. Agents in the model are fully rational, conduct Bayesian learning, and they know that they

do not know. Therefore, agents take into account that their beliefs will evolve according to what they

will observe. This framework accommodates both gradual and abrupt changes in beliefs and allows

for an analytical characterization of uncertainty. We use a prototypical Real Business Cycle model to

illustrate the methods.
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1. INTRODUCTION Modeling the Evolution of Beliefs

1 Introduction

A centerpiece of the rational expectations revolution is that economic outcomes critically depend on

agents’beliefs about future events. Most general equilibrium models are solved assuming that agents

have perfect knowledge about the stochastic properties of all the realized events. These are certainly

strong restrictions imposed upon the dynamics of beliefs. For instance, the private sector is likely to have

limited information about the future path of policymakers’decisions, the dynamics of dividend payments,

or the likely duration of observed changes in the returns to labor and capital. These assumptions, in

turn, influence the expectations formation mechanism and hence the predictions we draw from rational

expectations models.

In this paper we develop methods to solve dynamic general equilibrium models in which forward-

looking and fully rational agents learn about the stochastic properties of realized events. This modeling

framework captures waves of pessimism, optimism, and uncertainty that turn out to critically affect

macroeconomic outcomes. Such outbursts of pessimism, optimism, and uncertainty may happen abruptly

or may gradually unfold over a long period of time in response to the behavior of other agents or to

the realizations of economic outcomes. Furthermore, this framework is well-suited to study the effects

of shocks to beliefs and agents’uncertainty in Dynamic Stochastic General Equilibrium (DSGE) models.

All results are derived within a modeling framework suitable for structural estimation that will allow

researchers to bring the models to the data.

The evolution of agents’beliefs is modelled assuming the existence of different states of the world

or regimes that differ according to the statistical properties of the exogenous shocks or based on the

behavior of some of the agents in the model. Such regimes follow a Markov-switching process, which

may be correlated with other aspects of the model. For example, the government could be more likely to

inflate debt away when the level of spending is high. Agents are assumed to observe economic outcomes,

but not the regimes themselves. Agents will then adopt Bayesian learning to infer which regime is in

place. This will determine the evolution of agents’beliefs about future economic outcomes.

Our modeling framework does not rely on the assumption of anticipated utility that is often used in

models characterized by a learning process. Such an assumption implies that agents forecast future events

assuming that their beliefs will never change in the future. Instead, agents in our models know that they

do not know. Therefore, when forming expectations, they take into account that their beliefs will evolve

according to what they observe in the future. In our context, it is possible to go beyond the anticipated

utility assumption because there are only a finite number of relevant beliefs and they are strictly linked to

observable outcomes through the learning mechanism in a way that we can keep track of their evolution.

It should also be noted that the proposed approach is based on agents being fully rational and hence

their beliefs always being consistent in equilibrium. Rationality in our approach is essential in that it

puts discipline on beliefs so as to make it possible to draw precise predictions from economic models.

The proposed model framework is flexible enough to encompass both abrupt and gradual changes in

beliefs. For example, augmenting the modeling framework with signals about the regime in place allows

one to capture the sharp effect of news on the evolution of the economy or to study the macroeconomic

implications of changes in animal spirits about future events. At the same time, through the learning
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process, we can model situations in which agents’beliefs gradually change in response to the behavior of

other agents or the realizations of stochastic events. This sluggish adjustment of public expectations is

hard to reproduce through rational expectations models in which the functioning of the whole economy is

common knowledge among agents. Furthermore, the methods introduced in this paper can be combined

with techniques developed by Bianchi (2013a) to obtain an analytical characterization of the evolution of

uncertainty. Bianchi (2013a) shows how to compute measures of expectations and uncertainty in Markov-

switching models with perfect information. The combination of these methods endows researchers with

a convenient toolkit to take dynamic general equilibrium rational expectations models to the growing

amount of data on macroeconomic uncertainty.

We show how to apply these methods using a prototypical Real Business Cycle (RBC) model. In the

model, total factor productivity (TFP) growth can assume two values: high or low. For each value of

TFP growth, we allow for a long-lasting and a short-lasting regime. Therefore, while agents can observe

the current TFP growth rate, they are uncertain about its future values, because they do not know if the

current value is likely to last for a short time or for a long time. We consider a wide range of specifications,

allowing for smooth transitions or abrupt changes in agents’optimism about future realizations of TFP

growth. Each of these different specifications can be easily captured with the appropriate transition

matrix governing the evolution of TFP growth. This has the important implication that the dynamics of

pessimism, optimism, and uncertainty are consistent in equilibrium. Whenever a short-lasting regime is

in fact realized, with the benefit of hindsight, agents’beliefs turn out to overreact to the regime change

because agents always take into account the possibility that the economy entered a long-lasting regime.

However, if, in fact, the regime is long-lasting, it takes time for agents’beliefs to line up with the actual

realization. This implies that although agents are fully rational, their beliefs are generally misaligned

with respect to the actual state of the economy. Such a misalignment is found to substantially influence

consumption and capital allocation in the RBC model.

We show that the assumption of anticipated utility is not innocuous in the class of models studied

in this paper. This is because anticipated utility leads to periods of overpessimism and overoptimism

with respect to the case in which agents are fully rational. These mistakes cumulate over time because of

agents’investment decisions with respect to physical capital accumulation. These findings are different

from Cogley and Sargent (2008) who argue that there are only minor drawbacks stemming from the

anticipated utility assumption as long as precautionary motives are not strong. Two reasons explain this

discordance of results. First, the learning problem is different in the two papers. In Cogley and Sargent

(2008) agents have to learn the transition matrix governing the evolution of regime changes, while in

our case agents have to learn the regime that is in place. Second, they consider a model with no capital

accumulation. In our setting, sluggish changes in physical capital imply that mistakes that were done in

the past due to overpessimism or overoptimism accumulate over time and cannot be immediately undone.

The methods developed in this paper are based on the idea of expanding the number of regimes to

take into account the learning mechanism. The central insight consists of recognizing that the evolution

of agents’beliefs can be captured by defining an expanded set of regimes indexed with respect to agents’

beliefs themselves. Once this structure has been imposed, the model can be recast as a Markov-switching

dynamic stochastic general equilibrium (MS-DSGE) model with perfect information. If regime changes
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enter additively the model can be solved with standard solution methods such as gensys (Sims 2002)

and Blanchard and Kahn (1980), following the approach described in Schorfheide (2005) and Liu et al.

(2011). If instead regime changes enter multiplicatively the model can be solved with any of the methods

developed for solving MS-DSGE models, such as Davig and Leeper (2007), Farmer et al. (2009), Cho

(2014), and Foerster et al. (2013).

In both cases, the resulting solution is suitable for likelihood-based estimation. This is because

even if the final number of regimes is very large, there is a tight link between observable outcomes and

the evolution of agents’beliefs. In other words, the transition matrix governing the joint dynamics of

the economy and agents’ beliefs is highly restricted. For example, Bianchi and Melosi (2015) apply

these methods and Bayesian techniques to estimate a model in which agents are uncertain about the

future stance of monetary policy. This paper is therefore related to a growing literature that models

parameter instability to capture changes in the evolution of the macroeconomy. This consists of two

branches: Schorfheide (2005), Justiniano and Primiceri (2008), Bianchi (2013b), Davig and Doh (2014),

and Fernandez-Villaverde and Rubio-Ramirez (2008) introduce parameter instability in DSGE models,

while Sims and Zha (2006), Primiceri (2005), and Cogley and Sargent (2005) work with structural VARs.

Finally, to the extent that we can model situations in which agents’beliefs evolve in response to policy-

makers’behavior, our work is also linked to papers that study how inflation expectations respond to

policy decisions, such as Mankiw et al. (2004), Nimark (2008), Del Negro and Eusepi (2011), and Melosi

(2014a,b).

Schorfheide (2005) pioneers a method to estimate general equilibrium models in which agents learn

the realization of a discrete Markov-switching process that affects the constants of the model-implied

laws of motion. Specifically, they have to learn if the current central bank target for inflation is high or

low. Our work sharply differs from this contribution. First, our framework can accommodate situations

in which agents learn about regime changes that do not only affect the constant terms of the model, but

also its autoregressive component. For example, Bianchi and Melosi (2015) use the proposed framework

to estimate a model in which agents have to learn about future policymakers’behavior. Second, in our

framework agents always have enough information to infer what the current state of the economy is or

what other agents are doing: High or low growth, Hawkish or Dovish monetary policy, etc. Nevertheless,

agents face uncertainty about the statistical properties of what they are observing. For example, agents

could be uncertain about the persistence and the destination of a particular state. As we shall show, in a

model in which agents are forward looking these sources of uncertainty have pervasive effects on the law

of motion of the economy. Third, as previously pointed out, in our framework agents know that they do

not know. In other words, when forming their expectations, they take into account that their beliefs will

evolve according to what they will observe in the future. In Schorfheide (2005) agents take into account

that the target will change over time, but they do not internalize how beliefs will evolve in response to

that.

The application used in this paper is similar to the one considered by Edge et al. (2007), who study

a dynamic general equilibrium model in which agents have to learn the persistence of realized shocks to

the long-run growth rate. Our paper is different from that one in several respects. First, we develop

a method that can be applied to all models in which agents have to learn the statistical properties of
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regime-switching parameters that enter the model additively (e.g., a constant as in our application and

in the model studied by Edge et al. (2007)) as well as multiplicatively (e.g., the inflation parameter of a

Taylor rule as in Bianchi and Melosi (2015)). Second, unlike our paper, Edge et al. (2007) do not discuss

the implications for the dynamics of uncertainty.

Our approach mitigates a critical tension that often arises in the learning literature (e.g., Andolfatto

and Gomme 2003) when agents are assumed to understand the structure of the economy. On the one

hand, it would be desirable to have regimes that are very different in order to induce significant changes on

economic dynamics. On the other hand, this would make the learning process relatively fast. Instead, in

our approach even small differences in persistence have very large effects on agents’expectations because

regimes may be still very different in terms of the probability of moving to alternative regimes. Therefore,

our framework allows for both smooth or abrupt changes in agents’beliefs and for the possibility of signals

that play the role of shocks to beliefs, affecting agents’expectations and uncertainty. Furthermore, our

framework is suitable for likelihood estimation.

The remainder of the paper is organized as follows. Section 2 introduces the class of models and

derives the main results. Section 3 applies the methods to an RBC model. In Section 4, we discuss the

main advantages of the proposed methodology. Section 5 concludes.

2 The Model Framework

In this section, we introduce the modeling environment to which our methods are applicable. The class

of models we focus on has three salient features:

1. A model that can be expressed or approximated in the following form:1

Γ0 (ξt)St = Γc (ξt) + Γ1 (ξt)St−1 + Ψ (ξt) εt + Πηt (1)

where St is a vector containing all variables of the model known at time t (including conditional

expectations formed at time t), ηt is a vector containing the endogenous expectation errors, and

the random vector εt contains the familiar Gaussian shocks. The hidden variable ξt controls the

parameter values in place at time, θ (ξt) ≡ {Γ0 (ξt) ,Γc (ξt) ,Γ1 (ξt) ,Ψ (ξt)} , assumes discrete values
ξt ∈ {1, . . . , n}, and evolves according to a Markov-switching process with transition matrix P.

2. Agents have to forecast the dynamics of the endogenous variables St+1 on the basis of Model (1)

and their information set at time t, It. This includes the history of model variables and shocks, but
not the history of regimes, ξt: It ≡

{
St, εt

}
.

3. Some regimes are assumed to bring about the same model parameters, θ (ξt). Let us group the

regimes into m blocks bj =
{
ξt ∈ {1, . . . , n} : θ (ξt) = θbj

}
, for j ∈ {1, ...,m}.

1The assumption of model linearity is not essential and can be actually relaxed as discussed in Subsection 4.3. We focus
on linear models because linearization is still the most popular approach to solve and estimate Markov-switching DSGE
models.
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Given that agents know the structure of the model (sub 1 ) and can observe the endogenous variables

and the shocks (sub 2 ), they can determine which set of parameter θ (ξt) is in place at each point in time.

However, while this is enough for agents to establish the history of blocks, agents cannot exactly infer the

realized regime ξt, because the regimes within each block share the same parameter values (sub 3 ), which

makes the regimes within a block observationally equivalent to agents. Therefore the only distinguishable

characteristics of a regime within a block are its stochastic properties, such as its relative persistence and

the relative probability of switching to the regimes of the other blocks, which is captured by the transition

matrix P . These characteristics are known to agents that will use them to learn about the regime in place

today and to form expectations about the future. Therefore, points 1-3 describe a model in which agents

learn about the latent variable ξt. As will be shown below, such a learning process affects the equilibrium

law of motion of the economy. However, agents cannot extract any additional information about the

underlying regime from observing the history of the endogenous variables St because this reflects their

own beliefs.

Henceforth, we will consider a benchmark case in which there are two blocks (m = 2) and two regimes

within each block. This choice is made in order to keep notation simple. The extension to the case

in which m > 2 is straightforward. The probabilities of moving across regimes are summarized by the

transition matrix:

P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 (2)

in which the probability of switching to regime j given that we are in regime i is denoted by pij . Without

loss of generality, we assume that regimes ξt = 1 and ξt = 2 belong to Block 1, while regimes ξt = 3

and ξt = 4 belong to Block 2. We consider only non-trivial blocks that satisfy p11 + p12 + p21 + p22 6= 0

and p33 + p34 + p43 + p44 6= 0. The excluded cases are trivial as both blocks would last only one

period. Furthermore, we require that the two regimes that belong to the same block differ either in their

persistence or in the probability of moving from one another; that is, we require that either p11 6= p22 or

p12 6= p21 and either p33 6= p44 or p34 6= p43. This condition makes the within-block Bayesian learning

non-trivial because it ensures that the transition submatrices within the two blocks differ, implying

different statistical properties of the regimes within a block. This provides the rationale for agents to

care about learning which regime they are in within a block. Finally, we will impose that p11 + p22 > 0

and p33 + p44 > 0. This last assumption guarantees that within a block at least one of the two regimes

can last more than one period. Summarizing, for each block, we will maintain the following benchmark

assumptions throughout the paper:

A1 Non-triviality assumption: p11 + p12 + p21 + p22 6= 0 and p33 + p34 + p43 + p44 6= 0.

