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Motivated by the implications from a stylized self-contained general equilibrium model
incorporating the effects of time-varying economic uncertainty, we show that the difference
between implied and realized variation, or the variance risk premium, is able to explain a
nontrivial fraction of the time-series variation in post-1990 aggregate stock market returns,
with high (low) premia predicting high (low) future returns. Our empirical results depend
crucially on the use of “model-free,” as opposed to Black–Scholes, options implied volatil-
ities, along with accurate realized variation measures constructed from high-frequency
intraday as opposed to daily data. The magnitude of the predictability is particularly strong
at the intermediate quarterly return horizon, where it dominates that afforded by other popu-
lar predictor variables, such as the P/E ratio, the default spread, and the consumption–wealth
ratio. (JEL C22, C51, C52, G12, G13, G14)

Is the return on the stock market predictable? This age-old question still ranks
among the most studied and contentious in all of economics. To the extent
that a consensus has emerged, it seems to be that the predictability is the
strongest over long multi-year horizons. There is also evidence that the degree
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of predictability has diminished somewhat over the past two decades.1 In lieu
of this, we show that the difference between “model-free” implied and realized
variances, which we term the variance risk premium, explains a nontrivial
fraction of the variation in post-1990 aggregate stock market returns with high
(low) values of the premium associated with subsequent high (low) returns.
The magnitude of the predictability is particularly strong at the quarterly return
horizon, where it dominates that afforded by other popular predictor variables,
such as the P/E ratio, the default spread, and the consumption–wealth ratio
(CAY).

Our empirical investigations are directly motivated by the implications from
a stylized self-contained general equilibrium model. The model may be seen
as an extension of the long-run risk model pioneered by Bansal and Yaron
(2004), who emphasized the importance of long-run risk in consumption growth
for explaining the equity premium and the dynamic dependencies in returns
over long multi-year horizons. In contrast, we explicitly exclude predictability
in consumption growth, focusing instead on the implications of allowing for
richer and empirically more realistic volatility dynamics. Our model generates
a two-factor structure for the endogenously determined equity risk premium
in which the factors are directly related to the underlying volatility dynamics
of consumption growth. Different volatility concepts defined within the model
load differently on these fundamental risk factors. In particular, the difference
between the risk-neutralized expected return variation and the realized return
variation effectively isolates the factor associated with the volatility of con-
sumption growth volatility. Consequently, the variance risk premium should
serve as an especially useful predictor for the returns over horizons for which
that risk factor is relatively more important. In a reasonably calibrated version of
the model, this translates into population return predictability regressions that
show the most explanatory power over intermediate “quarterly” return horizons.

The dual variance concepts underlying our empirical investigations of these
theoretical relations are both fairly new. On the one hand, several recent studies
have argued for the use of so-called model-free realized variances computed
by the summation of high-frequency intraday squared returns. These types of
measures generally afford much more accurate ex post observations on the
actual return variation than the more traditional sample variances based on
daily or coarser frequency return observations (see, for example, Andersen
et al. 2001a; Barndorff-Nielsen and Shephard 2002; Meddahi 2002).2

On the other hand, the recently developed so-called model-free implied
variances provide ex ante risk-neutral expectations of the future return variation.
In contrast to the standard option-implied variances based on the Black–Scholes
pricing formula, or some variant thereof, the “model-free” implied variances

1 For recent discussions in support of return predictability, see, for example, Lewellen (2004) and Cochrane (2008).

2 Earlier empirical studies exploring similar ideas include Schwert (1990) and Hsieh (1991).

4464



Expected Stock Returns and Variance Risk Premia

are computed from a collection of option prices without the use of a specific
pricing model (see, for example, Carr and Madan 1998; Britten-Jones and
Neuberger 2000; Jiang and Tian 2005).

Our main empirical finding that the difference between the “model-free”
implied and realized variances is able to explain a nontrivial fraction of the
variation in quarterly stock market returns over the 1990–2007 sample period
is new and easily dominates that afforded by other more commonly employed
predictor variables.3 Moreover, combining the variance risk premium with some
of these other predictor variables, most notably the P/E ratio, results in even
greater return predictability and joint significance of the predictor variables.
This in turn suggests that volatility and consumption risk both play important
roles in determining the returns, with their relative contributions varying across
return horizons.

The plan for the rest of the paper is as follows. Section 1 outlines the basic
theoretical model and corresponding predictability regressions that motivate
our empirical investigations. Section 2 discusses the “model-free” implied and
realized variances that we use in empirically quantifying the variance risk
premium along with practical data considerations. Section 3 presents our main
empirical findings and robustness checks. Section 4 concludes.

1. Volatility in Equilibrium

The classical intertemporal CAPM model of Merton (1973) is often used to
motivate the existence of a traditional risk–return tradeoff in aggregate market
returns. Despite an extensive empirical literature devoted to the estimation of
such a premium, the search for a significant time-invariant expected return–
volatility tradeoff type relationship has largely proven elusive.4 In this section,
we present a stylized general equilibrium model designed to illuminate new
and more complex theoretical linkages between financial market volatility and
expected returns. The model involves a standard endowment economy with
Epstein–Zin–Weil recursive preferences.5

The basic setup builds on and extends the discrete-time long-run risk
model pioneered by Bansal and Yaron (2004) by allowing for richer volatility

3 Related empirical links between stock market returns and various notions of variance risk have been informally
explored by finance professionals. For example, Beckers and Bouten (2005) report that a market timing strategy
based on the ratio of implied to historical volatilities doubles the Sharpe ratio relative to that of a constant
S&P 500 exposure. Many equity-oriented hedge funds also actively trade variance risk in the highly liquid OTC
variance swap market (see, for example, Bondarenko 2004).

4 A significant equilibrium relationship, explicitly allowing for temporal variation in the price of risk, has recently
been estimated by Bekaert, Engstrom, and Xing (2008). Also, Ang et al. (2006) find that innovations in aggregate
volatility carry a statistically significant (negative) risk premium and that cross-sectionally idiosyncratic volatility
is negatively related with average stock returns.

5 The Epstein and Zin (1991) and Weil (1989) preferences are rooted in the dynamic choice theory of Kreps and
Porteus (1978).
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dynamics in the form of stochastically time-varying volatility-of-volatility.6

This in turn results in an empirically more realistic two-factor structure for the
aggregate stock market volatility, and importantly suggests new and interesting
channels through which the endogenously generated time-varying risk premia
on consumption and volatility risk might manifest themselves empirically. To
simplify the analysis and focus on the role of time-varying volatility, we ex-
plicitly exclude the long-run risk factor in consumption growth highlighted in
the original Bansal and Yaron (2004) model.

1.1 Model setup and assumptions
To begin, suppose that the geometric growth rate of consumption in the econ-
omy, gt+1 = log(Ct+1/Ct ), is unpredictable,

gt+1 = μg + σg,t zg,t+1, (1)

where μg denotes the constant mean growth rate, σg,t refers to the conditional
variance of the growth rate, and {zg,t } is an i.i.d. N(0, 1) innovation process.7

Furthermore, assume that the volatility dynamics are governed by the following
discrete-time versions of continuous-time square root-type processes,

σ2
g,t+1 = aσ + ρσσ

2
g,t + √

qt zσ,t+1, (2)

qt+1 = aq + ρqqt + ϕq
√

qt zq,t+1, (3)

where the parameters satisfy aσ > 0, aq > 0, |ρσ| < 1, |ρq | < 1, ϕq > 0, and
{zσ,t } and {zq,t } are independent i.i.d. N(0, 1) processes jointly independent of
{zg,t }. The stochastic volatility process σ2

g,t+1 represents time-varying economic
uncertainty in consumption growth with the volatility-of-volatility process qt in
effect inducing an additional source of temporal variation in that same process.
Both processes play a crucial role in generating the time-varying volatility risk
premia discussed below. The assumption of independent innovations across all
three equations explicitly rules out any return–volatility correlations that might
otherwise arise via purely statistical channels.8

6 Empirical evidence in support of time-varying consumption growth volatility has recently been presented by
Bekaert and Liu (2004); Bansal, Khatchatrian, and Yaron (2005); Bekaert, Engstrom, and Xing (2008); and
Lettau, Ludvigson, and Wachter (2008), among others.

