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Abstract

Recent empirical evidence suggests that the variance risk premium predicts aggregate stock
market returns. We demonstrate that statistical finite sample biases cannot “explain” this
apparent predictability. Further corroborating the existing evidence of the United States,
we show that country-specific regressions for France, Germany, Japan, Switzerland, the
Netherlands, Belgium, and the United Kingdom result in quite similar patterns. Defining a
“global” variance risk premium, we uncover even stronger predictability and almost iden-
tical cross-country patterns through the use of panel regressions.

I. Introduction

A number of recent studies have argued that aggregate U.S. stock market
return is predictable over horizons ranging up to two quarters based on the dif-
ference between option-implied and actual realized variation measures, or the so-
called variance risk premium (see Bollerslev, Tauchen, and Zhou (BTZ) (2009),
Drechsler and Yaron (2011), Gabaix (2012), Kelly (2011), Zhou (2010), and Zhou
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and Zhu (2009), among others). These findings are distinctly different from the
longer-run multiyear return predictability patterns that have been studied exten-
sively in the existing literature, in which the predictability is typically associated
with more traditional valuation measures such as dividend yields, price-to-earnings
(PE) ratios, or consumption-wealth ratios (see Fama and French (1988), Campbell
and Shiller (1988), and Lettau and Ludvigson (2001), among others). The present
paper builds and further expands on the scope of these striking new empirical
findings.

The variance risk premium is formally defined as the difference between
the risk-neutral and statistical expectations of the future return variation.1 It may
be interpreted as a measure of both aggregate risk aversion and aggregate eco-
nomic uncertainty. In our main empirical investigations reported on below, we
follow BTZ (2009) in approximating the variance risk premium by the difference
between 1-month forward-looking model-free option-implied variances and the
actual 1-month realized variances at the time. This directly observable proxy has
the obvious advantage of being simple to implement and completely model free.

Our investigations are essentially threefold. First, to assess the validity of the
previously documented predictability patterns, we report the results from a Monte
Carlo simulation study designed to closely mimic the dynamic dependencies in-
herent in daily U.S. returns and variance risk premia. Our results clearly show that
statistical biases can not “explain” the documented return predictability patterns.

Second, in a separate effort to corroborate and further expand on the existing
empirical evidence based on monthly U.S. data prior to the advent of the financial
crisis, we extend the same basic return predictability regressions to seven other
countries and more recent “out-of-sample” data spanning the financial crisis. We
show that the same predictability pattern that exists for the United States holds
true for most of the other countries, although the magnitude in each is somewhat
attenuated.

Third, motivated by this apparent commonality across countries, we define
a “global” variance risk premium. We show that this simple aggregate worldwide
variance risk premium results in strong predictability for all of the countries in
the sample.

The finite sample properties of overlapping long-horizon return regressions
have been studied extensively in the literature. Boudoukh, Richardson, and
Whitelaw (2008), for instance, have recently shown that even in the absence
of any increase in true predictability, the values of the R2s in regressions
involving highly persistent predictor variables and overlapping returns, by
construction, will increase roughly proportionally to the return horizon and the
length of the overlap.2 By contrast, the variance risk premium is not especially
persistent at the monthly horizon. Our simulations are based on a bivariate vector
autoregressive (VAR)-generalized autoregressive conditional heteroskedasticity

1The variance risk premium is sometimes defined the other way around as the statistical minus
risk-neutral expectations. This, of course, is immaterial for all of the results reported on below.

2Closely related issues pertaining to the use of persistent predictor variables have also been studied
(see Stambaugh (1999), Ferson, Sarkissian, and Simin (2003), Baker, Taliaferro, and Wurgler (2006),
Campbell and Yogo (2006), Ang and Bekaert (2007), and Goyal and Welch (2008), among others).
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(GARCH)-dynamic conditional correlation (DCC) model designed to closely
mimic the relevant joint dynamic dependencies in the daily return and the variance
risk premium. We find that the robust t-statistics usually employed in the literature
are reasonably well behaved, albeit slightly oversized under the null hypothesis of
no predictability. We also find that the quantiles in the finite sample distribution
of the R2s from the regressions spuriously increase with the return horizon under
the null of no predictability, and are distinctly different from the hump-shaped R2s
actually observed in the U.S. data at the 1- to 12-month horizons.

Guided by the Monte Carlo simulations, we rely on simple ordinary least
squares (OLS) regressions along with Newey-West (NW) (1987) based t-statistics
based on simulated critical value to summarize our new international evidence.
Due to data availability and liquidity considerations, we restrict our attention to
the eight financial markets of France, Germany, Japan, Switzerland, the Nether-
lands, Belgium, the United Kingdom, and the United States. Regressing the in-
dividual country returns on the country-specific variance risk premia results in
similar hump-shaped regression coefficients and R2s for all eight countries. How-
ever, the degree of predictability afforded by the country-specific variance risk
premia and the statistical significance of the regression coefficients are generally
not as strong as the previously reported results for the United States.

These results naturally raise the question of whether worldwide variance risk,
as opposed to country-specific variance risk, is being priced by the market? To
investigate this idea, we construct a simple global variance risk premium proxy,
defined as the market capitalization weighted average of the individual country
variance risk premia. Restricting the effect on this global variance risk premium to
be the same across countries in a panel return regression results in much stronger
findings for all of the countries, with a systematic peak in the degree of pre-
dictability around the 4-month horizon. Moreover, the degree of predictability
afforded by this global variance risk premium easily exceeds that of the implied
and realized variation measures when included in isolation. It also clearly dom-
inates that of other traditional predictor variables that have been shown to work
well over longer annual horizons, including the PE ratio.3

Our use of the variance difference as a simple proxy for the variance risk
premium implicitly assumes that the volatility follows a random walk.4 To in-
vestigate the sensitivity of our main international findings to this simplifying as-
sumption, we define a forward-looking global variance risk premium from the
differences between the individual countries’ 1-month option-implied variance
and the corresponding 1-month VAR-based forecasts for the actual variance. This
alternative definition of the global variance risk premium gives rise to almost
identical international return predictability patterns.

