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Abstract

Recent empirical studies have argued that the temporal dependencies in "nancial
market volatility are best characterized by long memory, or fractionally integrated, time
series models. Meanwhile, little is known about the properties of the semiparametric
inference procedures underlying much of this empirical evidence. The simulations re-
ported in the present paper demonstrate that, in contrast to log-periodogram regression
estimates for the degree of fractional integration in the mean (where the span of the data
is crucially important), the quality of the inference concerning long-memory dependencies
in the conditional variance is intimately related to the sampling frequency of the data. Some
new estimators that succinctly aggregate the information in higher frequency returns are
also proposed. The theoretical "ndings are illustrated through the analysis of a ten-year
time series consisting of more than half-a-million intradaily observations on the Japanese
Yen}U.S. Dollar exchange rate. ( 2000 Published by Elsevier Science S.A. All rights
reserved.
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1The practical relevance of explicitly allowing for such long-range dependence when evaluating
options contracts has also been explored and found to result in superior long-term prices in
Bollerslev and Mikkelsen (1999).

1. Introduction

Following the work by Mandelbrot (1971), numerous studies have tested for
evidence of slowly mean reverting dependencies in "nancial rates of returns.
While none of these studies have found convincing evidence for long-memory
dependencies in the level of returns (see e.g. Cheung and Lai, 1995; Hiemstra and
Jones, 1997; Lo, 1991; Jacobsen, 1996), more recent "ndings suggest that the
log-squared, squared or absolute returns are highly persistent processes. In
particular, it appears that the long-run dependencies in the autocorrelation
functions for these di!erent measures of return volatility are best characterized
by a slowly mean reverting hyperbolic rate of decay; see e.g. Andersen and
Bollerslev (1997a), Dacorogna et al. (1993), Granger et al. (1997) and Lobato and
Savin (1998). These slowly mean reverting dependencies are not well captured by
the standard ARCH and stochastic volatility models hitherto applied in the
literature, which generally imply that shocks to the second moments of the
returns die out at a fast exponential rate of decay or else persist inde"nitely in
a forecasting sense. Building on the fractionally integrated ARMA, or ARFIMA,
class of models (cf. Adenstedt, 1974; Granger and Joyeux, 1980; Hosking, 1981;
McLeod and Hipel, 1978), a number of new parametric formulations have been
proposed to better accommodate these systematic features in the variances of
returns. These models include the long-memory ARCH models in Ding and
Granger (1996) and Robinson (1991), the long-memory nonlinear moving aver-
age models in Robinson and Za!aroni (1996) and Za!aroni (1997), the fraction-
ally integrated GARCH, or FIGARCH, model in Baillie et al. (1996) and the
long-memory stochastic volatility models in Breidt et al. (1998) and Harvey
(1998).1

Meanwhile, the implementation of discrete-time econometric models inva-
riably entails an implicit assumption regarding the length of the unit time
interval. While this is typically dictated by the sampling frequency for the time
series under study, many "nancial price series are now available on a virtually
continuous, or tick-by-tick, basis. This raises important new questions related to
the e!ects of temporal aggregation and the choice of sampling frequency when
modeling the dynamics of speculative prices. In this regard, a parametric class of
time series model is said to be closed under temporal aggregation if a parametric
model from the same class, but with di!erent parameter values, characterizes the
data generating process across all observation frequencies. The standard ARMA
class of models possesses this useful property; see e.g. Nijman and Palm (1990)
and the references therein. The ARCH and stochastic volatility models typically
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2Along these same lines, the results in Andersen and Bollerslev (1998) illustrate that more
frequently sampled observations signi"cantly reduce the measurement error uncertainty when
evaluating ex-post volatility forecasts.

employed in modeling volatility clustering are not, however, closed under
temporal aggregation. In particular, models in the GARCH class are closed
under temporal aggregation only under additional restrictive assumptions, as
developed by Drost and Nijman (1993) and Drost and Werker (1996).

The present paper explores the estimation of long-memory volatility depend-
encies with data of di!erent sampling frequencies through a detailed Monte
Carlo study involving a fractionally integrated stochastic volatility model. We
consider the estimation of the long-memory parameter using di!erent volatility
measures (the true latent fractionally integrated volatility process, log-squared
returns, squared returns and absolute returns) and with data of di!erent samp-
ling frequencies. In all cases, the long-memory parameter is estimated by
applying the semiparametric log-periodogram regression estimator of Geweke
and Porter-Hudak (1983) and Robinson (1995a) to one of these volatility
measures. We "nd that in the standard ARFIMA model, temporal aggregation
makes relatively little di!erence to the accuracy of the estimates for d. The span
of the data is of utmost importance in this situation. However, for empirically
realistic parameter values, temporal aggregation induces large downward biases
in the estimates for d in the squared, log-squared or absolute returns. Intuitively,
temporal aggregation makes these volatility measures more noisy. We also
propose a set of new volatility estimators that e!ectively extract the information
in the high-frequency data about the longer run dependencies, while relying on
a more manageable low-frequency time series for the actual estimation.2 As
such, our results demonstrate that when estimating volatility dynamics, it is not
just the span of data that matters. The availability of high-frequency data allows
for vastly superior and nearly unbiased estimation of the fractional di!erencing
parameter that characterizes the long-run volatility dynamics.

The plan for the remainder of the paper is as follows. The model of fraction-
ally integrated stochastic volatility is introduced in the next section and methods
of inference are brie#y reviewed. Section 3 presents estimation results for the
degree of fractional integration in the volatility of the Japanese Yen}U.S. Dollar,
Y}$, spot exchange rate based on a ten-year sample of more than half-a-million
5-min returns. Whereas the high-frequency estimates unambiguously point
towards the existence of long-memory volatility dependencies, the results for the
corresponding temporally aggregated daily returns are less clear cut. The main
simulation results for the stochastic volatility model calibrated to the ten-year
5-min return sample are contained in Section 4. These "ndings clearly highlight
the advantages a!orded by high-frequency observations when estimating the
degree of fractional integration in the volatility. Section 5 concludes.
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2. Long-memory stochastic volatility

A long-memory time series may be de"ned as one which has a covariance
function c ( j) and a spectrum f (j) such that c ( j) is of the same order as j2d~1, as
jPR, and f (j) is of the same order as j~2d, as jP0, for 0(d(1

