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a b s t r a c t

Building on realized variance and bipower variation measures constructed from high-frequency financial
prices, we propose a simple reduced form framework for effectively incorporating intraday data into the
modeling of daily return volatility. We decompose the total daily return variability into the continuous
sample path variance, the variation arising from discontinuous jumps that occur during the trading
day, as well as the overnight return variance. Our empirical results, based on long samples of high-
frequency equity andbond futures returns, suggest that the dynamic dependencies in the daily continuous
sample path variability arewell described by an approximate long-memoryHAR–GARCHmodel,while the
overnight returnsmay bemodeled by an augmented GARCH type structure. The dynamic dependencies in
the non-parametrically identified significant jumps appear to be well described by the combination of an
ACHmodel for the time-varying jump intensities coupled with a relatively simple log-linear structure for
the jump sizes. Finally, we discuss how the resulting reduced form model structure for each of the three
components may be used in the construction of out-of-sample forecasts for the total return volatility.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

A burgeoning literature concernedwithmodeling and forecast-
ing the dynamic dependencies in financial market volatility has
emerged over the past two decades. Until fairly recently, most
of the empirical results in the literature were based on the use of
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daily, or coarser frequency data, coupled with formulations within
the GARCH or stochastic volatility class of models; for a recent
survey see Andersen et al. (2006). Meanwhile, somewhat of a
paradigm shift has started to occur in which high-frequency data
is now incorporated into longer-run volatility modeling and fore-
casting problems through the use of simple reduced-form time se-
ries models for non-parametric daily realized volatility measures
based on the summation of intraday squared returns; see, e.g.,
Andersen et al. (2003) and the supportive theoretical results in
Andersen et al. (2004).3 Further, decomposing the total daily re-
turn variability into its continuous and discontinuous components
based on the bipower variation measures developed by Barndorff-
Nielsen and Shephard (2004a, 2006), the empirical results in An-
dersen et al. (2007) suggest that most of the predictable variation
in the volatility stems from the strong own dynamic dependencies
in the continuous price path variability, while the predictability of
the (squared) jumps is typically minor. The present paper takes
this analysis one step further by developing, estimating and im-
plementing separate reduced-form time series forecasting models

3 Closely related empirical findings have been reported in Anderson and Vahid
(2007), Areal and Taylor (2002), Corsi (2004), Deo et al. (2006), Koopman et al.
(2005), Martens et al. (2004), Pong et al. (2004) and Thomakos and Wang (2003),
among others.
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for each of the different components that make up the total daily
price variation.

Following the analysis in Andersen et al. (2007), we begin
by decomposing the total return variability over the trading day
into its continuous sample path variation and the variation due
to jumps based on the bipower variation measure developed
by Barndorff-Nielsen and Shephard (2004a, 2006). Our empirical
results with a fifteen year sample of high-frequency intraday
S&P 500 and T-Bond futures returns confirm earlier findings that
the dynamic dependencies in the daily continuous sample path
variability is well described by an approximate long-memory
Heterogeneous AR (HAR) model, as originally proposed by Corsi
(2004). Meanwhile, careful analysis of the non-parametrically
identified jumps reveals some new and interesting dynamic
dependencies vis-a-vis the results reported in the existing
literature. In particular, while the time series of statistically
significant squared jumps appear to be approximately serially
uncorrelated, the times between jumps and the sizes of the
jumps are both autocorrelated.4 We successfully model these
dependencies by the combination of an Autoregressive Conditional
Hazard (ACH) model, as developed by Hamilton and Jordà (2002),
for the time-varying jump intensities, coupled with a log-linear
model with GARCH errors for the size of the jumps.5

The two separate model structures described above effectively
account for the variability over the active part of the trading day
when the market is formally open. However, the opening price
typically differs from the closing price from the previous day, and
the corresponding overnight return often accounts for a non-trivial
fraction of the total daily return. The most common approach for
dealing with this issue when modeling and forecasting realized
volatilities is to scale the intradaymeasures and/ormodel forecasts
by a constant to make them unconditionally unbiased for the total
daily variation; see, e.g., Martens (2002), Fleming et al. (2003)
and Koopman et al. (2005). An alternative approach based on
minimizing the mean square error for the realized variance over
the whole day has also been advocated by Hansen and Lunde
(2005). Instead, we treat the overnight returns as a time series
of regularly occurring jumps. We model these by a discrete-time
GARCHmodel inwhich the conditional variance explicitly depends
on the continuous sample path variation over the immediately
preceding active part of the trading day.

We also show how the three separate models discussed above
may be combined in the construction of recursive forecasts for the
total daily and longer horizon return volatility.6 Comparing both
in- and out-of-sample daily, weekly andmonthly forecasts to those
from other discrete-time volatility models, including a standard
GARCH(1, 1) model and the HAR–RV model, our results suggest
that the more detailed modeling approach developed here can in
fact result in important forecast improvements.

Our paper is most directly related to Bollerslev et al. (in this
issue), who estimate a discrete-time model for the joint dynam-
ics of daily S&P 500 returns, realized variance and bipower vari-
ation. However, in contrast to the present paper, the former
paper makes no attempt at separately identifying or modeling
the dynamics of the jump and the overnight return components.
Closely related results have also been reported in independent

4 The occurrences of jumps in the T-Bond market also appear to be related to the
releases ofmacroeconomic news announcements, as documented in, e.g., Andersen
et al. (2007) and Johannes (2004).
5 The idea of modeling the jump process in terms of the occurrence and the size

of the jumps has a natural precedent in the bin model for tick-by-tick transaction
prices proposed by Rydberg and Shephard (2003).
6 The separatemodel estimates and accompanying forecasts reportedhere ignore

any contemporaneous dependencies among the innovations to the continuous
sample path variability and jump equations. Incorporating this into a fully efficient
multivariate system estimation is severely complicated by the fact that the time
series of significant jumps are effectively censored and the corresponding equations
only estimated based on a subset of the sample.
work by Lanne (2006). Our paper is also related to the concur-
rent work of Tauchen and Zhou (2006), who document time-
varying jump intensities based on the same realized variation
measures and test statistics used here. Discrete-time GARCHmod-
els incorporating Poisson jump processes with time-varying jump
intensities based solely on daily data have also previously been
estimated by Chan and Maheu (2002) and Maheu and McCurdy
(2004), while earlier work by Neely (1999) highlights the poten-
tial benefits from removing jumps when forecasting volatility us-
ing GARCH type models.

At a somewhat broader level our results also speak to the
vast finance literature based on continuous-time methods and
corresponding parametric models. In particular, the compound
Poisson model of Merton (1976) and the many subsequent studies
that rely on time-invariant jump–diffusions, are all at odds with
the empirical findings reported here. On the other hand, the more
recent studies by Andersen et al. (2002), Chernov et al. (2003) and
Eraker et al. (2003) that explicitly allow for time-varying jump
intensities all report difficulties in precisely estimating the process
from daily data. Meanwhile, consistent with the empirical results
for the high-frequency realized variation measures reported here,
Bates (2000), Pan (2002), Carr and Wun (2003) and Eraker (2004)
all point to the existence of time-varying jump intensities when on
incorporating additional information from options data.