3Related evidence has also been reported in a few other recent studies pertaining to other markets.
In particular, in concurrent independent work, Londono (2011) finds that the U.S. variance risk pre-
mium predicts several foreign stock market returns. In a slightly different context, Mueller, Vedolin,
and Zhou (2011) argue that the U.S. variance risk premium predicts bond risk premia, beyond the
predictability afforded by forward rates, while Buraschi, Trojani, and Vedolin (2014) and Zhou (2010)
show that the variance risk premium also helps predict credit spreads, over and above the typical
interest rate predictor variables.

4Of course, the variance difference may simply be interpreted as a powerful predictor variable in
its own right.
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Putting things into perspective, our new empirical findings are clearly related
to the large existing literature on international stock return predictability (see Har-
vey (1991), Bekaert and Hodrick (1992), Campbell and Hamao (1992), and Fer-
son and Harvey (1993), among others). However, the focus of this literature has
traditionally been on longer-run multiyear return predictability. By contrast, our
results pertaining to the global variance risk premium concern much shorter runs
within year predictability and are essentially “orthogonal” to the findings reported
in the existing literature.5

The remainder of the paper is organized as follows: Section II presents our
simulation-based results pertaining to the statistical inference procedures and
robustness of the existing empirical evidence for the United States. Section III
details our international data and country-specific return regressions. Section IV
discusses the results based on our new global variance risk premium and the com-
bined panel regressions for all of the countries. Section V provides conclusions.

II. General Setup and Monte Carlo Simulations

The key empirical findings reported in BTZ (2009), and the subsequent stud-
ies cited above, are based on simple OLS regressions of the returns on the aggre-
gate market portfolio over monthly and longer return horizons on a measure of
the 1-month variance risk premium.

In particular, let rt,t+τ and VRPt denote the continuously compounded return
from time t to time t + τ and the variance risk premium at time t, respectively.
Defining the unit time interval to be 1 month, the multiperiod return regressions
in BTZ (2009) may then be expressed as

1
h

h∑
j=1

rt+( j−1),t+j = a(h) + b(h)VRPt + ut,t+h,(1)

where t=1, 2, . . . , T−h refers to the specific observations used in the regression.
Meanwhile, it is well known that in the context of overlapping return obser-

vations, the regression in equation (1) can result in spuriously large and highly
misleading regression R2s, say R2(h), as the horizon h increases (see, e.g., the
discussion and many references in Campbell, Lo, and MacKinlay (1997)). Sim-
ilarly, the standard errors for the OLS estimates designed to take account of the
serial correlation in ut+h,t based on the Bartlett kernel advocated by NW (1987),
and the modification proposed by Hodrick (HD) (1992), can also both result in
t-statistics for testing hypotheses about a(h) and b(h) that are poorly approxi-
mated by a standard normal distribution.

Most of the existing analyses pertaining to these and other related finite
sample biases, however, have been calibrated to situations with a highly persis-
tent predictor variable, as traditionally used in long-horizon return regressions.
Even though the variance risk premium is fairly persistent at the daily frequency,

5Other recent studies highlighting short-run international predictability include Rapach, Strauss,
and Zhou (2013) based on lagged U.S. returns, Ang and Bekaert (2007) and Hjalmarsson (2010)
based on short-term interest rates, and Bakshi, Panayotov, and Skoulakis (2011) based on the Baltic
Dry Index.
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it is much less so at the monthly level, and as such, one might naturally expect
the finite sample biases to be less severe in this situation.6 Our Monte Carlo sim-
ulations discussed in the next section confirm this conjecture in an empirically
realistic setting designed to closely mimic the joint dependencies in actual daily
returns and variance risk premia.

A. Simulation Design

The model underlying our simulations is based on daily Standard & Poor’s
(S&P) 500 composite index returns (obtained from the Center for Research in
Security Prices (CRSP)). The corresponding daily observations on the variance
risk premium are defined as VRPt = IVt − RVt−1,t, where we rely on the square
of the new VIX index (obtained from the Chicago Board Options Exchange
(CBOE)) to quantify the implied variation IVt, and the summation of current and
previous 20 trading days’ daily realized variances (obtained from S&P) together
with the squared overnight returns to quantify the total realized variation over the
previous month RVt−1,t.7

The sample period runs from Feb. 1, 1996, to Dec. 31, 2007, for a total of
2,954 daily observations. The end of the sample purposely coincides with that in
BTZ (2009). Later, we will investigate the sensitivity of the empirical results to
the inclusion of more recent data involving the financial crisis. The span of the
data exactly matches the length of the commonly available sample for the eight
countries we analyze.

After some experimentation, we arrived at the following bivariate VAR(1)-
GARCH(1, 1)-DCC model (see Engle (2002) for additional details on the DCC
model) for the two daily time series, corresponding to Δ= 1/20,

rt−Δ,t = −1.958e-5
(0.001)

− 0.009
(0.016)

rt−2Δ,t−Δ + 0.025
(0.010)

VRPt−Δ + εt,r,

VRPt = 3.759e-5
(0.001)

+ 0.033
(0.017)

rt−2Δ,t−Δ + 0.972
(0.010)

VRPt−Δ + εt,VRP,

σ2
t,r = 1.280e-6

(1.68e-6)
+ 0.071
(0.004)

ε2t−Δ,r + 0.920
(0.008)

σ2
t−Δ,r,

σ2
t,VRP = 2.038e-7

(7.59e-6)
+ 0.133
(0.004)

ε2t−Δ,VRP + 0.871
(0.028)

σ2
t−Δ,VRP,

Qt =

⎛
⎝ 0.997
(0.036)

−0.754
(0.040)

−0.754
(0.040)

1.023
(0.060)

⎞
⎠ + 0.011

(0.002)
ηt−Δη′t−Δ + 0.979

(0.004)
Qt−Δ,

Rt = diag{Qt}−1Qtdiag{Qt}−1,

6The first-order autocorrelation coefficient for the monthly U.S. variance risk premium analyzed
in the empirical section below equals 0.39, and it is even lower for all of the other countries included in
our subsequent analysis. By comparison, the first-order autocorrelations for monthly dividend yields,
PE ratios, and other valuation ratios typically employed in the long-horizon regression literature are
around 0.95–0.99.