A2 Non-trivial-learning assumption: Either p11 6= p22 or p12 6= p21 and either p33 6= p44 or p34 6= p43.

A3 Non-jumping assumption: p11 + p22 > 0 and p33 + p44 > 0.
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We will now proceed in two steps. First, in Subsection 2.1 we will characterize the evolution of agents’

beliefs within a block for given prior beliefs. Second, in Subsection 2.2 we will explain how agents’beliefs

are pinned down once the economy moves across blocks. The statistical properties of the economy, as

captured by the transition matrix, will allow us to distinguish two cases: Static and Dynamic priors. It is

worth emphasizing that in both cases the assumption of rationality will be maintained and all results will

be based on the Bayes’theorem. Finally, for each of these cases, we will describe how to recast the model

with information frictions as a perfect information rational expectations model obtained by expanding

the number of regimes to keep track of agents’beliefs.

2.1 Evolution of Beliefs Within a Block

In what follows, we will derive the law of motion of agents’beliefs conditional on being in a specific block.

The formulas derived below will provide a recursive law of motion for agents’beliefs based on Bayes’

theorem. Such recursion applies for any starting values for agents’beliefs. These will be determined by

agents’beliefs at the moment the system enters the new block. We will characterize these initial beliefs

in the next subsection.

As we have noticed in the previous section, agents can infer the history of the blocks. Therefore, at

each point in time, agents know the number of consecutive periods spent in the current block since the

last switch. Let us denote the number of consecutive realizations of Block i at time t as τ it, i ∈ {1, 2}.
To fix ideas, suppose that the system is in Block 1 at time t, implying that τ1t > 0 and τ2t = 0. Then,

there are only two possible outcomes for the next period. The economy can spend an additional period

in Block 1, implying that τ1t+1 = τ1t + 1 and τ2t+1 = 0, or it can move to Block 2, implying τ1t+1 = 0 and

τ2t+1 = 1. In this subsection, we restrict our attention to the first case.

Using Bayes’theorem and the fact that prob
(
ξt−1 = 2|τ1t−1

)
= 1−prob

(
ξt−1 = 1|τ1t−1

)
, the probabil-

ity of being in Regime 1 given that we have observed τ1t consecutive realizations of Block 1, prob
(
ξt = 1|τ1t

)
,

is given by:2

prob
(
ξt = 1|τ1t

)
=

prob
(
ξt−1 = 1|τ1t−1

)
(p11 − p21) + p21

prob
(
ξt−1 = 1|τ1t−1

)
(p11 + p12 − p21 − p22) + p21 + p22

(3)

where τ1t = τ1t−1 + 1 and for τ1t > 1. Notice that for τ1t = 1, prob
(
ξt = 1|τ1t

)
denotes the initial beliefs

that will be discussed in Subsection 2.2. Equation (3) is a rational first-order difference equation that

allows us to recursively characterize the evolution of agents’beliefs about being in Regime 1 while the

system is in Block 1. The probability of being in Regime 3 given that we have observed τ2t consecutive

realizations of Block 2, prob
(
ξt = 3|τ2t

)
, can be analogously derived:

prob
(
ξt = 3|τ2t

)
=

prob
(
ξt−1 = 3|τ2t−1

)
(p33 − p43) + p43

prob
(
ξt−1 = 3|τ2t−1

)
(p33 + p34 − p43 − p44) + p43 + p44

. (4)

where τ2t = τ2t−1 + 1 and for τ2t > 1.

The recursive equations (3) and (4) characterize the dynamics of agents’beliefs in both blocks for a

2A detailed derivation of equation (3) is provided in Appendix A.
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given set of prior beliefs. The following proposition states that under the benchmark assumptions A1-A3,

these recursive equations converge. This convergence result will be key to being able to recast Model

(1)-(2) in terms of a finite dimensional set of regimes indexed with respect to agents’beliefs.

Proposition 1 Convergence. Under the benchmark assumptions A1-A3, for any ε > 0 there exists a

τ∗1 ∈ N and τ∗2 ∈ N such that:

prob (ξt = 1|τ∗1)− prob (ξt = 1|τ∗1 + 1) < ε

prob (ξt = 3|τ∗2)− prob (ξt = 3|τ∗2 + 1) < ε

Proof. See Appendix B.
In what follows, we denote the converging probabilities for prob (ξt = 1|τ1) and prob (ξt = 3|τ2) as

λ̃b1and λ̃b2 , respectively.

2.2 Evolution of Beliefs Across Blocks

In the previous subsection, we characterized the evolution of agents’beliefs conditional on being in a

specific block. The formulas derived above apply to any set of initial beliefs. In this subsection, we will

pin down agents’beliefs at the moment the economy moves across blocks. These beliefs will serve as

starting points for the recursions (3) and (4) governing the evolution of beliefs within a block.

Suppose for a moment that before switching to the new block, agents could observe the regime that

was in place in the old block. Notice that in this case the transition matrix conveys all the information

necessary to pin down agents’prior beliefs about the regime in place within the new block. Specifically,

we have that if the economy moves from Block 2 to Block 1, the probability of being in Regime 1 is given

by

prob
(
ξt = 1|ξt−1 = 3, τ1t = 1

)
=

p31
p31 + p32

,

if the economy was under Regime 3 in the previous period, or by

prob
(
ξt = 1|ξt−1 = 4, τ1t = 1

)
=

p41
p41 + p42

if the economy was under Regime 4 in the previous period. Symmetrically, the probability of being in

Regime 3 given that the economy just moved to Block 2 is given by

prob
(
ξt = 3|ξt−1 = 1, τ2t = 1

)
=

p13
p13 + p14

,

if the economy was under Regime 1 in the previous period, or by

prob
(
ξt = 3|ξt−1 = 2, τ2t = 1

)
=

p23
p23 + p24

if the economy was previously under Regime 2.

However, in the model, agents never observe the regime that is in place. Therefore, their beliefs at the

moment the economy moves from one block to the other will be a weighted average of the probabilities
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outlined above. The weights, in turn, will depend on agents’beliefs at the moment of the switch. In

what follows we will focus on three cases:

1. Static prior beliefs. In this case, the transition matrix P is such that every time the economy enters
a new block, agents’beliefs about which regime has been realized do not depend on their beliefs

right before the switch. Thus, what has been observed in the past block does not help rational

agents to form expectations in the new block. Such a transition matrix has the virtue of delivering

a nice closed-form analytical characterization for the dynamics of beliefs.3

2. Dynamic prior beliefs. In this case, the transition matrix P is such that beliefs about which regime
is prevailing within a block affect prior beliefs the moment the economy moves to the new block.

3. Signals. Exogenous signals $t about the current regime are also observed by agents. Signals are

assumed to be distributed according to p ($t|ξt).

It is worth clarifying that nothing prevents the researcher from combining the three cases described

above. For example, static prior beliefs could characterize one block but not another or agents could

receive a signal every time the economy enters a new block.

2.2.1 The Case of Static Prior Beliefs

In the case of static prior beliefs, the transition matrix P implies that every time the system enters a

new block, rational agents’beliefs are the same regardless of the history of past beliefs. It is immediate

to show that necessary and suffi cient conditions for this to happen are:

prob
(
ξt = 1|ξt−1 = 3, τ1t = 1

)
=

p31
p31 + p32

=
p41

p41 + p42
= prob

(
ξt = 1|ξt−1 = 4, τ1t = 1

)
(5)

prob
(
ξt = 3|ξt−1 = 1, τ2t = 1

)
=

p13
p13 + p14

=
p23

p23 + p24
= prob

(
ξt = 3|ξt−1 = 2, τ2t = 1

)
(6)

In other words, the transition matrix P is such that when the economy leaves a block, the relative

probability of the two regimes in the new block is not affected by the regime that was in place before.

Agents’beliefs are uniquely pinned down by (5) and (6) because agents are fully rational and know the

transition matrix governing the evolution of regimes.

The recursive equations (3) and (4) combined with the initial conditions (5) and (6) uniquely char-

acterize the dynamics of agents’beliefs in each block. To see this, notice that for each block, there is a

unique path for the evolution of agents’beliefs, given that (5) and (6) make agents’beliefs before entering

the block irrelevant. Furthermore, Proposition 1 guarantees that there exists a τ∗1 ∈ N and τ∗2 ∈ N such
that agents’beliefs converge for an arbitrary level of accuracy. Therefore, in the case of static priors the

number of consecutive periods spent in a block (τ it) is a suffi cient statistic to pin down the dynamics

of beliefs in both blocks. Equipped with this important result, we can re-cast Model (1)-(2) in terms

of a new set of regimes indexed with respect to the number of consecutive periods spent in a block τ it,

i ∈ {1, 2}:
3A simplified version of this problem with three regimes is studied by Barlevy (1998) within a partial equilibrium

framework.
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Γ0 (τ t)St = Γc (τ t) + Γ1 (τ t)St−1 + Ψ (τ t) εt + Πηt (7)

where εt ∼ N (0,Σε) is a vector of exogenous Gaussian shocks, ηt is a vector of endogenous expectation

errors, and the τ∗1 + τ∗2 regimes τ t ≡
(
τ1t , τ

2
t

)
evolve according to the transition matrix

P̃ =

[
P̃11 P̃12
P̃21 P̃22

]
,

where the matrices P̃11 and P̃12 are given by

P̃11 ≡



0 prob
{
τ1t+1 = 2|τ1t = 1

}
0 . . . 0 0

0 0 prob
{
τ1t+1 = 3|τ1t = 2

}
. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 prob
{
τ1t = τ∗|τ1t = τ∗ − 1

}
0 0 0 . . . 0 prob

{
τ1t+1 > τ∗|τ1t = τ∗

}



P̃12 ≡


1− prob

{
τ1t+1 = 2|τ1t = 1

}
01×(τ∗−1)

...
...

1− prob
{
τ1t+1 > τ∗|τ1t = τ∗

}
01×(τ∗−1)


with the elements of the matrices given by

prob
{
τ it+1 = τ it + 1|τ it

}
= prob

(
ξt = 1|τ1t

)
(p11 + p12) +

(
1− prob

(
ξt = 1|τ1t

))
(p21 + p22) (8)

where prob
(
ξt = 1|τ1t

)
can be obtained from the recursive equation (3) and equation (5). The matrices

P̃21 and P̃22 can be analogously derived.
Let us make a simple example to clarify the form of the transition matrix P̃. Assume that the system

switches from Block 2 to Block 1 at time t; that is, the number of consecutive periods in Block 1 is one

(τ1t = 1), which corresponds to the first regime of Block 1. The first row of the transition matrix P̃
tells us that there are only two possible events that can occur in period t + 1. First, the system stays

in Block 1 and hence it moves to the second regime of Block 1 (τ1t+1 = 2). This is captured by the non-

zero probability prob
{
τ1t+1 = 2|τ1t = 1

}
, which is defined in equation (8) and positioned on the second

column of the submatrix P̃11. The second possible event is that the system switches to Block 2 and hence
moves to the first regime of that block (τ2t+1 = 1). This event is captured by the non-zero probability(
1− prob

{
τ1t+1 = 2|τ1t = 1

})
positioned on the first column of the submatrix P̃12. Since there are the

only two possible events that can be realized in period t + 1, all other elements of the first row of the

matrix P̃ are zero. As the system keeps staying in Block 1, we transit to the next higher regime of the

block until we reach a number of period in the block that is equal to or larger than the truncation point

τ∗. This within-block evolution of regimes is captured by the form of the diagonal submatrices P̃11 and
P̃22 whose non-zero probabilities are off-diagonal, except for the one located on the τ∗ − th row. As the
system switches to Block 2, we move to the first regime of Block 2 regardless of the regime of Block 1 the

10



2. THE MODEL FRAMEWORK Modeling the Evolution of Beliefs

system comes from. This is due to the static feature of the prior beliefs in this example and is captured

by the form of the off-diagonal submatrices P̃12 and P̃21, in which the non-zero probabilities are all on
their first column.

Notice that the newly defined set of regimes keeps track of both the parameters in place at each point

in time and the evolution of agents’beliefs. Since Model (7) is a Markov-switching DSGE model with

perfect information, it can be solved using the techniques developed by Schorfheide (2005), Liu et al.

(2011), Davig and Leeper (2007), Farmer et al. (2009), Cho (2014), and Foerster et al. (2013). The result

is an MS-VAR in the DSGE state vector St:

St = c
(
τ t, P̃

)
+ T

(
τ t, P̃

)
St−1 +R

(
τ t, P̃

)
εt (9)

where the law of motion of the economy depends on agents’beliefs as captured by τ t. With the results

of Proposition 1 at hand, the solution of Model (7) with a truncated number of regimes τ t approximates

the solution of the original model (1) with learning. Notice that the accuracy of this approximation can

be made arbitrarily precise simply by increasing the number of regimes τ∗. Furthermore, it is worth

pointing out that in the case of static priors the approximation error stems only from truncating agents’

learning process. For all regimes such that τ it < τ∗i agents’beliefs exactly coincide with the analytical

values derived using (3) and (4) and conditions (5) and (6).

It is important to notice that the case of static prior belief does not constitute a deviation from

rationality or from the Bayes theorem. In fact, it directly stems from the application of the Bayes

theorem. Given condition (5), agents would be irrational to have different beliefs when the system enters

Block 1 in different periods. Condition (6) leads to this exact implication all the times the system enters

Block 2. We single out the case of static prior because when conditions (5)-(6) hold, the approximation

error from truncating agents’learning process is negligible. This is for two reasons. First, Proposition

1 ensures that the change in agents’beliefs is negligible once the system has spent a suffi ciently long

period of time in a block. Second, the initial beliefs can be pinned down analytically thanks to conditions

(5)-(6).

2.2.2 The Case of Dynamic Prior Beliefs

When conditions (5) and (6) do not hold, past beliefs always influence current beliefs. In this case, the

number of consecutive periods τ t spent in a block is no longer a suffi cient statistic for agents’beliefs.