The rest of the paper is organized as follows. Section 2 sets
up the notation and reviews the jump detection statistic used
in revealing the latent jump processes. Section 3 reports the
initial empirical evidence for the distinct dynamic characteristics
of the different components that make up the total daily return
variation. Section 4 models the continuous sample path variance,
while Sections 5 and 6 develop our models for the discrete jump
contribution and the overnight return dynamics, respectively.
Section 7 discusses the construction of forecasts and compares the
results to those from other procedures. Section 8 concludes.

2. Jump detection test statistics

2.1. General setup and notation

We assume that the scalar logarithmic asset price within the
active part of the trading day follows a standard jump–diffusion
process
dp(τ ) = µ(τ)dτ + σ(τ−)dw(τ)+ κ(τ)dq(τ ), (1)
where τ ∈ R+, and the time scale is normalized so that the
unit interval corresponds to a trading day; µ(τ) denotes the drift
term with a continuous and locally finite variation sample path;
σ(τ) > 0 is the spot volatility process, assumed to be càdlàg;
w(τ) is a standard Brownian motion; κ(τ)dq(τ ) refers to the pure
jump part, where dq(τ ) = 1 if there is a jump at time τ and 0
otherwise, where the jumps occur with potentially time-varying
jump intensity λ(τ), and size κ(τ). We denote the corresponding
discrete-time within-day geometric returns by
rt,j = p(t − 1 + j/M)− p(t − 1 + (j − 1)/M),

j = 1, 2, . . . ,M, (2)
where t ∈ N+, andM refers the number of (equally spaced) return
observations over the trading day.

The continuous-time diffusion process above only applies for
the active part of the trading day. However, the opening price on
one day typically differs from the closing price recorded on the
previous day. In fact, as discussed further below, it is natural to
think of the overnight returns as random jumps occurring at the
deterministic times t = 1, 2, . . . . As such, the total return for day
t equals

rt = rt,n +

M−
j=1

rt,j = rt,n + rt,d, (3)
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where rt,n denotes the overnight logarithmic price change fromday
t −1 to day t , and we follow the convention of measuring the daily
returns as close-to-close.

2.2. Realized variation measures

The volatility over the active part of the trading day t is
measured by the quadratic variation

QVt =

∫ t

t−1
σ 2(s)ds +

Nt−
j=1

κ2
t,j. (4)

The first integrated variance term represents the contribution from
the continuous price path,whileNt gives the number of jumps over
day t , and

∑Nt
j=1 κ

2
t,j accounts for the corresponding contribution to

the variance from the within-day jumps.
The quadratic variation process and its separate components

are, of course, not directly observable. Instead,we resort to recently
popularized model-free non-parametric consistent measures,
including the now familiar realized variance

RVt(M) =

M−
j=1

r2t,j. (5)

As noted in Andersen and Bollerslev (1998), Comte and Renault
(1998), Andersen et al. (2001b, 2003) and Barndorff-Nielsen
and Shephard (2001, 2002), among others, RVt(M) converges
uniformly in probability to QVt as the sampling frequency goes to
infinity

RVt(M)
PM

−−−→
M→∞

∫ t

t−1
σ 2(s)ds +

Nt−
j=1

κ2
t,j, (6)

or equivalently, the length of the return interval goes to zero.
Meanwhile, a host of practical market microstructure compli-

cations prevents us from sampling too frequently while maintain-
ing the fundamental semimartingale assumption underlying Eq.
(1). Ways in which to best deal with these complications and the
practical choice of M have been the subject of intensive recent re-
search efforts; see, e.g., Aït-Sahalia et al. (2005), Bandi and Russell
(2008), Barndorff-Nielsen et al. (2008), Hansen and Lunde (2006)
and Zhang (2006). In the analysis reported on below, we simply
followmost of the existing empirical literature in the use of a fixed
five-minute sampling frequency, corresponding to M equal to 80
and 79 for each of the two markets that we study.

In order to separately measure the jump part, we rely on
the realized bipower variation measure developed by Barndorff-
Nielsen and Shephard (2004a, 2006),

RBV1,t = µ−2
1


M

M − 2

 M−
j=3

|rt,j−2| |rt,j|, (7)

where µa = E(|Z |
a) for Z ∼ N(0, 1). The bipower variation mea-

sure defined above involves an additional stagger relative to the
measure originally considered in Barndorff-Nielsen and Shephard
(2004a), which helps render it robust to certain types of market
microstructure noise; see Huang and Tauchen (2005) for some ini-
tial analytical investigations and simulation-based evidence along
these lines. Barndorff-Nielsen et al. (2006), Barndorff-Nielsen et al.
(2006) and Jacod (2008) show that RBV1,t(M) converges in prob-
ability to the integrated variance, under the general assumption
that the logarithmic price process is a Brownian semimartingale
with a finite-activity jump process, or an infinite-activity α-stable
jump process with the Blumenthal–Getoor index α < 2. Con-
sequently, the difference between the realized variance and the
realized bipower variation consistently estimates the part of the
quadratic variation due to jumps

RVt(M)− RBV1,t(M)
PM

−−−→
M→∞

Nt−
j=1

κ2
t,j. (8)
Moreover, under similar regularity conditions, except α < 1, the
test statistic

Zt =

RVt−RBV1,t
RVt

π
2

2
+ π − 5


1
M max


1, RTQt

RBV2
1,t

 , (9)

where

RTQ1,t = Mµ−3
4/3


M

M − 4

 M−
j=5

|rt,j−4|
4/3

|rt,j−2|
4/3

|rt,j|4/3, (10)

is asymptotically standard normally distributed under the null
hypothesis of no within-day jumps.7

Based on the above jump detection test statistic, the realized
measure of the jump contribution to the quadratic variation of the
logarithmic price process is then measured by
Jt(M) = I(Zt > Φα) · (RVt(M)− RBVi,t(M)), (11)
where I(·) denotes the indicator function and Φα refers to the
appropriate critical value from the standard normal distribution.
Accordingly, our realized measure for the integrated variance is
defined by
Ct(M) = I(Zt ≤ Φα) · RVt(M)+ I(Zt > Φα) · RBVi,t(M). (12)
This definition automatically ensures that the non-parametric
measures for the jump and continuous components add up to
RVt(M). This same decomposition of the within day variance has
also previously been explored by Andersen et al. (2007), among
others. Of course, the actual implementation requires a choice of
α. In the results reported on below, we use a critical value of
α = 0.99, but very similar results (available upon request) were
obtained for other values of α.8 For notational simplicity, we will
refer to these empirical measures as RVt , Ct and Jt in the sequel.

3. Data and summary statistics

3.1. Data

Our data consist of five-minute prices for the S&P 500 futures
(SP) and 30-year US treasury bond futures (US) contracts. The raw
transaction prices for both contracts were obtained from Price-
Data. The sample period for both assets begins on January 2, 1990,
and ends on February 4, 2005. The intraday five-minute prices for
the SP contracts span the time interval from 9:35 to 16:15 (EST),
resulting inM = 80 non-overlapping return observations per day.
The five-minute prices for the US contracts cover the period from
8:25 to 15:00 (EST), for a total of M = 79 intraday returns. Our
use of a five-minute sampling frequency parallels many previous
studies in the literature, and as discussed further in Andersen et al.
(2007), for the two contracts analyzed here strikes a reasonable
balance between the desire for as finely sampled observations as
possible on the one hand, and robustness to contaminatingmarket
microstructure influences on the other.9

7 Huang and Tauchen (2005) report extensive simulation evidence showing
that this particular jump detection test statistic exhibits excellent size and power
properties for a one-factor logarithmic stochastic volatility model augmented with
compound Poisson jumps. Also, while the original proofs for asymptotic normality
in the above cited papers relied on α < 1, Zhang (2007) has recently extended the
results to allow for 1 < α < 3/2.
8 In the actual implementation we also imposed a hard lower bound of 0.001 on

the daily Ct (M).
9 For further details concerning the previous-tick method used in the construc-

tion of the five-minute returns and the specific contract rollover scheme, see
Wasserfallen and Zimmermann (1985), Dacorogna et al. (2001), Andersen et al.
(2007) and Fleming et al. (2003), respectively. For SP around 98% of the prices occur
within one minute of each five-minute mark, while for US the proportion is around
86%.
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Fig. 1. Daily returns and variation components for SP.
Table 1
Descriptive statistics for SP.