2
. Long-

memory models were introduced to econometrics by authors such as Granger
and Joyeux (1980) and Hosking (1981), while recent and comprehensive reviews
of this topic are provided by Baillie (1996) and Robinson (1994a). The ARFIMA
model is the leading parametric long-memory time series model. We say that
Mh

t
NT
t/1

is an ARFIMA (p, d, q) time series if

a(¸)(1!¸)dh
t
"b(¸)p

u
u
t
, (1)

where u
t
is i.i.d. with mean zero and variance one, ¸ is the lag operator, the lag

polynomials a(¸) and b(¸) (of orders p and q, respectively) are assumed to have
all of their roots outside the unit circle, and the fractional di!erencing operator
(1!¸)d is de"ned by the binomial, or Maclaurin, series expansion. For d be-
tween !0.5 and 0.5, Mh

t
N is a stationary and invertible ARFIMA process. For

d'0, the ARFIMA time series model is a long-memory time series. The case
where d(0 is de"ned as antipersistence or negative long memory.

As motivated in the introduction, our focus in this paper is on models of asset
returns with long memory in volatility. Let My

t
NT
t/1

be a time series of asset
returns such that

y
t
"g(z

t
)peet ,

where z
t
is a long-memory time series and e

t
is an i.i.d. time series with mean zero

and variance one. Since Var(y
t
Dz
t
)"g(z

t
)2p2e , for certain functions g( ) ) this can

be described as a long-memory stochastic volatility model (see Robinson, 1999).
In this paper, we focus on a particular parametric model in this class, namely the
fractionally integrated stochastic volatility model, introduced by Breidt et al.
(1998). Other models in this class include the long-memory nonlinear moving
average models in Robinson and Za!aroni (1996) and Za!aroni (1997).

2.1. Fractionally integrated stochastic volatility

The fractionally integrated stochastic volatility (FISV) model speci"es that

y
t
"exp(h

t
/2)peet , (2)

where h
t

is an ARFIMA time series, as de"ned in Eq. (1), and it is further
assumed that e

t
and u

t
are i.i.d. standard normal and mutually independent.

This is a long-memory stochastic volatility model with z
t
"h

t
, and Var(y

t
Dh

t
)"

exp(h
t
)p2e .

Although the time series h
t

is assumed to be unobservable, its persistence
properties are propagated to the observable series, log(y2

t
). In particular, on
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3Throughout this paper, the & notaion means that the limit of the ratio of the quantities on the
left- and right-hand sides of the symbol is a "nite positive constant.

4There are a number of alternative semiparametric estimators, including the &Gaussian' estimator
proposed by Robinson (1995b).

squaring both sides of Eq. (2) and taking logarithms,

log(y2
t
)"km#h

t
#m

t
,

where km"log(p2e )!E log(e2
t
) and m

t
"log(e2

t
)!E log(e2

t
). Hence, log(y2

t
) is the

sum of a Gaussian ARFIMA process and independent non-Gaussian noise.
Consequently,

Cov(log(y2
t
), log(y2

t~j
))&j2d~1, (3)

as jPR, while the spectrum of log(y2
t
) is of the same order as j~2d, as jP0.3

This observation forms the basis for the application of the traditional log-
periodogram estimation procedure.

2.2. Log-periodogram regression

Fully e$cient estimation of an ARFIMA model necessarily requires that the
orders of the autoregressive and moving average polynomials be speci"ed.
However, the long-memory dependency is characterized solely by the fractional
di!erencing parameter, or d. Estimates of this parameter may be obtained by
relatively simply semiparametric methods that remain agnostic about the
short-run dynamics in a(¸) and b(¸); indeed semiparametric methods can be
used to estimate the parameter d of a general long-memory time series. In
practice, the log-periodogram regression estimate is by far the most widely used
such semiparametric procedure.4 This estimator was "rst proposed by Geweke
and Porter-Hudak (1983), but a proof of its consistency and limiting distribution
were elusive, until Robinson (1995a) provided these, in the Gaussian case.

The basic idea is simple. If the time series under study exhibits fractional
integration, the spectrum should be log-linear for frequencies close to zero with
a slope equal to !2d. Speci"cally, let I(j) denote the sample periodogram
evaluated at frequency j. The log-periodogram estimate of d, or dK , is then given
by minus the estimate of b

1
in the linear regression equation

log(I(j
j
))"b

0
#b

1
log[4 sin2(j

j
/2)]#f

j
, j"l#1,2, m, (4)

where 0(l(m@¹, and j
j
"2nj/¹ denotes the jth Fourier frequency based on

a sample of ¹ observations. The heuristic motivation for the estimator is clear
since 4 sin2(j/2)Kj2 for j close to zero, and f (j)&j~2d as jP0. The estimator
originally proposed by Geweke and Porter-Hudak (1983) sets the trimming
parameter l"0, and so uses all of the m lowest frequencies. Meanwhile, the
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5Hurvich et al. (1998) provide a version of this proof which sets l"0; it entails some additional
regularity conditions.

proof provided by Robinson (1995a) leaves out some of the very lowest frequen-
cies.5 In particular, both l and the bandwidth parameter, m, must converge to
in"nity while l/mP0 and m/¹P0, in which case, under additional mild
conditions,

Jm(dK !d)PN(0, n2

24
).

The log-periodogram estimate is therefore consistent and asymptotically nor-

mal, but converges at a rate slower than the usual J¹. Alternatively, the
variance of dK may also be consistently estimated by the conventional OLS
variance estimate from the regression in (4). In the present paper, our interest is
not in estimating an ARFIMA process, but rather in estimating the FISV model.
So, in the FISV model, we seek to estimate d semiparametrically by applying the
log-periodogram regression to log(y2

t
). Of course, in the FISV model, log(y2

t
) is

given by the sum of an ARFIMA process and non-Gaussian noise, and so the
asymptotic theory provided by Robinson (1995a) does not formally apply to this
case.

In our empirical analysis of the high-frequency Y}$ exchange rate below, we
supplement the asymptotic standard error from the regression in (4) with
a frequency domain bootstrap con"dence interval, based on the ideas in Franke
and HaK rdle (1992) (see also Berkowitz and Diebold, 1998; Berkowitz and Kilian,
1999). Speci"cally, let bK

0
and bK

1
denote the OLS estimates of b

0
and b

1
in Eq.

