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SUMMARY
This paper bridges the gap between traditional ARCH modelling and recent advances on realized volatilities.
Based on a ten-year sample of five-minute returns for the ECU basket currencies versus the US dollar, we
find that the realized volatilities constructed from the summation of the high-frequency intraday squared
returns conditional on the lagged squared daily returns are approximately Inverse Gaussian (IG) distributed,
while the distribution of the daily returns standardized by their realized volatilities is approximately normal.
Moreover, the implied daily GARCH model with Normal Inverse Gaussian (NIG) errors estimated for the
ECU returns results in very accurate out-of-sample predictions for the three years of actual daily Euro/US
dollar exchange rates. Copyright  2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

The seminal ARCH paper by Engle (1982) triggered one of the most active and fruitful areas
of research in econometrics over the past two decades. The success of the ARCH/GARCH class
of models at capturing volatility clustering in financial markets is well documented (see, for
example, Bollerslev, Chou and Kroner, 1992). Meanwhile the inability of the ARCH/GARCH
models coupled with the auxiliary assumption of conditionally normally distributed errors to
fully account for all of the mass in the tails of the distributions of, say, daily returns is also
well recognized. Indeed, several alternative error distributions were proposed in the early ARCH
literature to better account for the deviations from normality in the conditional distributions of the
returns, including the t-distribution of Bollerslev (1987), the General Error Distribution (GED) of
Nelson (1991), and more recently, the Normal Inverse Gaussian (NIG) distribution of Barndorff-
Nielsen (1997), Andersson (2001) and Jensen and Lunde (2001). The motivation behind these
alternative error distributions has been almost exclusively empirical and pragmatic in nature. In
the present paper, building on the Mixture-of-Distributions-Hypothesis (MDH) (Clark, 1973) along
with the recent idea of so-called Realized Volatilities (RV) (Andersen et al., 2001b, ‘Modeling and
forecasting realized volatility’, unpublished manuscript, 2002; Barndorff-Nielsen and Shephard,
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2001a,b, 2002a; Comte and Renault, 1998), we provide a sound empirical foundation for the
distributional assumptions underlying the GARCH-NIG model.

Consistent with the absence of arbitrage and a time-changed Brownian motion (see, for example,
Ane and Geman, 2000; Andersen, Bollerslev, and Diebold, 2002), the MDH postulates that
the distribution of returns is normal, but with a stochastic (latent) variance. In the original
formulation in Clark (1973), the variance is assumed to be i.i.d. lognormally distributed, resulting
in a lognormal-normal mixture distribution for the returns. Numerous theoretical extensions and
empirical investigations of these ideas, involving various proxies for the mixing variable have
been advanced in the literature (important early contributions include Epps and Epps, 1976; Taylor,
1982; Tauchen and Pitts, 1983). Importantly, to explicitly account for the volatility clustering effect
Taylor (1982, 1986) proposed an extension of the MDH setup by making the (latent) logarithmic
variances follow a Gaussian autoregression, resulting in the lognormal Stochastic Volatility (SV)
model; see also Andersen (1996). Since the joint distribution of the returns in the SV model is not
known in closed form, both estimation and inference for these types of models are considerably
more complicated than for the ARCH/GARCH class of models (see, e.g., Shephard, 1996).

In contrast to the existing SV literature, which treats the mixing variable as latent, we show
that by measuring the daily variance by the corresponding realized volatility constructed from the
sum of intraday high-frequency returns, the daily return standardized by the realized volatility is
approximately normally distributed. Therefore, even though the realized volatilities are subject
to measurement error vis-à-vis the true daily latent volatilities (see, for instance, Andreou
and Ghysels, 2002; Barndorff-Nielsen and Shephard, 2001b, 2002b; Meddahi, ‘A theoretical
comparison between integrated and realized volatilities’, unpublished manuscript, 2002), the
(approximate) normality of the standardized returns is consistent with the basic tenets of the
MDH and the use of the realized volatility as the underlying mixing variable. Moreover, we find
that the distribution of the realized volatility conditional on the past squared daily returns (as
well as the unconditional distribution of the realized volatility) is closely approximated by an
Inverse Gaussian (IG) distribution. Taken together, these results imply that in practical modelling
situations where the high-frequency data are not actually available, the daily returns should be
well described by a GARCH-NIG model.