Ct Jt It St r2t,n

Mean 0.856 0.042 0.086 0.491 0.261
Std. dev. 1.098 0.610 0.281 2.025 0.865
Skewness 5.274 34.77 2.947 10.37 16.44
Kurtosis 47.20 1390 9.683 123.8 483.3
Min 0.004 0.000 0.000 0.006 0.000
Max 14.33 27.59 1.000 27.59 31.38
Obs. 3801 3801 3801 328 3800

Ljung–Box Q -statistics

Lags Ct Jt It St r2t,n
5 6109 (0.000) 2.773 (0.735) 7.361 (0.195) 3.606 (0.607) 577.3 (0.000)

10 10039 (0.000) 24.69 (0.006) 15.50 (0.115) 6.190 (0.799) 727.3 (0.000)
15 12629 (0.000) 24.79 (0.053) 32.95 (0.005) 6.884 (0.961) 861.2 (0.000)
20 15050 (0.000) 26.75 (0.143) 37.47 (0.010) 7.077 (0.996) 962.9 (0.000)
3.2. Summary statistics

To get an idea about the properties of the different components
that make up the total daily return variance for each of the two
markets, we plot in Figs. 1 and 2 the daily return rt , our measure
for the continuous sample path variation Ct , the sum of the within
day squared jumps Jt , and the overnight squared returns r2t,n.
The figures clearly indicate rather distinct dynamic dependencies
in each of the different components, with the jump time series
appearing noticeably more erratic and less predictable than the
other series.
To better understand these dependencies, we further decom-
pose the Jt series into two separate processes: one describing the
occurrence of jumps, and the other the size of the squared jump(s)
within the day when at least one jump occurs. We denote these
two processes by It and St , respectively. More precisely, Pr(Jt =

0|Ft−1) = Pr(It = 0|Ft−1), while Pr(0 < Jt ≤ j|Ft−1) = Pr(It =

1|Ft−1) · Pr(St ≤ j|Ft−1, It = 1). The resulting summary statistics
reported in Tables 1 and 2 do indeed reveal some significant dy-
namic dependencies in the It and St series that are largely masked
in the corresponding Jt series. Of course, the Ljung–BoxQ -statistics
reported in the tables only capture own linear dependencies.
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Fig. 2. Daily returns and variation components for US.
Table 2
Descriptive statistics for US.

Ct Jt It St r2t,n

Mean 0.253 0.037 0.255 0.143 0.066
Std. dev. 0.205 0.158 0.436 0.286 0.160
Skewness 3.312 13.72 1.123 7.798 13.46
Kurtosis 23.99 281.5 2.261 88.71 340.9
Min 0.001 0.000 0.000 0.009 0.000
Max 2.742 4.519 1.000 4.519 5.271
Obs. 3781 3781 3781 965 3780

Ljung–Box Q -statistics

Lags Ct Jt It St r2t,n
5 1492 (0.000) 5.511 (0.357) 38.11 (0.000) 4.648 (0.460) 72.6 (0.000)

10 2444 (0.000) 7.946 (0.634) 58.27 (0.000) 38.15 (0.000) 128.8 (0.000)
15 3192 (0.000) 10.42 (0.793) 93.10 (0.000) 44.12 (0.000) 152.2 (0.000)
20 3939 (0.000) 158.2 (0.000) 142.5 (0.000) 63.82 (0.000) 182.8 (0.000)
As discussed further in Section 5, there are also strong non-linear
dynamic dependencies embedded in the series for both markets.
The reduced formmodels for each of the different components dis-
cussed next are explicitly designed to account for these features.

4. Continuous sample path variation

We start by detailing our model for the strongly serially cor-
related continuous sample path variation process, Ct . The HAR–RV
model first proposed by Corsi (2004), and further developed by An-
dersen et al. (2007), provides a particular convenient framework
for modeling these dependencies.10 The specific HAR–C model
adopted here takes the form,

10 Following Müller et al. (1997), the HAR type specification is sometimes given
a structural interpretation as arising from the interaction of agents with different
investment horizons. Wemerely view the HAR–Cmodel as providing a convenient,
or ‘‘poor-man’s’’, approximation to long-memory.
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Table 3
HAR–C model estimates.

Homoskedastic GARCH(2, 1)
SP US SP US

β0 −0.085 (0.011) [0.000] −0.166 (0.052) [0.001] −0.097 (0.010) [0.000] −0.249 (0.038) [0.000]
βCD 0.349 (0.024) [0.000] 0.144 (0.043) [0.001] 0.331 (0.020) [0.000] 0.109 (0.020) [0.000]
βCW 0.338 (0.034) [0.000] 0.315 (0.062) [0.000] 0.369 (0.030) [0.000] 0.327 (0.036) [0.000]
βCM 0.262 (0.029) [0.000] 0.501 (0.061) [0.000] 0.252 (0.025) [0.000] 0.444 (0.039) [0.000]
βJD −0.109 (0.071) [0.126] −0.342 (0.135) [0.012] −0.087 (0.078) [0.267] −0.278 (0.116) [0.017]
βJW −0.118 (0.077) [0.124] 0.099 (0.224) [0.657] −0.081 (0.100) [0.418] 0.281 (0.221) [0.205]
βJM −0.122 (0.088) [0.165] −0.820 (0.402) [0.041] −0.175 (0.099) [0.079] −1.460 (0.329) [0.000]
ω – – 0.049 (0.015) [0.001] 0.015 (0.003) [0.000]
α1 – – 0.111 (0.027) [0.000] 0.129 (0.026) [0.000]
α2 – – −0.024 (0.032) [0.457] −0.090 (0.026) [0.000]
β1 – – 0.720 (0.076) [0.000] 0.921 (0.015) [0.000]
ν – – 7.696 (0.740) [0.000] 7.370 (0.822) [0.000]
Log L −2805.434 −3890.313 −2671.580 −3341.914
Obs. 3779 3759 3779 3759
log(Ct+1) = β0 + βCD log(Ct)+ βCW log(Ct−5,t)

+βCM log(Ct−22,t)+ βJD log(Jt + 1)+ βJW log(Jt−5,t + 1)

+βJM log(Jt−22,t + 1)+ ϵt+1,C , (13)

where Ct−h,t ≡ h−1
[Ct−h+1 + Ct−h+2 + · · · + Ct ] and Jt−h,t ≡

h−1
[Jt−h+1 + Jt−h+2 + · · · + Jt ]. The logarithmic transform

obviously prevents the implied continuous variation defined by
exponentiating Ct+1 from becoming negative.11

The left columns in Table 3 report the resulting OLS parameter
estimates, together with robust standard errors in parentheses
and p-values in square brackets. The estimation results confirm
the strong own dynamic dependencies in Ct . Consistent with the
results reported in Andersen et al. (2007) the coefficient estimates
associated with the lagged squared jumps for SP are generally
insignificant, albeit all negative, while there is some evidence
of significant anti-persistent effects of the squared jumps for
US. Meanwhile, the Ljung–Box Q -statistics for the squared and
absolute residuals (available upon request) reveal clear evidence
for significant conditional heteroskedasticity.