(4), respectively, and let fK (j
j
)"exp(bK

0
)[4 sin2(j

j
/2)]bK 1 denote the corresponding

estimated spectrum at low frequencies (Fourier frequencies j
l`1

through j
m
).

We then take bootstrap draws of the periodogram at these Fourier frequencies,
by multiplying the estimated spectrum by i.i.d. exponential random variables,
and hence build up a bootstrap distribution of the log-periodogram regression
estimate. A con"dence interval can be read o! from the percentiles of this
bootstrap distribution.

2.3. Alternative volatility measures

Although semiparametric estimation of the fractional integration parameter
for the FISV model is most naturally based on the log-squared time series,
log(y2

t
), many researchers have relied on the time series of squared returns, y2

t
, or

absolute returns, Dy
t
D, as measures of the ex-post volatility. Interestingly, these

alternative measures, in particular the absolute returns, tend to result in equally
strong empirical evidence for fractional integration. This is to be expected.

To understand why, note that from the de"nition of the FISV model in Eq. (2),
y2
t
"exp(h

t
#log(p2e ))e2t and Dy

t
D"exp(h

t
#log(p2e ))1@2Det D. Furthermore, by the
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6This is, of course, not a formal consistency proof. The fact that the covariances decay at the rate
j2d~1 does not necessarily imply that the spectrum diverges at the rate j~2d (this will however be
ensured if the autocovariances are quasi-monotonically convergent to zero). In any case, we do not
have the Gaussianity required in the consistency proof of Robinson (1995a).

properties of power transforms of normals (see e.g: Andersen, 1994), it follows
that

Cov[exp(h
t
#log(p2e )), exp(h

t~j
#log(p2e ))]

"ME[exp(h
t
#log(p2e ))]N2Mexp[Cov(h

t
, h

t~j
)]!1N

"ME[exp(h
t
#log(p2e ))]N2[ j2d~1#o( j2d~1)]&j2d~1,

as jPR, and, similarly,

Cov[exp(h
t
#log(p2e ))1@2, exp(h

t~j
#log(p2e ))1@2]&j2d~1,

as jPR. The autocovariances of the squared and absolute returns therefore
decay at the same rate as the autocovariances of h

t
, i.e.

Cov(y2
t
, y2

t~j
)&j2d~1 (5)

and

Cov(Dy
t
D, Dy

t~j
D)&j2d~1, (6)

as jPR. These results were shown by Andersen and Bollerslev (1997a) and
also follow from more general results in Robinson (1999). The log-periodogram
estimates calculated from the log-squared, squared, or absolute returns (i.e.
based on Eqs. (4)}(6)) can therefore be expected to be consistent6 for the same
value of d.

2.4. Temporal aggregation

Many "nancial time series are now available on a virtually continuous, or
tick-by-tick, basis. As such, the choice of a unit discrete time interval and the
corresponding estimate for d may appear rather arbitrary, especially since the
ARFIMA model is not closed under temporal aggregation. Nevertheless, Cham-
bers (1998) shows that the spectrum for the temporally aggregated process,
h(k)
t
,h

tk`1~k
#h

tk`2~k
2#h

tk
, for t"1, 2,2, ¹/k, remains log-linear for

frequencies close to zero, diverging at the same rate of j~2d as jP0, for all k.
In the same way, while the FISV model is not closed under temporal

aggregation, the rate of decay of the autocovariance function of squared returns
is invariant to the length of the return interval. Speci"cally, let y(k)

t
"

y
tk`1~k

#y
tk`2~k

2#y
tk

denote the continuously compounded k-period re-
turn, so that y(k)2

t
"y2

tk`1~k
#y2

tk`2~k
2#y2

tk
#cross-product terms. Because

the FISV model implies that the one-period return is serially uncorrelated, the
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cross-product terms all have zero mean. Hence, it follows that

Cov(y(k)2
t

, y(k)2
t~j

)"
k~1
+

h/~k~1

(k!DhD)Cov(y2
t
, y2

t~jk~h
)&( jk)2d~1&j2d~1, (7)

as jPR, see also Andersen and Bollerslev (1997a). Although the analysis in
Robinson (1999) of instantaneous nonlinear transforms of long-memory
measures does not formally apply to the squared temporally aggregated data,
we conjecture that, for a wide class of distributions, the autocovariances of
log-squared or absolute temporally aggregated returns should eventually decay
at the same long-run hyperbolic rate, i.e.

Cov[log(y(k)2
t

), log(y(k)2
t~j

)]&j2d~1 (8)

and

Cov[Dy(k)
t

D, Dy(k)
t~j

D]&j2d~1, (9)

as jPR.
In practice, with prices available over a "xed time period, the number of

return observations is inversely related to the length of the return interval, so
that with a sample of ¹ one-period high-frequency returns, temporal aggrega-
tion results in ¹/k k-period returns. In the simulations reported below, we "nd
that with a "xed sampling interval ¹, the properties of the log-periodogram
estimates for d based on the relationships in Eqs. (7)}(9) deteriorate signi"cantly
as the return horizon, or k, lengthens. This is not true for the log-periodogram
estimate for d based on the latent h(k)

t
process. This motivates our "nal set of

volatility measures and estimators, explicitly designed to overcome the com-
putational burden involved in analyzing large high-frequency data sets, while
maintaining the additional information about the longer run volatility depend-
encies inherent in the high-frequency returns.

In particular, suppose that the autocovariances of some high-frequency time
series v

t
decay at the rate j2d~1. Let the temporally aggregated series be denoted

by [v
t
](k)"v

tk`1~k
#v

tk`2~k
2#v

tk
for t"1, 2,2, ¹/k. Collecting terms of

the same lag length, it follows that the autocovariance between [v
t
](k) and

[v
t~j

](k) is

Cov([v
t
](k), [v

t~j
](k))"

k~1
+

h/~k~1

(k!DhD)Cov(v
t
, v

t~jk~h
)&( jk)2d~1&j2d~1,

(10)

as jPR. Thus, instead of estimating the degree of fractional integration in the
volatility directly from long time-series of high-frequency returns, d may be
estimated from shorter samples of temporally aggregated log-squared, squared
or absolute returns, where the aggregation takes place after the nonlinear
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7Note that with daily data, [y2
t
](22) corresponds directly to the ex-post monthly variance measure

commonly employed inthe empirical "nance literature; see e.g. Schwert (1989). Similar ex-post daily
variance measures based on high-frequency intradaily returns have also been analyzed by Andersen
and Bollerslev (1998) and Hsieh (1991), among others.