The empirical analysis outlined above is based on a ten-year sample of high-frequency five-
minute returns for the ECU basket of currencies versus the US dollar, spanning the period from
3 January 1989 to 30 December 1998. In addition, we show that the implied daily GARCH-NIG
model, estimated for the ten years of daily (non-traded) ECU returns up to 30 December 1998,
provides very accurate out-of-sample predictive distributions for the actual (traded) Euro/US dollar
exchange rate from 2 January 1999 to 31 December 2001.

Our results build directly on recent empirical findings and related theoretical developments
in the literature. First, the idea of explicitly modelling realized volatility proxies has a long
history in empirical finance (see, for example, Schwert, 1989; Hsieh, 1991, and, more recently
Andersen et al., unpublished manuscript, 2002; Maheu and McCurdy, 2002). Second, empirical
results reported in Andersen et al. (2000, 2001a) have previously demonstrated the approximate
normality of the returns when standardized by the realized volatility for other asset classes and
time periods. Third, Barndorff-Nielsen and Shephard (2002a) report that the unconditional realized
volatilities for other exchange rates are well approximated by the Inverse Gaussian distribution, and
that, empirically, the IG distribution is almost indistinguishable from the lognormal distribution
typically employed in SV models. Hence, by combining and extending these concurrent ideas
within a unified empirical framework, we offer a new basis for gauging the distributional

Copyright  2002 John Wiley & Sons, Ltd. J. Appl. Econ. 17: 535–548 (2002)



BRIDGING THE GAP BETWEEN REALIZED VOLATILITY AND ARCH MODELLING 537

assumptions underlying the ‘classical’ daily GARCH-NIG modelling approach recently advocated
in the literature.

The rest of the paper is organized as follows. The following section outlines the basic building
blocks behind the GARCH-NIG model within the MDH framework. Section 3 describes the data
and briefly reviews the notion of realized volatility. This section also provides our characterization
of the raw and standardized return distributions, as well as the conditional and unconditional
distributions of the realized volatilities. The in-sample daily GARCH-NIG model estimates for
the ECU and the out-of-sample Euro predictions are briefly discussed in Section 4. Section 5
concludes.

2. THE MDH AND THE GARCH-NIG MODEL

The Mixture-of-Distributions Hypothesis (MDH) starts from the premise that the distribution of
discretely sampled returns, conditional on some latent information arrival process, is Gaussian.
This assumption is justified theoretically if the underlying price process follows a continuous
sample path diffusion (see, for instance, the discussion in Andersen et al., 2002, and Barndorff-
Nielsen and Shephard, 2001b). However, the integrated volatility process that serves as the mixture
variable in this situation is not directly observable. As noted above, this has spurred numerous
empirical investigations into the use of alternative volatility proxies and/or mixture variables.

Meanwhile, in the diffusion setting the integrated volatility may, in theory, be estimated
arbitrarily well by the summation of finely sampled squared high-frequency returns, or so-called
realized volatilities. This suggests the following empirically testable starting point for the MDH,

f �rtjRVt� ¾ N�0, RVt� �1�

where rt refers to the discretely sampled one-period returns from time t � 1 to t, and RVt denotes
the corresponding realized volatility proxy measured over the same time interval. Consistent with
earlier related empirical results in Andersen et al.(2000), the results for the high-frequency foreign
exchange rates discussed in the next section are broadly consistent with this hypothesis.

The distribution in (1), and the unconditional and conditional distributions of RVt, jointly
determine the distribution of the returns. In the original MDH formulation advocated by Clark
(1973), the latent mixing variable is simply assumed to be i.i.d. lognormally distributed, resulting in
an unconditional lognormal normal mixture distribution. This is also consistent with the empirical
results reported in Andersen et al. (2001a,b), which suggest that the unconditional distributions of
the logarithmic realized exchange rate and equity volatilities are approximately normal.

