Discussion of “Economic Growth with Bubbles” by Alberto Martin and Jaume Ventura

Cosmin Ilut

Duke Univ.

Joint Central Bank Conference, 2011
Very nice paper! Beautiful exposition, intriguing message.

Motivation:
- we observe large swings in asset prices
- hard to reconcile with observed changes in fundamentals
- tend to comove positively with economic activity (‘generalized booms and busts’)

Model: take standard rational bubbles model and add
- 1. stochastic bubbles
- 2. financial frictions: bubbles can transfer resources from unproductive to productive investments

Main findings:
- 1. characterize bubbly equilibrium: asset valuations exceed that of fundamentals.
- 2. bubbles shocks: potentially able to generate positive comovement btw prices and activity
Non-fundamentals shocks

- Renewed interest in shocks that are not manifested in ‘fundamentals’ (technology, preference, policy)
- Some recent approaches:
 1. noise shocks
 - news shocks literature, Lorenzoni, 2009, Barsky and Sims, 2010 ...
 2. sunspots
 - Farmer, 2009, 2010
 3. higher-order beliefs shocks
 - Angeletos and La’O, 2011
 4. Knightian uncertainty (‘confidence’) shocks
 - Ilut and Schneider, 2011
- Here: stochastic bubbles (investor ‘sentiment’ shocks).
My discussion

- Go a bit through the model
- Comments:
 1. Parameterization to get the positive comovement
 2. Risk-neutrality.
 3. Policy implication: ‘fuel the bubble?’
Standard model: Samuelson-Tirole

- Problems:
 1. Deterministic bubbles
 2. Bubbles lower output (raise C and lower Investment)
 - bubbles reduce inefficient investments

- Solutions proposed by this paper:
 1. Stochastic bubbles
 2. Financial frictions: Bubbles can raise output (raise both C and I)

- Financial frictions: both efficient and inefficient investments exist

- Intuition: bubbles
 1. reduce inefficient investments,
 2. increase efficient investments

- Overall effect on output depends on the two effects
Martin-Ventura Model

- OLG. Agents work and invest labor income when young, consume when old (risk neutral)

- Output:
 \[F(k_t, l_t) = l_t^{1-\alpha} k_t^\alpha \]
 - wage: \(w_t = (1 - \alpha) k_t^\alpha \)

- Investment opportunities:
 - fraction \(\varepsilon \) productive (P)
 - \(1 - \varepsilon \) unproductive (U): produce \(\delta < 1 \) units of capital with one unit of output
 - financial frictions: U are forced to make their own investments
 - aggregate efficiency of investment \((A \equiv \varepsilon + (1 - \varepsilon)\delta) \)

 \[k_{t+1}^{NB} = A(1 - \alpha) k_t^\alpha \]
Bubbles

- Technological properties:
 - start randomly, no initial cost
 - benefit: possibility to sell them later

- Without further structure, theory has implications for:
 - b_t: price of all old bubbles
 - b_t^P and b_t^U: price of all new bubble created by P and U

- Market for bubbles:
 - owners: old (acquired when young) and young (new bubbles)
 - buyers: only young (old only consume)

- Equilibrium bubbles: a stochastic process $(b_t, b_t^P, b_t^U)_{t=0}^\infty$ st:
 - $b_t + b_t^P + b_t^U > 0$
 - a sequence for k_t satisfying individual max and mkt clearing:
 \[
 E_t R_{t+1}^{bubble} = E_t R_{t+1}^K
 \]
 \[
 0 \leq b_t \leq w_t
 \]
Conditions for bubbly equilibrium

\[
E_t \left\{ \frac{b_{t+1}}{b_t + b_t^P + b_t^U} \right\} = \begin{cases}
\delta \alpha k_{t+1}^{\alpha-1} & \text{if } \frac{b_t + b_t^P}{(1-\varepsilon)sk_t^\alpha} \leq 1 \\
\alpha k_{t+1}^{\alpha-1} & \text{if } \frac{b_t + b_t^P}{(1-\varepsilon)sk_t^\alpha} > 1
\end{cases}
\]

Implied capital accumulation:

\[
k_{t+1} = \begin{cases}
 k_{NB}^{t+1} + (1 - \delta)b_t^P - \delta b_t & \text{if (1)} \\
 k_{NB}^{t+1} \frac{1}{A} - b_t & \text{if (2)}
\end{cases}
\]

1. Classic crowding-out: old sell bubbles to young, total inv. falls
 - bubble eliminates first U. \(\rightarrow\) in fact raises average efficiency
 - if large enough (see (2)) can then move to eliminate P

2. Reallocation effect: when in (1), young P sell to young U
 - P investments replace U \(\rightarrow\) raises total investment
 - when \(\delta = 1\), only crowding-out: \(k_{t+1} = k_{NB}^{t+1} - b_t\)
Contractionary and expansionary bubbles

- **Labels:** if throughout a bubbles episode:
 - $(1 - \delta)b_t^P - \delta b_t < 0 \rightarrow \text{'contractionary'} \quad (C)$
 - $(1 - \delta)b_t^P - \delta b_t > 0 \rightarrow \text{'expansionary'} \quad (E)$