Hence, we augment the basic HAR–C model above with
a GARCH error structure for the time-varying volatility-of-
volatility.12 Further, to allow for the possibility of fat-tails,
we estimate the model under the assumption of conditionally
t-distribution errors as in Bollerslev (1987). After some experimen-
tation, we found that a GARCH(2, 1) model provided a good fit for
both markets,

ϵt+1,C = σt+1,C ·


v − 2
v

· zt+1,C , zt+1,C ∼ t(ν)

σ 2
t+1,C = ωC + α1,Cϵ

2
t,C + α2,Cϵ

2
t−1,C + β1,Cσ

2
t,C .

(14)

The estimates from this augmentedmodel are reported in the right
columns of Table 3. The conditionalmean parameters are generally
close to the previously reported OLS estimates.13 The coefficient
estimates associated with the past squared jumps again suggest

11 Moreover, the unconditional distributions of realized logarithmic volatilities
often appear approximately normal; see, e.g., Andersen et al. (2001b,a) and
Barndorff-Nielsen and Shephard (2004b), among others.
12 The presence of time-varying volatility-of-volatility is consistent with most of
the continuous-time stochastic volatility models used in the asset pricing finance
literature. For instance, in the square-root affine, or Heston, diffusion model, the
conditional variance of the future instantaneous variance is an affine function of
the current instantaneous variance and the current instantaneous variance squared;
see, e.g., Bollerslev and Zhou (2002).
13 Since the model is formulated in terms of log(Ct+1), the form of the conditional
heteroskedasticity plays a direct role in determining the expected value of Ct+1 .
Specifically, under the simplifying assumption of conditional normality, or ν =

∞, E[Ct+1|Ft ] = exp{E[log(Ct+1)|Ft ] + 1/2 Var[log(Ct+1)|Ft ]}. We will return to
a discussion of the numerical procedure that we actually use in the calculation of
the expectations from the more general model in the forecasting section below.
that, everything else equal, large jumps tend to lower the future
continuous sample path volatility, and particularly so for US.14
The residual diagnostics (available upon request) also confirm that
the estimated GARCH(2, 1) models adequately account for the
conditional heteroskedasticity.

5. Jump variation

Our model for the trading-time jump variation consists of two
parts: a model for the occurrence of jumps coupled with a model
for the squared jump sizes.15 Webegin by a discussion of ourmodel
for jump occurrences.

5.1. The ACH model

Let {t0, t1, . . . , tn, . . .} denote the random arrival times, or days,
associated with significant jumps. The Autoregressive Conditional
Duration (ACD) model proposed by Engle and Russell (1998), is
ideally suited for modeling dynamic dependencies in the jump-
durations di = ti − ti−1, or the number of days between two
adjacent significant jumps. However, the ACD model only updates
the conditional expected durations on event, or jump, days. From a
forecasting perspective, it is desirable to continuously incorporate
new information as it becomes available. The autoregressive
conditional hazard (ACH) model of Hamilton and Jordà (2002) was
explicitly designed with this objective in mind.16

In order tomore formally define the ACHmodel, letN(t) denote
the counting process representing the number of jump days that
have occurred up until time t . Also, define the hazard rate
ht = Pr[N(t) ≠ N(t − 1)|Ft−1]. (15)
The relationship between the hazard rate and the expected
duration, say ψN(t − 1), if no new information occurs between
jump days, is then given by,

ψN(t−1) =

∞−
j=1

j(1 − ht)
j−1ht =

1
ht
. (16)

14 Although some of the estimated coefficients are not significantly different
from zero at the usual five percent level, we purposely maintain the same HAR–C
GARCH(2, 1) specification for bothmarkets. Also note, that even though theARCH(2)
coefficients are estimated to be negative for both markets, the implied coefficients
in the infinite ARCH representations are all positive, so that the models are indeed
well-defined.
15 The model-free approach used here only identifies days with at least one
significant jump and in turn the sum of the within day squared jump(s). Further
refinements along the lines of Andersen et al. (2006) for actually estimating each
of the individual significant jumps could be used in the formulation of even richer
reduced form models.
16 Bowsher (2007) has recently developed a more general econometric modeling
framework for continuous-time conditional intensity-basedmultivariate processes.
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Table 4
ACH model estimates.

ACH(1, 1) Augmented ACH
SP US SP US

ω 0.227 (0.241) [0.346] 0.212 (0.084) [0.012] – –
α1 0.038 (0.021) [0.061] 0.088 (0.020) [0.000] 0.056 (0.029) [0.053] 0.088 (0.019) [0.000]
β1 0.942 (0.036) [0.000] 0.858 (0.035) [0.000] 0.900 (0.059) [0.000] 0.859 (0.033) [0.000]
δ0 – – 0.654 (2.771) [0.813] −0.282 (0.423) [0.505]
δM – – 0.320 (1.695) [0.850] 0.412 (0.298) [0.166]
δT – – 1.117 (1.731) [0.519] 0.387 (0.271) [0.154]
δW – – 2.979 (1.962) [0.129] 0.681 (0.299) [0.023]
δTh – – 1.144 (1.666) [0.492] 0.325 (0.266) [0.222]
δES – – 0.629 (0.575) [0.274] 0.199 (0.094) [0.034]
δCPI – – 0.757 (0.629) [0.229] 0.396 (0.089) [0.000]
Log L −1107.797 −2111.457 −1106.136 −2098.906
Obs. 3792 3778 3792 3778
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Fig. 3. Conditional hazard rates from ACH(1, 1) model.
The ACHmodel directly parameterizes the hazard rate, ht , allowing
it to depend on any relevant time t − 1 information.

To illustrate, consider the simple ACH(1, 1) model without any
information updating between jump days,

ht =
1

ψN(t)−1
,

ψN(t) = ω + α1dN(t)−1 + β1ψN(t)−1.

(17)

Under appropriate distributional assumptions this ACH(1, 1)
model is asymptotically equivalent to the ACD(1, 1) model, which
parameterizes the conditional durations as ψi = ω + α1di−1 +

β1ψi−1; see Hamilton and Jordà (2002) for further details. The
parameter estimates from this ACH(1, 1) model are reported in the
first part of Table 4. The estimates confirm the existence of strong
persistence in the hazard rates, or equivalently the durations,
in both markets. The Ljung–Box Q -statistics for any remaining
own dynamic dependencies in the standardized durations implied
by the model (available upon request), di/ψ̂i, are generally also
insignificant.