However, as pointed out before, the recursive equations (3) and (4) hold for any prior beliefs. Therefore,

these equations still capture the dynamics of beliefs while the system stays in a block. Furthermore, it

follows that the suffi cient conditions for convergence derived in Subsection 2.1 still apply. Nevertheless,

the initial conditions are now different from (5) and (6) as they will depend on beliefs in the past block.

Specifically, agents’starting beliefs upon the shift from Block 2 to Block 1 are given by

prob {ξt = 1|It} =
prob

{
ξt−1 = 3|It−1

}
p31 +

(
1− prob

{
ξt−1 = 3|It−1

})
p41

prob
{
ξt−1 = 3|It−1

}
(p31 + p32) +

(
1− prob

{
ξt−1 = 3|It−1

})
(p41 + p42)

(10)

11
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while if the system just entered Block 2, starting beliefs read

prob {ξt = 3|It} =
prob

{
ξt−1 = 1|It−1

}
p13 +

(
1− prob

{
ξt−1 = 1|It−1

})
p23

prob
{
ξt−1 = 1|It−1

}
(p13 + p14) +

(
1− prob

{
ξt−1 = 1|It−1

})
(p23 + p24)

(11)

Notice that, using their information set It, agents can keep track of both the number of consecutive
deviations and their starting beliefs. Therefore, in the case of dynamic prior beliefs two variables pin

down the dynamics of beliefs over time: how many consecutive periods the system has spent in the current

block and the initial beliefs agents had when the system entered the current block.

Note that in the case of static priors, beliefs get reinitialized as the system switches to a new block.

In fact, as a switch to a new block occurs, agents’beliefs are always the same and given by equations (5)

and (6). In the case of dynamic priors, these initial probabilities depend on the entire history and hence

they change over time. This feature makes it impossible to analytically pin down the evolution of beliefs

across blocks: There are infinite possible paths and as a result infinite possible values for agents’beliefs.

Let us assume that we can overcome this infinite dimensionality problem by approximating the dy-

namics of beliefs using a finite number of regimes ζt and the associated transition matrix P̂ so that the
original Model (1) can be recast in terms of the new set of regimes ζt:

Γ0 (ζt)St = Γc (ζt) + Γ1 (ζt)St−1 + Ψ (ζt) εt + Πηt (12)

Therefore, the task of solving the model with learning in (1)-(2) boils down to solving the perfect-

information model (12) using available solution algorithms for MS-DSGE models. The resulting law of

motion is once again an MS-VAR:

St = c
(
ζt, P̂

)
+ T

(
ζt, P̂

)
St−1 +R

(
ζt, P̂

)
εt (13)

2.2.3 A Grid-Based Approach

We tackle the issue of tracking beliefs when agents’priors are dynamic by defining a set of regimes based on

a grid that approximates agents’beliefs at each point in time. Denote the grid for beliefs prob {ξt = 1|It}
as Gb1= {G1, ...,Gg1} and for beliefs prob {ξt = 3|It} as Gb2= {Gg1+1, ...,Gg1+g2} where 0 ≤ Gi ≤ 1, all

1 ≤ i ≤ g = g1 + g2. Furthermore, we denote the whole grid as G = Gb1 ∪Gb2. Endowed with such a grid,
we can recast the original model in terms of a new set of regimes ζt ∈ {1, ..., g1 + g2}, any t. The new
regime ζt captures the knot of the grid G that best approximates agents’beliefs; that is, in our notation
prob {ξt = 1|It} when the system is in Block 1 and prob {ξt = 3|It} when the system is in Block 2. The

transition probability matrix for these new regimes can be pinned down using the recursions (3) and (4)

and the initial conditions (10) and (11). The algorithm below illustrates how exactly to perform this

task.

Algorithm Initialize the transition matrix P̂ for the new regimes ζt, setting P̂ = 0g×g.

Step 1 For each of the two blocks, do the following steps (without loss of generality we describe the
steps for Block 1):

12



2. THE MODEL FRAMEWORK Modeling the Evolution of Beliefs

Step 1.1 For any grid point Gi ∈ Gb1 , 1 ≤ i ≤ g1, compute

P̂ (i, j) = prob
{
ξt−1 = 1|It−1

}
(p11 + p12) +

(
1− prob

{
ξt−1 = 1|It−1

})
(p21 + p22)

where prob
{
ξt−1 = 1|It−1

}
= Gi and j ≤ g1 is set so as to min |prob {ξt = 1|It} − Gj |, where

prob {ξt = 1|It} is computed using the recursive equation (3) by approximating prob
{
ξt−1 = 1|It−1

}
=

Gi. To ensure the convergence of beliefs, we correct j as follows: if j = i and Gi 6= λ̃b1 , then

set j = min (j + 1, g1) if Gi < λ̃b1 or j = max (1, j − 1) if Gi > λ̃b1 .

Step 1.2 For any grid point Gi ∈ Gb1 , 1 ≤ i ≤ g1, compute P̂ (i, l) = 1 − P̂ (i, j) with l > g1

satisfying

min

∣∣∣∣∣ prob
{
ξt−1 = 1|It−1

}
p13 +

(
1− prob

{
ξt−1 = 1|It−1

})
p23

prob
{
ξt−1 = 1|It−1

}
(p13 + p14) +

(
1− prob

{
ξt−1 = 1|It−1

})
(p23 + p24)

− Gl

∣∣∣∣∣
where prob

{
ξt−1 = 1|It−1

}
= Gi.

Step 2 If no column of P̂ has all zero elements, stop. Otherwise, go to Step 3.

Step 3 Construct the matrix T as follows. Set j = 1 and l = 1. While j ≤ g, if
∑g

i=1 P̂ (i, j) = 0 set

j = j + 1. Otherwise, if
∑g

i=1 P̂ (i, j) 6= 0: (1) set T (j, l) = 1, (2) set T (j, v) = 0 for any 1 ≤ v ≤ g
and v 6= l, (3) set l = l + 1 and j = j + 1.

Step 4 Write the transition equation as P̂R = T · P̂ · T ′. If no column of P̂R has all zero elements, set
P̂ = P̂R and stop. Otherwise, go to step 3.

Step 1.1 determines the regime j the system will go to if it stays in Block 1 next period and fills up the

appropriate element (i, j) of the transition matrix P̂ with the probability of moving to Regime j. Step
1.2 computes the regime l the system will go to if it leaves Block 1 and fills up the appropriate element

(i, l) of matrix P̂. Steps 2-4 are not necessary but help to keep the dimension of the grid small, getting
rid of regimes that will never be reached. For computational convenience, we always add the convergence

points for the two blocks (i.e., λ̃b1 in the case of Block 1) to the grid G. On many occasions, it is a good
idea to make the grid near the convergence knot very fine to improve the precision of the approximation.

The task of solving the model with learning in (1)-(2) boils down to solving the perfect-information

model (12) using available solution algorithms for MS-DSGE models.4

2.2.4 Signals

Let us assume that agents observe signals about the realized regime. To fix notation, denote the signal

received at time t as $t and, for simplicity, assume that it can have only two values, 1 or 2. We denote the

history of signals received up to time t as $t = {$1, ..., $t}. We denote the probability that the signal
is equal to q ∈ {1, 2}, conditional on the regime being equal to h ∈ {1, 2, 3, 4} as prob {$t = q|ξt = h}.

4 In Subsection 3.2.1 we present an example for which both the approximation error and the time required to solve the
model turn out to be very small.
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3. APPLICATIONS Modeling the Evolution of Beliefs

The model with signals can be solved by introducing a new system of regimes ζt, which indexes the grid

points corresponding to the probabilities prob
{
ξt = 1|It, $t

}
and prob

{
ξt = 3|It, $t

}
, and following the

same logic used in the previous subsection. As we shall show, signals will allows us to introduce shocks

to beliefs; that is, exogenously driven changes in beliefs that are not associated with changes in the

economy’s state ξt.

To fill up the transition matrix P̂ for the new set of regimes, one can implement the algorithm detailed
in Subsection 2.2.2 with only the little tweak of updating beliefs using the information contained in the

observed signal. For instance, we compute the ex-post-probability prob
(
ξt = 1|It, $t

)
prob

(
ξt = 1|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 1) prob
(
ξt = 1|It, $t−1)∑2

i=1 prob ($t = q|ξt = i) prob (ξt = i|It, $t−1)
, q ∈ {1, 2} (14)

where prob
(
ξt = 1|It, $t−1) is computed using the recursive equation (3) for a given initial point in the

grid G that approximates prob
(
ξt−1 = 1|It−1, $t−1). We use the probability computed in equation (14) to

determine the appropriate destination points of the grid G, which we denote as jq, q ∈ {1, 2}. Note that for
any given initial belief prob

(
ξt−1 = 1|It−1, $t−1) ∈ G, the (ex-post) belief prob (ξt = 1|It, $t−1, $t = q

)
now pins down the grid points, depending on the realization of the signal $t. Once these two destination

points in the grid are determined, we can fill up the transition probability as follows:

P̂ (i, jq) =
∑2

v=1 prob
{
ξt = v|It−1, $t−1} prob {$t = q|ξt = v} , q ∈ {1, 2} (15)

where

prob
{
ξt = v|It−1, $t−1} =

∑2
u=1 prob

{
ξt−1 = u|It−1, $t−1} puv (16)

and we approximate prob
{
ξt−1 = 1|It−1, $t−1} ∈ G. Note that in the case of binary signals, each row of

the transition matrix P̂ has up to four non-zero elements. This completes the derivation of the submatrix
P̂11, which governs the evolution of beliefs within Block 1. How to obtain the other submatrices P̂12,
P̂21, and P̂22 is detailed in Appendix C.

3 Applications

In this section, we introduce a prototypical RBC model to illustrate the properties of the methods detailed

above. Central to our discussion will be the evolution of optimism and pessimism and the implications

thereof for consumption and saving decisions. The representative household chooses the sequence of

consumption ct and capital kt:

max
ct,kt

Ẽ0
∑∞

t=0 β
t ln ct

subject to the resource constraint ct + kt = ztk
α
t−1 + (1− δ) kt−1 with α < 1 and 0 < δ < 1. Let Ẽt (·)

denote the expectation operator conditional on households’information set at time t. We assume that

total factor productivity (TFP) zt follows an exogenous process, such that

ln zt = µ (ξt) + ln zt−1 + σzεt (17)
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3. APPLICATIONS Modeling the Evolution of Beliefs

where εt
iidv N (0, 1) and ξt denotes a discrete Markov process affecting the drift of TFP. This process

evolves according to the transition probability matrix P. We assume that ξt can take four values; that is,
ξt ∈ {1, 2, 3, 4}. These values map into values for the TFP drift µ (ξt) as follows ξt ∈ {1, 2} =⇒ µt (ξt) =

µH and ξt ∈ {3, 4} =⇒ µt (ξt) = µL, where µL < µH . In Block 1, Regimes 1 and 2 differ in their likely

persistence: p11 < p22. The same applies to Regimes 3 and 4 in Block 2: p33 < p44. We call Regimes 1

and 2 high-growth regimes and Regimes 3 and 4 low-growth regimes. Households are assumed to observe

the history of the model variables (kt, ct, and zt) and that of the TFP shocks (εt). Therefore, households

can establish whether the economy is in the high-growth block or in the low-growth block.

We introduce the stationary variables µt ≡ ln (zt/zt−1), c̃t ≡ ct/z
1/(1−α)
t , k̃t ≡ kt/z

1/(1−α)
t and,

following Schorfheide (2005) and Liu et al. (2011), we define the steady state as the stationary equilibrium

in which all shocks are shut down, including the regime shocks to the growth rate of TFP. We then derive

a log-linear approximation to the equilibrium equations around the steady-state equilibrium for these

stationary variables. The log-linearized Euler equation reads:5

ĉt = Ẽtĉt+1 − (α− 1)
(

1 + (δ − 1)βM
1

α−1
)
k̂t −

(
1

α− 1
+ βM

1
α−1 (δ − 1) + 1

)
Ẽtµ̂t+1 (18)

where M ≡ exp (µ), µ ≡ (p1 + p2)µH + (p3 + p4)µL being the ergodic mean of the log growth rate of the

economy, and pi stands for the ergodic probability of being in regime i, µ̂t, ĉt and k̂t denote log-deviations

of the stationary TFP growth, consumption, and capital, respectively, from their steady-state value, and

µ̂ (ξt) ≡ µt (ξt)− µ is the log-deviation of TFP drift from its ergodic mean µ. The resource constraint is

cssĉt + kssk̂t =

(
M

α
α−1kαss

α

α− 1
+

1− δ
α− 1

M
1

α−1kss

)
µ̂t +

(
M

α
α−1kαssα+ (1− δ)µ

1
α−1kss

)
k̂t−1 (19)

Finally, the log-deviation of the growth rate of TFP from its ergodic level follows

µ̂t = µ̂ (ξt) + σzεt (20)

As is standard for any RBC model, households adjust capital so as to smooth consumption intertempo-

rally. The occurrence of TFP shocks and the succession of low-growth and high-growth regimes challenge

households’ability to smooth consumption over time. When the economy is in the high-growth regime,

households expect that, with some probability, the economy will enter into the low-growth regime in the

future, making it harder to raise future consumption. Therefore, ceteris paribus agents raise capital today

so as to raise future expected consumption Ẽtĉt+1 vis-a-vis current consumption ĉt. When the economy

is in the low-growth regime, agents expect that, with some probability, the economy will enter into the

high-growth regime in the future, making it easier to raise future consumption. Therefore, ceteris paribus

agents reduce capital today so as to raise current consumption ĉt vis-a-vis expected future consumption

Ẽtĉt+1.

Clearly, the persistence of the regime in place critically affects consumption and capital decisions.

When the current regime is expected to be short lasting, households generally adjust capital more ag-

5A detailed derivation of the steady-state equilibrium for the stationary variables and the log-linearized equations is
provided in Appendix D.