- **Proposition 2:**

 $C \iff \alpha < (1 - \alpha) \frac{A}{\delta}$

 $E \iff \alpha < (1 - \alpha) \frac{A}{\delta} \left\{ \begin{array}{ll}
 (1 - \delta) & \text{if } A > 0.5 \\
 \frac{1}{4(1-\varepsilon)A} & \text{if } A \leq 0.5
\end{array} \right.$

- **The higher δ, the more likely to get only C.**
Comment 1: Parameter space

eps = 0.037037

eps = 0.074074

eps = 0.11111

es = 0.14815

es = 0.18519

es = 0.22222
region II: surely Contractionary, region III: either C or E.
Bubble shocks

- Can redefine: $x_t \equiv \frac{b_t}{(1-\alpha)k_t^\alpha}$, $x_t^P \equiv \frac{b_t^P}{(1-\alpha)k_t^\alpha}$ to rewrite:

 $$
 k_{t+1} = \begin{cases}
 (1 - \alpha)k_t^\alpha \left[A + (1 - \delta)x_t^P - \delta x_t \right] & \text{if } \frac{x_t + x_t^P}{(1-\varepsilon)} < 1 \\
 (1 - \alpha)k_t^\alpha (1 - x_t) & \text{if } \frac{x_t + x_t^P}{(1-\varepsilon)} \geq 1
 \end{cases}
 $$

- Bubble shocks look like investment shocks (Justiniano et al., 2010)
- Implied consumption and aggregate welfare (identical):

 $$
 c_t = \left[\alpha + x_t(1 - \alpha) \right] k_t^\alpha
 $$

- Positive shocks to x_t, x_t^P have two effects:

1. Increase c_t because old sell to young (irrespective of type of bubbles)
2. Affect k_t—depends on the type of bubble
 - If contractionary (i.e. $(1 - \delta)x_t^P < \delta x_t$) reduce $k_t, c_t \to 'Bad'$
 - If expansionary (i.e. $(1 - \delta)x_t^P > \delta x_t$) increase $k_t, c_t \to 'Good'$
Parameters as in the benchmark, but vary ε and δ

- C1: bubbly episodes never exceed U’s savings, i.e. $x_t + x_t^P < (1 - \varepsilon)$
- C2: bubbly episodes are always expansionary, i.e. $(1 - \delta)x_t^P > \delta x_t$

 ★ Region 1: both C1 and C2 hold; Region 2: C1 holds, C2 not
 ★ Region 3: C2 holds, C1 not, Region 4: neither holds
Comment 2: on the role of risk-neutrality

- Here assume risk neutrality.
- What if allow for risk aversion?
- Bubbles add a lot of volatility.
- When bubbles appear, to compensate for risk the required expected return on bubbles may need to be significantly larger.
 - may make conditions for bubbly equilibrium tighter.
 - reason: now bubbles must grow even faster than before.
 - but cannot grow too fast (can’t exceed savings of young)

- Implications for risk premia on bubbles?
 - may be large in economic booms driven by bubbles.
 - time-variation?

- Welfare implications: bubbly equilibrium may be welfare-reducing if account for the added volatility.
Comment 3: On the policy implications of bubbles

- Here, expansionary bubbles are ‘Good’: increase level of c_t
 - for example, interpret the US booms as ‘desirable’.
- A very stark policy implication: should ‘fuel the bubble’!
- A different view (Christiano, Ilut, Motto and Rostagno, 2008, 2010): news about future technology level
 - start with a (modified) RBC model. Good news about the future
 - agents work, consume and invest more
 - real interest rate jumps, price of capital ↓
 - Add nominal rigidities and a standard Taylor rule:
 - agents work, consume and invest much more than Ramsey plan (RBC)
 - $\pi \downarrow$, nominal rate ↓, ‘fuels’ asset prices ↑
- Different picture: an inefficient boom with asset price ‘bubbles’
 - bubble: asset value > PDV of fundamentals when news not realized
Figure 6: Response of Baseline and Perturbed Model to Signal Shock (Signal not realized); Perturbation = Ramsey
Optimal policy

- 'Conventional wisdom': no need to separately respond to credit/'bubbles' (Bernanke and Gertler, 1999, 2001)

- In CIMR, it’s optimal to 'lean against the boom in credit'
 - because inflation is not particularly high in the news-driven booms.
 - an inflation targeting rule fails to raise the interest rate

- In this model, optimal to sustain bubbles.

- Important to think about potentially different sources of 'bubbles':
 - some may be efficient, some not.
 - very different responses.

- How can we distinguish them?
 - they may look the same in asset prices, credit growth, macro aggregates
Conclude

- Very interesting and timely paper
- An exciting research agenda
- Thoughts: quantitative evaluation
 - what features (reasonable parameterizations) needed to get bubbles be expansionary
 - optimal policy and bubbles.
 - how to distinguish from other sources of bubbles.