8For a more detailed description of the activity patterns in the Y}$ foreign exchange market and
the mehtod of data capturing and "ltering that underlie the return calculations, we refer to
Dacorogna et al. (1993) and MuK ller et al. (1990).

transformation;7 that is [log(y2
t
)](k), [y2

t
](k) and [Dy

t
D](k). Note that, in contrast to

the log-squared, squared or absolute temporally aggregated low-frequency
returns in Eqs. (7)}(9), the volatility measures based on Eq. (10) explicitly rely on
high-frequency data. Of course, the quality of the approximation in Eq. (10), and
the corresponding estimates, will depend on the functional form being used.

In summary, there are many potential volatility measures (log-squared,
squared and absolute returns, with any choice of the temporal aggregation
parameter k, and with aggregation either before or after the nonlinear trans-
formation). The main focus of this paper is on the comparison of the estimators
of d, using these alternative volatility measures.

3. Foreign exchange rate volatility

A number of studies have argued for the existence of long memory in the
volatility of equity and foreign exchange returns. While the majority of these
studies have relied on relatively long time spans of daily or lower frequency
returns, Andersen and Bollerslev (1997a) have recently uncovered strong evid-
ence for long-memory dependencies with a one-year time series of high-fre-
quency Deutschemark}U.S. Dollar spot exchange rate returns. The estimation
results for the ten-year Y}$ intraday return series detailed below complement
these "ndings, and set the stage for the subsequent Monte-Carlo study.

3.1. Data and preliminary summary statistics

The spot exchange rate data were collected and provided by Olsen and
Associates in ZuK rich, Switzerland. The full sample spans the period from
December 1, 1986 through December 1, 1996. The returns are calculated as the
logarithmic di!erence between the linearly interpolated average of the mid-
point of the bid and the ask for the two nearest quotes, resulting in a total of 288
5-min return observations per day.8 Although the foreign exchange market is
o$cially open 24 h a day and 365 days a year, the trading activity slows
decidedly during the weekend period. In order to avoid confounding the
evidence by such weekend patterns, we simply excluded all returns from Friday
21:00 Greenwich Mean Time (GMT) through Sunday 21:00 GMT; a similar
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Fig. 1. Sample and benchmark model population autocorrelograms. The solid line graphs the
sample autocorrelogram for the 5-min log-squared Y}$ series. The sample period extends from
December 1, 1986 through December 1, 1996, for a total of ¹"751,392 observations. The dotted
line refers to the theoretical autocorrelogram for the FISV model de"ned by Eqs. (2) and (11) with
parameters d"0.3, p2e"4.10~4, /"0.6 and p2

u
"0.25.

9The "rst-order sample autocorrelation coe$cient equals !0.062, which is highly statistically

signi"cant when judged by the conventional asymptotic standard error of J1/¹. However, the
coe$cient is numerically small and is readily explianed by the strategic positioning of discrete bid
and ask quotes; see e.g. the discussion in Bollerslev and Domowitz (1993).

weekend no-trade convention was adopted by Andersen and Bollerslev (1997a,b).
This leaves us with a sample 2609 days, for a total of ¹"2609]288"751,392
5-min y

t
return observations. The corresponding sample sizes for the hourly,

y(12)
t

and daily y(288)
t

returns are 62,616 and 2609, respectively.
Consistent with the notion of e$cient markets, the 5-min returns are approx-

imately mean zero and serially uncorrelated.9 At the same time, the evidence for
volatility clustering is overwhelming. For instance, the lag-1 sample autocorre-
lation coe$cient for the log-squared 5-min returns is 0.373, which is overwhelm-
ingly signi"cant at any level. Meanwhile, the longer run dependence in the
autocorrelogram, depicted in Fig. 1, is masked by a distinct repetitive pattern.
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10A related issue concerns the choice of m for di!erent sampling frequencies. No matter what the
sampling frequency, the same value of m corresponds to cycles of the same periodicity in calendar
time. This is an argument for using the same bandwidth for di!erent levels of temporal aggregation.
However, following this rule literally could arguably result in unreasonably large values of the
bandwidth parameter when the sampling frequency is low.

Equally pronounced periodic autocorrelograms for other log-squared speculat-
ive returns and time periods have previously been reported in the literature by
Andersen and Bollerslev (1997b) and Dacorogna et al. (1993), among others.
However, this periodicity is directly attributable to the existence of strong
intradaily volatility patterns associated with the opening and closing of the
various "nancial centers around the world. Abstracting from this daily pattern,
the overall slow rate of decay in the 5-min autocorrelations is striking and highly
suggestive of long-memory dependencies. As such, semiparametric frequency
domain procedures that explicitly ignore the intradaily periodicities are ideally
suited to estimating the rate of this apparent hyperbolic decay.

3.2. Log-periodogram estimates

Implementation of the log-periodogram regression in Eq. (4) requires a choice
of the trimming and bandwidth parameters, l and m. For the results reported
below we took l"10. Informal experimentation revealed the estimates to be
robust with respect to this particular choice. Several recent studies have been
concerned with "nding &good' bandwidths for long-memory models; see e.g.
Delgado and Robinson (1996), Geweke (1998), Hurvich et al. (1998), Lobato and
Robinson (1998), and Robinson (1994b). General optimal conditions that would
be applicable in the present context have so far proven elusive, but the &rule-of-
thumb' employed in most of the applied literature dictates a bandwidth equal to
[¹1@2], or m"867 for the 5-min return series analyzed here.

In the empirical estimation, we therefore explored a range of di!erent band-
width choices.10 The estimates of d, using 5-min log-squared returns for a range
of values of m are graphed in Fig. 2. Fig. 2 also shows the associated 95%
con"dence intervals based on the asymptotic standard errors from the regres-

sion in Eq. (4), i.e. Jn2/24m, as well as the bootstrap con"dence intervals
discussed in Section 2.2. The two sets of con"dence intervals are virtually
indistinguishable. Also, for values of m in excess of 750, the estimates for d all lie
within a fairly narrow band close to 0.3. This value of d, along with the various
summary statistics discussed above, forms the basis for the simulation design in
the next section.