7 The growth rate of consumption is identically equal to the dividend growth rate in this Lucas-tree economy.

8 Direct estimation of the stylized model defined by Equations (1)–(3) would require the use of latent variable
techniques. Instead, as a way to gauge the specification, we calculated a robust estimate for σ2

g,t by exponentially
smoothing the squared (de-meaned) growth rate in U.S. real expenditures on nondurable goods and services
(gt − μ̂g)2 over the 1947:Q2 to 2007:Q4 sample period using a smoothing parameter of 0.06. Consistent with
the basic model structure in Equation (2), the serial dependencies in the resulting σ̂2

g,t series appear to be well
described by an AR(1) model with ρσ close to unity. Consistent with the Great Moderation, the variances are
generally also much lower over the latter part of the sample. Moreover, on estimating an AR(1)-GARCH(1,1)
model for σ̂2

g,t , the estimates for the two GARCH parameters equal 0.238 and 0.655, respectively, and the Wald
test for their joint significance and the absence of any ARCH effects (129.9) has a p-value of virtually zero, thus
strongly supporting the notion of time-varying volatility-of-volatility in consumption growth or Var(qt ) > 0.

4466



Expected Stock Returns and Variance Risk Premia

We assume that the representative agent in the economy is equipped with
Epstein–Zin–Weil recursive preferences. Consequently, the logarithm of the
intertemporal marginal rate of substitution, mt+1 ≡ log(Mt+1), may be ex-
pressed as

mt+1 = θ log δ − θψ−1gt+1 + (θ − 1)rt+1, (4)

where

θ ≡ (1 − γ)(1 − ψ−1)−1, (5)

δ denotes the subjective discount factor, ψ equals the intertemporal elasticity
of substitution, γ refers to the coefficient of risk aversion, and rt+1 is the time
t to t + 1 return on the consumption asset. We will maintain the assumptions
that γ > 1 and ψ > 1, which in turn implies that θ < 0.9 These restrictions
ensure, among other things, that volatility carries a positive risk premium, and
that asset prices fall on news of positive volatility shocks consistent with the so-
called leverage effect. Importantly, these effects are not the result of any direct
statistical linkages between return and volatility, but instead arise endogenously
within the model.

1.2 Model solution and equity premium
Let wt denote the logarithm of the price–dividend ratio, or equivalently the
price–consumption or wealth–consumption ratio, of the asset that pays the
consumption endowment, {Ct+i }∞i=1. The standard solution method for find-
ing the equilibrium in a model like the one defined above then consists in
conjecturing a solution for wt as an affine function of the state variables, σ2

g,t
and qt ,

wt = A0 + Aσσ
2
g,t + Aqqt , (6)

solving for the coefficients A0, Aσ, and Aq , using the standard Campbell and
Shiller (1988) approximation rt+1 = κ0 + κ1wt+1 − wt + gt+1. The resulting
equilibrium solutions for the three coefficients may be expressed as

A0 = log δ + (1 − ψ−1)μg + κ0 + κ1[Aσaσ + Aqaq ]

(1 − κ1)
, (7)

Aσ = (1 − γ)2

2θ(1 − κ1ρσ)
, (8)

Aq =
1 − κ1ρq −

√
(1 − κ1ρq )2 − θ2κ4

1ϕ
2
q A2

σ

θκ2
1ϕ

2
q

. (9)

9 The assumption that γ > 1 is generally agreed upon, but the assumption that ψ > 1 is a matter of some debate
(see, for example, the discussion in Bansal and Yaron 2004).
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The aforementioned restrictions that γ > 1 and ψ > 1 readily imply that the
impact coefficients associated with both of the volatility state variables are
negative, i.e., Aσ < 0 and Aq < 0.10

From the solution for the A’s, it is now relatively straightforward to deduce
the reduced form expressions for other variables of interest. In particular, the
time t to t + 1 return must satisfy the following relation:

rt+1 = − log δ + ψ−1μg − (1 − γ)2

2θ
σ2

g,t + (κ1ρq − 1)Aqqt

+ σg,t zg,t+1 + κ1
√

qt [Aσzσ,t+1 + Aqϕq zq,t+1].
(10)

As is evident, increases in endowment volatility, σ2
g,t , and the volatility-of-

volatility, qt , both increase the return reflecting the compensation for bearing
volatility risk. On the other hand, innovations in future volatility, zσ,t+1 and
zq,t+1, both impact the return negatively, consistent with a leverage-type effect.

To further appreciate the implications of richer time-varying volatility
dynamics, it is instructive to consider the model-implied equity premium,
πr,t ≡ −Covt (mt+1, rt+1),

πr,t = γσ2
g,t + (1 − θ)κ2

1

(
A2

qϕ
2
q + A2

σ

)
qt . (11)

The premium is composed of two separate terms. The first term, γσ2
g,t , motivates

the classic risk–return tradeoff relationship, which has undergone extensive yet
empirically elusive investigations. The term does not really represent a volatility
risk premium per se, however. Instead, it arises within the model as the presence
of time-varying volatility in effect induces shifts in the price of consumption
risk. The second term, (1 − θ)κ2

1(A2
qϕ

2
q + A2

σ)qt , represents a true premium for
volatility risk.11 It is a confounding of a risk premium on shocks to volatility,
zσ,t+1, and shocks to the volatility-of-volatility, zq,t+1. As such, it represents a
fundamentally different source of risk from that of the traditional consumption
risk term. The existence of the volatility risk premium depends crucially on the
dual assumptions of recursive utility, or θ �= 1, as volatility would otherwise
not be a priced factor and time-varying volatility-of-volatility in the form of
the qt process. This additional source of uncertainty is absent in the model of
Bansal and Yaron (2004). The restrictions that γ > 1 and ψ > 1 imply that the
volatility risk premium is positive.

1.3 Volatility risk and return predictability
The expression for the equity premium in Equation (11) provides a direct rela-
tionship between the expected excess equilibrium return and the two volatility

10 The solution for Aq in Equation (9) represents one of a pair of roots to a quadratic equation, but it is the
economically meaningful root for reasons discussed below.

11 The specific root in Equation (9) implies that A2
qϕ2

q → 0 for ϕq → 0, which guarantees that the premium
disappears when qt is constant as would be required by the lack of arbitrage.
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factors, σ2
g,t and qt . Both of these factors are inherently latent. Importantly,

however, each of the factors manifests itself differently in different volatility
concepts that are naturally defined within the model. In particular, the dif-
ference between the actual and the risk-neutral expected variance effectively
isolates the qt factor, which as explained above constitutes the source of the
true volatility risk premium.

To formally establish this result, denote the conditional variance of the time
t to t + 1 return as σ2

r,t ≡ Vart (rt+1). It follows from Equation (10) that

σ2
r,t = σ2

g,t + κ2
1

(
A2

σ + A2
qϕ

2
q

)
qt , (12)

which is directly influenced by each of the two stochastic factors, the underlying
economic volatility, σ2

g,t , and the volatility of that volatility, qt . This conditional
variance is, of course, known at time t . Consider instead the one-period ahead
conditional variance,

σ2
r,t+1 = σ2

g,t+1 + κ2
1

(
A2

σ + A2
qϕ

2
q

)
qt+1, (13)

which is unknown or stochastic at time t . The difference between the objective
and risk-neutral expectations of σ2

r,t+1 as of time t will depend upon the way in
which volatility risk is priced.