The second set of estimates reported in Table 4 augments
the basic ACH(1, 1) model by four weekday dummies for
Monday, Tuesday,Wednesday and Thursday.Weexplicitly exclude
the Friday dummy to avoid singularity, so that the estimated
coefficients represent the effects relative to Friday. In addition, we
include the logarithm of the number of days to the next nearest
news announcements of the Employment Report (representing
the real side of the economy) and the Consumer Price Index
(representing the nominal side of the economy).17 Specifically,

ht =
1

α1dN(t)−1 + β1ψN(t)−1 + δ′zt−1
,

δ′zt−1 = δ0 + δMDM + δTDT + δWDW + δThDTh

+ δES log(nES + 1)+ δCPI log(nCPI + 1).

(18)

Consistent with the extant news announcement literature, the
results suggest a statistically significant decreasing hazard for
the occurrence of jumps in the US market as a function of the
number of days until the release of one of the two announcements.
Also, the corresponding coefficients for SP are both positive, albeit
insignificant. The Monday through Thursday weekday dummies
are all positive, but they do not indicate any statistically significant
day-of-the-week effects in the jump occurrences. Nonetheless, in
order to highlight the added flexibility afforded by the augmented
ACHmodel,wemaintain this as our preferred specification for both
markets.18

To better illustrate the workings of the two different ACH
specifications, Figs. 3 and 4 plot the resulting implied conditional
hazard rates, ĥt . Comparing the two figures, the impact of the day-
to-day updating for the latter set of plots is immediately evident.

17 The results in Andersen et al. (2007) suggest that these are the two most
important macroeconomic news announcements.
18 We also experimented with augmenting the ACH model by Ct and Jt , but the
estimated hazard rates did not appear plausible, so we decided not to include any
of these variables in our final model specification.
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Fig. 4. Conditional hazard rates from augmented ACH model.
Table 5
HAR–J model estimates.

Homoskedastic GARCH(1, 1)
SP US SP US

β0 −1.093 (0.072) [0.000] −1.479 (0.113) [0.000] −1.299 (0.122) [0.000] −1.535 (0.114) [0.000]
βCD 0.281 (0.114) [0.014] −0.057 (0.053) [0.280] 0.172 (0.122) [0.158] −0.085 (0.051) [0.095]
βCW 0.460 (0.185) [0.013] 0.269 (0.112) [0.017] 0.440 (0.172) [0.011] 0.338 (0.099) [0.001]
βCM 0.345 (0.150) [0.022] 0.489 (0.111) [0.000] 0.343 (0.147) [0.020] 0.474 (0.103) [0.000]
ω – – 0.068 (0.110) [0.540] 0.013 (0.007) [0.046]
α1 – – 0.039 (0.042) [0.355] 0.035 (0.010) [0.000]
β1 – – 0.866 (0.009) [0.000] 0.950 (0.010) [0.000]
ν – – 3.265 (0.659) [0.000] 6.430 (1.608) [0.000]
Log L −387.854 −1281.353 −353.162 −1250.054
Obs. 327 960 327 960
Still, the two sets of figures reveal the same general patterns
in the estimated hazard rates, with jumps appearing more than
twice as likely for US compared to SP over most of the sample.
Again, we believe that this is partly due to the much bigger impact
of macroeconomic news announcements for the fixed-income
market. There is also a pronounced tendency for even fewer jumps
in the equity market during the middle part of the sample, almost
akin to a level shift in the estimated hazard rates. It is not clear
what drives this change.

5.2. The HAR–J model

Most continuous-time parametric jump–diffusion models as-
sume that the size of the jumps are i.i.d. distributed through time.
By directly observing the squared jumps, or more precisely the re-
alized measure of the sum of within-the-day squared jumps, the
present framework affords us much greater flexibility in terms of
modeling the jump sizes.

Following the same basic idea underlying the HAR–Cmodel, we
parameterize the conditional jump sizes as a function of the past
continuous sample path variations.19 In particular,
log(St(i)) = β0 + βCD log(Ct(i)−1)+ βCW log(Ct(i)−5,t(i))

+βCM log(Ct(i)−22,t(i))+ ϵt(i), (19)
where t(i) maps the jump counter i into the corresponding
trading day t , so that the lagged variation measures on the right-
hand-side are always measured in calendar time relative to the

19 We also tried including various lags of log(St ), as well as the raw and expected
durations. All of these other variables turned out to be insignificant.
time of the jump. The estimation results from this model are
reported in the left columns in Table 5. As seen from the table,
the one month lagged continuous volatility generally have the
most explanatory power. Also, the size of the jumps for US are
much more persistent than for SP. Meanwhile, the Ljung–Box
Q -statistics for the squared and absolute residuals (available
upon request) again clearly indicate the existence of conditional
heteroskedasticity in the residuals from the model for both
markets.

We therefore augment the basic HAR–J model above with a
GARCH(1, 1)-t error structure,

ϵt(i) = σt(i) ·


v − 2
v

· zt(i), zt(i) ∼ t(ν),

σ 2
t(i) = ω + α1ϵ

2
t(i−1) + β1σ

2
t(i−1).

(20)

The estimates from this preferred model are reported in the
right columns in Table 5. The results confirm the existence of
significant GARCH effects. Otherwise, the estimated dependencies
in the conditional mean are directly in line with those for the
homoskedastic model.

6. Overnight return variance

The realized variation measures and corresponding reduced
form models developed above pertains to the return variation
observed during the regular trading hours when the exchanges
are open. However, as previously noted, the opening price on
one day typically differs from the closing price on the previous
day. Since most investors hold their portfolios over longer inter-
daily horizons, the corresponding overnight return variability
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Table 6
Overnight GARCH model estimates.

Unrestricted Restricted
SP US SP US

µ 0.015 (0.005) [0.004] 0.006 (0.004) [0.121] 0.015 (0.005) [0.003] 0.006 (0.004) [0.105]
ωn −0.001 (0.001) [0.233] 0.002 (0.001) [0.014] −0.001 (0.001) [0.199] 0.002 (0.001) [0.020]
α1,n 0.041 (0.012) [0.001] 0.045 (0.011) [0.000] 0.044 (0.012) [0.000] 0.046 (0.010) [0.000]
β1,n 0.817 (0.024) [0.000] 0.852 (0.027) [0.000] 0.806 (0.025) [0.000] 0.854 (0.027) [0.000]
βCP 0.040 (0.009) [0.000] 0.014 (0.006) [0.013] – –
βCN 0.045 (0.007) [0.000] 0.023 (0.006) [0.000] – –
βJP −0.031 (0.012) [0.010] −0.000 (0.011) [0.964] – –
βJN 0.023 (0.022) [0.305] 0.005 (0.009) [0.574] – –
βC – – 0.045 (0.007) [0.000] 0.019 (0.005) [0.000]
ν 5.004 (0.434) [0.000] 7.906 (0.747) [0.000] 4.944 (0.422) [0.000] 7.847 (0.7303) [0.000]
Log L −1863.415 −8.696 −1865.451 −10.300
Obs. 3799 3779 3799 3779
will directly affect the risks of their positions. In particular, the
proportion of the total daily variation due to the over-night returns,
as measured by the sample means of r2t,n/(RVt + r2t,n), equals 0.160
and 0.165 for the SP and US markets, respectively.