15



3. APPLICATIONS Modeling the Evolution of Beliefs

gressively than when it is expected to be long lasting, because they deem that a switch in the next period

is more likely. In contrast, households do not adjust capital so aggressively if they expect the regime to

be very long lasting. When households expect that low growth or high growth has become a structural

characteristic of the environment, they understand that consumption cannot be effectively smoothed out

over time by adjusting capital. Thus, very persistent regimes are mostly characterized by structural

changes in the level of consumption.

Given that households have limited information, the log-linearized Model (18)-(20) cannot be solved

using the existing techniques that are used to solve Markov-switching models with perfect information.

However, we proceed as described in the previous sections, by introducing a new set of regimes that

capture the evolution of the representative household’s beliefs over time. It is important to notice that

in the RBC model described above, regime changes enter additively. In other words, they only affect

the vector of constants Γc (·) in the canonical forms (7) or (12). In this case, the state space can be
augmented with a series of dummy variables as in Schorfheide (2005), Liu et al. (2011), and Bianchi et al.

(2014) and the models under imperfect information can be easily solved using standard solution methods

for DSGE model, such as gensys (Sims 2002) and Blanchard and Kahn (1980). When regime changes

enter multiplicatively, the matrices Γ0 and Γ1 are also affected. In this case, the model can be solved with

any of the solution methods that have been developed for MS-DSGE models. Bianchi and Melosi (2014,

2015) consider these cases and solve the model using the algorithm developed by Farmer et al. (2009).

In what follows, we adopt a standard calibration of the RBC model. We set capital’s share parameter

α to equal 0.33. The discount factor β is equal to 0.9976 and the parameter for the physical depreciation

of capital is set to equal 0.0250. The standard deviation of the TFP shock σ is set to 0.007. We set

the growth rate of TFP in the high-growth state to equal the annualized rate of 4%: µH = .01. We

assume that under low-growth, the growth rate of TFP is simply zero: µL = 0. Furthermore, we consider

several parameterizations of the transition matrix P, allowing us to illustrate a number of different model
economies that can be potentially used to address a large set of empirical issues. In actual applications,

the parameterization of the transition will depend on the data and the associated empirical moments the

researcher is interested to match. In this paper, we do not address any specific empirical issue as our

objective is to show the scope of application of the methodology we propose.

Section 3.1 studies an economy in which agents have to learn about the likely persistence of the

observed TFP growth. In Section 3.2, we consider an economy that goes through two types of phases

over time: a high-growth phase that is mostly characterized by long-lasting high-growth periods with

rare short-lasting low-growth periods and a low-growth phase that is mostly characterized by persistent

periods of low-growth and high-growth periods of rather short duration.

3.1 Learning the Persistence of TFP Growth: The Static-Prior Case

In what follows, we consider an RBC model as described by equations (18)-(20) in which the economy

fluctuates repeatedly between short-lasting periods of high growth and short-lasting periods of low growth.

However, once in a while a prolonged phase of high growth or low growth may occur. Agents are able to

infer what the growth rate is today, but they are uncertain about its likely duration.

Let us assume that the persistence of the short-lasting regimes is the same in the two blocks: p11 =
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p33 = 0.5. Analogously, we set the probabilities of staying in the long-lasting regimes so that p22 = p44 =

0.95. For simplicity we assume that regimes belonging to the same block do not communicate with each

other; that is, p12 = p21 = p34 = p43 = 0. We will be more general later on. Furthermore, the transition

matrix implies that once a switch to a new block occurs, agents always attach a 95% probability to being

in the short-lasting regime:

p31
p31 + p32

=
p41

p41 + p42
= 0.95 (21)

p13
p13 + p14

=
p23

p23 + p24
= 0.95 (22)

Notice that conditions (21)-(22) imply static prior beliefs: agents always enter the high-growth block and

the low-growth block with the same beliefs. In summary, we work with the following transition matrix:

P =


0.50 0 0.475 0.025

0 0.95 0.0475 0.0025

0.475 0.025 0.50 0

0.0475 0.0025 0 0.95


To illustrate the consequences of fluctuations in agents’beliefs, we simulate the economy assuming

a typical path for the regimes and setting all Gaussian shocks εt to zero. We assume that consumption

and capital are initialized at their steady-state values. The results are reported in Figure 1. In each

panel, the gray and white areas correspond to periods of low and high growth, respectively. Short-lasting

regimes last for their typical duration of 2 quarters. Long-lasting regimes last for their typical duration

of 20 quarters. The two right graphs report the evolution of consumption and capital in the model with

learning compared to the model with perfect information in which agents can observe the current regime.

The panel in the upper-left corner shows the evolution of agents’beliefs about being in the long-lasting

high-growth regime and in the long-lasting low-growth regime. The panel in the lower-left corner reports

the evolution of expected average TFP growth at 4-, 8-, 20-, and 40- quarter horizons. Notice that this

is a convenient measure of agents’optimism/pessimism that takes into account uncertainty about the

regime in place today and the possibility of regime changes.

Three features of Figure 1 deserve to be emphasized. First, right after a switch to a new block, agents

believe that this switch is most likely to be short lasting. This can be seen in the top left graph when

switches to new blocks occur. The reason is that agents are rational and hence are aware that regardless

of whether the past regime was short lasting or long lasting, the probability of switching to the short-

lasting regime in the new block is always as high as 95%. This stems from the restrictions in (21)-(22),

which imply static prior beliefs. Second, whenever a short-lasting regime is in fact realized, with the

benefit of hindsight, agents’beliefs turn out to be slightly misaligned with the truth in the upper left

graph because agents rationally attach a non-zero probability to being in the long-lasting regime. Third,

the probability of being in the long-lasting regime smoothly increases as more realizations of the same

block are observed. The top left graph shows that the probability of being in the long-lasting regime

rises monotonically with the number of consecutive realizations of a particular growth rate. For instance,
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Figure 1: Beliefs and Allocations. Top left graph : Evolution of beliefs of being in the long-lasting high-growth regime (red
solid line) and in the long-lasting low-growth regime (blue dashed line). Top right graph : Log-deviations of consumption from

the perfect-information benchmark. Bottom left graph : Expected average growth rate of technology (annualized percentage)

at various horizons. Bottom right graph : Log-deviations of capital from the perfect-information benchmark. In all graphs,

gray areas denote periods of low growth.

from t = 17 to t = 36, the economy is in a long-lasting high-growth regime. While agents initially attach

a small probability to being in the long-lasting regime, they become fully convinced after 12 consecutive

periods of high TFP growth. The dynamics of beliefs is specular in a long-lasting low-growth period of

typical length.

Furthermore, Figure 1 shows the evolution of optimism and pessimism and the associated dynamics

of the consumption gap and the capital gap, which are defined as the log-deviation of consumption and

capital from their corresponding levels under perfect information. When the economy enters the long-

lasting high-growth period imperfectly informed agents are not very optimistic about the duration of the

high-growth regime. This is reflected in their expectations about the average growth rate of TFP that

barely moves in the bottom left graph. Given that they expect that the high-growth period will be short

lasting, they decide to accumulate more capital so as to smooth consumption. In contrast, if agents knew

the actual realization of the high-growth regime, they would have adjusted their stock of capital less

aggressively and consequently consumption would have risen more dramatically. This is why in Figure 1

we observe a negative consumption gap and a positive capital gap when the economy enters a period of

long-lasting high growth. The dynamics of these gaps is specular in a long-lasting low-growth period of

typical length.

As the period of high-growth consolidates, imperfectly informed agents update their beliefs until they

eventually become convinced that they are in the long-lasting regime. This happens in roughly 12 quarters

after the switch. As illustrated in the bottom left graph, such slow-moving beliefs cause the expected

average growth rate of TFP over the next few years to adjust sluggishly. This eventually determines an
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Figure 2: Evolution of Uncertainty about Consumption, Capital, and TFP Growth. The horizons are one-quarter ahead
(solid line), four-year ahead (dashed line), and twenty-year ahead (circular markers). Uncertainty at an horizon h is measured
as the standard deviation of the variable of interest in period t+ h conditional on agents’information set at time t, It.

adjustment in the path for consumption and the consumption gap slowly fades away. Interestingly, at the

end of the long-lasting high-growth period, the consumption gap becomes positive. The reason is that the

sluggish evolution of optimism prompted households to accumulate capital rapidly at the beginning of

the period of high growth. The relatively bigger capital stock boosts consumption as households become

more optimistic about the likely duration of the high-growth period, leading to a positive consumption

gap. A specular pattern characterizes the economy the moment it enters the long-lasting low-growth

period.

As pointed out before, even when the economy repeatedly alternates between short-lasting periods,

agents’beliefs are slightly misaligned with the truth. Let us focus on the first 16 quarters during which

a sequence of short-lasting regimes are realized. While the economy is in the short-lasting high-growth

regime, imperfectly informed households consume more and accumulate less capital than in the case

of perfect information. The reason is that imperfectly informed agents attach some non-negligible -

albeit small - probability to being in the long-lasting regime. By the same token, when the economy is

going through a short-lasting period of low growth, imperfectly informed households consume less and

accumulate more capital than under perfect information.

Figure 2 shows the evolution of uncertainty about consumption, capital, and TFP growth rate. Un-

certainty at horizon h of one, four, and twenty quarters is measured using the standard deviation of

the variable of interest at time t + h conditional on agents’ information set at time t, It. It is worth
emphasizing that this measure of uncertainty is computed taking into account the possibility of regime

changes and the evolution of agents’beliefs, using the methods described in Bianchi (2013a). First, it

19



3. APPLICATIONS Modeling the Evolution of Beliefs

should be observed that when agents are mostly convinced to be in the short-lasting high-growth regime

(i.e., in the narrow white areas or at the beginning of the broad white areas), uncertainty is generally

higher and remarkably similar at all horizons. Second, uncertainty about future TFP growth falls at

all horizons as agents become more convinced to be in the long-lasting regime. This happens when the

economy goes through a long-lasting period of high-growth, captured by the large white, in Figure 2.

These two findings are not surprising, since expecting a shorter (longer) duration of the current block

raises (reduces) uncertainty about future TFP developments. Furthermore, when long-lasting regimes

occur, long-horizon uncertainty falls less dramatically than short-horizon uncertainty. The reason is that

as agents become more convinced to be in a long-lasting regime, they deem a switch to a short-lasting

regime as relatively more likely at longer horizons.6

As far as the dynamics of uncertainty about consumption and capital (the highest and middle panels),

it is important to notice that the main source of uncertainty about future allocations is due to the need of

establishing whether and when big adjustments in allocations will occur. As shown in the right panel of

Figure 1, such large adjustments are observed when long-lasting regimes occur because beliefs adjust only

sluggishly to the truth. Long-horizon uncertainty about future allocations appears to be always higher

than short-horizon uncertainty, because agents know that such large adjustments are always more likely

to happen as the considered horizon gets longer and longer. Quite interestingly, we observe that medium-

and long-horizon uncertainty follow a hump-shaped pattern during a typical long-lasting regime. On the

one hand, uncertainty rapidly rises as agents gets more and more convinced of being in a long-lasting

regime that is associated with a large adjustment in allocations. On the other hand, as agents become

more convinced to be in the long-lasting regime, their uncertainty about future allocations falls because

they become less uncertain about future TFP growth. See the lowest graph of Figure 2.

The case studied in this section is based on a symmetric transition matrix implying that the stochastic

properties of the short-lasting and the long-lasting regimes are exactly the same across blocks. Changing

the relative persistence of the regimes within a block critically affects how quickly agents learn about

the persistence of the regime in place. For instance, as the persistence of the two high-growth regimes

become more similar, agents have to observe a longer spell of high growth to become convinced that the

economy is experiencing a period of persistent high growth. To see this note that persistence is the only

characteristic that make the two regimes within a block distinguishable to agents.

3.2 A Two-Phase RBC Model

We will now model an economy that goes through two types of phases over time: a high-growth phase that

is mostly characterized by long-lasting high-growth periods with rare short-lasting low-growth periods

and a low-growth phase that is mostly characterized by persistent periods of low-growth and high-growth

periods of rather short duration. In such an economy waves of optimism and pessimism will spur from

the past realizations of TFP growth. Therefore, we need to keep track of agents beliefs before a change in

growth. This corresponds to the case of dynamic priors. In what follows, we study three RBC economies

featuring low- and high-growth phases. In Subsection 3.2.1, switches to a new phase are always preceded

6Recall that the parameterization of the transition matrix P implies that the long-lasting regimes of both blocks are
always followed by short-lasting regimes, which are associated with relatively higher uncertainty.
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3. APPLICATIONS Modeling the Evolution of Beliefs

Figure 3: Expected Growth Rate of Technology at Various Horizons as a Function of Beliefs. Lighter blue areas capture
expected rates that are lower than the ergodic rate. Darker red areas capture expected rates that are higher than the ergodic

rate. The horizontal axes report beliefs about being in the long-lasting high-growth regime (LL-HG) and beliefs about being

in the long-lasting low-growth regime (LL-LG).

by a changes in TFP growth.7 In Subsection 3.2.2, we study an economy in which switches to the

low-growth phase are not necessarily marked by a changes in TFP growth. Note that whether changes

of phases are preceded or not by change in TFP growth is important because agents perfectly observe

changes in TFP growth.

3.2.1 Changes of Phase Preceded by a Change in Growth

In order to model the two phases of the business cycle, we introduce the following restrictions on the

parameters of the transition matrix P:

p31
p31 + p32

= 0.05 <
p41

p41 + p42
= 0.95 (23)

p13
p13 + p14

= 0.05 <
p23

p23 + p24
= 0.95 (24)

Furthermore, we assume that the probability of staying in the short-lasting regimes is p11 = p33 = 0.75.