It follows readily that the time t objective conditional expectation equals

Et
(
σ2

r,t+1

) = aσ + κ2
1

(
A2

σ + A2
qϕ

2
q

)
aq + ρσσ

2
g,t + κ2

1

(
A2

σ + A2
qϕ

2
q

)
ρqqt . (14)

The corresponding model-implied risk-neutral conditional expectation
E Q

t (σ2
r,t+1) ≡ Et (σ2

r,t+1 Mt+1)Et (Mt+1)−1 cannot easily be computed in a closed
form. However, it is possible to calculate the following close log–linear approx-
imation:

E Q
t

(
σ2

r,t+1

) ≈ log
[
e−r f,t Et

(
emt+1+σ2

r,t+1
)] − 1

2
Vart

(
σ2

r,t+1

)
= Et

(
σ2

r,t+1

) + (θ − 1)κ1
[
Aσ + Aqκ

2
1

(
A2

σ + A2
qϕ

2
q

)
ϕ2

q

]
qt , (15)

where r f,t denotes the one-period risk-free rate implied by the model. A number
of interesting implications arise from comparing these two different expecta-
tions of the same future variance.

In particular, any temporal variation in the endogenously generated variance
risk premium,

E Q
t

(
σ2

r,t+1

) − Et
(
σ2

r,t+1

) = (θ − 1)κ1
[
Aσ + Aqκ

2
1

(
A2

σ + A2
qϕ

2
q

)
ϕ2

q

]
qt , (16)

is solely due to the volatility-of-volatility or qt . Moreover, provided that θ < 0,
Aσ < 0, and Aq < 0, as would be implied by γ > 1 and ψ > 1, this difference
between the risk-neutral and objective expected variation is guaranteed to be
positive. If ϕq = 0, and therefore qt = q is constant, the variance premium
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reduces to

E Q
t

(
σ2

r,t+1

) − Et
(
σ2

r,t+1

) = (θ − 1)κ1 Aσq,

which, of course, would also be constant. Comparing the expression in Equa-
tion (16) to the expression for the equity premium in Equation (11) suggests
that the variance risk premium should serve as a useful predictor for the ac-
tual realized returns over horizons for which the volatility-of-volatility or qt

constitutes the dominant source of the variation in the equity premium. For
highly persistent volatility dynamics, or ρσ ≈ 1, the objective expected future
volatility will obviously be close to the value of the current volatility so that
the same qualitative implications hold true for the variance difference obtained
by replacing Et (σ2

r,t+1) in Equation (16) with the current variance.
There is also an implicit positive volatility risk–return tradeoff embedded in

the solution of our stylized equilibrium model. Specifically, the reduced form
Equation (11) for the risk premium, πt , and Equation (12) for the conditional
variance, σ2

r,t , implicitly entails a positive association between return volatility
and the risk premium.12 This association corresponds very closely to that of
the first-order term in Corollary 3.5 of Ang and Liu (2007), who note that a
positive volatility risk–return relationship can arise in models with first-order
risk aversion parameterized by the Epstein–Zin–Weil recursive preferences.13

As is well known, however, empirical efforts aimed at documenting a signif-
icant positive association between the risk premium and stock price volatility
have met with mixed success at best. The relationship is often statistically in-
significant or even estimated to be negative. These conflicting findings have
been obtained with many different data sets, estimation techniques, and control
variables with no single robust empirical consensus emerging; Ang and Liu
(2007) contains a recent thorough discussion of the most important studies.
In the empirical results reported below, we also find that expected excess re-
turns are insignificantly related to current volatility. Apparently, in the actual
data, factor loadings of equations such as (11)–(12) along with higher-order
nonlinearities and measurement problems serve to mask the expected positive
association between the risk premium and stock price volatility.14

At the same time, the preceding theoretical analysis motivates our new
approach based on information from derivatives markets (or Q-measure in-
formation) for better estimating the so far elusive risk–return tradeoff. From
Equation (16), the variance difference E Q

t (σ2
r,t+1) − Et (σ2

r,t+1) is directly re-
lated to the volatility-of-volatility factor, qt , which appears in the expression

12 It is not exactly the same, as Ang and Liu (2007) examine a model with prespecified dynamics for a conditional
standard deviation, while our model prespecifies the dynamics of the conditional variance. Nonetheless, the
economic intuition behind the effects of the recursive preferences is essentially the same.

13 Keep in mind that we always assume that ψ > 0 and γ > 1, implying that θ < 0. The risk return relationship
could be negative under other parameter values.

14 Our log-linear approximation used to solve the model excludes the higher-order effects described by Ang and
Liu (2007), which they show can cloud the volatility risk–return tradeoff.
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(11) for the risk premium. As discussed below, the use of derivatives market
data allows us to directly measure E Q

t (σ2
r,t+1). Thus, using the derivatives data

to get E Q
t (σ2

r,t+1) along with empirical proxies for the actual volatility, we can
potentially get a “cleaner” measure of the factor that drives the volatility risk
premium, in turn allowing for more precise empirical estimation of a risk–return
tradeoff relationship.

The equilibrium model underlying these return–volatility relations is some-
what stylized and not rich enough to be estimated directly with actual data.
Nonetheless, it is still useful to consider the implications from a calibrated
version of the theoretical model to help guide and interpret our subsequent
empirical reduced form predictability regressions.

1.4 Calibrated return regressions
The difference between the risk-neutral expected and actual variances under-
lying our key empirical findings naturally corresponds to E Q

t (σ2
r,t+1) − σ2

r,t−1
within the discrete-time theoretical model. In the regressions discussed below,
both of our directly observable variance measures span one month, and we
correspondingly refer to the unit time interval in the calibrated equilibrium
model as a “month.” In addition to the basic “monthly” return horizon, we also
consider longer (scaled by the horizon) multi-period return regressions of the
form

1

h

h∑
j=1

rt+ j = b0(h) + b1(h)
(
E Q

t

(
σ2

r,t+1

) − σ2
r,t−1

) + ut+h,t . (17)

The slope coefficient,

b1(h) = Cov
(

1
h

∑h
j=1 rt+ j , E Q

t

(
σ2

r,t+1

) − σ2
r,t−1

)
Var

(
E Q

t

(
σ2

r,t+1

) − σ2
r,t−1

) , (18)

and the explanatory power, as measured by the coefficient of determination,

R2(h) = Cov
(

1
h

∑h
j=1 rt+ j , E Q

t

(
σ2

r,t+1

) − σ2
r,t−1

)2

Var
(

1
h

∑h
j=1 rt+ j

)
Var

(
E Q

t

(
σ2

r,t+1

) − σ2
r,t−1

) , (19)

from this regression are both directly related to the latent qt process and how
the persistence and magnitude of that process compare to that of the other risk
factors. The actual numerical values of the two variances and the covariance,
and in turn the model-implied b1(h) and R2(h), obviously depend upon the
specific values of the parameters in Equations (1)–(6). The variance of the
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Figure 1
Model-implied slopes and R2s
The figure shows the population slope coefficients and R2s from regressions of the scaled h-period returns on
the variance difference implied by the equilibrium model. The four different lines refer to the four different
parameter configurations discussed in the main text.

multi-period returns and the covariance of those returns with the variance
premium furthermore depend nontrivially on the return horizon, h.15

To gauge more directly how the predictability varies with the model pa-
rameters and h, we plot in Figure 1 the population b1(h)’s and R2(h)’s for

15 Tedious calculations yield

R2(h) =
(

1 − θ

θ
Aq (1 − κ1ρq )κ1

[
(1 − γ)2

2(1 − κ1ρσ)
+ 2A2

qϕ2
q (1 − κ1ρq )

]
Varq

1 − ρh
q

1 − ρq

)2

×
[(

θ − 1

θ
κ1

)2 [
(1 − γ)2

2(1 − κ1ρσ)
+ 2A2

qϕ2
q (1 − κ1ρq )