3.3. Alternative volatility measures and temporal aggregation

Before discussing the simulation results, it is informative to brie#y review and
compare the estimates for long-memory volatility dependencies constructed
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Fig. 2. Log-periodogram estimates for 5-min log-squared Y}$ returns. The solid line graphs the
log-periodogram regression estimates for the 5-min log-squared series as a function of the band-
width, m. The sample period extends from December 1, 1986 through December 1, 1996, for a total of
¹"751,392 observations. The dotted lines give the #/! 1.96 standard error bands based on the

asymptotic standard error from the regression in Eq. (4), i.e. Jn2/24m. The dashed and dotted lines
give the 95% bootstrap con"dence intervals, discussed in text.

11We also used the alternative Gaussian semiparametric estimator proposed by Robinson
(1995b). These estimates were very close to the conventional log-periodogram estimates, and are
consequently not reported in the table (e.g. for m"1000, the Gaussian estimates were 0.355, 0.322
and 0.449 for log-squared, squared and absolute 5-min returns, respectively).

from the alternative volatility measures outlined in Section 2. Fig. 3 plots the
log-periodogram estimates of d against the bandwidth m, using these alternative
ex-post volatility measures, i.e. log-squared, squared and absolute returns, for
di!erent levels of temporal aggregation (5-min, hourly and daily), and their
counterparts aggregating after transformation. The results for m"1000 (400 for
the daily data) along with the associated standard errors are also reported in
Table 1.11 The estimates of d based on 5-min log-squared and squared returns
are similar (around 0.3), with those based on 5-min absolute returns slightly
higher. Meanwhile, the estimates for d based on the log-squared, squared or
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Fig. 3. Log-periodogram estimates for Y}$ returns at di!erent aggregation levels. The solid line
graphs the log-periodogram regression estimate for d based on the 5-min Y}$ series as a function of
the bandwidth, m. The sample period extends from December 1, 1986 through December 1, 1996, for
a total of ¹"751,392 observations. The dashed and dotted lines refer to the estimates with hourly
data, while the daily estimates are represented by the dotted lines. The di!erent volatility estimators
are de"ned in the text.

absolute hourly returns are generally lower. In turn, the estimates based on the
log-squared, squared or absolute daily returns are much lower, and typically
around 0.1.

In contrast to the low persistence implied by the three one-day return
volatility measures, the point estimates for the temporally aggregated daily
volatility series (aggregated after the nonlinear transformation) all correspond
closely with the point estimates obtained directly from the high-frequency
returns. For instance, the estimate for d calculated from the daily [log(y2

t
)](288)

time series equals 0.302, whereas the estimate from log(y2
t
) is 0.307. However,

whereas the estimates for k"1 are based on ¹"751,392 observations, the
temporal aggregation with k"288 reduces the sample size to a much more
manageable 2609 daily ex-post volatility observations.

In summary, the empirical results for the Y}$ returns in Table 1 clearly suggest
that alternative volatility measures can yield very di!erent conclusions, and that
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Table 1
Long-memory parameter estimates for Y}$ volatility!

k 1 12 288

log(y(k)2
t

) 0.307 0.308 0.107
(0.020) (0.020) (0.032)
[0.260, 0.350] [0.264, 0.354] [0.020, 0.188]

y(k)2
t

0.328 0.195 0.083
(0.020) (0.020) (0.032)
[0.279, 0.371] [0.151, 0.240] [0.005, 0.164]

Dy(k)
t

D 0.439 0.358 0.129
(0.020) (0.020) (0.032)
[0.392, 0.485] [0.315, 0.404] [0.042, 0.212]

[log(y2
t
)](k) 0.307 0.307 0.302

(0.020) (0.020) (0.032)
[0.260, 0.350] [0.259, 0.351] [0.220, 0.383]

[y2
t
](k) 0.328 0.328 0.344

(0.020) (0.020) (0.032)
[0.279, 0.371] [0.282, 0.377] [0.261, 0.383]

[Dy
t
D](k) 0.439 0.439 0.434

(0.020) (0.020) (0.032)
[0.392, 0.485] [0.395, 0.482] [0.349, 0.508]

!Notes: The table reports the log-periodogram regression estimates for the degree of fractional
integration in Y}$ return volatility. The numbers in parentheses give the asymptotic standard errors
from the regression in Eq. (4). The numbers in square brackets refer to the 95% bootstrap con"dence
intervals discussed in text. The sample period extends from December 1, 1986 through December 1,
1996. The sample size for the 5-min returns is 751,392. The columns labelled k"1, k"12 and
k"288 refer to the 5-min data, aggregated hourly data and aggregated daily data, respectively. The
di!erent ex-post volatility measures underlying the log-periodogram regression estimates are de-
"ned in the "rst column: [log(y2

t
)](k), [y2

t
](k) and [Dy

t
D](k) refer to the data aggregated after transforma-

tion, as discussed in text. The trimming parameter is "xed at l"10. The estimates for k"1, 12 are
based on a bandwidth of m"1000, whereas the estimates for k"288 set m"400.

high-frequency data may be critically important for reliable inference concern-
ing longer run volatility dependencies. The simulations in the next section
support this conjecture.

4. Monte-Carlo evidence

A number of simulation studies have addressed the performance of the
log-periodogram regression procedure for estimating long-memory depend-
encies in the mean; see e.g. Agiakloglou et al. (1992), Cheung (1993), Hurvich and
Beltrao (1994), Hurvich et al. (1998) and Janacek (1982). A common "nding to
emerge from these studies concerns the large "nite sample biases in empirically
realistic situations with macroeconomic data. Furthermore, it has also become
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12Similarly, when testing for unit roots in the mean, the power of such tests is intimately related to
the calendar time span of the data; see e.g. Shiller and Perron (1985) for some of the earliest evidence
along these lines.

13 In order to utilze the fast Fourier transform, the sample size must be an integer power of 2.
14Following Breidt et al. (1998) and Hosking (1981), the lag j autocorrelation for log(y2

t
) for the

FISV model takes the form

(!1)j
p2
u

1!/2

C(1!2d)

C(1!j!d)C( j#1!d)
[F(1, d#j, 1!d#j; /)#F(1, d!j, 1!d!j; /)]

#

n2

2
1( j"0),

where 1( ) ) denotes the indicator function and F(., ., .; .) is the hypergeometric function.

apparent that the magnitude of this small sample bias depends crucially upon
the time span of the data, whereas the frequency of the observations is much less
important.12 In contrast, the present "ndings demonstrate that when estimating
the degree of fractional integration in the volatility, the performance of the
estimates may be greatly enhanced by increasing the observation frequency.