7This directly mirrors the definition of the variance risk premium employed in BTZ (2009).
Forward-looking measures of VRPt that align IVt with a measure of the expected volatility Et(RVt,t+1)
have also been used in the literature. However, this requires additional modeling assumptions for cal-
culating Et(RVt,t+1), whereas the VRPt used here has the obvious advantage of being directly observ-
able at time t. We will return to this issue in Section IV.
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where ηt ≡ (εt,r/σt,r, εt,VRP/σt,VRP)
′, and Et−Δ(ηt) = 0 and Et−Δ(ηtη

′
t ) = Rt by

assumption. The specific parameter values refer to quasi-maximum likelihood es-
timates (QMLE) obtained under the auxiliary assumption of conditional normal-
ity, with robust standard errors following Bollerslev and Wooldridge (1992) in
parentheses. With the exception of the lagged daily returns, most of the dynamic
coefficients are highly significant at conventional levels.

The model implies a strong negative (on average) correlation between the
innovations to the return and VRP equations. This, of course, is consistent with
the well-documented “leverage” effect (see, e.g., Bollerslev, Sizova, and Tauchen
(2012) and the many references therein). At the same time, as is evident from the
equation for Qt, the conditional correlation clearly varies over time and, as shown
in Graph A of Figure 1, reaches a low of close to −0.85 toward the end of the
sample. Graphs B–D indicate that the distribution of the estimated standardized

FIGURE 1

Estimated VAR-GARCH-DCC Model

Graph A of Figure 1 plots the daily conditional correlations between the returns and the variance risk premium implied
by the estimated VAR(1)-GARCH(1,1)-DCC model described in the main text. Graphs B, C, and D provide a scatterplot
and histograms, respectively, for the standardized residuals from the estimated model, ĉηt . The daily sample used in
estimating the model spans the period from Feb. 1, 1996, to Dec. 31, 2007, for a total of 2,954 daily observations.

residuals from the model (i.e., ĉηt ≡ F̂−1
t η̂t, where F̂t× F̂′t = R̂t) are well behaved

and centered at 0, with variances close to unity, albeit not normally distributed.8

8The sample means for ĉηt,1 and ĉηt,2 equal −0.044 and 0.088, the standard deviations
equal 0.999 and 1.007, and the skewness and kurtosis equal −0.469 and 0.894, and 4.913 and
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Thus, all in all, the model provides a reasonably good fit to the joint dynamic
dependencies inherent in the two daily series.

As such, we will use this relatively simple-to-implement model as our basic
data-generating process for the Monte Carlo simulations, our analysis of the finite
sample properties of the NW (1987) and HD (1992) t-statistics, and R2(h)s from
the overlapping return regressions in equation (1).9 Our simulated finite sample
distributions will be based on a total of 2,000 bootstrapped replications from the
model. We will look at monthly sample frequencies and return horizons h ranging
up to 12 months. The number of observations for each of the simulated samples is
fixed at 149 months, corresponding to the length of the actual sample used in the
estimation of the VAR-GARCH-DCC model above.10 We begin with a discussion
of the size and power properties of the two t-statistics.

B. Size and Power

Our characterization of the distributions under the null hypothesis of no re-
turn predictability is based on restricting the coefficients associated with rt−2Δ,t−Δ
and VRPt−Δ in the return equation to be identically equal to 0, leaving all of the
other coefficients at their estimated values. Panel A of Table 1 reports the re-
sulting simulated 95th percentiles of the tNW and tHD test statistics, along with
the regression R2s. In line with the evidence in the existing literature, both of

TABLE 1

Simulated Size, Power, and R2

Panel A of Table 1 reports the simulated 95th percentiles in the finite sample distributions of tNW and tHD for testing the
hypothesis that bs(h)= 0 based on the return predictability regression in equation (1), along with the adjusted R2 from the
regression. The data are generated from the VAR-GARCH-DCC model discussed in the main text, restricting the coefficients
in the conditional mean equation for the returns to be equal to 0. Panel B reports the simulated power of the size-adjusted 5%
tNW- and tHD-statistics for testing the null hypothesis of no predictability and bs(h)= 0 in the return regression in equation
(1). The data are generated from the VAR-GARCH-DCC model discussed in the main text. In both the size and power
studies, the “monthly” regressions involve 149 observations and the simulations are based on a total of 2,000 replications.
PW is size-adjusted power.

Horizon

1 2 3 4 5 6 9 12

Panel A. Simulated Size and R2

tNW 2.2602 2.5199 2.7876 2.9413 3.2413 3.2200 3.3143 3.5087
tHD 2.2763 2.1871 2.0835 2.1063 2.1024 2.1237 2.1631 2.1857
Adj. R2 3.0169 4.8366 5.7740 6.3148 7.4592 7.5017 8.1923 8.6792

Panel B. Simulated Power

PWNW 0.8865 0.8450 0.7680 0.6855 0.5625 0.5070 0.3680 0.2770
PWHD 0.8070 0.7625 0.7105 0.6265 0.5470 0.4970 0.3500 0.3025

7.860, respectively. Further diagnostic checks also reveal that while the residuals from the return
equation appear close to serially uncorrelated, there is some evidence for neglected longer-run serial
dependencies in the equation for the variance risk premium.

9The bandwidth in the Bartlett kernel employed in our implementation of the NW (1987) standard
errors is set to m=[h+4×((T−hs)/100)

2/9], where [·] refers to the integer value. We also experimented
with the reverse regression technique suggested by HD (1992) for testing bs(h) = 0. The results,
available from the authors, were very similar to those for the HD t-statistic reported below.