Two common ways of dealing with this non-trivial overnight
variation have emerged in the realized volatility literature. The
first approach simply scales up the daytime realized variation
measures to provide an unbiased estimate for the variation over
the whole-day. This is the method used in, e.g., Martens (2002),
Fleming et al. (2003) and Koopman et al. (2005). Alternatively, the
overnight squared returnsmay be added to thewithin-day realized
variation so that it covers the whole day. This approach, along
with its pros and cons, is discussed further in Hansen and Lunde
(2005), who also propose an improved estimator by optimally
weighting, in a minimum mean-square-error sense, the daytime
realized volatility and the squared overnight return. Both of these
approaches implicitly assumes that the overnight squared returns
may somehowbeviewed as part of the sameprocess that generates
thewithin day realized volatility. Herewe take a different approach
and directly model the overnight returns, or jumps, by a separate
discrete time model.20

6.1. The GARCH–t model

The summary statistics previously reported and discussed
in Section 3.2, not surprisingly, indicate the presence of serial
correlation in the squared overnight returns. This naturally
suggests aGARCH type approach for capturing these dependencies.
Since the overnight returns are separated by the returns during
the regular trading hours, we include the immediately preceding
daytime realized volatility as an additional explanatory variable in
the conditional variance equation. Moreover, since the continuous
and discrete sample-path variation over the day may affect the
subsequent overnight return differently, we split up the realized
volatility into Ct and Jt . Furthermore, to allow for the possibility
that positive and negative daytime shocks may have different
effects, we condition the estimated coefficients for Ct and Jt on the
sign of the daytime return, rt,d. The resulting specification for the
overnight returns takes the form,

rt+1,n = µ+ ϵt+1,n

ϵt+1,n = σt+1,n ·


v − 2
v

· zt+1,n, zt+1,n ∼ t(v)

σ 2
t+1,n = ωn + α1,nϵ

2
t,n + β1,nσ

2
t,n + βCPCP

t

+βCNCN
t + βJP JPt + βJN JNt ,

(21)

20 The studies by Chan et al. (1991) andMartens (2002), which estimate individual
discrete-timemodels for the trading-time and overnight returns, provide an earlier
precedent.
where CP
t = Ct · I(rt,d > 0), CN

t = Ct · I(rt,d < 0), and similarly for
JPt and JNt .

The left columns in Table 6 report the estimation results. As
expected, the estimates for α1 and β1 are both highly statistically
significant and broadly in line with the typical daily GARCH(1, 1)
model estimates, although their sums are slightly less than what is
generally found with daily returns. Of course, some of this ‘‘lack’’
in persistence is made up by significant positive dependence on
the within day realized continuous sample path variation, CP

t and
CN
t . Interestingly, the jump components, JPt and JNt , are generally

not significant. Furthermore, theWald test for the hypothesis of no
volatility asymmetry, or βCP = βCN , equal 0.267 and 1.647 for each
of the two markets respectively, with corresponding asymptotic
p-values of 0.606 and 0.199.21

The right columns in Table 6 report the estimation results
from the more parsimonious GARCH(1, 1)-t model obtained by
eliminating the jump components and combining the positive and
negative continuous variation components,

σ 2
t+1,n = ωn + α1,nϵ

2
t,n + β1,nσ

2
t,n + βCCt . (22)

The estimated parameters are directly in line with those from
the earlier more general specification, and the corresponding
values for the maximized log likelihood functions are also close
to those for the unrestricted models. We consequently maintain
this simpler model as our preferred specification for the overnight
return variation.

7. Forecasting

One of the many potential useful applications of the reduced
form modeling framework developed above relates to volatility
forecasting. In particular, consider the question of calculating
one-day-ahead return volatility forecasts, or Var(rt+1|Ft). The
standard GARCH based approach directly parameterizes this
conditional expectation as a function of its own past value(s) and
the lagged squared return(s). This, of course, does not include
any high-frequency information. On the other hand, the now
popular HAR–RV model parameterizes the conditional variance
as a distributed lag of the past realized variation measures.
While this does incorporate high-frequency information into
the resulting forecasts, the traditional HAR–RV model does not
distinguish between the continuous sample path variation and
the discontinuous jump part. However, as discussed at length
above, the dynamic dependencies in these two components are
very different. Moreover, the standard approaches of scaling the

21 On estimating the same GARCH models under the assumption of conditionally
normal errors, the asymmetry appears significant for SP, indirectly suggesting that
the effect is associated with the tails of the distribution.
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Table 7
In-sample forecast statistics.

Horizon RMSE MAE
1 5 22 1 5 22

SP
GARCH 1.519 0.995 0.869 0.626 0.506 0.504
HAR–RV 1.477 0.943 0.827 0.556 0.453 0.466
HAR–CJN 1.412 0.855 0.748 0.542 0.417 0.420

US
GARCH 0.325 0.170 0.119 0.176 0.112 0.087
HAR–RV 0.325 0.169 0.118 0.175 0.112 0.086
HAR–CJN 0.322 0.167 0.120 0.176 0.114 0.086

realized volatilities or treating the overnight return as another
intraday return in order to get an unbiased measure for the full
day variance both ignore the distinct dynamic dependencies in the
overnight returns.

In contrast, the framework proposed here explicitly decom-
poses the conditional variance into three separate components,22

Var(rt+1|Ft) = E(Ct+1|Ft)+ E(Jt+1|Ft)+ Var(rt+1,n|Ft). (23)
The last term on the right-hand-side comes directly from the
GARCH–t model discussed in the previous section. As for the
second term, our results suggest that the occurrences of jumps and
the sizes of the jumps are independent. Thus,

E[Jt+1|Ft ] =

∫
∞

0
jdP(0 < Jt+1 ≤ j|Ft)

=

∫
∞

0
jdP(St+1 ≤ j|Ft , It+1 = 1) · P(It+1 = 1|Ft)

=

[∫
∞

0
jf (St+1 ≤ j|Ft , It+1 = 1)dj

]
· P(It+1 = 1|Ft)

= E(St+1|Ft , It+1 = 1) · ht+1.

Forecast for the hazard rate, ht , follows directly from the esti-
mated ACH models. Since the models for St+1 and Ct+1 are for-
mulated in logarithmic terms, the two conditional expectations
E(St+1|Ft , It+1 = 1) and E(Ct+1|Ft)will both involve a Jensen’s in-
equality type correction. However, numerical evaluations of these
expectations are easily accomplished by means of simulations.
Similarly, even though the highly non-linear dynamic dependen-
cies among the different model components render closed-form
expressions for the multi-step ahead conditional expectations,
Var(rt+h|Ft) for h > 1, infeasible, these are relatively easy to com-
pute by means of recursive simulations.23

To assess the accuracy of the HAR–CJN model forecasts, we
compare the predictions to the actual realized variation measures;
i.e., for the one-day horizon forecasts RVt+1 + r2t+1,n. In addition to
the one-day forecasts, we also calculate one-week and one-month
forecasts defined by the average of the forecasts from 1 to 5, and
1 to 22 days ahead, respectively. As a benchmark comparison, we
consider the forecasts from a simple GARCH(1, 1) model estimated
on the daily returns, and an HAR–RV model properly scaled by
the contribution from the overnight return so that the forecasts
are unconditionally unbiased.24 The first subsection below discuss
the results for the full sample period, labeled in-sample, while
the subsequent section reports on the results from a true out-of-
sample forecast comparison.