4.1. Simulation design

The simulation experiment is modelled after the empirical results for the
log-squared 5-min Y}$ returns discussed in the previous section. However, in
order to keep the design tractable, we do not incorporate the strong intradaily
periodicities in the volatility evident in Fig. 1. Since the log-periodogram
regression is calculated solely from the longer run interdaily ordinates, this
should not alter any of the qualitative "ndings.

Speci"cally, data is generated by the FISV model, where the latent volatility
factor, h

t
, is assumed to follow the ARFIMA (1, d, 0) model

(1!/¸)(1!¸)dh
t
"p

u
u
t
. (11)

The data generated in the simulation is treated as &5-min' data: aggregating by
factors of 12 and 288 gives arti"cial series of &hourly' and &daily' returns. The
parameter con"guration for the benchmark FISV model de"ned by Eqs. (2)
and (11) speci"es that d"0.3, /"0.6, p2

u
"0.25, p2e"0.0004 and ¹"219"

524,288. This large sample size is directly in line with the number of 5-min return
observations available for the Y}$ series analyzed above.13 The mean volatility
level, as measured by E log(y2

t
)"E log(e2

t
)#log(p2e )"!9.09, closely matches

the sample mean for the log-squared 5-min Y}$ returns of !8.75. Furthermore,
the population autocorrelogram for log(y2

t
), given by the dotted line in Fig. 1, is

also in close accordance with the overall slow decay in the corresponding
sample autocorrelations.14

Beran (1994) provides a review of the standard approaches for simulating
ARFIMA models, such as the Cholesky decomposition of the covariance matrix
of the time series or the algorithm of Davies and Harte (1987). In the present
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15The truncation parameter is "xed at l"10 in all cases.

context, with a sample size in excess of half-a-million, none of these methods
would be computationally feasible. While it might be possible to simulate an
approximate long-memory time series by applying a truncated version of the
(1!¸)d "lter, truncation would necessarily have to take place at a very high
power of ¸ and this algorithm would be very slow. Instead, we rely on the recent
developments in Parke (1996) for generating a fractional white noise process as
the weighted sum of i.i.d. shocks; a detailed description of this procedure is
provided in the appendix. Passing this process through an AR(1) "lter yields the
desired ARFIMA (1, d, 0) model for the latent volatility, or h

t
. All of the resulting

simulation results are based on a total of 1000 replications.

4.2. Results

Fig. 4 plots the simulated bias of the log-periodogram estimates of d against
the bandwidth m, for all the volatility measures and di!erent levels of temporal
aggregation analyzed in the previous section. For comparison, Fig. 4 also shows
the bias of the log-periodogram estimate applied to the latent fractionally
integrated volatility process, h

t
. This latter estimator is, of course, not a feasible

alternative in practice. Consistent with the empirical results in the previous
section, the biases in the estimates are not very sensitive to the choice of m, once
it reaches a &reasonable' value. In the following, we shall therefore concentrate
on the results for m"1000 (m"400 for the &daily' estimates).15

The kernel estimates of the associated probability densities are shown in Fig. 5.
Table 2 also gives the median and 2.5 and 97.5 percentiles of the simulated
distribution of the log-periodogram estimates of d, for these values of m. The
results in Table 2 and Figs. 4 and 5 show a slight downward bias in the estimate
of d using &5-min' log-squared returns. This bias gets worse using log(y(12)2

t
) and

is much worse with log(y(288)2
t

). This same pattern emerges for the estimates
based on the squared and absolute returns. Overall, the log-periodogram
estimates based on the absolute and log-squared returns appear to have quite
similar properties, whereas the estimates based on the squared returns have
more downward bias and larger variance. The "rst three panels in Fig. 5 also
vividly illustrate these biases from standard linear temporal aggregation in the
FISV model.

This severe aggregation bias does not appear in the simple ARFIMA model,
where aggregating to a lower frequency, while keeping the span of the data
constant, makes little di!erence in terms of bias and only slightly increases
the dispersion. For instance, the log-periodogram estimates, in Table 2,
based on h(k)

t
have median values 0.297, 0.299 and 0.356, for k"1, 12 and 288,

respectively.
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Fig. 4. Simulated bias of estimators. The solid lines graph the bias in the log-periodogram estimate
for d based on the simulated &5-min' return series as a function of the bandwidth, m. The dashed and
dotted lines give the bias for the &hourly' data (k"12), while the biases for the simulated &daily'
(k"288) estimates are represented by the dotted lines. The di!erent volatility estimators are de"ned
in the text. The data is generated by the FISV model in Eqs. (2) and (11) with parameters ¹"219,
d"0.3, p2e"4.10~4, /"0.6 and p2

u
"0.25.

The last three volatility measures in Table 2 and Figs. 4 and 5 are constructed
by summing the high-frequency log-squared, squared or absolute returns; i.e.
[log(y2

t
)](k), [y2

t
](k) and Dy

t
D(k), respectively. Applying the nonlinear transforms

before aggregation e!ectively circumvents the aggregation bias. The &hourly'
estimates (k"12) have a distribution that is very close to that of their high-
frequency counterparts (k"1). The &daily' estimates (k"288) have approxim-
ately the same mean and median as their high-frequency counterparts, though
with slightly higher dispersion, and the &daily' estimates based on the log-
squared and absolute returns are nearly unbiased (and median unbiased). These
results are again consistent with the empirical estimates reported in the previous
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Fig. 5. Simulated densities of log-periodogram estimators. The "gure graphs the Gaussian kernel
estimates of the simulated probability density functions for the log-periodogram regression esti-
mates of d. The solid lines give the densities for the &5-min' returns and m"1000. The dashed and
dotted lines give the densities for the &hourly' data (k"12) and m"1000, while the densities for the
&daily' (k"288) estimates and m"400 are represented by the dotted lines. The di!erent volatility
estimators are de"ned in the text. The data is generated by the FISV model in Eqs. (2) and (11) with
parameters ¹"219, d"0.3, p2e"4.10~4, /"0.6 and p2

u
"0.25.

section. However, it is important to note that, even though these estimates are
based on much fewer time series observations, the corresponding low-frequency
volatility measures cannot be constructed without the underlying high-fre-
quency data. Accordingly, these results underscore the bene"ts provided by
intradaily returns when estimating interdaily volatility dynamics.