10As previously noted, this also mimics the length of the commonly available sample for the
international data analyzed below.
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the t-statistics exhibit nontrivial size distortions relative to the nominal one-side
95% critical value of 1.645. Also, the distortions tend to increase with the return
horizon h. Moreover, consistent with the results reported in HD (1992), the biases
for the NW (1987) based standard error calculations generally exceed those for
the HD standard errors, and markedly more so the longer the return horizon.

To illustrate the results, we plot in Graph A of Figure 2 the simulated 95%
critical values for the tNW (dashed lines) and the tHD (solid lines) statistics for
monthly sampled data. We also include in the figure the t-statistics obtained by
running these same regressions on the monthly data over the Feb. 1996 through
Dec. 2007 sample period used in calibrating the simulated model. As the figure
shows, the actual tNW-statistics exceed the simulated critical values for return hori-
zons in the range of 2–3 months. Meanwhile, the tHD-statistics generally do not
exceed the simulated critical values and, accordingly, do not support the idea of
return predictability.

FIGURE 2

Simulated Size and Power

Graph A of Figure 2 reports the 95th percentiles in the finite-sample distributions of the t NW (dashed line) and t HD (solid line)
based on simulated “monthly” data from the restricted VAR-GARCH-DCC model under the null of no predictability. The
dashed-dotted lines refer to the corresponding t-statistics for actual monthly U.S. S&P 500 returns spanning Feb. 1996 to
Dec. 2007. Graph C plots the quantiles in the finite-sample distribution of the R2 from the return regression in equation (1)
and simulated monthly data from the restricted VAR-GARCH-DCC model under the null of no predictability. For Graphs C
and D, the dashed-dotted line refers to the corresponding R2s in actual daily U.S. S&P 500 returns spanning Feb. 1, 1996,
to Dec. 31, 2007. Graphs B and D are based on the unrestricted VAR-GARCH-DCC model: Graph B gives the simulated
monthly percentage power and the size-adjusted 5% t NW (dashed line) and t HD (solid line) statistics; Graph D reports the
quantiles in the simulated finite-sample distribution.
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In order to better understand this discrepancy in the conclusions drawn from
the two tests, we report in Panel B of Table 1 the power of the tests to detect pre-
dictability implied by the unrestricted VAR-GARCH-DCC model. To facilitate
comparisons, we report the size-adjusted power only for a 5% test. Not surpris-
ingly, the power of both tests decreases with the return horizon. However, the
power of the tNW test exceeds that of the tHD test for return horizons less than a
year, and the differences appear most pronounced at the 1- to 4-month horizons.
These differences are also evident in Graph B of Figure 2, which shows the plots
of the relevant power curves.

In addition to the t-statistics associated with the b(h) coefficients, the R2(h)s
from the return regressions are also commonly used to assess the strength of
the relationship and the effectiveness of the predictor variable across different
horizons. Of course, it is well known that the biases exhibited by the t-statistics
in the context of long-horizon return regressions with persistent predictor vari-
able carry over to the R2(h)s, and that these need to be carefully interpreted as
well (see, e.g., the aforementioned study by Boudoukh et al. (2008) for a recent
analysis, along with the many references therein).

The corresponding columns in Table 1 show that, while less dramatic than
the biases that exist over multiyear return horizons with highly persistent predic-
tor variables, the R2(h)s can still be quite different from 0 under the null of no
predictability in the present setting. In particular, the 95th percentiles are around
5%–6% at the 2- to 4-month horizon.

Furthermore, to this effect, we show in Graph C of Figure 2 select quantiles
in the simulated distribution of the R2(h)s from daily regression that are obtained
in the absence of any predictability. Consistent with the findings in the extant
literature pertaining to monthly observations and longer return horizons, all of
the quantiles increase monotonically with the return horizon, and this increase is
especially marked for the higher percentiles. Intuitively, as the horizon increases,
the overlapping return regressions become closer to a spurious-type regression.

In addition to the simulated quantiles, Graph D of Figure 2 also shows the
R2(h)s obtained from the monthly return regressions implied by the same VAR-
GARCH-DCC model. Comparing the actual R2(h)s to the simulated percentiles
again suggests that the degree of predictability is most significant at the interme-
diate 2- to 4-month horizon. This, of course, is directly in line with the inference
based on the t-statistics discussed in the previous section. It also supports the prior
empirical evidence reported in BTZ (2009).

The hump-shaped pattern in the actual R2(h)s, with an apparent peak in the
degree of predictability at the intermediate 2- to 4-month horizon, also closely
mimics the patterns in the simulated quantiles for the estimated VAR-GARCH-
DCC model depicted in Graphs C and D of Figure 2. Interestingly, this striking
similarity arises in spite of the fact that the simulated model involves only first-
order dynamics in the equations that describe the daily conditional means.

Taken as a whole, our Monte Carlo simulations and the new regression re-
sults based on daily U.S. returns discussed above clearly support the variance risk
premium as a powerful predictor at the 2- to 4-month horizons. At the same time,
the overlapping nature of the return regressions tends to attenuate the strength of
the predictability somewhat. Hence, in an effort to further corroborate the existing
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empirical evidence pertaining exclusively to the U.S. market and data prior to the
2008 financial crisis, we next turn to a discussion of our new empirical findings
involving more recent data and several other countries. For each country consid-
ered, we will base our empirical investigations on monthly predictive regression
and NW (1987) based standard errors with simulated critical values.

III. International Evidence

Motivated by the Monte Carlo simulation results, we will rely on the com-
mon benchmark monthly OLS regressions, along with the simulated NW (1987)
critical values and tNW-statistics for characterizing the return predictability inter-
nationally, keeping in mind the finite sample biases documented in the simula-
tions. We will restrict our analysis to France, Germany, Japan, Switzerland, the
Netherlands, Belgium, the United Kingdom, and the United States, all of which
have highly liquid options markets and readily available model-free implied vari-
ances for their respective aggregate market indexes (see Siriopoulos and Fassas
(2009) for a recent summary of the model-free and parametric option-implied
volatility indexes available for different countries). We begin with a brief discus-
sion of the data.