22 The validity of this decomposition for the conditional expectations implicitly
assumes that the aforementioned convergence in probability of the realized
variation measures implies convergence in mean. The assumption of a bounded
return process, or a weaker uniform integrability condition, is sufficient to ensure
that this holds; see, e.g., the discussion in Andersen et al. (2003).
23 In the results reported on below we rely on a total of 10,000 replications in
calculating the expectations. To minimize the impact of large influential outliers
and stabilize the algorithm, we also trim any simulated values more than twice the
largest in-sample observation. Further details are available upon request.
24 An alternative to these popular forecasting models and the HAR–CJN model
developed here suggested by one of the referees would be to project RVt+1 + r2t+1,n
7.1. In-sample forecasts

To begin, Table 7 reports the standard Root Mean Square Error
(RMSE) andMean Absolute Error (MAE) for the forecasts from each
of the three differentmodels based on the data over the full sample
period.25 As is clear from the table, these in-sample summary
statistics clearly favor the more complicated HAR–CJN model for
SP. Meanwhile, the in-sample RMSE and MAE for US are not as
clear-cut.

In order to further analyze relative performance of theHAR–CJN
model, we also estimate a series of Mincer–Zarnowitz style
regressions. In particular, for the one-day-ahead forecasts,

(RVt+1 + r2t+1,n) = b0 + b1Vt,GARCH + b2Vt,HAR–RV

+ b3Vt,HAR–CJN + ϵt+1 (24)

where Vt,M refers to the time t one-day-ahead forecast frommodel
M. In addition to the one-day-ahead forecasts, we run the same
regressions for the 5- and 22-steps ahead forecasts, appropriately
correcting the standard errors of the parameter estimates for
the serial correlation in the residuals induced by the overlap in
the data. Following the discussion in, e.g., Anderson and Vahid
(2007), these regressions are naturally interpreted as volatility
forecast encompassing regressions, in the sense that a coefficient
significantly different from zero implies that the information in
that particular model forecast is not encompassed in the forecasts
by the two other models. As a further robustness check, we also
report the results from the simple Mincer–Zarnowitz regressions,
in which the ex-post variation measures are regressed on a
constant and one of the three individual model forecasts in
isolation.

The results from these joint and individual Mincer–Zarnowitz
regressions are all reported in Table 8. In the joint regressions
for SP the forecasts from the HAR–CJN model invariably receives
a weight indistinguishably different from unity in a statistical
sense, while the estimated coefficients for the other two model
forecasts are close to zero and insignificant, indicating that the
HAR–CJN forecasts encompasses the forecasts from other two
models. The individual SP regressions reported in the bottom part
of the table further corroborate these findings. In particular, the
R2’s from the HAR–CJN models are always the highest,26 with the
estimated intercept and slope coefficients very close to zero and
unity, respectively. The corresponding in-sample results for US
generally also favor the HAR–CJN model, although the differences
among the three model forecasts are not as large.

7.2. Out-of-sample forecasts

Even though the loss functions used in evaluating the forecasts
discussed in the previous section formally differ from the
likelihood functions used in estimating the models, the in-
sample comparisons may seem to tilted toward making the more
complicatedHAR–CJNmodel performwell. Hence, in order tomore
closelymimic a real-world forecast situation, we also report on the
results obtained by re-estimating all of the models with data up
until the end of 1999, retaining the last five years of the sample
from January 2, 2000 to February 4, 2005 for out-of-sample forecast

on all of the variables in the time t information set, including information about the
jumps and the overnight returns.While this proceduremight performwell in a pure
forecasting sense, itwould obviously be completely void of anydetailed information
about the individual components that make up the total daily variation.
25 Patton (2006) has recently cautioned against the use of the MAE criteria with a
noisy volatility proxy. The realized volatility measures that we use here effectively
mitigate these concerns.
26 As discussed in Andersen et al. (2004, 2005), the reported R2 ’s understate the
true degree of predictability due to themeasurement errors in the realized volatility
proxies. This does not, however, impede any cross model comparisons.
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Table 8
In-sample Mincer–Zarnowitz regressions.

Horizon SP US
1 5 22 1 5 22

Joint regressions

Const. −0.030(0.045) 0.025 (0.055) 0.140 (0.083) −0.004 (0.020) −0.015 (0.024) −0.012 (0.033)
GARCH −0.096 (0.106) −0.136 (0.106) −0.022 (0.150) 0.524 (0.110) 0.459 (0.109) 0.358 (0.128)
HAR–RV −0.103 (0.071) −0.189 (0.123) −0.410 (0.226) −0.302 (0.148) 0.003 (0.187) 0.097 (0.156)
HAR–CJN 1.264 (0.142) 1.353 (0.161) 1.363 (0.216) 0.774 (0.097) 0.565 (0.120) 0.539 (0.132)
R2 0.399 0.601 0.564 0.123 0.310 0.408

Individual regressions

Const. 0.044 (0.046) 0.127 (0.061) 0.257 (0.073) −0.023 (0.019) −0.009 (0.025) 0.022 (0.036)
GARCH 0.939 (0.050) 0.868 (0.068) 0.750 (0.062) 1.093 (0.059) 1.053 (0.077) 0.963 (0.109)
R2 0.301 0.460 0.450 0.098 0.259 0.324

Intercept −0.066 (0.081) −0.098 (0.083) −0.083 (0.104) −0.007 (0.021) −0.018 (0.027) −0.031 (0.037)
HAR–RV 1.150 (0.089) 1.180 (0.095) 1.169 (0.111) 1.043 (0.062) 1.076 (0.080) 1.113 (0.111)
R2 0.346 0.523 0.473 0.095 0.265 0.345

Const. −0.061 (0.050) −0.022 (0.056) 0.046 (0.066) 0.038 (0.016) 0.044 (0.019) 0.042 (0.030)
HAR–CJN 1.091 (0.058) 1.068 (0.065) 1.024 (0.072) 0.870 (0.045) 0.838 (0.052) 0.805 (0.080)
R2 0.397 0.579 0.558 0.117 0.291 0.385
Table 9
Out-of-sample forecast statistics.

Horizon RMSE MAE
1 5 22 1 5 22

SP
GARCH 1.929 (0.001) 1.269 (0.004) 1.130 (0.069) 0.836 (0.000) 0.669 (0.000) 0.694 (0.019)
HAR–RV 1.868 (0.002) 1.234 (0.004) 1.147 (0.009) 0.717 (0.224) 0.600 (0.002) 0.642 (0.005)
HAR–CJN 1.793 1.127 1.055 0.705 0.557 0.586

US
GARCH 0.375 (0.044) 0.199 (0.107) 0.150 (0.133) 0.193 (0.305) 0.130 (0.191) 0.105 (0.436)
HAR–RV 0.375 (0.000) 0.198 (0.010) 0.151 (0.041) 0.192 (0.251) 0.130 (0.041) 0.108 (0.135)
HAR–CJN 0.368 0.188 0.132 0.190 0.124 0.098
comparisons.27 Due to the relatively time consuming calculations
involved in the estimation of the non-linear models, we did not
re-estimate the models on a rolling basis over the out-of-sample
period, instead simply freezing all of the parameters at their
estimates based on the full 1990–1999 in-sample period.

The out-of-sample results essentially affirm the earlier in-
sample findings. The RMSEs and MAEs for SP reported in Table 9
again achieve their lowest values across all horizons for the
HAR–CJN models. The out-of-sample values for US are also the
lowest for the HAR–CJNmodel, although the numerical differences
are not particularly large. Interestingly, however, limiting the
out-of-sample forecast comparisons for US to the last two years
of the sample, which tend to exhibit both larger and more
frequent jumps, results in sharper differences among the RMSE
andMAE criteria. As such, this indirectly suggests that the benefits
from a forecasting perspective from separately modeling the two
volatility components is to some extend period specific.