]2

Varq +
(

1 − ρ2
q

)
Varq +

(
1 − ρ2

σ

)
Varσ2

g

]−1

×
[

haq

1 − ρσ

+
[

(1 − κ1)2

(1 − ρσ)2

(
h
(

1 − ρ2
σ

)
+ 4ρh+1

σ − 2ρh
σ − 2ρ2

σ

)
+

(
1 − 2ρh

σκ1 + κ2
1

)]
Varσ2

g

+
[

(1 − κ1)2

(1 − ρq )2

(
h
(

1 − ρ2
q

)
+ 4ρh+1

q − 2ρh
q − 2ρ2

q

)
+

(
1 − 2ρh

qκ1 + κ2
1

)]
Varq

]−1

,

where Varσ2
g = aq (1 − ρq )−1(1 − ρ2

σ)−1 and Varq = φ2
q aq (1 − ρ2

q )−1(1 − ρ2
σ)−1. The corresponding formula for

the slope coefficient b1(h) follows readily from this expression.
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four different parameter configurations and return horizons ranging from “one
month” (h = 1) to “two years” (h = 24). The values for δ = 0.997, γ = 10.0,
ψ = 1.5, μg = 0.0015, and E(σg) = 0.0078 in the baseline model (Model A)
are all adapted directly from Bansal and Yaron (2004). Additionally, we fix
κ1 = 0.9, the persistence of the variance at ρσ = 0.978, the persistence of
the volatility-of-volatility at ρq = 0.8, the expected volatility-of-volatility at
aq (1 − ρq )−1 = 10.0−6, and the volatility of that process at φq = 10.0−3. The
mean annualized risk-free rate and equity premium implied by these particular
model parameters equal 0.69% and 7.79%, respectively.

The model-implied slope coefficients depicted in the top panel of Figure 1
all decline monotonically with the return horizon. For the baseline model
(Model A), b1(h) starts out at 0.26 declining to 0.10 at the annual horizon.
Decreasing (increasing) the persistence in the qt process from ρq = 0.8 to
0.6 (0.95), keeping all of the other model parameters the same as in Model B
(Model C) results in systematically lower (higher) population slope coefficients.
Increasing the value of the intertemporal elasticity of substitution from ψ = 1.5
to 2.5 (Model D) magnifies the relation between the returns and the variance risk
premium and results in systematically higher b1(h)’s across all return horizons.

Turning to the model-implied R2(h)’s depicted in the bottom panel in the
figure, the degree of predictability for the baseline model (Model A) starts out
fairly low at the “monthly” horizon, rising to its maximum around a “quar-
ter,” gradually tapering off thereafter for longer return horizons. In line with
the results for the slope coefficients, lowering the degree of persistence in the
qt process to ρq = 0.6 (Model B) results in substantially lower overall pre-
dictability, and also shifts the peak in the R2(h)’s from a “quarter” to “two
months.” Conversely, increasing the persistence to ρq = 0.95 (Model C) in-
creases the relative importance of stochastically varying volatility-of-volatility
and prolongs the inherent return predictability. Lastly, changing the value of
the intertemporal elasticity of substitution from ψ = 1.5 to 2.5 (Model D) en-
hances the importance of time-varying volatility-of-volatility and increases the
R2(h)’s relative to those for the baseline model (Model A), with the maximum
again occurring around the “quarterly” return horizon.

As these calibrations make clear, the simple stylized general equilibrium
model can give rise to quite sizable regression coefficients and return pre-
dictability. Importantly, the calibrations also reveal a general hump shape in
the implied R2 as a function of the return horizon with the location of the
peak directly related to the value of ρq . At an intuitive level, the variance
risk premium or the “variance swap” on the right-hand side of the regression,
E Q

t (σ2
r,t+1) − σ2

r,t−1, may be seen as a pure volatility bet where everything
else gets “risk neutralized” out. Since volatility is explicitly priced under the
Epstein–Zin–Weil recursive preference structure, this variance difference earns
exactly that volatility risk premium and nothing else. The price of this risk
changes if the variance of the priced factor changes. But this corresponds ex-
actly to the volatility-of-volatility or the qt process within the theoretical model.
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We next turn to a discussion of the procedures and data that we actually use
in empirically quantifying the E Q

t (σ2
r,t+1) and σ2

r,t variance measures.

2. Empirical Measurements

The theoretical model outlined in the previous section suggests that the differ-
ence between current return variation and the market’s risk-neutral expectation
of future return variation may serve as a useful predictor for the future returns
by effectively isolating the systematic risk associated with the volatility-of-
volatility. To measure the variance risk premium and investigate this conjecture,
we rely on two relatively new nonparametric “model-free” variation concepts.

2.1 Model-free variation measures
To formally define the procedure that we use in quantifying the market’s ex-
pected return variation, let Ct (T, K ) denote the price of a European call option
maturing at time T with strike price K , and let B(t, T ) denote the price of a time
t zero-coupon bond maturing at time T . As shown by Carr and Madan (1998);
Demeterfi et al. (1999); and Britten-Jones and Neuberger (2000), the market’s
risk-neutral expectation of the total return variation between time t and t + 1
conditional on time t information, or the implied variance IVt , may then be
expressed in a “model-free” fashion as the following portfolio of European
calls:

IVt ≡ 2
∫ ∞

0

Ct
(
t + 1, K

B(t,t+1)

) − Ct (t, K )

K 2
d K

= E Q
t [Return variation(t, t + 1)], (20)

which relies on an ever-increasing number of calls with strikes spanning zero
to infinity.16 This “model-free” measure therefore provides a natural empiri-
cal analog to E Q

t (σ2
r,t+1) in the discrete-time model discussed in the previous

section. In practice, of course, IVt must be constructed on the basis of a fi-
nite number of strikes. Fortunately, even with relatively few different options,
this tends to provide a fairly accurate approximation to the true (unobserved)
risk-neutral expectation of the future return variation, and, in particular, a
much better approximation than the one based on inversion of the standard
Black–Scholes formula with close to at-the-money option(s) (see, for example,
Jiang and Tian 2005; Bollerslev, Gibson, and Zhou 2006).

In order to define the measure that we use in quantifying the actual return
variation, let pt denote the logarithmic price of the asset. The realized variation
over the discrete t − 1 to t time interval may then be measured in a “model-free”

16 See Bondarenko (2004); Jiang and Tian (2005); and Carr and Wu (2009) for justification under the assumption
of general jump-diffusion processes.
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fashion by

RVt ≡
n∑

j=1

[
pt−1+ j

n
− pt−1+ j−1

n (�)

]2 −→ Return variation(t − 1, t), (21)

where the convergence relies on n → ∞, i.e., an increasing number of within-
period price observations. As demonstrated in the literature (see, for example,
Andersen et al. 2001a, 2001b; Barndorff-Nielsen and Shephard 2002; Meddahi
2002), this “model-free” realized variance measure based on high-frequency
intraday data affords much more accurate ex post observations of the true
(unobserved) return variation than do the more traditional sample variances
based on daily or coarser frequency returns. It also provides a nonparametric
empirical analog to σ2

r,t in the discrete-time model in the previous section. In
practice, of course, as discussed below, various market microstructure frictions
invariably limit the highest sampling frequency that may be used in reliably
estimating RVt .

The variance risk premium or difference underlying our key empirical find-
ings is defined by the difference between this ex ante risk-neutral expectation
of the future return variation over the [t, t + 1] time interval and the ex post
realized return variation over the [t − 1, t] time interval,

VRPt ≡ IVt − RVt , (22)

affording a “model-free” empirical equivalent to the variance difference on the
right-hand side in the regression Equation (17). Compared to the variance pre-
mium in Equation (16), the variance difference has the advantage that IVt and
RVt , and therefore VRPt , are directly observable at time t . This is obviously im-
portant from a forecasting perspective. However, we also briefly discuss below
complimentary empirical results in which we regress the returns on an estimate
for the expected premium, EVRPt ≡ IVt − Et (RVt+1), in which we approxi-
mate Et (RVt+1) by the one-step-ahead forecasts from a simple reduced form
time-series model for RVt . Of course, the two premia trivially coincide under the
assumption that RVt is a martingale difference sequence or Et (RVt+1) = RVt

corresponding to ρσ = 1 in the stylized discrete-time theoretical model devel-
oped in the previous section.