A. Data and Summary Statistics

Our monthly aggregate market returns for the different countries are based
on data for the French CAC 40 (obtained from Euronext), the German DAX 30
(obtained from Deutsche Börse), the Japanese Nikkei 225, the Swiss SMI 20, the
Netherlands AEX, the Belgium BEL 20, and the U.K. FTSE 100 (all obtained
from Datastream), and the U.S. S&P 500 (obtained from S&P). We use the sum
of the daily squared returns over a month to construct end-of-month realized vari-
ances RVi

t for each of the countries. We obtained the corresponding end-of-month
model-free implied volatilities (IVi

t)
1/2 for the S&P 500 (VIX) from the CBOE, the

CAC (VCAC) from Euronext, and the DAX (VDAX) from Deutsche Börse, while
those for the FTSE (VFTSE), SMI (VSMI), AEX (VAEX), and BEL (VBEL)
were obtained from Datastream. Our data for the Japanese volatility index (VXJ)
were obtained directly from the Center for the Study of Finance and Insurance
at Osaka University (see Nishina, Maghrebi, and Kim (2006) for a more detailed
discussion of the VXJ index). Finally, the risk-free rates used in the construction
of the excess returns were obtained from the Federal Reserve Board and Eurocur-
rency via Datastream.11

The sample period for each of the series extends from Jan. 2000 to Dec.
2011. The beginning of the sample coincides with the back-dated initial date of
the NYSE Euronext volatility indices.12 The use of more recent data through 2011

11The use of excess returns, as opposed to raw returns, has almost no effect on the results from the
return predictability regressions we report.

12The volatility indexes are available prior to Jan. 2000 for some of the countries: VDAX (Dec.
1994), VXJ (Jan. 1998), VSMI (Jan. 1999), and VIX (Jan. 1990). Comparable results to those for
the country-specific regressions discussed below based on the longest possible sample for each of the
countries are reported in a Supplementary Appendix available from the authors.
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allows for additional validation of the original empirical evidence for the United
States based on data prior to the financial crisis.

In accordance with the empirical analysis in the previous section, the proxy
for the variance risk premium for each of the individual countries is simply de-
fined by VRPi

t ≡ IVi
t − RVi

t−1,t. As we note, this proxy has the obvious ad-
vantage of being directly observable. The time-series plots of VRPi

t for each of
the eight countries in Figure 3 clearly show the dramatic impact of the financial

FIGURE 3

Variance Risk Premia

Figure 3 shows the monthly proxies for the variance risk premia VRPi
t for the Netherlands (AEX), Belgium (BEL 20), France

(CAC 40), Japan (Nikkei 225), Germany (DAX 30), Switzerland (SMI 20), the United Kingdom (FTSE 100), and the United
States (S&P 500). The risk premia are constructed by subtracting the actual realized variation from the model-free option-
implied variation. The sample period spans Jan. 2000 to Dec. 2011.
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crisis and the exceptionally large variance risk premia observed in the Fall of
2008. Interestingly, however, the premium for the DAX 30, and to a lesser extent
the SMI 20, was almost as large and negative in 2001–2002.

The standard set of summary statistics reported in Table 2 also shows a re-
markable coherence in the distributions of the variance risk premia and monthly
excess returns across countries. In particular, looking at Panel A, the average ex-
cess returns all reflect the often-called “lost decade,” ranging from a high of−2.54
for Switzerland to a low of −9.26 for Belgium. Of course, the corresponding
standard deviations all point to considerable variations in the returns around their
negative sample means.

TABLE 2

Summary Statistics

Table 2 presents the monthly excess returns in annualized percentage form. The variance risk premia are in monthly
percentage-squared form. The global index of variance risk premium is defined in the main text. The sample period extends
from Jan. 2000 to Dec. 2011.

Panel A. Excess Returns and Variance Risk Premia
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Mean –9.26 6.37 –5.25 –2.74 –8.64 2.75 –5.00 4.68 –4.93 7.55 –7.59 12.32 –2.54 6.45 –2.94 7.40 7.38
Std. dev. 76.59 43.30 65.02 43.28 67.49 41.69 82.81 33.43 52.35 32.16 71.73 38.47 51.90 28.10 57.52 35.47 32.74
Skewness –0.99 –4.47 –1.36 –4.58 –0.59 –4.84 –0.90 –2.83 –0.64 –5.56 –0.76 –4.88 –0.70 –3.25 –0.61 –4.71 –5.46
Kurtosis 5.01 35.00 6.44 32.81 3.60 41.98 5.49 15.98 3.56 50.72 4.66 42.71 3.50 23.86 3.92 35.55 47.52
AR(1) 0.12 0.35 0.30 0.31 0.13 0.30 0.09 0.10 0.07 0.34 0.13 0.16 0.27 0.14 0.15 0.39 0.36

Panel B. Correlation Matrix for Excess Returns

AEX BEL 20 CAC 40 DAX 30 FTSE 100 Nikkei 225 SMI 20 S&P 500

AEX 1.00 0.86 0.91 0.88 0.87 0.61 0.83 0.81
BEL 20 1.00 0.83 0.76 0.81 0.52 0.79 0.75
CAC 40 1.00 0.93 0.90 0.60 0.84 0.87
DAX 30 1.00 0.85 0.57 0.80 0.83
FTSE 100 1.00 0.62 0.80 0.88
Nikkei 225 1.00 0.58 0.64
SMI 20 1.00 0.78
S&P 500 1.00

Panel C. Correlation Matrix for Variance Risk Premia

AEX BEL 20 CAC 40 DAX 30 FTSE 100 Nikkei 225 SMI 20 S&P 500 Global

AEX 1.00 0.85 0.91 0.86 0.92 0.64 0.86 0.81 0.85
BEL 20 1.00 0.81 0.68 0.80 0.51 0.77 0.69 0.93
CAC 40 1.00 0.84 0.89 0.65 0.79 0.82 0.86
DAX 30 1.00 0.78 0.54 0.86 0.70 0.92
FTSE 100 1.00 0.73 0.84 0.88 0.64
Nikkei 225 1.00 0.60 0.64 0.87
SMI 20 1.00 0.69 0.81
S&P 500 1.00 0.89
Global 1.00