Unfortunately, the lognormal distribution is not closed under temporal aggregation, and the
density function for the resulting lognormal normal mixture distribution is only available in integral
form. Partly in response to these concerns, Barndorff-Nielsen and Shephard (2002a) have recently
demonstrated that the unconditional distribution of the realized volatility may be equally well
approximated by the Inverse Gaussian (IG) distribution. That is,

f �RVt� ¾ IG�2

(
�2, ˛

)
�2�
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where the density function for the IG distribution may be expressed in standardized form as,1

IG�2

(
z; �2, ˛

) D

(
1

˛�2

)�1/2

z�3/2

�2��1/2 exp

{
˛ � 1

2

(
˛�2

z
C ˛z

�2

)}

In contrast to the lognormal distribution, the IG distribution is formally closed under temporal
aggregation. Hence, if, say the daily realized volatility is IG distributed, the weekly realized
volatility, defined by the summation of the daily realized volatilities within the week, will also
be IG distributed. The empirical results for the realized exchange rate volatility series in the next
section, strongly support the IG distribution in equation (2).

Now, combining the distributional assumptions in (1) and (2) the implied unconditional
distribution for the returns should be Normal Inverse Gaussian (NIG),

f �rt� D
∫ 1

0
f �rtjRVt� f �RVt� dRVt ¾ NIG�2

(
�2, 0, 0, ˛

)
�3�

with the following closed-form density function

NIG�2

(
z; �2, ˛

) D ˛1/2

��
exp �˛� q

(
z

�˛1/2

)�1

K1

(
˛q

(
z

�˛1/2

))
where q �x� D p

1 C x2 and K1 �z� denotes the modified Bessel function of third order and index
one.2 The NIG distribution was first used for modelling speculative returns in Barndorff-Nielsen
(1997). It may be viewed as a special case of the Generalized Hyperbolic Distribution in Barndorff-
Nielsen (1978).3

Although the NIG distribution in equation (3) may adequately capture the fat-tailed uncondi-
tional return distributions, it does not account for the well-documented volatility clustering, or
ARCH, effects. In order to incorporate conditional heteroscedasticity in the return process within
the MDH framework, define the It�1 information set generated by the past daily returns,

It�1 D � frt�1, rt�2, ...g

The standard ARCH class of models then essentially entails the joint specification of a
conditional density for rt given It�1 along with a parametric expression for the conditional variance.
In the next section, we show that the corresponding conditional distribution for RVt is similarly
well approximated empirically by the IG distribution,

f �RVtjIt�1� ¾ IG�2

(
�2

t , ˛
)

�4�

1 We use the notation z ¾ IG�2
(
˛, �2

)
to indicate the standardized parameterization. Note that cz ¾ IG�2

(
˛, c2�2

)
, so

that the parameter ˛ does not change under scaling. The mean, variance, skewness and kurtosis of this IG distribution
are, respectively, E �z� D �2, V �z� D �4/˛, S �z� D 3/

p
˛ and K �z� D 3 C 15/˛.

2 The first four central moments of the NIG distribution as parameterized here, are �1 D 0, �2 D �2, �3 D 0, and
�4 D 3�4

[
1/˛ C 1

]
, respectively. Non-zero skewness in the distribution of the returns could easily be accommodated by

the estimation of a non-zero asymmetry parameter in the NIG distribution; see Jensen and Lunde (2001).
3 The same arguments for the IG distribution outlined here easily extend to the corresponding Generalized IG (GIG)
mixture.
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where �2
t depends exclusively on the coarser It�1 information set. Specifically, for the results

reported below, the conditional mean in the IG distribution is assumed to follow the recursive
GARCH(1,1) like structure,

�2
t D �0 C �1r2

t�1 C �1�2
t�1 �5�

The GARCH(1,1)-NIG model now arises naturally by combining equation (1) augmented with
the It�1 information set, f �rtjRVt, It�1� ¾ N�0, RVt�, with the conditional distribution for RVt in
equations (4) and (5),

f �rtjIt�1� D
∫

f �rtjRVt, It�1� f �RVtjIt�1� dRVt ¾ NIG�2

(
�2

t , 0, 0, ˛
)