Closely related measures of variance risk premia have recently been inves-
tigated from different empirical perspectives in other studies. In particular,
Bollerslev, Gibson, and Zhou (2006) find that the temporal variation in a mea-
sure of EVRPt for the aggregate market portfolio, as implied by a standard
Heston (1993) one-factor stochastic volatility model, may, in part, be explained
by a set of macrofinance variables, including some of the more traditional
predictor variables considered below. Similarly, Todorov (2007) has explored
the joint dynamics of IVt and Et (RVt+1) within the context of a very general
continuous time specification allowing for separate jump and diffusive risk
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premiums. The difference between implied and realized variance measures has
also previously been associated empirically with notions of aggregate market
risk aversion by Rosenberg and Engle (2002), while Bakshi and Madan (2006)
have formally shown that the volatility spread may be expressed as a nonlinear
function of the aggregate degree of risk aversion in a simple representative
agent setting.

2.2 Data description
Our empirical analysis is based on the aggregate S&P 500 composite index
as a proxy for the aggregate market portfolio. Due to the dual requirements of
reliable high-frequency data and options-implied volatilities, our sample “only”
spans the period from January 1990 to December 2007.

We rely on monthly data for the “new” VIX index for quantifying IVt .
The VIX index is based on the highly liquid S&P 500 index options along
with the “model-free” approach discussed above explicitly tailored to replicate
the risk-neutral variance of a fixed 30-day maturity. The data are obtained
directly from the Chicago Board of Options Exchange (CBOE).17 The VIX
index is invariably subject to some approximation error (see, for example, the
discussion in Jiang and Tian 2007), but the CBOE procedure for calculating
the VIX has arguably emerged as the industry standard. Thus, in order to
facilitate replication and comparison with other studies, we purposely rely on
the readily available squared VIX index as our measure for the risk-neutral
expected variance.

The intraday data for the S&P 500 composite index that we use in the
construction of our “model-free” RVt measure is provided by the Institute of
Financial Markets. The theory behind the realized variation measures dictates
that the sampling frequency, or n in the expression for RVt above, goes to
infinity. However, a host of practical market microstructure features, including
price discreteness, bid–ask spreads, and nonsynchronous trading effects, imply
that the underlying semimartingale assumption for the returns is violated at the
very highest sampling frequencies. In practice, it therefore becomes necessary
to strike a balance between the desire to use very finely sampled data to
minimize the estimation error on the one hand and not be overwhelmed by
“noise” in the high-frequency prices on the other. A number of studies, using
the volatility signature plot first proposed by Andersen et al. (2000), suggest
that for highly liquid assets, such as the S&P 500 index analyzed here, a five-
minute sampling frequency provides a reasonable choice (see, for example, the
discussion in Hansen and Lunde 2006). Following this recommendation, we
base our monthly realized variance measure for the S&P 500 on the summation

17 The CBOE replaced the “old” VIX index, based on S&P 100 options and Black–Scholes implied volatilities,
with the “new” VIX index based on S&P 500 options and “model-free” implied volatilities in September 2003.
Historical data on both indexes are available from the official CBOE Web site. A more detailed description of
the procedure actually used in approximating the integral in the calculation of the VIX is provided in the White
Paper on the CBOE Web site.
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Figure 2
Implied and realized variances and variance risk premium
This figure plots the implied variance (the top panel), the realized variance (the middle panel), and the difference
(the bottom panel) for the S&P 500 market index from January 1990 to December 2007. The shaded areas
represent NBER recessions.

of the 78 within-day five-minute squared returns covering the normal trading
hours from 9:30 am to 4:00 pm along with the close-to-open overnight return.18

For a typical month with 22 trading days, this leaves us with a total of n =
22 × 78 = 1716 “five-minute” returns.

To illustrate the data, Figure 2 plots the monthly time series of implied
variances, realized variances, and their differences. Both of the variance mea-
sures are somewhat higher during the 1997–2002 part of the sample. The more
distinct spikes in the measures generally also coincide. Consistent with the
theoretical model developed in the previous section and the earlier empirical
evidence cited above, the spread between the implied and realized variances is
almost always positive.

18 Recent studies (for example, Zhang, Mykland, and Aı̈t-Sahalia 2005; Barndorff-Nielsen et al. 2008) have
proposed more efficient and complicated ways in which to accommodate the market microstructure effects that
allow for finer sampling. However, the simple-to-implement RVt estimator based on the summation of (not too
finely sampled) high-frequency squared returns that we rely on here remains the dominant method in practical
applications.
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Table 1
Summary statistics

Rmt − R f t IVt − RVt IVt RVt log(Pt /Et ) log(Pt /Dt ) DFSPt TMSPt RRELt CAYt

Summary statistics
Mean 6.44 18.30 33.23 14.93 3.13 3.92 0.84 1.69 −0.11 0.33
Std. dev. 47.19 15.13 23.73 15.25 0.26 0.34 0.20 1.19 0.78 1.80
Skewness −0.65 2.14 2.02 2.72 0.42 −0.19 0.90 0.09 −0.35 −0.09
Kurtosis 4.38 12.06 9.11 12.98 2.44 1.98 3.28 1.79 2.75 1.94
AR(1) −0.03 0.49 0.79 0.70 0.97 0.99 0.94 0.98 0.94 0.96

Correlation matrix
Rmt − R f t 1.00 −0.30 −0.34 −0.23 −0.08 −0.07 −0.05 −0.02 0.00 −0.05
IVt − RVt 1.00 0.78 0.22 0.19 0.11 0.10 −0.08 −0.27 −0.04
IVt 1.00 0.78 0.41 0.35 0.26 −0.14 −0.31 −0.21
RVt 1.00 0.45 0.44 0.31 −0.14 −0.21 −0.30
log(Pt /Et ) 1.00 0.65 0.25 0.29 −0.24 −0.59
log(Pt /Dt ) 1.00 −0.03 −0.36 0.09 −0.87
DFSPt 1.00 0.21 −0.43 −0.03
TMSPt 1.00 −0.36 0.35
RRELt 1.00 −0.18
CAYt 1.00

The sample period extends from January 1990 to December 2007. All variables are reported in annualized
percentage form whenever appropriate. The Rmt − R f t denotes the logarithmic return on the S&P 500 in excess of
the three-month T-bill rate. IVt denotes the “model-free” implied variance or VIX index. RVt refers to the “model-
free” realized variance constructed from high-frequency five-minute returns. The predictor variables include the
price–earning ratio log(Pt /Et ), the price–dividend ratio log(Pt /Dt ), the default spread DFSPt defined as the
difference between Moody’s BAA and AAA bond yield indices, the term spread TMSPt defined as the difference
between the ten-year and three-month Treasury yields, and the stochastically detrended risk-free rate RRELt

defined as the one-month T-bill rate minus its trailing twelve-month moving averages. Monthly observations on
the consumption–wealth ratio CAYt are defined by the most recently available quarterly observations.

In addition to the variance risk premium, we also consider a set of other
more traditional predictor variables (see, for example, Lamont 1998; Lettau
and Ludvigson 2001; Ang and Bekaert 2007). Specifically, we obtain monthly
P/E ratios and dividend yields for the S&P 500 directly from Standard &
Poor’s. Data on the three-month T-bill, the default spread (between Moody’s
BAA and AAA corporate bond spreads), the term spread (between the ten-year
T-bond and the three-month T-bill yields), and the stochastically detrended risk-
free rate (the one-month T-bill rate minus its backward twelve-month moving
averages) are taken from the public Web site of the Federal Reserve Bank of
St. Louis. The CAY as defined in Lettau and Ludvigson (2001) is downloaded
from Lettau and Ludvigson’s Web site.19

Basic summary statistics for the monthly returns and predictor variables are
given in Table 1. The mean excess return on the S&P 500 over the sample equals
6.44% annually. The sample means for the implied and realized variances are
33.23 and 14.93, respectively, corresponding to a variance risk premium of
18.30 (in percentages squared). The numbers for the traditional forecasting
variables are all directly in line with those reported in previous studies. In par-
ticular, all of the variables are highly persistent with first-order autocorrelations
ranging from 0.94 to 0.99. In contrast, the serial correlation in the implied and

19 We define a monthly CAY series from the most recent quarterly observation.
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realized variances equal 0.79 and 0.70, respectively, and the first-order autocor-
relation for their difference only equals 0.49. As such, this alleviates one of the
common concerns related to the use of highly persistent predictor variables and
the possibility of spurious or unbalanced regressions.20 Anticipating some of
the results discussed next, the traditional predictor variables all correlate fairly
weakly with the contemporaneous monthly excess returns, while the sample
correlations between the monthly returns and the different variance measures
are much higher (in an absolute sense), ranging from −0.34 to −0.23.