The variance risk premia are almost all positive, on average, ranging from a
low of −2.74 for Belgium to a high of 12.32 for Japan on a percentage-squared
monthly basis. “Selling” volatility has been highly profitable, on average, over
the last decade. Meanwhile, consistent with the visual impressions from Figure 3,
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all of the premia are significantly negatively skewed and exhibit large excess
kurtosis. Even though the implied and realized variances are both strongly se-
rially correlated for all of the countries, the variance risk premia are generally
not very persistent, and the maximum first-order serial correlation observed for
the S&P 500 equals just 0.39. Turning to Panels B and C of Table 2, the sample
cross-country correlations are all fairly high, and with the exception of those for
the Nikkei and Belgium, the correlations for the returns all exceed 0.80, while
those for the variance risk premia are in excess of 0.70.

The similarities in the summary statistics in Table 2 and the time-series
plots in Figure 3 naturally suggest that the same predictive relationship docu-
mented for the U.S. returns and variance risk premium may hold true for the other
countries. The results discussed in the next subsection generally corroborate this
conjecture.

B. Country-Specific Regressions

In parallel to the general multiperiod return regressions defined in
equation (1), our monthly return regressions for each of the individual countries
may be conveniently expressed as

h−1ri
t,t+h = ai(h) + bi(h)VRPi

t + ui
t,t+h ,(2)

where ri
t,t+h and VRPi

t refer to the h = 1, 2, . . . , 12 month excess return and
variance risk premium for country i, respectively.

The actual estimates for bi(h) and the corresponding tNW-statistics reported
in Table 3 obviously differ somewhat across countries. However, with the excep-
tion of France, Belgium, and the United States, the estimated coefficients all show
the same general pattern, starting out fairly low and insignificant at the shortest
1-month horizon, rising to their largest values at 3–5 months, and then gradually
tapering off thereafter for longer return horizons. These similarities are also evi-
dent in Figure 4, which displays the regression coefficients along with their 90%
NW (1987) standard error bands according to our simulated critical value in the
simulation section.13

These similarities in the patterns in the estimated b(h) coefficients naturally
translate into very similar patterns in the regression R2(h)s as well. In particu-
lar, looking at the plots in Figure 5, all of the R2(h)s exhibit an almost identi-
cal hump-shaped pattern with the degree of predictability maximized around the
4-month horizon. Of course, the actual values of the R2(h)s vary somewhat across

13We also use the Stambaugh (1999) correction for the country-specific regression, and we find
that the estimated bias is negligible. In fact, variance risk premia at monthly frequencies are much
less persistent, and the contemporaneous correlations between residuals of bivariate VARs are only
slightly negatively correlated. The Stambaugh correction results are reported in the Supplementary
Appendix (available from the authors).
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TABLE 3

Country-Specific Regressions

Table 3 presents the results based on the monthly regression in equation (2). t NW-statistics are reported in parentheses.
The sample period extends from Jan. 2000 to Dec. 2011.

Horizon

Index 1 2 3 4 5 6 9 12

AEX Constant −10.29 −10.55 −10.31 −10.73 −11.10 −10.79 −10.15 −9.74
(−1.37) (−1.44) (−1.42) (−1.49) (−1.55) (−1.49) (−1.36) (−1.29)

VRPi
t 0.16 0.17 0.13 0.16 0.18 0.15 0.08 0.05

(0.98) (1.37) (1.51) (1.91) (3.04) (2.86) (1.94) (1.47)

Adj. R2 0.14 0.91 0.58 1.69 3.20 2.25 0.50 −0.07

BEL 20 Constant −4.11 −4.58 −4.85 −5.04 −5.20 −5.20 −4.93 −4.79
(−0.67) (−0.69) (−0.68) (−0.69) (−0.70) (−0.69) (−0.63) (−0.61)

VRPi
t 0.42 0.31 0.21 0.22 0.21 0.17 0.08 0.04

(3.00) (3.25) (3.36) (3.44) (3.56) (3.79) (2.45) (1.38)

Adj. R2 7.07 5.59 3.35 4.53 4.33 2.93 0.47 −0.44

CAC 40 Constant −9.30 −9.38 −9.46 −9.77 −9.75 −9.40 −8.60 −8.20
(−1.55) (−1.56) (−1.56) (−1.58) (−1.54) (−1.46) (−1.28) (−1.19)

VRPi
t 0.24 0.23 0.22 0.23 0.19 0.14 0.06 0.04

(2.22) (2.68) (3.49) (4.45) (4.75) (3.33) (1.54) (1.03)

Adj. R2 1.50 2.78 4.15 5.55 4.17 2.32 −0.05 −0.33

DAX 30 Constant −5.11 −5.73 −5.70 −6.18 −6.27 −5.41 −4.35 −4.14
(−0.65) (−0.75) (−0.76) (−0.84) (−0.85) (−0.72) (−0.56) (−0.53)

VRPi
t 0.02 0.17 0.18 0.25 0.25 0.16 0.08 0.11

(0.13) (0.89) (1.38) (2.11) (2.74) (1.79) (1.64) (2.41)

Adj. R2 −0.71 0.19 0.75 2.70 3.28 1.12 −0.08 0.83

FTSE 100 Constant −5.23 −5.71 −6.29 −6.71 −6.69 −6.37 −5.60 −5.33
(−1.08) (−1.20) (−1.38) (−1.46) (−1.42) (−1.32) (−1.12) (−1.04)

VRPi
t 0.04 0.07 0.15 0.18 0.16 0.13 0.04 0.02

(0.39) (1.03) (3.26) (4.19) (4.14) (2.45) (1.15) (0.44)