�6�

The ARCH-NIG model was first proposed by Barndorff-Nielsen (1997) and later extended to
allow for more flexible GARCH type parameterizations in Andersson (2001) and Jensen and
Lunde (2001). By explicitly equating the mixing variable with the observable realized volatility,
equations (1) and (4) allow for direct empirical investigation and verification of the salient
distributional features underlying the GARCH-NIG model, a task to which we now turn.

3. DISTRIBUTIONAL PROPERTIES OF REALIZED VOLATILITY AND RETURNS

3.1. Data Sources and the Construction of Realized Volatility

Our primary data set consists of daily returns and realized volatilities for the ECU/US Dollar
exchange rate from 3 January 1989 to 30 December 1998. All of the raw data were obtained
from Olsen and Associates in Zürich, Switzerland. Following standard practice in the literature,
the daily realized volatilities were constructed by summing squared five-minute returns. Formally,

RVt D 288
iD1r2

�288� �t C �i/288�� �7�

where r2
�288� �t C �i/288�� denotes the continuously compounded return for day t over the ith

five-minute interval calculated on the basis of the linearly interpolated logarithmic midpoint of
the bid–ask prices. We explicitly omit non-trading days and weekend periods as described in
Andersen et al. (2001b). All in all, this leaves us with a total of 2428 days. 4 Time series plots of
the relevant returns and realized volatilities are given in the two panels in Figure 1.

In addition to the daily ECU returns and realized volatilities, our out-of-sample predictive
analysis is based on the 780 daily returns for the Euro from 5 January 1999 to 31 December 2001.
We do not have access to the high-frequency data underlying the construction of the realized
volatilities over this more recent time period. Hence, our empirical verification of the various
distributional hypotheses involving the RVt variable outlined in the previous section will be based
exclusively on the ECU data.

4 We also excluded nine days in January and February 1989 on which the realized volatility was less than 0.005. These
days are directly associated with problems in the data-feed early on in the sample. None of the results are sensitive to
these additional exclusions.

Copyright  2002 John Wiley & Sons, Ltd. J. Appl. Econ. 17: 535–548 (2002)



540 L. FORSBERG AND T. BOLLERSLEV

-4

-3

-2

-1

0

1

2

3

4

10
-ja

n-
89

10
-ja

n-
90

10
-ja

n-
91

10
-ja

n-
92

10
-ja

n-
93

10
-ja

n-
94

10
-ja

n-
95

10
-ja

n-
96

10
-ja

n-
97

10
-ja

n-
98

10
-ja

n-
89

10
-ja

n-
90

10
-ja

n-
91

10
-ja

n-
92

10
-ja

n-
93

10
-ja

n-
94

10
-ja

n-
95

10
-ja

n-
96

10
-ja

n-
97

10
-ja

n-
98

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 1. Daily returns and realized volatilities. (Note: The two panels in the figure show the daily returns
and RV for the ECU/USD exchange rate from 1989-98)

3.2. Unconditional Distributions

Figure 2 gives the QQ-plot for the probability integral transform, or PIT, for the raw daily ECU
returns under the assumption of normality.5 The figure shows the typical S-shape associated with
a fat-tailed unconditional return distribution. Further evidence is provided by the unconditional
sample kurtosis which equals 5.426. The standard Jarque–Bera test statistic of 598.1 also firmly
rejects the null hypothesis of normally distributed returns when evaluated in the asymptotic chi-
square distribution with two degrees of freedom.
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Figure 2. QQ-plot of daily raw returns. (Note: The plot shows the PIT of the raw daily returns for the
ECU/USD 1989-98 data, assuming them to be N(0,1) against the quantiles of the U(0,1) distribution)

5 The PIT is defined as zPIT
t D ∫ xt

�1 f �u� du. If f �u� is the correct distribution, then zPIT
t ¾ U �0, 1�.
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Meanwhile, the QQ-plot for the cumulative distribution function of the daily returns, stan-
dardized by the realized volatility, rt/

p
RVt, reported in Figure 3, indicates a very good fit by

the standard normal distribution. The corresponding Jarque–Bera test statistic for normality also
drops to only 4.318, which has an asymptotic p-value of 0.115. This approximate normality of
the standardized daily returns is, of course, directly in line with the distribution postulated in
equation (1).