3. Forecasting Stock Market Returns

All of our forecasts are based on simple linear regressions of the S&P 500
excess returns on different sets of lagged predictor variables. We always rely
on monthly observations. All of the reported t-statistics are based on het-
eroskedasticity and serial correlation consistent standard errors that explicitly
take account of the overlap in the regressions following Hodrick (1992).21 We
focus our discussion on the estimated slope coefficients and their statistical
significance as determined by the robust t-statistics. We also report the fore-
casts’ accuracy of the regressions as measured by the corresponding adjusted
R2s. However, as previously noted, for the more traditional highly persistent
predictor variables, the R2s for the overlapping multi-period return regressions
need to be interpreted with great caution.22

3.1 Main empirical findings
We begin by reporting in Table 2 the results for our empirical equivalent to
the key return regression defined in Equation (17). The degree of predictability
starts out fairly low at the monthly horizon with an R2 of just above 1%.
The robust t-statistic for testing the estimated slope coefficient associated with
the variance difference IV − RV greater than zero still exceeds the one-sided
5% significance level. The quarterly return regression results in a much more
impressive t-statistic of 2.86 and a corresponding R2 of 6.82%. The t-statistic
remains significant at the six-month horizon, but the numerical values and
significance then gradually taper off for longer return horizons.

20 Inference issues related to the use of highly persistent predictor variables have been studied extensively in the
literature (see, for example, Stambaugh 1999; Ferson, Sarkissian, and Simin 2003; Lewellen 2004; Campbell
and Yogo 2006 and references therein). Some authors have gone as far as to attribute the apparent predictability
to the use of strongly serially correlated predictor variables (for example, Boudoukh, Richardson, and Whitelaw
2008; Goyal and Welch 2003, 2008).

21 Ang and Bekaert (2007) have forcefully shown that in the context of predictive regressions with overlapping
observations, the standard errors obtained by summing the regressors in the past, as advocated by Hodrick (1992),
are generally more reliable than the more traditional standard errors based on the summation of the residuals into
the future as in, for example, Newey and West (1987).

22 Boudoukh, Richardson, and Whitelaw (2008) have recently shown that even in the absence of any increase in
the true predictability, the values of the R2s with highly persistent predictor variables and overlapping returns
will by construction increase roughly proportional with the return horizon and the length of the overlap (see also
Kirby 1997).
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Table 2
Variance premium return regressions

Monthly return horizon 1 3 6 9 12 15 18 24

Constant −0.55 −2.08 1.12 3.63 4.62 4.84 5.61 6.48
(−0.13) (−0.56) (0.33) (1.15) (1.50) (1.59) (1.81) (2.07)

IVt − RVt 0.39 0.47 0.30 0.17 0.12 0.11 0.06 0.01
(1.76) (2.86) (2.15) (1.36) (1.00) (0.94) (0.56) (0.11)

Adj. R2 (%) 1.07 6.82 5.42 2.30 1.23 1.00 0.05 -0.50

The sample period extends from January 1990 to December 2007. All of the regressions are based on monthly
observations. Robust t-statistics accounting for the overlap following Hodrick (1992) are reported in parentheses.
All variable definitions are identical to Table 1.
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Figure 3
Estimated slopes and R2s
The figure shows the estimated slope coefficients and pointwise 95% confidence intervals along with the corre-
sponding R2s from the regressions of the scaled h-period S&P 500 returns on the variance difference. All of the
regressions are based on monthly observations from January 1990 to December 2007.

Taken as a whole, the results in Table 2 reveal a clear pattern in the de-
gree of predictability afforded by the variance risk premium with the largest
t-statistic and maximum R2 occurring at the quarterly horizon. These findings
are directly in line with the qualitative implications from the theoretical model
developed in Section 2, in which the variance risk premium effectively isolates
the systematic risk factor associated with time-varying volatility of consump-
tion growth volatility. More specifically, comparing the empirical estimates
for all of the monthly horizons ranging from one month (h = 1) to two years
(h = 24) reported in Figure 3 to the theoretical population counterparts for the
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four benchmark models depicted in Figure 1, the similarities in the general
shapes of the estimated and implied slope coefficients and R2s as a function
of the return horizon are quite striking. Of course, the values of the R2s at the
intermediate three-to six-month horizon for the actual return regressions are
slightly larger than the R2s for any of the calibrated models, suggesting that
additional systematic risk factors, temporal variation in the degree of risk aver-
sion, and/or the influence of period-specific idiosyncratic events are needed to
fully explain the empirical results.

To better appreciate the findings in a wider empirical context, Tables 3–5
report the results from comparable monthly, quarterly, and annual return
regressions, respectively, involving the more traditional predictor variables in
Table 1.23 Not surprisingly, the degree of predictability at the monthly horizon
is systematically very low, although the individual regressions for both the
P/E ratio and CAY do result in t-statistics slightly above two (numerically).24

Combining the variance difference with the P/E ratio results in a monthly R2

of 3.77%, in excess of the sum of the two R2s from the individual regressions.
Both of the coefficients also remain statistically significant in the joint regres-
sion. Adding the term spread (TMSP) and the relative risk-free rate (RREL)
to the multiple regression actually reduces the (adjusted) R2, but the variance
premium remains statistically significant.

The quarterly regressions reported in Table 4 further underscore the signif-
icance of the result in Table 2. None of the t-statistics for any of the other
predictor variables come close to the aforementioned t-statistic for the vari-
ance premium (2.86), and with the possible exception of P/E (−1.97) and CAY
(1.78), all are insignificant at conventional levels. Of course, the R2s for some
of the other predictor variables, most notably the P/E and P/D ratios and CAY,
are fairly close to the R2 for the variance premium. However, whereas the
monthly variance premium exhibits relatively weak serial correlation, all of
these other predictor variables are close to unit root-type processes, which as
previously noted renders the R2s based on overlapping regressions difficult to
interpret.

Turning to the multiple regressions reported in the right panel of Table 4,
we find that combining the variance premium with the P/E ratio results in
even more impressive t-statistics of 3.43 and −2.42, respectively. Intuitively,
the variance risk premium and the P/E ratio may jointly capture important

23 For comparability with the other slope coefficients, the P/E, P/D, and DFSP variables have been scaled by a
factor of 12. Many other predictor variables have, of course, been proposed in the literature. While it is literally
impossible to investigate all of these suggestions, we also experimented with the bond factor of Cochrane and
Piazzesi (2005), but found that it offered little predictability over the 1990–2007 sample period. Similarly, return
regressions based on the corporate payout ratio (D/E) resulted in a negative adjusted R2 over the present sample.