We set the probabilities of staying in the long-lasting regimes so that p22 = p44 = 0.95. We also assume

that the regimes belonging to the same block do not communicate with each other: p12 = p21 = p34 =

p43 = 0. This has the important implication that a change of phase is always preceded by an observable

change in growth. We will relax this restriction in the next two subsections. To sum up, the transition

7Of course, this does not mean that every time that a change in growth occurs, agents immediately conclude that the
phase changed. They still have to learn about the nature of the observed change in growth.
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3. APPLICATIONS Modeling the Evolution of Beliefs

matrix reads:

P =


0.75 0 0.0125 0.2375

0 0.95 0.0475 0.0025

0.0125 0.2375 0.75 0

0.0475 0.0025 0 0.95


It is important to emphasize that, in this model, the fact that the economy is currently in the high-

growth or low-growth regime plays a minor role in affecting agents’beliefs. Most of the action stems from

whether agents believe that the economy has been going through a high-growth phase or a low-growth

phase. Figure 3 shows agents’ expectations about the growth rate of TFP µt in deviations from its

ergodic level µ at different horizons and for various initial levels of probability of being in the long-lasting

high-growth regime (left plot) and low-growth regime (right plot). Notice that when agents expect to be

in the long-lasting high-growth (low-growth) regime, the expected growth rate of technology differs from

that in the short-lasting low-growth (high-growth) regime only at very short horizons. This is because

agents are rational and are aware of conditions (23)-(24), implying that short-lasting regimes are more

likely to be followed by the long-lasting regime of the opposing block.

It should be noted that conditions (23)-(24) imply that agents’ beliefs are dynamic in this model.

Suppose that agents mostly expect to be in the long-lasting high growth period. If in the next period the

economy moves to the low-growth block, agents will mainly expect to be in the short-lasting low-growth

regime. In contrast if agents believe to be in the short-lasting high growth today, then a switch to the

low-growth block tomorrow will lead them to believe that the low-growth period is most likely to be

long-lasting.

The upper left graph of Figure 4 reports the evolution of agents’beliefs, consumption, and capital for

the case of dynamic prior beliefs. We simulate a typical path for the regimes where a low-growth phase

is followed by a high-growth phase. Furthermore, we initialize agents’beliefs so that agents are confident

of being in a high-growth phase.8 As agents observe 4 quarters of high growth, followed by 20 quarters

of low growth, agents start to fear that the economy has switched to the low-growth phase. As a result,

households are less optimistic when the economy returns to the high-growth regime. When the second

realization of the long-lasting low-growth regime occurs, households become immediately convinced that

the long-lasting low-growth regime is in place. Symmetrically, when the economy returns to the short-

lasting high-growth regime for the third time, households believe that the high-growth regime will be

long-lasting with only a 6% probability. Afterwards, the economy enters the high-growth phase by going

through a short-lasting low-growth regime. Households are initially very pessimistic about the persistence

of this regime expecting the low-growth regime to be long lasting. It takes two realizations of the long-

lasting high-growth regimes to make them fully confident that the economy has shifted to the high-growth

phase.

The behavior of consumption and capital during the low-growth and the high-growth phase is analyzed

in the right graphs of Figure 4. We observe that at the beginning of the first short-lasting high-growth

regime, which is associated with high optimism, the consumption gap is positive. The reason is that

8This can easily happen if the economy went through a typical high-growth phase in the past and agents have finally
learned about this phase.
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Figure 4: Beliefs and Allocations. Top left graph : Evolution of beliefs of being in the long-lasting high-growth regime (red
solid line) and in the long-lasting low-growth regime (blue dashed line). Top right graph : Log-deviations of consumption from

the perfect-information benchmark. Bottom left graph : Expected average growth rate of technology (annualized percentage)

at various horizons. Bottom right graph : Log-deviations of capital from the perfect-information benchmark. In all graphs,

gray areas denote periods of low growth.

imperfectly informed households expect this regime to be much longer lasting than what it actually turns

out to be. This implies that imperfectly informed households do not raise capital as aggressively as they

would if they knew that the high-growth regime is, in fact, short lasting. This leads to a negative capital

gap and a positive consumption gap. When the economy enters the long-lasting low-growth regime for the

first time, households mainly expect a short-lasting regime at first. As a result, households decide to cut

capital fairly aggressively to sustain current consumption. Households would do otherwise, if they knew

that the economy just entered the long-lasting low-growth regime. This leads to a positive consumption

gap and a negative capital gap.

During the first long-lasting low-growth spell households update their beliefs until they realize that

this regime is most likely long lasting, signifying that the economy must have switched to the low-growth

phase. This change in agents’beliefs causes consumption and capital (the latter with some sluggishness)

to become similar to the perfect-information benchmark. Interestingly, the consumption gap changes

sign and becomes negative at the end of the first long-lasting low-growth spell and throughout the second

low-growth period. This is due to the fact that capital adjusts sluggishly to its perfect-information level.

When the second short-lasting high-growth regime occurs, agents are more convinced to have entered a

low-growth phase and then optimism is smaller than in the previous high-growth period, resulting in a

more contained hike in the consumption gap. The dynamics of the consumption gap and the capital gap

are clearly reversed during the high-growth phase.

Figure 5 shows the evolution of uncertainty about consumption, capital, and TFP growth during

the typical simulation. At time t = 1, agents mostly expect to be in a high-growth phase that is is
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Figure 5: Evolution of Uncertainty about Consumption, Capital, and TFP Growth. The horizons are one-quarter ahead
(solid line), four-year ahead (dashed line), and twenty-year ahead (circular markers). Uncertainty at an horizon h is measured
as the standard deviation of the variable of interest in period t+ h conditional on agents’information set at time t, It.

typically characterized by long-lasting high-growth regimes. Since agents expect to be in a long-lasting

regime, their uncertainty about future TFP growth is on the low side. As the economy switches to a

low-growth period at time t = 5, agents initially expect it to be short lasting because they are still quite

convinced they are living in a high-growth phase in which the typical duration of low-growth periods is

relatively short. This conviction prompts agents to expect that TFP growth is likely to change shortly.

Thus, their uncertainty sharply increases as the system enters the first low-growth spell. At the end

of the first long-lasting low-growth period, agents have mostly learned by now that the system is going

through a low-growth phase and therefore the current low-growth regime is likely to last for a fairly long

period. Consequently, uncertainty about future TFP growth at all horizons fall down at the end of the

long-lasting low-growth period. As agents learn that the economy is going through a low-growth phase,

uncertainty soars during the short-lasting high-growth spells and falls during long-lasting low-growth

periods. Specular patterns are observed in the subsequent high-growth phase.

It is worth emphasizing that due to the non-linearity implied by regime changes, uncertainty about

future TFP growth is not monotonic with respect to the time horizon. In other words, agents’uncertainty

does not necessarily increase with the time horizon. When agents believe that the economy is in a long-

lasting regime, uncertainty increases with the time horizon. If the current regime is long lasting, a switch

to the short-lasting regime, which would sharply raise uncertainty about future TFP growth, is likely

to occur only at long horizons. Therefore, long-horizon uncertainty is higher than the short-horizon

one when agents expect the current regime to be long lasting. If instead agents believe they are in a

short-lasting regime, they face relatively low uncertainty about the immediate future, but in the medium

run they expect a change in TFP growth to occur, while in the long run uncertainty moves toward its
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Figure 6: Beliefs and Allocations. Top left graph : Evolution of beliefs of being in the long-lasting high-growth regime (red
solid line) and in the long-lasting low-growth regime (blue dashed line). Top right graph : Log-deviations of consumption from

the perfect-information benchmark. Bottom left graph : Expected average growth rate of technology (annualized percentage)

at various horizons. Bottom right graph : Log-deviations of capital from the perfect-information benchmark. In all graphs,

gray areas denote periods of low growth.

ergodic value. This determines an hump shape in uncertainty, with medium run uncertainty higher than

short run and long run uncertainty. This also implies that during the first realizations of the long-lasting

regime of the two phases medium-horizon uncertainty is initially higher than long-run uncertainty. After

a few periods of these long-lasting regimes, long-horizon uncertainty becomes higher than medium-horizon

uncertainty. This is explained by the sharp swings in agents’beliefs occurring during the first realizations

of the long-lasting regimes of the two phases. Agents enter the new phase expecting the short-lasting

regime to be in place but eventually end up updating their beliefs toward the long-lasting regime. When

agents attach equal odds to be in either the two regimes of the block, long-horizon uncertainty peaks

whereas medium-horizon uncertainty gets lower. The fall in uncertainty about the nature of the regime

in place at the end of long sequences of high or low growth causes long-horizon uncertainty to follow a

hump-shaped pattern in those periods.

3.2.2 Low-Growth Phases Not Necessarily Preceded by a Change in Growth

We have considered so far transitions between high-growth and low-growth phases that are always marked

by an observable change in TFP growth. This feature is due to the fact that so far we have assumed

that the probability of switching between regimes belonging to the same block is zero. In this section we

relax this assumption.

Let us use the baseline calibration and the same values for the transition matrix P as those used

in Subsection 3.2.1, with the only exception that now the probability of switching to the short-lasting
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high-growth regime conditional on being in the long-lasting high-growth regime is nonzero. Specifically,

we set p21 = 0.04. The probabilities p23 and p24 are re-scaled so that (24) is satisfied. In this context,

a switch from the high-growth phase to the low-growth phase may happen without the agents observing

any change in growth: The economy simply moves from the long-lasting high-growth regime to the short-

lasting high-growth regime. Although the probability that such an unobserved switch would happen is

quite small (p21 = 0.04), such a possibility turns out to deeply influence the dynamics of agents’beliefs

and allocations.

Figure 6 reports the evolution of beliefs, average expected growth rate, consumption gap, and capital

gap conditional on the same simulated path of regimes as that analyzed in the previous example.9 Hidden

switches imply that the probability of being in the long-lasting regime never converges to one during

persistent periods of high growth as agents will never become fully convinced to be in the high-growth

phase.

The possibility of unobserved switches to the low-growth phase prompts households to persistently

interpret short-lasting low-growth regimes as long lasting. As a result, imperfectly informed agents reduce

their capital stock less aggressively than what they would have done if they knew that the economy is

going through a short-lasting low-growth regime. Interestingly, high pessimism during short-lasting low-

growth periods causes the capital gap to not exhibit mean reversion during a typical high-growth phase,

leading to a sort of capital hoarding. During the low-growth phase, households learn faster that the

economy is on a low-growth path compared with Figure 4. A a result, their beliefs are less misaligned

with the truth and gaps are generally smaller.

Figure 7 shows the evolution of uncertainty about consumption, capital, and the TFP growth rate

during the typical simulation. Three important results regarding the evolution of uncertainty about fu-

ture TFP growth emerge. First, uncertainty is generally higher in the high-growth phase because the

possibility of hidden switches to the low-growth phase makes the learning about the duration of the regime

in place harder. Second, periods of low-growth are generally characterized by monotonically decreasing

uncertainty, with long-horizon uncertainty higher than short-horizon uncertainty. Short- and medium-

horizon uncertainty is always high at the beginning of high-growth periods compared with low-growth

periods. These patterns are explained by the overall rising in pessimism due to the possibility of hidden

switches to the low-growth phase. As discussed earlier, when agents expect an observed regime to be

long-lasting (short-lasting), short-horizon uncertainty is generally lower (higher) than long-horizon un-

certainty. Since low-growth regimes are suddenly interpreted as long-lasting by agents, who become more

convinced about that as the system stays in this regime, short-horizon uncertainty will be quite low and

declining over time. In contrast, high-growth regimes are initially interpreted as short-lasting, implying

higher uncertainty especially at short and medium horizons. Third, long-lasting high-growth regimes

are characterized by hump-shaped dynamics of short-horizon uncertainty and a monotonically-increasing

evolution of long-horizon uncertainty, which ends up being higher than short-horizon uncertainty. Unlike

in Figure 5, long-horizon uncertainty never falls during the high-growth regimes because the possibil-

ity of hidden switches cause agents to never get fully convinced to be in the long-lasting regime. The

9To ease the comparison with the previous case with no unobservable switches, the scale of the y-axes is set to be the
same as that in Figure 4.
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Figure 7: Evolution of Uncertainty about Consumption, Capital, and TFP Growth. The horizons are one-quarter ahead
(solid line), four-year ahead (dashed line), and twenty-year ahead (circular markers). Uncertainty at an horizon h is measured
as the standard deviation of the variable of interest in period t+ h conditional on agents’information set at time t, It.

hump-shaped dynamics of short- and medium-horizon uncertainty during the long-lasting high-growth

regimes is due to the swing in agents’beliefs. More precisely, agents initially believe to be in a short-

lasting regime and eventually become convinced to be most likely in the long-lasting regime. When this

happens, short-horizon uncertainty falls while long-horizon uncertainty plateaus.

3.3 Speed and Accuracy of the Method

While the approximation error can be shown to be extremely tiny in the model with static prior studied

in Section 3.1, it is not obvious that the approximation error made in this application in which agents’

priors are dynamic is small. When agents’priors is dynamic, the approximation error is tightly related to

how fine is the grid G that approximates agents’beliefs, prob (ξt|It). Let us consider the parameterization
of the symmetric two-phase economy in Section 3.2.1 and set 100 equally spaced knots in our grid for

each block. Furthermore, we add 194 knots to make the grid finer for beliefs near the convergence points

for prob
{
ξt = 1|τ1t

}
and prob

{
ξt = 3|τ1t

}
, which are zero for both blocks. After the refinement of the

grid of beliefs introduced in steps 3-4 of Section 2.2.2, we are left with 213 grid points per block. Even

if the number of regimes seems enormous, solving the model takes 5.23 seconds in Matlab on a 64-bit

desktop endowed with an Intel core processor i7-2600 CPU at 3.40 GHz.10. Figure 8 reports the absolute

forecast error, which is computed by taking the absolute difference between prob
{
ξt+h|It

}
approximated

using the matrix P̂ and the true probability that can be easily worked out using equations (3) and (4).
The forecast errors are computed using various initial beliefs of being in the short-lasting regime of a

10 In the case with static prior beliefs, which was analyzed in Section 3.1, it takes 0.10 second to compute the matrix P̂
and to solve the model with gensys.
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Figure 8: Absolute Forecast Errors. Left panel: Absolute forecast error about the probability of being in the short-lasting
regimes prob

{
ξt+h = 1|It

}
(upper graphs) and prob

{
ξt+h = 3|It

}
(lower graphs), in h = 1, 2, 3, and 4 quarters

from period t conditional on being in the high-growth block with initial beliefs prob {ξt = 1|It}, which are reported
on the horizontal axes. Right panel: Absolute forecast error about the probability of being in the short-lasting regimes

prob
{
ξt+h = 1|It

}
(upper graph) and prob

{
ξt+h = 3|It

}
(lower graph), in h = 1, 2, 3, and 4 quarters from period

t conditional on being in the low-growth block with initial beliefs prob {ξt = 3|It}, which are reported on the horizontal
axes. Different color bars denote different horizons h of forecast. Bt denotes the block in place at time t, which can be the
high-growth one, BH , or the low-growth one, BL.

given block, prob (ξt = 1|It) and prob (ξt = 3|It), which are reported on the horizontal axes of the plots
in Figure 8. The left panel refers to the situation in which the economy is initially in the high-growth

block, while the right panel shows the approximation errors when the initial state of the economy is low

growth. Approximation error appears to be very small at all horizons.11 Finally note that the plots are

symmetric (i.e., the upper left one is identical to the lower right one and the lower left one is identical to

the upper right one) because the primitive transition matrix P is symmetric and the initial grids for the
beliefs in the two blocks are chosen to be identical.