Turning to the distribution of the realized volatility, the QQ-plot for the IG distribution
in Figure 4 shows an equally good empirical fit of the unconditional volatility distribution
in equation (2). The maximum likelihood estimates for �2 and ˛ in the IG distribution, with
asymptotic standard errors in parentheses, are 0.427 (0.006) and 2.028 (0.051), respectively. The
estimate for �2 is identically equal to the sample mean of the realized volatilities. The implied
standard deviation, equal to 0.300, also closely matches the sample standard deviation of 0.311.
It is worth noting that the conditional IG distributions for the temporally aggregated weekly and
monthly realized volatilities provide similar close approximations to the empirical distributions
(for further discussion of these results see Forsberg, 2002).

The distribution for the returns in equation (1) and the realized volatilities in equation (2) imply
that the returns should be unconditionally NIG distributed as in Equation (3). The QQ-plot for the
daily raw returns in Figure 5, does indeed indicate a very close fit of the NIG distribution. The
corresponding maximum likelihood estimates for the NIG parameters are reported in the second
column in Table I. The unconditional kurtosis implied by the estimates is equal to 5.636, which
is close to the aforementioned sample value of 5.426.

These results further underscore the applicability of the NIG in characterizing the unconditional
distribution of speculative returns. However, the unconditional NIG distribution obviously does
not account for the well-documented volatility clustering phenomenon. In order to do so, we now
turn to a discussion of the conditional return and volatility distributions.
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Figure 3. QQ-plot of PIT of daily returns standardized by the realized volatility. (Note: The plot shows the
PIT of the daily returns for the ECU/USD 1989-98 data standardized by the realized volatility, assuming

them to be N(0,1) against the quantiles of the U(0,1) distribution)
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Figure 4. QQ-plot of daily unconditional realized volatility. (Note: The figure shows a QQ-plot of the PIT
for the unconditional daily realized volatility for the ECU/USD 1989-98 assumed to be IG�0.427, 2.028�,

against the quantiles of the U(0,1) distribution)
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Figure 5. QQ-plot of daily raw returns. (Note: The figure shows a QQ-plot of the PIT of the daily
demeaned returns for the ECU/USD 1989-98 data assumed to be NIG�1.138, 0, 0, 0.407�, against the

quantiles of the U(0,1) distribution)

3.3. Conditional Distributions

Not surprisingly, the Q(1) and Q(10) Ljung–Box portmanteau statistics reported in Table I are
generally consistent with the absence of important own serial correlation in the daily returns.
Meanwhile, the corresponding portmanteau statistics for the squared daily returns indicate highly
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Table I. Distributions and models fitted to the daily ECU/USD 1989-1998 return

Distributions Models

Normal NIG GARCH-N GARCH-NIG

� 0.002 0.005 0.007 0.005
(0.013) (0.011) (0.012) (0.011)

˛ — 1.138 — 1.705
(0.167) (0.287)

�2 0.407 0.407 —
(0.008) (0.017)

�0 — — 0.006 0.004
(0.001) (0.002)

�1 — — 0.049 0.041
(0.006) (0.008)

�1 — — 0.937 0.951
(0.007) (0.010)

Log Lik. �2352.9 �2251.2 �2237.9 �2177.9
AIC 4711.9 4506.3 4483.9 4365.9
BIC 4723.5 4517.9 4507.1 4394.8

Q�1� 0.040 0.040 0.044 0.070
(0.840) (0.840) (0.832) (0.790)

Q�10� 20.270 20.270 15.780 16.355
(0.026) (0.026) (0.106) (0.089)