24 By estimating the cointegrating relationship in-sample, the traditional CAY variable suffers from a “look-ahead”
bias. Brennan and Xia (2005) argue that this “explains” most of the predictability afforded by CAY. Also, on
implementing the aforementioned adjustment in Stambaugh (1986, 1999) to take account of the finite-sample
bias in the estimated coefficients due to the serial correlation in the regressors, the adjustment term for IVt − RVt

equals 0.02, compared to 0.52 and 0.51 for P/E and CAY, respectively. These latter large adjustments are directly
in line with the numbers reported in the extant literature.
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Table 3
Monthly return regressions

Simple Multiple

Constant −0.55 −0.19 4.88 92.72 75.51 14.23 7.73 6.67 5.45 101.13 −2.52 78.02 91.20 101.86
(−0.13) (−0.04) (1.20) (2.22) (1.87) (0.91) (1.32) (2.12) (1.53) (2.42) (−0.55) (1.49) (1.74) (2.28)

IVt − RVt 0.39 0.49 0.42 0.50 0.57
(1.76) (2.16) (1.87) (2.10) (2.34)

IVt 0.20
(1.30)

RVt 0.11
(0.41)

log(Pt /Et ) −2.30 −2.76 −1.90 −2.49 −2.93
(−2.02) (−2.40) (−1.36) (−1.76) (−2.31)

log(Pt /Dt ) −1.47
(−1.68)

DFSPt −0.77
(−0.50)

TMSPt −0.72 2.87
(−0.28) (0.96)

RRELt 1.63 3.29
(0.43) (0.76)

CAYt 3.71 3.94 1.78 1.46
(2.04) (2.20) (0.87) (0.72)

Adj. R2 (%) 1.07 0.57 −0.34 1.80 1.11 −0.31 −0.43 −0.40 1.44 3.77 2.78 1.89 3.86 3.34

The sample period extends from January 1990 to December 2007. Robust t-statistics following Hodrick (1992) are reported in parentheses. All variable definitions are identical to Table 1,
except for P/E, P/D, and DFSP, which have been scaled by a factor of 12.
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Table 4
Quarterly return regressions

Simple Multiple

Constant −2.08 0.24 6.60 92.41 73.35 20.63 7.39 6.92 5.53 101.89 −4.12 85.93 100.06 98.21
(−0.56) (0.06) (1.60) (2.17) (1.81) (1.32) (1.24) (2.18) (1.54) (2.40) (−1.00) (1.67) (1.93) (2.18)

IVt − RVt 0.47 0.58 0.51 0.59 0.70
(2.86) (3.43) (3.02) (3.38) (4.01)

IVt 0.19
(1.41)

RVt 0.00
(0.00)

log(Pt /Et ) −2.28 −2.82 −2.11 −2.77 −2.95
(−1.97) (−2.42) (−1.54) (−1.98) (−2.33)

log(Pt /Dt ) −1.42
(−1.62)

DFSPt −1.39
(−0.90)

TMSPt −0.46 4.08
(−0.17) (1.42)

RRELt 3.27 6.39
(0.88) (1.56)

CAYt 3.23 3.52 1.08 0.74
(1.78) (1.99) (0.53) (0.37)

Adj. R2 (%) 6.82 2.49 −0.47 6.55 4.19 1.18 −0.43 0.43 4.13 16.76 11.87 7.21 17.42 19.74

The sample period extends from January 1990 to December 2007. All of the regressions are based on overlapping monthly observations. Robust t-statistics accounting for the overlap
following Hodrick (1992) are reported in parentheses. All variable definitions are identical to Tables 1 and 3.
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Table 5
Annual return regressions

Simple Multiple

Constant 4.62 7.62 9.49 78.47 79.83 15.59 5.37 7.29 5.42 81.00 1.91 52.85 55.11 74.04
(1.50) (2.44) (3.20) (2.05) (2.17) (1.13) (0.90) (2.33) (1.47) (2.15) (0.53) (1.03) (1.08) (1.88)

IVt − RVt 0.12 0.19 0.18 0.20 0.33
(1.00) (1.68) (1.51) (1.74) (2.96)

IVt −0.02
(−0.21)

RVt −0.17
(−1.20)

log(Pt /Et ) −1.90 −2.06 −1.24 −1.40 −2.14
(−1.80) (−2.00) (−0.91) (−1.03) (−1.92)

log(Pt /Dt ) −1.55
(−1.92)

DFSPt −0.87
(−0.64)

TMSPt 0.88 4.53
(0.35) (1.69)

RRELt 4.09 6.29
(1.11) (1.75)

CAYt 3.48 3.62 2.13 2.12
(1.99) (2.12) (0.99) (0.99)

Adj. R2 (%) 1.23 −0.37 2.89 16.34 19.53 1.79 0.01 4.54 18.15 20.12 21.18 21.46 25.52 32.58

The sample period extends from January 1990 to December 2007. All of the regressions are based on overlapping monthly observations. Robust t-statistics accounting for the overlap
following Hodrick (1992) are reported in parentheses. All variable definitions are identical to Tables 1 and 3.
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short- and long-run risks embedded in the market returns. This would also be
consistent with the qualitative implications from a more elaborate equilibrium
model combining the model in Section 2 with the long-run risk model of
Bansal and Yaron (2004), allowing for time-varying volatility and volatility-
of-volatility as well as predictability in the mean of consumption growth. A
similar empirical pattern, albeit to a lesser extent, obtains when including the
CAY variable along with the variance premium, resulting in t-statistics of 3.02
and 1.99, respectively. On the other hand, combining the P/E ratio and CAY
in the same quarterly return regressions results in insignificant t-statistics for
both. Even though the term spread and the relative short rate are insignificant by
themselves, both variables contribute marginally to a joint predictive regression
with the variance premium and the P/E ratio, resulting in the highest overall
adjusted R2 in the table. Lastly, it is worth noting that regardless of the other
variables included in the forecast regressions, the estimated coefficients for the
variance risk premium remain quite stable and statistically significant at the
0.001 level or better.

Many of the empirical studies cited above have, of course, argued that the
degree of predictability afforded by the different valuation ratios and predictor
variables included in Table 1 tend to be the strongest over longer multi-year
horizons. Our limited post-1990 sample prevents us from effectively studying
issues having to do with longer return horizons spanning multiple years. How-
ever, we do report in Table 5 the regression results for annual returns based
on monthly overlapping observations, but again caution that with such a short
calendar time span and large overlap, the estimation results, and especially the
R2s, must be carefully interpreted. Indeed, despite the large R2s, the t-statistics
for P/E, P/D, and CAY are all just barely significant. As before, including the
variance premium with either of these other variables results in larger (in an
absolute sense) t-statistics for both. In parallel to Tables 3 and 4, the overall
largest t-statistic (2.96) is again associated with the variance premium in the
multiple regression reported in the last column in the table.

The simple regressions involving RV or IV reported in Tables 3–5 always
result in insignificant t-statistics and low R2s. This is, of course, to be expected
from the extant risk–return literature, which has largely searched in vain for
such a tradeoff relationship. To further explore this issue and the interplay
between the two volatility measures, we report in Table 6 the results obtained
by including RV and VRP = IV − RV in the same return regressions. Looking at
the quarterly return horizon in the middle part of the table, it is noteworthy that
while VRP is highly significant, RV remains insignificant in the joint regression.
As such, this implicitly attributes the same numerical but opposite signed effects
to IV and RV. Following the discussion in Section 2, it appears that the variance
difference VRP effectively isolates the factor that drives the volatility risk
premium, thereby allowing for the estimation of a meaningful and significant
risk–return tradeoff relationship. Meanwhile, previous studies in the risk–return
literature (for example, Scruggs 1998; Guo and Whitelaw 2006) have argued
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Table 6
Risk–return tradeoff

Monthly returns Quarterly returns Annual returns

Constant −0.83 112.29 134.16 −0.88 113.52 121.71 6.84 78.82 81.17
(−0.18) (2.88) (2.85) (−0.21) (2.77) (2.71) (2.22) (2.28) (2.16)

RVt 0.03 0.32 0.46 −0.11 0.17 0.33 −0.22 −0.03 0.10
(0.10) (1.22) (1.58) (−0.41) (0.65) (1.11) (−1.25) (−0.23) (0.75)

IVt − RVt 0.38 0.45 0.54 0.50 0.56 0.69 0.17 0.20 0.33
(1.68) (2.02) (2.43) (2.91) (3.42) (4.22) (1.43) (1.73) (2.94)

log(Pt /Et ) −3.43 −4.06 −3.18 −3.76 −1.99 −2.39
(−2.91) (−2.93) (−2.80) (−2.87) (−2.13) (−2.23)

TMSPt 4.95 5.52 4.97
(1.48) (1.68) (1.82)

RRELt 5.09 7.55 6.62
(1.17) (1.82) (1.87)

Adj. R2 (%) 0.61 4.17 4.45 6.78 17.11 21.81 5.80 19.80 33.00

The sample period extends from January 1990 to December 2007. All of the regressions are run at a monthly
frequency. Robust t-statistics accounting for the overlap following Hodrick (1992) are reported in parentheses.
All variable definitions are identical to Tables 1 and 3.

that additional control factors, including interest rates, are needed in order
to reliably estimate the relationship between expected return and volatility.25

To investigate this, we include the P/E ratio, the term spread, and the short
rate in the return regressions. This only reinforces the superior predictability
afforded by the variance premium. Whereas many of the t-statistics for the
variance premium (all at the quarterly horizon) are highly significant, none of
the t-statistics associated with RV and the more traditional risk–return tradeoff
estimated in the literature are significant.