4 Discussion

Summarizing, the methods outlined above show that one can recast the Markov-switching DSGE model

with learning as a Markov-switching rational expectations system in which the regimes are indexed with

respect to agents’beliefs. In the case of static priors, the number of consecutive realizations of a block

represents a suffi cient statistic to index agents’ beliefs. In the case of dynamic priors, agents’ beliefs

11We also checked stability of the law of motion as the number of grid points increases. The approximation turns out to
be accurate even using this criterion. We report results for the absolute forecast errors because these are not model specific.
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Figure 9: Full rationality vs. Anticipated Utility. The top plots show the gap of consumption and capital between the

case of Rational learning and that of anticipated utility. A positive value for the gap means that consumption or capital are

higher in the rational case. The middle and bottom plots report the expected TFP growth at one-, two-, five-, and ten-year

horizon. The solid line denotes the case of fully rational case; the dashed line denotes the case of anticipated utility.

are mapped into a grid. In both cases, a new transition matrix that characterizes the joint evolution of

agents’beliefs and model parameters is derived.

Section 4.1 highlights the main differences of our approach from the tradition learning literature. In

Section 4.2, we discuss the tractability of the proposed method and assess its suitability for econometric

applications. In Section 4.3, we deal with the applicability of our method to nonlinear models.

4.1 Anticipated Utility

It is worth emphasizing that the proposed approach allows us to easily model economies in which agents

know that they do not know. In other words, agents form expectations taking into account that their

beliefs will change in the future according to what they will observe in the economy. This is why the

laws of motion (9) and (13) characterizing the behavior of the model depend on the current beliefs and

the expanded transition matrix defining the joint evolution of agents’beliefs and model parameters. This

represents a substantial difference with the anticipated utility approach in which agents form expectations

without taking into account that their beliefs about the economy will change over time (e.g., Evans

and Honkapohja 2001; Cogley, Matthes, and Sbordone 2011). Furthermore, the approach described

above differs from the one traditionally used in the learning literature in which agents form expectations

according to a reduced-form law of motion that is updated recursively using the discounted least-squares

estimator (Eusepi and Preston 2011). The advantage of adaptive learning is the extreme flexibility

given that, at least in principle, no restrictions need to be imposed on the type of parameter instability

characterizing the model. However, such flexibility does not come without a cost, given that agents are
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not really aware of the model they live in, but only of the implied law of motion. Instead, in this paper

agents fully understand the model, they are uncertain about the future, and they are aware of the fact

that their beliefs will evolve over time based on what they observe.

In this section, we assess the error implied by the anticipated utility assumption in the context of the

prototypical RBC model considered in our paper. Just to keep things simple we use the parameterization

of Section 3.1, which is the one with static prior beliefs. We model the case of anticipated utility as

follows.12 At every point in time t the RBC model13 is solved by assuming that there exist two regimes

evolving according to the transition matrix PAU (t), where if the system has been for s > 0 consecutive

quarters in the high-growth regime

PAU (t) =

[
prob

{
τ1t = s+ 1|τ1t = s

}
1− prob

{
τ1t = s+ 1|τ1t = s

}
1− prob

{
τ2t = 2|τ2t = 1

}
prob

{
τ2t = 2|τ2t = 1

} ]

or if the system has been for s > 0 consecutive quarters in the low-growth regime

PAU (t) =

[
prob

{
τ1t = 2|τ1t = 1

}
1− prob

{
τ1t = 2|τ1t = 1

}
1− prob

{
τ2t = s+ 1|τ2t = s

}
prob

{
τ2t = s+ 1|τ2t = s

} ]

where Regime 1 is the high-growth regime and Regime 2 is the low-growth regime. Recall, prob
{
τ1t = s+ 1|τ1t = s

}
,

prob
{
τ2t = s+ 1|τ2t = s

}
are defined by equation (8).

Under the assumption of anticipated utility, agents keep conducting Bayesian updating of their beliefs

about the persistence of the observed growth rate of TFP. This is reflected by the fact that the probabilities

prob
{
τ1t = s+ 1|τ1t = s

}
and prob

{
τ2t = s+ 1|τ2t = s

}
are updated by using equations (3)-(4). However,

bounded rational agents do not take into account that their beliefs about the persistence of the observed

period of growth will change according to what they will observe in the future. In fact, agents overlook

that if in the next period t+1 the system is still in the high-growth regime, they should rationally expect

a persistence of the ongoing regime to be prob
{
τ1t = s+ 2|τ1t = s+ 1

}
, which is different from (in most

cases, it is strictly higher than) what they actually expect (i.e., prob
{
τ1t = s+ 1|τ1t = s

}
). This implies

that agents tend to be overpessimistic about the growth prospects of the economy in high-growth periods.

Furthermore, the matrix PAU (t) captures the fact that agents do not fully understand how their beliefs

will evolve in case of a switch to the low-growth block. This second type of bias contributes to make

agents overoptimistic about the growth prospects of the economy when the economy is going through

high-growth periods. When the economy is in a low-growth regime, the specular argument applies.

We consider the parameterization used for the static-prior simulation (Section 3.1). In the middle and

lower panel of Figure 9, we plot the expected TFP growth at one-, two-, five-, and ten-year horizon during

the simulation exercise conducted in Section 3.1. The solid line denotes the case of fully rational case

12An alternative way to model anticipated utility in our framework is to assume that beliefs about future outcomes are
equal to the current beliefs in every period. This stronger version of anticipated utility implies that bounded-rational agents
are not aware of regime changes and expect that the current regime will be in place forever. This stronger version of
anticipated utility leads to sizable approximation errors. We use a weaker version of anticipated utility in the paper so as to
give this approach a fair chance to approximate the fully rational solution.
13To simplify the model comparison, the model is loglinearized around the same ergodic steady-state equilibrium as the

RBC model studied in the previous sections.
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obtained by applying our methodology whereas the dashed line denotes the case of anticipated utility. We

can observe that the assumption of anticipated utility leads to overoptimism at the end of a long-lasting

high-growth period of a typical duration. The reason is that agents underestimate the duration of a

period of low growth that might materialize in the future. In period of low growth the dynamics of beliefs

and capital accumulation are specular.

In the top panel of Figure 9 we report the gap of consumption and capital between the fully rational

case and that of anticipated utility. A positive value for the gap means that consumption or capital

are lower in the anticipated-utility case compared to the fully rational case. Overly optimistic agents

accumulate relatively less capital during periods of long-lasting high growth. When agents were bounded

rational, capital stock would be lower than the fully rational case by slightly more than 2% at the end of

the typical long-lasting high-growth period. As the economy switches to short-lasting low growth there

is a big increase in capital accumulation under anticipated utility. The reason is that now agents’beliefs

become very similar with those in the rational case and agents want to fill the capital gap accumulated

in the past. This induces a huge drop in consumption by the bounded rational agents in the period

when the economy exits a long-lasting high-growth period. Assuming anticipating utility would lead to

an overestimation of this drop in consumption growth rate by about 5 percentage points. A specular

pattern would arise in the aftermath of a typical long-lasting low-growth period.

Cogley and Sargent (2008) use a business cycle model with no capital accumulation to show that

anticipated utility provides an accurate approximation of the solution of certainty-equivalent models with

fully rational learning. The reason why we reach different conclusions in this paper has to do with the fact

that our linear-quadratic model features a state variable (i.e., the physical capital) that, under standard

calibration, turns out to converge to steady state fairly sluggishly. This implies that past mistakes induced

by anticipated utility cannot be undone so quickly. Finally, note that similarly to Cogley and Sargent

(2008) the approximation error is negligible when capital is close to its steady state value. This is the case

at the beginning of the simulation where both gaps are virtually zero. Importantly, as the top right graph

of Figure 9 shows, the capital gap is still non-zero after a typical succession of short-lasting regimes lasting

forty quarters. Such a sluggish adjustment of the physical capital implies that any subsequent deviation

to one of the two typical long-lasting regimes would exacerbate the approximation error associated with

the anticipated-utility approach. This is suggestive that the unconditional approximation error associated

with the anticipated-utility approach is first order.

4.2 Likelihood Estimation

It is also important to emphasize the extreme tractability of the approach taken in this paper. The

solutions (9) and (13) can be easily combined with an observation equation and used in an estimation

algorithm. For example, Bianchi and Melosi (2015) estimate a prototypical New-Keynesian DSGE model,

in which agents form beliefs about the likely duration of deviations from active inflation stabilization

policies. The estimation of this new class of models is possible for three main reasons. First, even if the

final number of regimes can be extremely high, the model imposes very specific restrictions on the allowed

regime paths and on the link between observable outcomes and agents’beliefs. This implies that when

evaluating the likelihood, a relatively small number of regime paths has to be taken into account. Second,
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the statistical properties of the different regimes can vary substantially and depend on the probability of

moving across regimes. Therefore, identification of the transition matrix is not only given by the frequency

with which the different regimes occur, but also by the laws of motion characterizing the different regimes.

Finally, the number of extra parameters with respect to a model with perfect information is very low, if

not zero, while the resulting dynamics can be substantially enriched. For example, Bianchi and Melosi

(2014) show that a period of fiscal distress can lead to a run-up in inflation that lasts for decades.

From a computational point of view, there might be a concern about the time required to solve the

model when the final number of regimes becomes very large. This turns out not to be a problem. If

regime changes enter in an additive way, affecting only the matrix Γc, the model can be solved with

standard solution algorithms such as gensys (Sims 2002) or Blanchard and Kahn (1980) and the high

dimensionality of the transition matrix is not found to give rise to computational hurdles. However, in

many situations we might want to model regime changes that enter in a multiplicative way. For example,

we might want to allow for changes in the Taylor rule parameters. In this case, the matrices Γ0 and Γ1

are also affected and we need to rely on solution methods developed to solve MS-DSGE models. However,

according to our experience based on the use of the approach proposed by Farmer et al. (2009), even

in this case a solution can be obtained in a matter of seconds because the transition matrix governing

the evolution of the regimes is very sparse. Therefore, the methods described in this paper provide

a promising tools for modeling information frictions, animal spirits, and shocks to agents’beliefs in a

general equilibrium framework suitable for structural estimation.

4.3 Extension to Nonlinear Models

To illustrate our methods, we have referred to linear models of the form (1) because this is currently the

most popular modeling framework when it comes to solving and estimating general equilibrium models

subject to parameter instability. However, this restriction can be easily relaxed. In fact, it can be shown

that all the results about the dynamics of agents’beliefs in Section 2 apply to the nonlinear case as well.

To see this, one should notice that we maintain the assumption that agents fully understand the model

and can observe the endogenous variables and the shocks. Therefore, at each point in time they are able

to infer the block that is in place. Once the history of the realizations of the two blocks is known, the

dynamics of agents’beliefs are pinned down by the properties of the transition matrix P that is known
to agents. Therefore, the evolution of beliefs does not depend on the model under consideration or the

order of approximation.

It is worth emphasizing that application of our method to nonlinear models sets a promising research

agenda aimed to investigate the macroeconomic effects of swings in uncertainty due to changes in funda-

mentals or policy-makers’behavior. In light of this, the progresses made in effi ciently estimating DSGE

model through perturbation methods (e.g., Fernandez-Villaverde and Rubio-Ramirez 2006 and Foerster,

Rubio-Ramirez, Waggoner, and Zha 2011) have to be regarded as complementary to this line of studies.
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5 Concluding Remarks

This paper has developed methods to solve general equilibrium models in which agents are subject to

waves of optimism, pessimism, and uncertainty. Agents in the model are fully rational, understand the

structure of the economy, and know that they do not know. Therefore, when forming expectations they

take into account that their beliefs will evolve in response to realized observable economic outcomes, the

behavior of other agents in the model, or both. The central insight consists of creating an expanded

number of regimes indexed with respect to agents’beliefs. The resulting law of motion reflects agents’

uncertainty and can be expressed in state space form. Therefore, the framework proposed in this paper

is suitable for structural estimation. Another important contribution of the paper is to show the large

role played by changes in agents’beliefs in shaping the predictions we draw from rational expectations

models. The applications studied in this paper aim to show the scope of applicability of the proposed

methods. Finally, note that we have confined our analysis to the case of a primitive transition matrix of

four regimes. Nothing prevents us from constructing a larger transition matrix with a potentially richer

scope for learning. The choice of the transition matrix depends on the feature of the stochastic process

the researcher wishes to estimate. The results of this paper can be easily extended to more articulated

transition matrices.

Adding signals to our learning mechanism can be seen as a convenient way to model shocks to beliefs;

that is, exogenously driven changes in beliefs that are not associated with changes in the economy’s state.

While this is not the first paper to use signals as shocks to beliefs (e.g., Lorenzoni 2009, Angeletos and

La’O 2010 and 2013) the approach proposed in this paper has the important advantage of keeping the

model very tractable. This feature makes our methods potentially suitable for studying shocks to beliefs

in likelihood-based estimated large-scale DSGE models (e.g., Christiano, Eichenbaum, and Evans 2005

and Smets and Wouters 2007). Combined with the methods developed in Bianchi (2013a), we can also

study the effects of shocks to beliefs on uncertainty.