Adj. R2 −0.65 −0.36 1.56 3.64 3.40 2.25 −0.30 −0.70

Nikkei 225 Constant −7.45 −7.94 −8.55 −8.38 −8.07 −7.46 −6.16 −5.57
(−1.11) (−1.22) (−1.31) (−1.32) (−1.27) (−1.17) (−0.93) (−0.83)

VRPi
t −0.01 0.02 0.11 0.12 0.11 0.09 0.02 0.02

(−0.11) (0.18) (1.13) (1.38) (1.38) (1.13) (0.41) (0.46)

Adj. R2 −0.71 −0.70 0.08 0.60 0.50 0.24 −0.65 −0.70

SMI 20 Constant −2.73 −3.78 −4.01 −4.84 −5.27 −5.07 −4.45 −4.36
(−0.46) (−0.65) (−0.69) (−0.85) (−0.93) (−0.89) (−0.76) (−0.72)

VRPi
t 0.03 0.12 0.14 0.22 0.24 0.20 0.13 0.12

(0.22) (1.08) (1.35) (2.12) (2.97) (2.56) (2.20) (3.01)

Adj. R2 −0.69 −0.08 0.42 2.98 4.11 3.08 1.36 1.62

S&P 500 Constant −6.64 −6.25 −6.34 −6.09 −6.17 −5.31 −4.12 −3.68
(−1.46) (−1.33) (−1.36) (−1.26) (−1.24) (−1.04) (−0.77) (−0.68)

VRPi
t 0.50 0.38 0.37 0.34 0.30 0.20 0.06 0.03

(4.17) (4.36) (6.39) (5.37) (5.13) (3.26) (1.30) (0.61)

Adj. R2 8.89 8.72 13.03 12.83 10.77 5.26 0.10 −0.53

the different country indices, achieving a maximum of only 0.60% for the Nikkei
225 compared to 13.03% for the S&P 500.14 Interestingly, this value of adjusted
R2(3) = 13.03% for the United States exceeds that obtained with monthly data

14This lack of predictability for Japan is also consistent with the evidence reported in Ubukata and
Watanabe (2011).
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FIGURE 4

Country-Specific Regression Coefficients

Figure 4 shows the estimated regression coefficients for VRPi
t for each of the country-specific return regressions reported

in Table 3, together with NW (1987) based 90% standard error bands; see Table 1 for simulated critical values from 1 to
12 months. The regressions are based on monthly data from Jan. 2000 to Dec. 2011.

through the end of 2007 previously reported in BTZ (2009) and Drechsler and
Yaron (2011).

The qualitative results from the country-specific VRP regressions, while not
as significant, are generally in line with the existing results for the United States.
Going one step further, the similarities in the patterns observed across the differ-
ent countries also suggest that even stronger results may be available by pooling
the regressions and entertaining the notion of a common global variance risk
premium. We explore these ideas next.
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FIGURE 5

Country-Specific Regression R2s

Figure 5 shows the adjusted R2(h)s for the country-specific return regressions reported in Table 3. The regressions are
based on monthly data from Jan. 2000 to Dec. 2011.

IV. Global Variance Risk

Our proxy for the global variance risk premium is based on a simple capital-
ization weighted average of the proxies for country-specific variance risk premia,

VRPGLOBAL
t ≡

8∑
i=1

wi
tVRPi

t ,

where i = 1, 2, . . . , 8 refers to each of the eight countries included in our
analysis.15 The end-of-month market capitalizations used in defining the weights

15This parallels the construction used in Harvey (1991) in the estimation of the world price of
covariance risk.
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w i
t are obtained from Thomson Reuters Institutional Brokers’ Estimate System

(IBES) via Datastream. The plot of the weights in Figure 6 shows that the U.S.
market accounts for around 60% through most of the sample period, with the
Japanese market a distant second. This large weight assigned to the U.S. market
in our definition of the global VRP index is also implicit in the aforementioned
summary statistics in Panel C in Table 2 and the relatively high correlation of 0.89
between VRPGLOBAL

t and VRPSP500
t .

FIGURE 6

Market Capitalization

Figure 6 shows the relative market capitalization by aggregate index for the Netherlands (AEX), Belgium (BEL 20), France
(CAC 40), Germany (DAX 30), the United Kingdom (FTSE 100), Japan (Nikkei 225), Switzerland (SMI 20), and the United
States (S&P 500).

A. Individual Country Regressions

The results for the regressions obtained by replacing the country-specific
VRPi

ts in equation (2) with the new VRPGLOBAL
t proxy,

h−1r i
t,t+h = ai(h) + bi(h)VRPGLOBAL

t + ui
t,t+h ,(3)

are reported in Table 4. Comparing the results to those for the country-specific
regressions in Table 3 reveals even stronger commonalities and uniform patterns
across countries. The global VRP proxy serves as a highly significant predictor
variable for all of the different country returns, with tNW-statistics systematically
in excess of 4.0 at the 4- or 5-month horizon. Further increasing the horizon h,
VRPGLOBAL

t systematically becomes insignificant for predicting the longer 9- and
12-month returns.

These striking cross-country similarities are also evident from the plots of
the estimated regression coefficients and the 90% NW (1987) based confidence
bands with simulated critical values in Figure 7. Not only do the individual coun-
try estimates for the bi(h)s look very similar, the confidence bands also tend to
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TABLE 4

Global Variance Risk Premium Regressions

Table 4 presents the results based on the monthly regression in equation (3). t NW-statistics are reported in parentheses.
The sample period extends from Jan. 2000 to Dec. 2011.