3.2 Other variation measures
The regression results discussed above were directly motivated by the stylized
equilibrium model in Section 2, in which the dynamics were cast in variance
form, and in which the different variation measures were approximated empiri-
cally by their “model-free” counterparts. We next discuss a series of additional
return regressions and sensitivity checks based on other variation measures
and volatility transforms designed to address the robustness and validity of
our findings in a wider sense. To conserve space, we will focus our summary
discussion on the quarterly return horizon that produced the most significant
results. Also, we do not include any additional tables, but more detailed tabular
information related to these results is available upon request.

3.2.1 “Old” variance measures. The “model-free” implied and realized
variances underlying our empirical results are both relatively new. As a first
robustness check, we replace the “model-free” variance measures with the
standard at-the-money Black–Scholes implied variance IV∗, and the realized

25 With higher interest rates generally associated with more turbulent financial markets, this may also be seen as
proxying for the qt process in the stylized equilibrium model.
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variance based on low-frequency daily returns RV∗. Interestingly, the regres-
sions based on these “old” variance measures generally do not give rise to
the same strong conclusions. The variance risk premium defined by the differ-
ence between the Black–Scholes implied variance and the daily return based
realized variance still dominates each of the variance measures in isolation
with t-statistics of 1.72 versus 0.97 and 0.31, respectively. However, the R2

for the “model-free” variance premium in Table 4 (6.82%) is much larger than
the 2.16% obtained with the difference between the “old” variance measures.
Replacing the realized variance based on daily data with the corresponding
high-frequency-based measure results in a marginally significant t-statistic of
1.85 and increases the R2 to 3.30%. Similarly, replacing the Black–Scholes
implied variance with the “model-free” implied variance results in a t-statistic
of 2.34 and increases the R2 to 4.45%.26

All in all, these results clearly show that our use of the new “model-free”
variance measures is crucial in effectively uncovering the variance risk pre-
mium. Estimation of the same predictive regressions based on the traditional
Black–Scholes implied variances and/or realized variances constructed from
lower frequency daily data does not give rise to nearly as significant results.

3.2.2 Volatility risk premia. The regressions discussed so far have all been
cast in variance form.27 This, of course, directly mirrors the expressions for
the variance premia and predictability regressions derived within the context of
the theoretical model in Section 2. However, the volatility, or other nonlinear
monotone transforms of the variance, is often used as an alternative and em-
pirically more robust measure of risk (for example, Merton 1980). Replacing
the “model-free” variance measures with their volatility or standard deviation
counterparts yields a t-statistic of 2.75 and an R2 of 6.51% for the volatility dif-
ference

√
IV − √

RV, compared to 2.86 and 6.82% for the variance difference
IV − RV. Again, including

√
IV and

√
RV individually results in insignificant

t-statistics of 1.01 and −0.12, respectively. The results for the multiple regres-
sions obtained by including the P/E ratio, CAY, and the term structure variables
together with the volatility difference are comparable to the ones for the vari-
ance premium, but all of the t-statistics and R2s fall short of those reported in
Table 4.

3.2.3 Expected variation premium. The empirical variance risk premium
defined in Equation (22) is based on the difference between the market’s (risk
neutral) expected variation and the current realized variation. Both of these mea-
sures and in turn the premium are directly observable at time t in a completely

26 This indirectly suggests that much of the useful information about the temporal variation in the risk-neutralized
variance resides in options away from the money.

27 This corresponds to the common use of variance-denominated contracts in the over-the-counter swap market
(see, for example, Demeterfi et al. 1999; Mixon 2007).
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“model-free” fashion. The resulting regressions with VRP on the right-hand
side also directly mirror the population regressions analyzed within the styl-
ized equilibrium model in Section 2. More generally, however, our empirical
findings that higher (lower) values of the variance premium are associated with
higher (lower) future returns may, in part, be attributed to the effect that when
the market anticipates high (low) volatility going forward, there is a discount
(premium) built into prices, resulting in high (low) future returns. To more
clearly separate this effect from temporal variation in the volatility risk pre-
mium per se, it is useful to consider a regression of the returns on an estimate
of the previously defined forward looking,28 or expected, variance premium,
EVRPt ≡ IVt − Et (RVt+1).

In contrast to all of the other predictor variables and “model-free” empirical
measures considered so far, this necessitates an explicit forecasting model for
RVt . Numerous parametric and nonparametric volatility forecasting procedures
have been proposed in the literature (see, for example, Andersen et al. 2006). We
here rely on the simple-to-implement, yet empirically highly accurate, reduced
form HAR-RV model advocated by Corsi (2004) and Andersen, Bollerslev, and
Diebold (2007), among others, in which the forecast for the one-month-ahead
volatility is a linear function of the current daily, weekly, and monthly realized
volatilities. Regressing the quarterly overlapping returns on a constant and this
expected variance premium results in a t-statistic of 2.27 and an R2 of 4.27.29

Although this t-statistic for EVRP is somewhat lower than the one for VRP
(2.86), it is still higher than the t-statistics for any of the other predictor variables
in Table 4. Of course, given the high degree of volatility persistence inherent in
the S&P 500 returns, it is hardly surprising that the expected variance difference
and the directly observable variance difference perform fairly similarly from a
forecasting perspective.30

4. Conclusion

We provide empirical evidence that stock market returns are predictable by the
difference between “model-free” implied and realized variances or the variance
risk premium. The results appear remarkably robust across different specifi-
cations and/or the inclusion of alternative predictor variables. The degree of
predictability is the largest at intermediate quarterly horizons, but the premium
still helps explain the observed return variation at shorter monthly and longer
annual horizons. Our empirical findings are broadly consistent with the impli-
cations from a simple representative agent economy with recursive preferences

28 Related to this, Ang et al. (2009) rely on forward looking volatility estimates constructed by instrumental variables
procedures in their analysis of cross-sectional pricing of idiosyncratic volatility.

29 Since our estimation of the HAR-RV model for RVt is based on the full sample, the results are subject to a
standard “look-ahead” bias and additional parameter estimation error uncertainty.

30 The sample correlation between EVRP and VRP equals 0.85, which far exceeds that for any other pair of predictor
variables in Table 1.

4488



Expected Stock Returns and Variance Risk Premia

that explicitly incorporates the equilibrium effects of economic uncertainty and
time-varying volatility-of-volatility, although the magnitudes of the estimated
effects appear too large to be fully explained by the new stylized theoretical
model.

The wedge between the “model-free” risk-neutral expected and actual vari-
ance underlying our empirical results may alternatively be seen as a proxy
for the aggregate degree of risk aversion in the market.31 Although it might
be difficult to contemplate systematic changes in the level of risk aversion at
the frequencies emphasized in our empirical work, time-varying volatility risk
and time-varying risk aversion likely both play an important role in explaining
temporal variation in expected returns (for example, Bekaert, Engstrom, and
Grenadier 2005; Bekaert, Engstrom, and Xing 2008). Recent work directly
motivated by the empirical results first reported here based on more elaborate
equilibrium models (Drechsler and Yaron 2008) and cross-sectional pricing
relations (Nyberg and Wilhelmsson 2007) should prove an important next step
in sorting out these issues and further clarify the economic mechanisms behind
the predictability afforded by the variance risk premium.
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