Q2�1� 34.4 34.4 0.088 0.324
(0.000) (0.000) (0.766) (0.569)

Q2�10� 208.5 208.5 4.128 4.963
(0.000) (0.000) (0.941) (0.893)

Notes: AIC and BIC refer to the standard model selection criteria.
Q�n� denotes the Ljung–Box statistic for serial correlation in the standardized returns for up to lag n. Q2�n� denotes the
Ljung–Box statistic for the squared standardized residuals.

significant volatility clustering effects. At the same time, the Q2(1) statistic for r2
t drops from 34.4

to only 1.208 for the squared standardized returns, r2
t /RVt. Hence, this suggests that the close

fit afforded by the unconditional normal distribution for rt/
p

RVt in Figure 3 carries over to the
conditional distribution in equation (1) when augmented by the It�1 information set.6

The significant ARCH effects in the squared returns and the lack of any serial correlation in
the squared standardized returns is further manifested in the strong temporal dependencies in
the realized volatility series. For instance, the Ljung–Box Q(1) statistic for testing first order
serial correlation in RVt, is 667.9. This highlights the importance of incorporating conditional
dependencies when characterizing the distribution of RVt in equation (4).

Following the discussion in the previous section, we proceed to do so by estimating an IG
distribution for the standardized realized volatility, RVt/�2

t , where �2
t is determined by the

GARCH(1,1) model structure in equation (5). Of course, richer parameterizations involving longer
lags and past values of the realized volatility may result in a better fit. However, since we are
primarily concerned with the justification of the distributional assumptions underlying standard

6 This is further corroborated by simple regression based tests of rt/
p

RVt and r2
t /RVt on additional lagged daily and

daily squared returns. For instance, including a single lag, the t-statistics for zero slope coefficients equal �0.842 and
0.012 in each of the two regressions, respectively.
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Figure 6. QQ-plot of GARCH(1,1)-IG standardized realized volatility. (Note: The figure shows a plot of
the PIT of the daily realized volatility for the ECU/USD 1989-98 data standardized by the GARCH(1,1)-IG

model, against the quantiles of the U(0,1) distribution)

daily ARCH models, we explicitly restrict the conditioning information set to the past daily returns
only, or It�1. The resulting maximum likelihood estimates for the GARCH(1,1)-IG model are:
˛ D 2.732(0.062), �0 D 0.037(0.003), �1 D 0.077(0.006) and �1 D 0.841(0.012). These parameter
estimates for the realized volatility, are directly in line with the estimates for traditional GARCH
models based on daily data reported in the extant literature. More importantly from the present
perspective, however, is the quality of the fit afforded by the error distribution. Again, the QQ-
plot for the PIT in Figure 6 indicates that the implied IG distribution provides a very accurate
approximation. Guided by these distributional features, we turn next to a discussion of the results
for the estimation and empirical fit of the GARCH(1,1)-NIG model implied by the mixture in
equation (6).

4. THE GARCH-NIG MODEL

The empirical analysis in the previous section explicitly relies on the availability of high-frequency
intraday data. In contrast, all of the results discussed in this section are based on daily data only.

4.1. In-sample ECU Estimates

The parameter estimates and summary statistics for the daily models in Table I are directly in line
with the results in the extant literature. In particular, the estimates for ˛ clearly indicate significant
excess kurtosis, both in the unconditional NIG distribution and in the conditional GARCH-NIG
model.7 The superior fit of the GARCH-NIG error distribution is further illustrated by the QQ-
plot for the PITs in Figure 7. Of course, for the model to be correctly conditionally calibrated, the

7 Necessary and sufficient conditions for the existence of all moments in the GARCH(p, q) model have recently been
established by Ling and McAleer (2002). In particular, the fourth unconditional moment for the GARCH(1,1)-NIG model

Copyright  2002 John Wiley & Sons, Ltd. J. Appl. Econ. 17: 535–548 (2002)
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corresponding sequence of PITs, say fztg, should also be i.i.d. through time (this idea of checking
model adequacy has previously been used in a similar context by Diebold, Gunther and Tay,
1998, and Kim, Shephard and Chib, 1998, among others). Consistent with this hypothesis, the
Ljung–Box portmanteau statistics for first-order serial correlation in zt and z2

t equal to 2.076 and
1.358, respectively, do not suggest any significant temporal dependencies.