The Monte-Carlo simulations clearly illustrate that temporal aggregation
greatly increases the bias in the log-periodogram estimate of d for the log-
squared, squared or absolute returns, but not for h(k)

t
, [log(y2

t
)](k), [y2

t
](k) or Dy

t
D(k).

Our explanation for this "nding is easiest to convey in the context of the squared
returns. By the standard intuition about the e!ects of temporal aggregation,
h
t

and h(k)
t

should both lead to similar conclusions about the long-memory
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Table 2
Monte-Carlo properties of long-memory parameter estimates for FISV model!

k 1 12 288

log(y(k)2
t

) 0.256 0.143 0.017
(0.185, 0.330) (0.021, 0.286) (!0.105, 0.139)

y(k)2
t

0.179 0.120 0.045
(0.030, 0.443) (0.009, 0.359) (!0.068, 0.278)

Dy(k)
t

D 0.267 0.177 0.039
(0.170, 0.418) (0.075, 0.345) (!0.077, 0.176)

h(k)
t

0.297 0.299 0.356
(0.221, 0.370) (0.222, 0.372) (0.177, 0.531)

[log(y2
t
)](k) 0.256 0.257 0.327

(0.185, 0.330) (0.187, 0.330) (0.158, 0.489)
[y2

t
](k) 0.179 0.179 0.198

(0.030, 0.443) (0.030, 0.443) (0.000, 0.612)
[Dy

t
D](k) 0.267 0.269 0.313

(0.170, 0.418) (0.171, 0.420) (0.131, 0.615)

!Notes: The table reports the median value of the simulated distribution of the log-periodogram
regression estimates for d with the 2.5 and 97.5 percentiles of this simulated distribution in
parentheses. The di!erent ex-post volatility measures underlying the log-periodogram regression
estimates are de"ned in the "rst column: [log(y2

t
)](k), [y2

t
](k) and [Dy

t
D](k) refer to the data aggregated

after transformation, as discussed in text. The FISV model parameters are ¹"219, d"0.3,
p2e"4.10~4, /"0.6 and p2

u
"0.25. The trimming parameter is "xed at l"10. The estimates for

k"1, 12 are based on a bandwidth of m"1000, whereas the estimates for k"288 set m"400.

parameter. The same is true for y2
t
and [y2

t
](k). However, [y(k)

t
]2 is equal to [y2

t
](k)

plus k(k!1) zero-mean cross-product terms. Thus, [y(k)
t

]2 provides a more
noisy volatility measure than [y2

t
](k) for k'1. Using a more noisy volatility

measure is likely to bias the estimate of d downwards; the higher is k, the more
noisy is [y(k)

t
]2, and so the larger the bias should be.

Of course, in practical applications any inference concerning the true value of
d will have to rely on appropriately de"ned test statistics. Fig. 6 shows the
densities of the t-statistic for testing the hypothesis that d"0.3 (the true value),
using the asymptotic standard errors from the regression in (4), with &5-min'
log-squared, squared and absolute returns as well as the latent h

t
ARFIMA

process. Four di!erent bandwidth parameters are reported; m"500, 1000, 1500
and 2000, while l"10. Table 3 gives the simulated probabilities that each of
these t-statistics is less than 1.96 in absolute value (i.e. the coverage of a nominal
95% con"dence interval).

The sampling distributions of the t-statistics always have higher variance than
a standard normal. This is even true for the simple ARFIMA process. This
tendency gets more pronounced as m increases. The excessively small standard
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Fig. 6. Simulated densities of t-statistics. The solid lines graph the Gaussian kernel estimates of the
simulated probability density functions for the t-statistics testing d"0.3 based on the &5-min' return
estimates for d and the asymptotic standard error from the regression in Eq. (4). The dotted lines give
the standard normal density, for comparison.

Table 3
Coverage of con"dence intervals in log-periodogram regressions with &5-min' data!

m 500 1000 1500 2000

log(y2
t
) 0.697 0.574 0.480 0.405

y2
t

0.240 0.157 0.127 0.116
Dy

t
D 0.531 0.418 0.377 0.363

h
t

0.710 0.635 0.620 0.610

!Notes: The table reports the e!ective coverage of the 95% con"dence intervals for d based on the
&5-min' return estimates for d and the asymptotic standard error from the regression in Eq. (4). The
Monte-Carlo design is as speci"ed in Table 2.

errors, combined with modest downward biases in the log-periodogram esti-
mates of d cause the con"dence intervals to have low coverage, especially for
large m. Thus, while high-frequency data allow the construction of
approximately unbiased point estimates for the long-memory volatility
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Table 4
Sensitivity analysis: Monte-Carlo properties for model M1!

k 1 12 288

log(y(k)2
t

) 0.230 0.100 0.009
(0.139, 0.323) (!0.031, 0.254) (!0.275, 0.298)

y(k)2
t

0.186 0.103 0.028
(0.034, 0.457) (0.009, 0.304) (!0.241, 0.384)

Dy(k)
t

D 0.253 0.134 0.031
(0.152, 0.436) (0.027, 0.319) (!0.256, 0.304)

h(k)
t

0.301 0.319 0.370
(0.205, 0.398) (0.219, 0.420) (!0.024, 0.836)

[log(y2
t
)](k) 0.223 0.239 0.330

(0.139, 0.323) (0.153, 0.330) (!0.038, 0.762)
[y2

t
](k) 0.186 0.200 0.161

(0.034, 0.457) (0.045, 0.473) (!0.120, 0.861)
[Dy

t
D](k) 0.253 0.266 0.295

(0.152, 0.436) (0.165, 0.449) (!0.085, 0.881)

!Notes: This is the counterpart to Table 2, but where the model parameters are altered from their
benchmark values to specify that the sample size is reduced to ¹"216.