Several procedures to formally test for the statistical signifi-
cance of the observed differences in the RMSE andMAE criteria and
the superior predictive ability of the underlying forecasting mod-
els have recently been proposed in the literature. As a simple guide
we here rely on the easy-to-calculate Diebold and Mariano (1995)
test involving a pairwise comparison of the forecasts from each
of the two traditional models to the forecasts from the HAR–CJN
model.28 The test is based on the heteroskedasticity and autocorre-
lation consistent t-statistic for the samplemean of Lt,HAR–CJN−Lt,M ,
where Lt,M denotes the time t squared or absolute loss from the

27 We also experimented with other out-of-sample periods, resulting in the same
basic conclusions. Further details concerning these additional robustness checks are
available upon request.
28 Although the Diebold and Mariano (1995) test does not explicitly account for
the effect of estimation uncertainty, the out-of-sample version of the test coincides
with the generally valid test for equal unconditional predictive ability recently
developed by Giacomini and White (2006).
particular model M. Many of the corresponding p-values reported
in parentheses in Table 9 do indeed indicate statistically significant
superior out-of-sample performance of the HAR–CJN model.

The out-of-sample Mincer–Zarnowitz regressions adjusted for
the in-sample parameter estimation error uncertainty following
West and McCracken (1998) reported in Table 10 generally
also favor the HAR–CJN model. Although the high degree of
co-linearity among the three forecasts render most of the
estimated coefficients for the joint encompassing regressions
rather imprecise, the individual regressions all achieve their
highest R2’s for the HAR–CJN model. Moreover, the estimated
intercept and slope coefficients for the individual HAR–CJN
regressions are all close to zero and unity, respectively.

To further appreciate these results and the basic features of
the different models, Figs. 5 and 6 plot the one-day ahead out-
of-sample forecasts. The overall level of the forecasts obviously
matches fairly closely across the three models for both of the
markets. Consistent with the results from the Mincer–Zarnowitz
regressions, it also appears more difficult to discern any sharp
differences in the three US forecasts. Nonetheless, the HAR–CJN
based forecasts do seem to adapt more quickly to changes in the
volatility than do the GARCH and, to a lesser degree, the HAR–RV,
based forecasts. Not surprisingly, on comparing the forecasts to
the actual realization in Figs. 1 and 2, all of the models miss
the very largest observations which inherently must represent
genuine large volatility innovations.

8. Conclusion

We use two fifteen-year samples of high-frequency intraday
data for the S&P 500 and T-Bond futures markets along with the
model-free bipower variation measures and corresponding jump
statistics of Barndorff-Nielsen and Shephard (2004a, 2006) to non-
parametrically identify and measure the daily continuous sample
path variation and squared jumps. Directly in line with earlier
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Table 10
Out-of-sample Mincer–Zarnowitz regressions.

Horizon SP US
1 5 22 1 5 22

Joint regressions

Const. 0.008 (0.117) 0.114 (0.170) 0.394 (0.250) −0.029 (0.062) −0.039 (0.072) −0.050 (0.100)
GARCH −0.194 (0.270) −0.187 (0.262) −0.097 (0.294) 0.852 (0.301) 0.762 (0.279) 0.516 (0.329)
HAR–RV −0.238 (0.594) −0.813 (0.779) −2.428 (1.545) −0.709 (0.379) −0.361 (0.404) −0.061 (0.446)
HAR–CJN 1.515 (0.542) 2.019 (0.716) 3.333 (1.321) 1.018 (0.247) 0.797 (0.265) 0.795 (0.402)
R2 0.375 0.568 0.518 0.124 0.321 0.413

Individual regressions

Const. 0.077 (0.124) 0.201 (0.187) 0.487 (0.259) −0.049 (0.060) −0.034 (0.079) 0.016 (0.102)
GARCH 0.989 (0.099) 0.915 (0.154) 0.746 (0.119) 1.282 (0.166) 1.250 (0.224) 1.137 (0.288)
R2 0.260 0.404 0.348 0.094 0.262 0.310

Const. −0.128 (0.150) −0.043 (0.202) 0.182 (0.296) 0.025 (0.070) 0.002 (0.085) −0.033 (0.107)
HAR–RV 1.325 (0.144) 1.300 (0.200) 1.217 (0.194) 1.062 (0.183) 1.139 (0.234) 1.286 (0.304)
R2 0.346 0.506 0.402 0.084 0.250 0.333

Const. −0.078 (0.144) −0.008 (0.168) 0.170 (0.232) 0.048 (0.084) 0.048 (0.064) 0.012 (0.098)
HAR–CJN 1.154 (0.124) 1.157 (0.156) 1.137 (0.150) 0.944 (0.138) 0.948 (0.162) 1.058 (0.257)
R2 0.371 0.554 0.466 0.109 0.287 0.383
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Fig. 5. One-day-ahead out-of-sample forecasts for SP.
studies we find that the volatility associated with the continuous
price movements within the day is a highly persistent process for
both markets. Counter to a number of previous studies, however,
we detect important dynamic dependencies in both the times
between significant jumps and the sizes of the jumps. Further, the
time series of overnight returns, or price jumps, associated with
the change in the closing price from one day to the opening price
of the next exhibits strong volatility clustering. To satisfactorily
account for these dependencies, we formulate and estimate a
combination of several reduced form time series models. In
addition, we compare and contrast the forecasting performance
of the estimated models for each of the three non-parametrically
identified volatility components to other commonly used volatility
forecasting models.

Looking ahead, our estimation results for the ACH model
indicate that the occurrence of jumps in the T-Bond market is
directly related to certain macroeconomic news releases. In this
regard, it would be interesting to more systematically investigate
the economic determinants behind the apparent discontinuities.
What is it that causes financialmarkets to jump? The reduced form
modeling setup developed here provides a particular convenient
framework for further exploring this important question.

In the model diagnostics and forecast comparisons presented
in the paper, we have primarily focused on mean square error
type criteria. However, separately modeling the intraday jumps
and the overnight returns are likely to prove especially beneficial
for better understanding the tails of the return distributions. It
would be interesting to more directly analyze this issue, and the
model’s ability to capture the more extreme tail behavior and
corresponding expected shortfalls, as would be of interest in many
practical risk management situations.

As previously noted, the specification and estimation of
empirically realistic continuous-time jump–diffusion models have
been the subject of extensive recent research efforts. In this regard,
the relatively simple reduced form model structures for each
of the different variation measures developed here could also
be used as auxiliary models in an indirect inference setting to
more effectively estimate and discriminate among some of these
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Fig. 6. One-day-ahead out-of-sample forecasts for US.
competing continuous-time specifications, naturally extending the
earlier realized variation based inferential procedures of Barndorff-
Nielsen and Shephard (2002) and Bollerslev and Zhou (2002).

In a related context, the recent studies by Santa-Clara and
Yan (2004) and Todorov (2006) suggest that the premia required
by investors in options markets to compensate for jump and
continuous volatility risks differ. By easily allowing for different
risk premia associated with the future risks originating from the
continuous sample path price process and the harder-to-hedge
intraday jump and overnight components, it is possible that our
relatively simple-to-implement reduced form forecasting model
may be used in the calculation of more accurate derivatives prices.

We leave further work along these lines for future research.
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