It is also noteworthy that the AIC and BIC model selection criteria for the maximum likelihood
estimates for the commonly employed GARCH-t model equal 4367.4 and 4396.4, respectively,
while the same two criteria for the popular GARCH-GED model equal 4374.7 and 4403.7,
respectively. Thus, the GARCH-NIG model is the preferred specification according to both criteria.
Of course, the MDH outlined in Section 2, along with the distributional results for the realized
volatility discussed in Section 3, provide further in-sample support for the model.

4.2. Out-of-sample Euro Predictions

Additional out-of-sample support for the NIG error distribution is provided by the results in
Table II. The table reports the unconditional coverage probabilities for the one-day-ahead VaRs,
or quantile predictions, obtained by applying the GARCH-NIG model for the 1989-1998 ECU
returns in Table I to the post-sample 1999-2001 Euro data. The results are striking. All of the
empirical VaRs are easily within the standard confidence bands around their respective nominal
sizes.8 Moreover, the corresponding sequence of PITs indicates no apparent temporal dependency
in the accuracy of the out-of-sample predictions from the model.
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Figure 7. QQ-plot of GARCH standardized daily returns. (Note: The figure shows the PIT of the daily
ECU/USD 1989-98 returns standardized by the GARCH-NIG mode)

exists if and only if �2
1 C 2�1�1 C 3

(
1 C ˛�1

)
�2

1 < 1, which is trivially satisfied for the parameter estimates reported in
Table I. The corresponding implied kurtosis from the model equals 7.887, which actually exceeds the sample kurtosis of
5.426.
8 Using the standard binomial approximation, a 95% confidence interval is readily calculated as š1.96

√
�̂ �1 � �̂� /780,

where �̂ refers to the empirical size.
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Table II. Value-at-Risk for GARCH(1,1)-NIG model

Nominal Sizes (%)

1 5 10 90 95 99

Empirical 1.538 5.513 10.00 88.97 94.49 99.10

Notes: The table displays empirical VaRs for the daily Euro/USD over the 1999-2001 time period based on the
GRACH(1,1)-NIG model estimates for the 1989-1998 daily ECU/USD returns reported in Table I.

For instance, the tests for first-order serial correlation in the PITs and the PITs squared equal
0.201 and 0.041, respectively, with corresponding p-values of 0.653 and 0.838, respectively. These
results are particularly noteworthy insofar as they represent true out-of-sample verifications of the
distributional assumptions underlying the in-sample GARCH-NIG model estimates.9

5. CONCLUDING REMARKS

This paper illustrates how realized volatility measures, constructed from high-frequency intraday
returns, may be used in guiding the specification of traditional ARCH models at lower interdaily
frequencies. Our empirical results corroborate the arguments in favour of the GARCH-NIG model
recently proposed in the literature, as providing accurate and parsimonious representations of daily
exchange rate dynamics. It would be interesting to see how these results carry over to other asset
classes and different time periods. In the case of equities, skewness in the returns may necessitate
the use of a more general NIG mixture distribution. A more thorough investigation of issues related
to temporal aggregation would also be interesting. Of course, in situations when the high-frequency
data underlying the construction of the realized volatility measures are actually available, even
better empirical representations of the low-frequency return dynamics may, in theory, be obtained
by directly modeling the high-frequency data. However, such models are invariably complicated
by a host of market microstructure features. Directly modelling the realized volatility, as recently
advocated by Andersen et al.(unpublished manuscript. 2002), may provide a simple, yet effective,
way of utilizing the inherent information in the high-frequency data. Meanwhile, the availability
of reliable high-frequency data remains the exception rather than the norm for most speculative
assets. As such, the traditional ARCH class of models pioneered by Engle (1982), and further
analysed here, is likely to remain the workhorse in volatility modelling for years to come.
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