Course description: This course deals with empirical research in macroeconomics and international finance. The aim of the course is to provide the student with a series of tools for the empirical analysis of time-series, and to give the student a taste of the current empirical research in macroeconomics and international finance. One of the aims of the course is to give the student a chance to pursue a small project and conduct simple empirical research, and we will use the econometrics package “E-views” for that purpose.

Pre-requisites: Econ 139, Econ 51, Linear Algebra

Books: Stock and Watson, Econometrics, Addison-Wesley, 2002 (required)
Diebold, Elements of Forecasting, South-Western 1998 (recommended)

Package: Eviews (available at the U-store)

Requirements: The grade will be based on course assignments (20%), a midterm exam (30%) and a final assignment (50%).

My contact information:
Office: 204, Social Science Building
E-mail: brossi@econ.duke.edu
Office hours: Mon-Wed, 5:15-6:30 PM
Topics

1. Review of basic econometrics (Stock and Watson, chapters 4 and 5).
 - The linear regression model (univariate): Assumptions, theorems (LLN, CLT), test statistics (t-tests and F-tests).
 - Multivariate regressions
 - White heteroskedasticity robust standard errors
2. Introduction to Time Series Econometrics
 - Autocorrelation
 - Autoregressions and ADL models
 - Granger causality
5. Serial correlation: problems and solutions. HAC robust estimation.
6. Dynamic multipliers.
7. ARMA stationary models: mean, variance, autocorrelation calculations and impulse-response functions (Hamilton, Time Series Analysis, chapter 1)
8. VARs
 a. Theoretical and estimation issues (Stock and Watson, chp. 14)
 b. Impulse-responses and variance decompositions
 c. Multi-period forecasting
9. Cointegration and VECM
 a. Theoretical issues: tests for cointegration, estimation of cointegrating vectors (Stock and Watson, chp. 14)
 b. ECM representation (notes)
11. ARCH and GARCH
 a. Theory
 b. Empirical applications: Analysis of Financial Markets
12. Introduction to Monte Carlo simulations (in a problem set)
13. GMM estimation and relationship with Instrumental Variables and OLS (optional, together with a primer on Matlab).
Empirical Applications and References:

Unit roots and cointegration

VAR estimation and Impulse-Response Functions:

ARMA models

Forecasting:

ARCH-GARCH

GMM