As scholars develop methods to effi ciently solve and estimate DSGE models through high-order per-

turbation (e.g., Fernandez-Villaverde and Rubio-Ramirez 2006 and Foerster, Rubio-Ramirez, Waggoner,

and Zha 2011), the methods developed in this paper lay down a convenient framework for investigating

the effects of changes in economic fundamentals or animal spirits on uncertainty and the feedback effects

of such swings in uncertainty on the economic dynamics.

Appendix

The appendices are organized as follows. Appendix A works out the recursions (3) and (4) that pin down

the dynamics of beliefs within blocks. Appendix B proves Proposition 1 that ensures the convergence

of the difference equations (3)-(4). Appendix C details the algorithm to construct the transition matrix

P̂ when agents receive signals. Appendix D characterizes the steady-state equilibrium for stationary

variables in the RBC model and obtains the log-linearized equations of this model.

Note that the convergence results, which are proven in Appendices B, could be derived by working

on the submatrices of each block. However, we have decided to work with the solution of the difference

equations (3) and (4) because this approach is familiar to a wider audience.
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A Deriving the Law of Motion for Beliefs

In this appendix, we want to show two propositions.

Proposition 2 The rational difference equations (3) and (4) hold true

Proof. Recall that equation (3) describes the dynamics of beliefs within Block 1. Consequently, this

equation holds when τ1t > 1. The Bayes’theorem can be applied to characterize the probability of being

in Regime 1 given that the system is in Block 1 (τ1t > 1):

prob
(
ξt = 1|τ1t

)
=

p
(
τ1t = τ1t−1 + 1|ξt = 1

)
p
(
ξt = 1|τ1t−1

)∑4
i=1 p

(
τ1t = τ1t−1 + 1|ξt = i

)
p
(
ξt = i|τ1t−1

)
But if τ1t = τ1t−1 + 1, then the likelihood is such that

p
(
τ1t = τ1t−1 + 1|ξt = 1

)
= p

(
τ1t = τ1t−1 + 1|ξt = 2

)
> 0

and

p
(
τ1t = τ1t−1 + 1|ξt = 3

)
= p

(
τ1t = τ1t−1 + 1|ξt = 4

)
= 0

The equality in the first expression reflects the fact that agents cannot distinguish regimes belonging to

the same block. The inequality sign in the first expression and the equality sign in the second expression

are due to the fact that the system is in Block 1 at time t, ruling out the possibility that either Regime

3 or Regime 4 is realized. These results allow us to write:

prob
(
ξt = 1|τ1t

)
=

p
(
ξt = 1|τ1t−1

)∑2
i=1 p

(
ξt = i|τ1t−1

)
Since p

(
ξt = i|τ1t−1

)
=
∑2

j=1 p
(
ξt−1 = j|τ1t−1

)
pji, then

prob
(
ξt = 1|τ1t

)
=

∑2
j=1 p

(
ξt−1 = j|τ1t−1

)
pj1∑2

i=1

∑2
j=1 p

(
ξt−1 = j|τ1t−1

)
pji

Furthermore, note that p
(
ξt−1 = 2|τ1t−1

)
= 1−p

(
ξt−1 = 1|τ1t−1

)
and after straightforward manipulations

leads to equation (3). Equation (4) can be proved analogously.

B Proof of Proposition 1

We will characterize the convergence of prob
(
ξt = 1|τ1t

)
as the number of consecutive periods spent in

Block 1, τ1t , grows large. We will denote lim
τ1t→∞

prob
(
ξt = 1|τ1t

)
= x using prob

(
ξt = 1|τ1t

)
−→ x and the
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characteristic roots of equation (3) with :

λ̃1 ≡
p11 − p22 − 2p21 −

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
(25)

λ̃2 ≡
p11 − p22 − 2p21 +

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
(26)

where λ̃2 is the stable root. The following propositions assess the convergence of the difference equation

(3) under all the possible parameterizations of the (primitive) transition matrix P . An analogous pair

of roots, λ̃3 and λ̃4, with λ̃4 being the stable root, can be derived for Block 2. Similarly, all results that

follow will also apply to Block 2.

Proposition 3 If (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 6= p21p12, (iii) p11 6= p22 or both p12 6= 0 and

p21 6= 0, and the initial probability is such that prob
(
ξt = 1|τ1t = 1

)
6= λ̃1, then prob

(
ξt = 1|τ1t

)
−→ λ̃2 ∈

[0, 1]. If conditions (i), (ii), and (iii) hold and the initial probability is such that prob
(
ξt = 1|τ1t = 1

)
= λ̃1,

then prob
(
ξt = 1|τ1t

)
= λ̃1 for any τ1t .

Proof. The difference equation (3) can be expressed as

prob
(
ξt = 1|τ1t

)
=
a · prob

(
ξt−1 = 1|τ1t−1

)
+ b

c · prob
(
ξt−1 = 1|τ1t−1

)
+ d

(27)

where

a ≡ p11 − p21, b ≡ p21
c ≡ p11 + p12 − p21 − p22, d ≡ p21 + p22

Condition (i) ensures that the difference equation of interest is rational because it implies c > 0. We will

deal with the case of c = 0 later on. We then proceed as follows. Denote prob
(
ξt = 1|τ1t

)
+ d

c as xt and

re-write the difference equation above as

xt = α− β

xt−1
(28)

where

α ≡ p11 + p22
p11 + p12 − p21 − p22

β ≡ p11p22 − p21p12
(p11 + p12 − p21 − p22)2

Condition (ii) ensures that β 6= 0. The case of β = 0 will be studied later. The above equation can be

reduced to a homogeneous linear difference equation by defining xt = ϕt/ϕt−1 where:

ϕt − αϕt−1 + βϕt−2 = 0 (29)

35



B. PROOF OF PROPOSITION 1 Modeling the Evolution of Beliefs

If λ1 and λ2 are the solutions of the characteristic equation, namely 1
2α ±

1
2

√
α2 − 4β, then the general

solution of (29) is

ϕt = C1λ
t
1 + C2λ

t
2, if λ1 6= λ2 (30)

ϕt = (C1 + C2t)λ
t
1, if λ1 = λ2 (31)

The general solution of (28) is then:

xt =
C1λ

t
1 + C2λ

t
2

C1λ
t−1
1 + C2λ

t−1
2

(32)

when C2 = 0, xt = λ1 for all t. When C1 = 0, xt = λ2 for all t. When neither C1 nor C2 is zero, then

xt = λ2

(
λ1
λ2

)t+1
+ C(

λ1
λ2

)t
+ C

, C 6= 0 (33)

Note that α2 ≥ 4β is required for the characteristic roots λ1 and λ2 to be real. This condition is[
p11 + p22

p11 + p12 − p21 − p22

]2
≥ 4

p11p22 − p21p12
(p11 + p12 − p21 − p22)2

and after simplifying

p211 + p222 + 2p11p22 ≥ 4p11p22 − 4p21p12

Some straightforward manipulation leads us to

(p11 − p22)2 ≥ −4p21p12 (34)

From condition (iii), the inequality above is strict and the characteristic roots are unequal. The case

in which the characteristic roots are identical is tackled by the next proposition. Let |λ2| > |λ1|
then |λ1/λ2|t → 0 and (33) implies that xt → λ2 as long as x1 6= λ1. The root with highest ab-

solute value can be seen to be always p11+p22+
√
(p11−p22)2+4p21p12

2(p11+p12−p21−p22) . Recall that xt ≡ prob
(
ξt = 1|τ1t

)
+ d

c .

After some straightforward algebraic manipulations we obtain:

prob
(
ξt = 1|τ1t

)
→ λ̃2 =

p11 − p22 − 2p21 +
√

(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)

where λ̃2 is the stable root for the variable of interest prob
(
ξt = 1|τ1t

)
. The unstable root for prob

(
ξt = 1|τ1t

)
can be easily seen to be:

λ̃1 =
p11 − p22 − 2p21 −

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
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We only need to show that λ̃2 ∈ [0, 1]. We want to show that

p11 − p22 − 2p21 +
√

(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≥ 0

If p11 + p12 − p21 − p22 > 0 and p11 − p22 − 2p21 ≥ 0, then the statement is clearly true. When

p11 + p12 − p21 − p22 > 0 and p11 − p22 − 2p21 < 0, then√
(p11 − p22)2 + 4p21p12 ≥ − (p11 − p22 − 2p21)

Since the right-hand side is positive we can square both sides of this equation:

(p11 − p22)2 + 4p21p12 ≥ (p11 − p22 − 2p21)
2

4p21p12 ≥ 4p221 − 4 (p11 − p22) p21

If p21 = 0, the statement is true. If p21 > 0

p12 − p21 + (p11 − p22) ≥ 0

which is true. If p11 + p12 − p21 − p22 < 0, then p11 − p22 − 2p21 < 0. We need to show that

p11 − p22 − 2p21 ≤ −
√

(p11 − p22)2 + 4p21p12

Since both sides of the inequality are negative, then

(p11 − p22 − 2p21)
2 ≥ (p11 − p22)2 + 4p21p12

and after manipulating:

−4 (p11 − p22) p21 + 4p221 ≥ 4p21p12

If p21 = 0, the inequality is obviously verified. If p21 > 0, then

0 ≥ (p11 − p22) + p12 − p21

which is true. We want to show that

p11 − p22 − 2p21 +
√

(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≤ 1

If p11 + p12 − p21 − p22 > 0, then after some manipulations√
(p11 − p22)2 + 4p21p12 ≤ p11 + 2p12 − p22
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Note that p11 + 2p12 − p22 > p11 + p12 − p21 − p22 > 0. Hence, taking the square on both sides of the

inequality yields:

(p11 − p22)2 + 4p21p12 ≤ (p11 + 2p12 − p22)2

and finally

4p21p12 ≤ 4p212 + 4 (p11 − p22) p12

If p12 = 0, this is true. If p12 > 0, then

p21 ≤ p12 + (p11 − p22)

which is true. If p11 + p12 − p21 − p22 < 0, then after some manipulations√
(p11 − p22)2 + 4p21p12 ≥ p11 + 2p12 − p22

If p11 + 2p12 − p22 < 0, this inequality is obviously true. If p11 + 2p12 − p22 ≥ 0, then

(p11 − p22)2 + 4p21p12 ≥ (p11 + 2p12 − p22)2

and then

4p21p12 ≥ 4p212 + 4 (p11 − p22) p12

If p12 = 0, this is true. If p12 > 0, then

p21 ≥ p12 + p11 − p22

which is true.

The next proposition relaxes condition (iii) of the above proposition.

Proposition 4 If (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 6= p21p12, (iii) p11 = p22 and either p12 = 0

or p21 = 0, then prob
(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 and the roots are either equal to zero (if p21 = 0) or one (if

p12 = 0).

Proof. We want to show that if (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 6= p21p12, (iii) p11 = p22 and

either p12 = 0 or p21 = 0, then prob
(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 and the roots are either equal to zero (if

p21 = 0) or one (if p12 = 0). This result follows from observing that condition (iii) implies that condition

(34) delivers coincident characteristic roots λ̃1 and λ̃2; that is,

λ̃1 = λ̃2 =
p21

p21 − p12

If p12 = 0, then prob
(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 = 1. If p21 = 0, then prob

(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 = 0.

If the two regimes have the same persistence (p11 = p22) and the system has remained in Block

1 for suffi ciently long, then agents will eventually believe they are in the regime that is an absorbing

state (conditional on staying in the block). The next proposition relaxes condition (ii) of the previous
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propositions.

Proposition 5 If (i) p11+p12−p21−p22 6= 0, (ii) p11p22 = p21p12, then prob
(
ξt = 1|τ1t

)
= p11−p21

p11+p12−p21−p22 .

Proof. We want to show that if (i) p11+p12−p21−p22 6= 0, (ii) p11p22 = p21p12, then prob
(
ξt = 1|τ1t

)
=

p11−p21
p11+p12−p21−p22 . Condition (ii) implies β = 0 in equation (28) and hence (using the notation introduced

above)

xt = α ≡ p11 + p22
p11 + p12 − p21 − p22

Recall that xt = prob
{
ξt = 1|τ1t

}
+ d/c, then it follows that

prob
{
ξt = 1|τ1t

}
=

p11 − p21
p11 + p12 − p21 − p22

.

Note that if conditions (i) and (ii) are satisfied, prob
(
ξt = 1|τ1t

)
suddenly converges by jumping to

p11−p21
p11+p12−p21−p22 as the system enters Block 1. The recursion (3) can be shown to become a linear difference

equation. The solution of this equation is characterized in the following two propositions.

Proposition 6 If (i) p11 + p12 − p21 − p22 = 0 and (ii) p11 6= p21, then prob
(
ξt = 1|τ1t

)
→ p21

p22−p11+2p21 ,

with p21
p22−p11+2p21 ∈ [0, 1] .

Proof. We want to show that if (i) p11 + p12 − p21 − p22 = 0 and (ii) p11 6= p21, then prob
(
ξt = 1|τ1t

)
→

p21
p22−p11+2p21 , with

p21
p22−p11+2p21 ∈ [0, 1] . If p11 + p12 − p21 − p22 = 0, then c = 0 in the difference equation

(27), which hence boils down to the first-order linear difference equation below:

prob
(
ξt = 1|τ1t

)
=
a

d
· prob

(
ξt−1 = 1|τ1t−1

)
+
b

d
(35)

where a = p11 − p21, b = p21, d = p21 + p22. Stability is ensured by
∣∣a
d

∣∣ =
∣∣∣p11−p21p21+p22

∣∣∣ < 1. First note

that the benchmark assumption A1 combined with condition (i) implies that d 6= 0 and hence the ratio∣∣a
d

∣∣ is well-defined. Condition (ii) rules out the possibility that the ratio ∣∣ad ∣∣ is zero. We will tackle this
case in the next proposition. The condition p11 + p12 − p21 − p22 = 0 allows us to re-write the stability

condition
∣∣a
d

∣∣ =
∣∣∣p11−p21p21+p22

∣∣∣ as ∣∣∣p11−p21p11+p12

∣∣∣. Hence, showing that p12+p21 > 0 implies stability. Recall that the

benchmark assumption A2 requires that either p11 6= p22 or p12 6= p21. If the latter condition is satisfied,

then p12 + p21 > 0 trivially follows. If the latter condition is not satisfied, then it must be that p11 6= p22,

which, combined with condition (i), implies that p12 + p21 > 0. It is easy to see that the difference

equation (35) implies that prob
(
ξt = 1|τ1t

)
→ b

d

(
1− a

d

)−1, that is,
prob

(
ξt = 1|τ1t

)
→ p21

p21 + p22

(
1− p11 − p21

p21 + p22

)−1
After easy algebraic manipulations

prob
(
ξt = 1|τ1t

)
→ p21

p22 − p11 + 2p21
.
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Note that

0 ≤ p21
p22 − p11 + 2p21

≤ 1

To see that, recall that in this case, p11 + p12 − p21 − p22 = 0, implying that p22 − p11 = p12 − p21.