16However, the log-periodogram estimates of d, for the 5-min Y}$ returns, reported in Table 1, are
all more than ten standard errors away from zero, and the simulated bias in these estimates is
a downward bias.

parameter, conventional inference procedures should be interpreted with some
caution.16

4.3. Sensitivity analysis

In this section we report some sensitivity analysis, analyzing the consequences
of modi"cations to the benchmark model. Speci"cally we consider the following
three parameter con"gurations, each of which alters one parameter relative to
the benchmark model:

(i) Model M1: ¹"216, d"0.3, /"0.6, p2e"4]10~4, p2
u
"0.25.

(ii) Model M2: ¹"219, d"0.3, /"0.8, p2e"4]10~4, p2
u
"0.25.

(iii) Model M3: ¹"219, d"0.4, /"0.6, p2e"4]10~4, p2
u
"0.25.

The results for model M1 are reported in Table 4. The format of the table is
identical to Table 2, and gives the median, 2.5 and 97.5 percentiles of the
sampling distributions for the log-periodogram estimates. Tables 5 and 6 give
the counterparts for models M2 and M3, respectively. The qualitative e!ects of
temporal aggregation are the same in each of these three models as in the
benchmark model. In model M1, the sample size is reduced to 216"65,536,
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Table 5
Sensitivity analysis: Monte-Carlo properties for model M2!

k 1 12 288

log(y(k)2
t

) 0.283 0.215 0.061
(0.201, 0.369) (0.122, 0.321) (!0.061, 0.210)

y(k)2
t

0.037 0.031 0.017
(!0.003, 0.335) (!0.001, 0.288) (!0.022, 0.270)

Dy(k)
t

D 0.208 0.175 0.072
(0.065, 0.466) (0.041, 0.421) (!0.018, 0.312)

h(k)
t

0.293 0.294 0.324
(0.210, 0.381) (0.211, 0.381) (0.154, 0.519)

[log(y2
t
)](k) 0.283 0.284 0.319

(0.201, 0.369) (0.202, 0.371) (0.147, 0.508)
[y2

t
](k) 0.037 0.037 0.028

(!0.003, 0.335) (!0.001, 0.336) (!0.020, 0.339)
[Dy

t
D](k) 0.208 0.209 0.204

(0.065, 0.466) (0.065, 0.469) (0.028, 0.598)

!Notes: This is the counterpart to Table 2, but where the model parameters are altered from their
benchmark values to specify that /"0.8.

Table 6
Sensitivity analysis: Monte-Carlo properties for model M3!

k 1 12 288

log(y(k)2
t

) 0.377 0.329 0.120
(0.324, 0.428) (0.202, 0.450) (!0.068, 0.308)

y(k)2
t

0.195 0.158 0.093
(0.027, 0.441) (0.006, 0.399) (!0.032, 0.350)

Dy(k)
t

D 0.349 0.302 0.160
(0.275, 0.471) (0.201, 0.451) (!0.033, 0.439)

h(k)
t

0.397 0.399 0.434
(0.344, 0.446) (0.345, 0.447) (0.313, 0.554)

[log(y2
t
)](k) 0.377 0.379 0.428

(0.324, 0.428) (0.326, 0.429) (0.308, 0.537)
[y2

t
](k) 0.195 0.195 0.223

(0.027, 0.441) (0.028, 0.438) (0.018, 0.513)
[Dy

t
D](k) 0.349 0.351 0.394

(0.275, 0.471) (0.276, 0.472) (0.257, 0.594)

!Notes: This is the counterpart to Table 2, but where the model parameters are altered from their
benchmark values to specify that d"0.4.

corresponding to an approximate one-year time span of 5-min returns. While
the &one year daily' and even &one year hourly' returns are totally uninformative
about the long memory in the volatility, high-frequency data over the same time
span quite reliably identify a value of d greater than zero. In model M2, / is
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raised to 0.8, while in model M3, d is raised from 0.3 to 0.4. The magnitudes
of all the biases in these models are close to those in the benchmark
model.

5. Concluding remarks

Semiparametric methods are ideally suited to the empirical analysis of long-
memory volatility dependencies in exchange rate data, both because of the
complexity of these volatility dependencies and because of the sample sizes
available. Semiparametric methods, applied to a sample of more than half-a-
million high-frequency spot exchange rate returns clearly suggest the presence of
long-memory volatility dependencies. Meanwhile, much lower estimates for the
long-memory parameter are obtained with the temporally aggregated longer
horizon returns. Our simulations of a fractionally integrated stochastic volatility
model, calibrated to the high-frequency returns, demonstrate that downward
bias in the semiparametric estimates of the degree of fractional integration is to
be expected when low-frequency data is used. In contrast, when estimating
long-run dependencies in the mean, the time span of the data is of utmost
importance and simply increasing the frequency of the observations over a "xed
time span does little to enhance the quality of the estimates. We also propose
some new low-frequency volatility measures, constructed from nonlinearly
aggregated high-frequency returns that allow for nearly unbiased estimation
of the long-memory volatility parameter over relatively short calendar time
spans. As such, our results hold the promise of more generally being able to
distinguish between genuine long-memory e!ects in the volatility and occasional
structural breaks, through the judicious empirical analysis of high-frequency
returns.
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Appendix A. Parke's method for simulating an ARFIMA series

Parke (1996) showed that an ARFIMA (0, d, 0) time series can alternatively be
expressed as an in"nite sum of shocks each having a random duration with
a certain distribution. This idea forms the basis for our method of simulating
a long fractionally integrated time series. Speci"cally, let

x
t
"

t
+

s/~=

g
s,t

pees , (A.1)

where e
s

is i.i.d. N(0, 1), g
s,t
"1(t!s)j

s
), and j

s
is a discrete i.i.d. random

variable with support M0, 1, 2, 3,2N such that

P(j
s
*h)"

C(h#d)C(2!d)

C(h#2!d)C(d)
, h"0, 1, 2, 3,2

and the sequences j
s
and e

s
are mutually independent. The resulting x

t
series is

then a Gaussian ARFIMA (0, d, 0) series. In simulating the fractionally integ-
rated series in Section 4, the summation in (A.1) was started at s"0, not
s"!R, but the algorithm was allowed a long &burn in' period. For example,
to simulate a series of length 524,288, a series of length 600,000 was "rst
generated in this way and the "rst 75,712 observations then discarded. The
sample covariance function of the series generated in this way closely matches its
population counterpart.
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