Substituting this result into the inequalities above yields

0 ≤ p21
p12 + p21

≤ 1

which is clearly verified.

Proposition 7 If (i) p11 + p12 − p21 − p22 = 0, (ii) p11 = p21, then prob
(
ξt = 1|τ1t

)
= p21

p22+p21
.

Proof. We want to show that if (i) p11+p12−p21−p22 = 0, (ii) p11 = p21, then prob
(
ξt = 1|τ1t

)
= p21

p22+p21
.

Condition (i) implies that c = 0 in the difference equation (27), which hence boils down to the first-order

linear difference equation below:

prob
(
ξt = 1|τ1t

)
=
a

d
· prob

(
ξt−1 = 1|τ1t−1

)
+
b

d
(36)

where a = p11−p21, b = p21, d = p21+p22. Condition (ii) implies that a = 0 and hence prob
(
ξt = 1|τ1t

)
=

b/d = p21/ (p21 + p22).

It should be noted that when p11 = p21, beliefs prob
(
ξt = 1|τ1t

)
suddenly jump to p21

p22+p21
for any

τ1t ≥ 1 (as the system enters Block 1).

To sum up, given the benchmark assumptions A1-A3, we have shown that equation (3) always

converges. Note that Proposition 2 implies that beliefs do not converge to λ̃2, if the starting beliefs

prob
(
ξt = 1|τ1t = 1

)
= λ̃1. The next two propositions show that either λ̃1 ≤ 0 or λ̃1 ≥ 1, implying that

the only admissible values for probabilities are either zero or one. Therefore, there are only a few limiting

cases in which equation (3) does not converge to λ̃2. It can be shown that it is suffi cient to set the

probability ratios 0 < pi3/ (pi3 + pi4) < 1 for any i ∈ {1, 2} to rule out these cases that are not very
relevant in practice.

Recall that

λ̃1 ≡
p11 − p22 − 2p21 −

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)

We want to show that 0 ≤ λ̃1 ≤ 1. This claim is implied by the following two propositions.

Proposition 8 If p11 + p12 − p21 − p22 > 0, then λ̃1 ≤ 0.

Proof. We want to show that

p11 − p22 − 2p21 −
√

(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≤ 0

If p11 + p12 − p21 − p22 > 0, then the above implies

p11 − p22 − 2p21 ≤
√

(p11 − p22)2 + 4p21p12
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Note that the benchmark assumption A3 excludes that p11−p22−2p21 = 0. Hence there are two possible

cases left: (a) if p11− p22− 2p21 < 0, then the above is true; (b) if p11− p22− 2p21 > 0, then we can take

the square on both sides of the above equation to get

(p11 − p22 − 2p21)
2 ≤ (p11 − p22)2 + 4p21p12

Straightforward manipulations lead to

p221 − p11p21 + p22p21 ≤ p21p12

If p21 = 0, then the above is true. Otherwise, we can divide both sides of the above inequality by p21 to

get

p11 + p12 − p21 − p22 ≥ 0

that is obviously true because p11 + p12 − p21 − p22 > 0.

Proposition 9 If p11 + p12 − p21 − p22 < 0, then λ̃1 ≥ 1.

Proof. We want to show that

p11 − p22 − 2p21 −
√

(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≥ 1

Since p11 + p12 − p21 − p22 < 0, the above implies

p11 − p22 − 2p21 −
√

(p11 − p22)2 + 4p21p12 ≤ 2 (p11 + p12 − p21 − p22)

and after simplifying

−
√

(p11 − p22)2 + 4p21p12 ≤ p11 − p22 + 2p12

Note that the benchmark assumption A3 excludes that p11 − p22 + 2p21 = 0. If p11 − p22 + 2p12 > 0, the

above is obviously true. If p11 − p22 + 2p12 < 0, then taking the square on both sides

(p11 − p22)2 + 4p21p12 ≥ (p11 − p22 + 2p12)
2

After some manipulations:

p12 + p11 − p12 − p22 ≤ 0

that is obviously true because p11 + p12 − p21 − p22 < 0.

C Algorithm for the Case with Signals

Algorithm Set i = 1 and initialize the matrix P̂ = 0g×g

Step 1 Find j1 ≤ g1 and j2 ≤ g1 so as to min
∣∣prob{ξt = 1|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2}
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where

prob
(
ξt = 1|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 1) prob
(
ξt = 1|It, $t−1)∑2

j=1 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2} (37)

and agents’beliefs about being in Regime 1 before observing the signal read:

prob
(
ξt = 1|It, $t−1) =

prob
(
ξt−1 = 1|It−1, $t−1) (p11 − p21) + p21

prob
(
ξt−1 = 1|It−1, $t−1

)
(p11 + p12 − p21 − p22) + p21 + p22

(38)

using the approximation prob
{
ξt−1 = 1|It−1, $t−1} = Gi. To ensure convergence of beliefs, we

correct j1 and j2 as follows. If jq = i and Gi 6= λ̃2 (q ∈ {1, 2}), then set jq = jq + 1 if Gi < λ̃2 and

jq = max (1, jq − 1) if Gi > λ̃2.

Step 2 Setting prob
(
ξt−1 = 1|It−1, $t−1) = Gi, the (ex-ante) transition probability can be computed as:

P̂ (i, jq) =
∑2

v=1 prob
{
ξt = v|It−1, $t−1} prob {$t = q|ξt = v} , q ∈ {1, 2} (39)

where

prob
{
ξt = v|It−1, $t−1} =

∑2
u=1 prob

{
ξt−1 = u|It−1, $t−1} puv (40)

Step 3 Find j1 > g1 and j2 > g1 so as to min
∣∣prob{ξt = 3|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2},
where

prob
(
ξt = 3|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 3) prob
(
ξt = 3|It, $t−1)∑4

j=3 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2}

and the beliefs about being in Regime 3 upon the shift to Block 2 (before having observed the signal

$t) are given by:

prob
{
ξt = 3|It, $t−1} =

∑
j∈b1 prob

{
ξt−1 = j|It−1, $t−1} pj3∑

i∈b2
∑

j∈b1 prob
{
ξt−1 = j|It−1, $t−1

}
pji

=
prob

{
ξt−1 = 1|It−1, $t−1} p13 +

(
1− prob

{
ξt−1 = 1|It−1, $t−1}) p23

prob
{
ξt−1 = 1|It−1, $t−1

}
(p13 + p14) +

(
1− prob

{
ξt−1 = 1|It−1, $t−1

})
(p23 + p24)

using the approximation that prob
(
ξt−1 = 1|It−1, $t−1) = Gi. Setting prob

(
ξt−1 = 1|It−1, $t−1) =

Gi, the (ex-ante) transition probabilities as

P̂ (i, jq) = P̂ (i, jq) +

4∑
v=3

(
2∑

u=1

prob
{
ξt−1 = u|It−1, $t−1} puv) prob {$t = q|ξt = v} , q ∈ {1, 2}

(41)

Step 4 If i = g1 then set i = i+ 1 and go to step 6; otherwise, set i = i+ 1 and go to step 1.

Step 5 Find j1 > g1 and j2 > g1 so as to min
∣∣prob{ξt = 3|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2}
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where

prob
(
ξt = 3|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 3) prob
(
ξt = 3|It, $t−1)∑4

j=3 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2}

and agents’beliefs about being in Regime 3 before observing the signal read:

prob
(
ξt = 3|It, $t−1) =

prob
(
ξt−1 = 3|It−1, $t−1) (p33 − p43) + p43

prob
(
ξt−1 = 3|It−1, $t−1

)
(p33 + p34 − p43 − p44) + p43 + p44

(42)

using the approximation prob
{
ξt−1 = 3|It−1, $t−1} = Gi. To ensure convergence of beliefs, we

correct j1 and j2 as follows. If jq = i and Gi 6= λ̃4 (q ∈ {1, 2}), then set jq = min (jq + 1, g) if

Gi < λ̃4 and jq = jq − 1 if Gi > λ̃4.

Step 6 Setting prob
(
ξt−1 = 3|It−1, $t−1) = Gi, the (ex-ante) transition probability can be computed as:

P̂ (i, jq) = P̂ (i, jq) +
4∑
v=3

(
4∑

u=3

prob
{
ξt−1 = u|It−1, $t−1} puv) prob {$t = q|ξt = v} , q ∈ {1, 2}

(43)

Step 7 Find j1 ≤ g1 and j2 ≤ g1 so as to min
∣∣prob{ξt = 1|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2},
where

prob
(
ξt = 1|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 1) prob
(
ξt = 1|It, $t−1)∑2

j=1 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2}

and the beliefs about being in Regime 1 upon the shift to Block 1 (before having observed the signal

$t) are given by:

prob
{
ξt = 1|It, $t−1} =

∑
j∈b2 prob

{
ξt−1 = j|It−1, $t−1} pj1∑

i∈b1
∑

j∈b2 prob
{
ξt−1 = j|It−1, $t−1

}
pji

=
prob

{
ξt−1 = 3|It−1, $t−1} p31 +

(
1− prob

{
ξt−1 = 3|It−1, $t−1}) p41

prob
{
ξt−1 = 3|It−1, $t−1

}
(p31 + p32) +

(
1− prob

{
ξt−1 = 3|It−1, $t−1

})
(p41 + p42)

using the approximation that prob
(
ξt−1 = 3|It−1, $t−1) = Gg1+i. Setting prob

(
ξt−1 = 3|It−1, $t−1) =

Gi, the (ex-ante) transition probability can be computed as:

P̂ (i, jq) = P̂ (i, jq) +

2∑
v=1

(
4∑

u=3

prob
{
ξt−1 = u|It−1, $t−1} puv) prob {$t = q|ξt = v} , q ∈ {1, 2}

(44)

Step 8 If i = g, then go to step 9; otherwise, set i = i+ 1 and go to step 5.

Step 9 If no column of P̂ has all zero elements, then stop. Otherwise, go to step 10.

Step 10 Construct the matrix T as follows. Set j = 1 and l = 1. While j ≤ g, if
∑g

i=1 P̂ (i, j) 6= 0 then

do three things: (1) set T (j, l) = 1, (2) set T (j, v) = 0 for any 1 ≤ v ≤ g and v 6= l, (3) set l = l+ 1
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and (4) set j = j + 1; otherwise (i.e., if
∑g

i=1 P̂ (i, j) = 0), set j = j + 1.

Step 11 Write the transition equation as P̂R = T · P̂ · T ′. If no column of P̂R has all zero elements, set
P̂ = P̂R and stop. Otherwise, go to step 10.

D Log-Linearization of the RBC Model

Solving the problem of the representative household in Section 3 leads to:

c−1t = βẼtc
−1
t+1

[
αzt+1k

α−1
t + 1− δ

]
(45)

ct + kt = ztk
α
t−1 + (1− δ) kt−1 (46)

The stochastic process of TFP (17) and equations (45)-(46) imply that consumption and capital are

non-stationary. Denote the stationary variables c̃t ≡ ct/z(1−α)
−1

t , k̃t ≡ kt/z(1−α)
−1

t , µt ≡ ln (zt/zt−1), and

Mt ≡ zt/zt−1 as the gross growth rate of TFP. The stationary version of the model reads:

c̃−1t = βẼtc̃
−1
t+1M

1
α−1
t+1

[
αMt+1k̃

α−1
t + 1− δ

]
(47)

c̃t + k̃t = Mk̃αt−1 + (1− δ)M
1

α−1
t k̃t−1 (48)

Following Schorfheide (2005) and Liu et al. (2011), we define a steady-state equilibrium for the

stationary consumption c̃t and capital k̃t when εt = 0 all t and the growth rate of TFP is at its ergodic

value µ. The steady-state equilibrium level of consumption css and capital kss is:

kss =

 1

αM

M 1
1−α

β
− 1 + δ

 1
α−1

(49)

css = M
α
α−1kαss +

[
(1− δ)M

1
α−1 − 1

]
kss (50)

where M ≡ exp (µ), µ ≡ (p1 + p2)µH + (p3 + p4)µL is the ergodic mean of the log growth rate of the

economy, and pi stands for the ergodic probability of being in Regime i.

Taking the log-linear approximation of equations (47)-(48) around the steady-state equilibrium (49)-

(50) leads to

ĉt = Ẽtĉt+1 − (α− 1)
(

1 + (δ − 1)βM
1

α−1
)
k̂t −

(
1

α− 1
+ βM

1
α−1 (δ − 1) + 1

)
Ẽtµ̂t+1

where we use the fact that βM
1

α−1
(
αMkα−1ss + 1− δ

)
= 1 from equation (49) and µ̂t ≡ µt − µ is the

log-deviation of the growth rate of TFP from its ergodic mean µ. ĉt and k̂t denote log-deviations of the

stationary consumption and capital, respectively, from their steady-state value, and µ̂ (ξt) ≡ µt (ξt) − µ
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is the log-deviation of the TFP drift from its ergodic mean µ. The resource constraint is

cssĉt + kssk̂t =

(
M

α
α−1kαss

α

α− 1
+

1− δ
α− 1

M
1

α−1kss

)
µ̂t +

(
M

α
α−1kαssα+ (1− δ)M

1
α−1kss

)
k̂t−1

and the log-deviations of the growth rate of TFP from its ergodic level follows

µ̂t = µ̂t (ξt) + σzεt. (51)
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