Horizon

Index 1 2 3 4 5 6 9 12

AEX Constant −11.38 −11.52 −11.22 −11.52 −12.09 −11.39 −10.06 −9.55
(−1.56) (−1.59) (−1.58) (−1.61) (−1.68) (−1.56) (−1.34) (−1.26)

VRPGLOBAL
t 0.29 0.28 0.23 0.25 0.29 0.21 0.06 0.02

(1.99) (2.54) (3.45) (3.98) (4.72) (2.92) (1.11) (0.48)

Adj. R2 0.80 1.80 1.77 2.86 4.49 2.51 −0.36 −0.70

BEL 20 Constant −8.35 −7.78 −7.47 −7.58 −7.33 −6.72 −5.58 −5.05
(−1.18) (−1.09) (−1.04) (−1.05) (−0.99) (−0.89) (−0.72) (−0.65)

VRPGLOBAL
t 0.42 0.33 0.29 0.31 0.26 0.19 0.08 0.03

(2.79) (3.50) (4.70) (6.87) (5.26) (3.06) (1.53) (0.63)

Adj. R2 3.77 3.62 3.81 5.67 3.83 1.95 −0.16 −0.66

CAC 40 Constant −11.09 −11.18 −11.12 −11.29 −11.24 −10.38 −8.96 −8.31
(−1.81) (−1.84) (−1.85) (−1.85) (−1.77) (−1.61) (−1.34) (−1.21)

VRPGLOBAL
t 0.33 0.33 0.32 0.32 0.29 0.20 0.08 0.03

(2.89) (3.38) (5.51) (6.99) (5.22) (3.01) (1.67) (0.87)

Adj. R2 1.90 3.95 5.51 7.34 6.30 3.12 0.01 −0.57

DAX 30 Constant −7.12 −7.31 −7.26 −7.49 −7.52 −6.27 −4.49 −3.86
(−0.96) (−0.98) (−1.01) (−1.03) (−1.00) (−0.82) (−0.58) (−0.49)

VRPGLOBAL
t 0.29 0.33 0.33 0.37 0.35 0.23 0.08 0.05

(2.21) (2.23) (4.59) (6.41) (3.70) (2.25) (1.20) (0.86)

Adj. R2 0.58 2.36 4.05 6.47 6.61 2.98 −0.13 −0.50

FTSE 100 Constant −6.30 −6.50 −6.73 −6.87 −7.03 −6.57 −5.71 −5.37
(−1.41) (−1.44) (−1.53) (−1.52) (−1.51) (−1.37) (−1.15) (−1.05)

VRPGLOBAL
t 0.18 0.18 0.21 0.21 0.21 0.16 0.06 0.02

(1.74) (1.82) (3.45) (4.63) (3.48) (2.23) (1.30) (0.47)

Adj. R2 0.63 1.56 3.97 5.33 5.80 3.57 0.04 −0.65

Nikkei 225 Constant −8.76 −8.69 −9.00 −8.62 −8.36 −7.51 −5.97 −5.37
(−1.25) (−1.29) (−1.41) (−1.37) (−1.31) (−1.17) (−0.91) (−0.81)

VRPGLOBAL
t 0.16 0.13 0.23 0.24 0.20 0.14 0.01 0.00

(1.21) (1.74) (3.88) (4.45) (2.84) (1.67) (0.15) (0.13)

Adj. R2 −0.18 −0.09 2.03 2.81 2.12 0.91 −0.74 −0.77

SMI 20 Constant −3.80 −4.80 −5.14 −5.44 −5.69 −5.23 −4.01 −3.71
(−0.67) (−0.87) (−0.94) (−0.98) (−1.01) (−0.91) (−0.68) (−0.61)

VRPGLOBAL
t 0.17 0.24 0.27 0.29 0.27 0.21 0.06 0.03

(1.62) (3.71) (4.94) (5.21) (6.86) (4.56) (1.78) (0.85)

Adj. R2 0.45 2.86 5.16 7.38 7.60 4.65 −0.07 −0.60

S&P 500 Constant −6.38 −6.13 −6.34 −6.26 −6.20 −5.42 −4.28 −3.87
(−1.39) (−1.30) (−1.37) (−1.32) (−1.27) (−1.08) (−0.80) (−0.71)

VRPGLOBAL
t 0.47 0.36 0.38 0.35 0.31 0.22 0.09 0.05

(3.84) (4.22) (5.89) (5.94) (4.60) (2.94) (1.54) (1.04)

Adj. R2 6.32 6.74 11.10 12.05 9.94 5.47 0.57 −0.06

be tighter compared to the country-specific regressions discussed above. Further-
more, along these lines, Figure 8 shows the general patterns in the predictability,
as measured by the R2(h)s, to be very similarly shaped across countries, with
peaks at the 4- to 5-month return horizon.16

16The relatively large weight assigned to the United States in our construction of the global vari-
ance risk premium means that fairly similar results are obtained by replacing the new VRPGLOBAL

t
in the regressions in equation (3) with VRPSP500

t . These additional results are available from the au-
thors. Comparable empirical results based on the U.S. variance risk premium have also recently been
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FIGURE 7

Global VRP Regression Coefficients

Figure 7 shows the coefficient estimates for VRPGLOBAL
t from the return regressions reported in Table 4, together with NW

(1987) based 90% standard error bands; see Table 1 for the simulated critical values from 1 to 12 months. The regressions
are based on monthly data from Jan. 2000 to Dec. 2011.

These remarkable similarities in the estimates for the different countries nat-
urally suggest restricting the coefficients in equation (3) to be the same across
countries, as a way to enhance the efficiency of the estimates and to ensure a
common reward for bearing global variance risk.

reported in concurrent independent work by Londono (2011), who ascribes the predictability to infor-
mational frictions along the lines of Rapach et al. (2013).
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FIGURE 8

Global VRP Regression R2s

Figure 8 shows the adjusted R2(h)s from regressing the individual country returns on the VRPGLOBAL
t reported in Table 4.

The regressions are based on monthly data from Jan. 2000 to Dec. 2011.

B. Panel Regressions

The estimation results from the panel regression that restrict the coefficients
for the global variance risk premium to be the same across countries,

h−1ri
t,t+h = a(h) + b(h)VRPGLOBAL

t + ui
t,t+h ,(4)

are reported in Table 5 (for additional details on calculating standard errors,
see, e.g., Petersen (2009)).17 As the table clearly shows, the use of panel

17We also experimented with the two-way cluster analysis in Cameron, Gelbach, and Miller (2011),
resulting in very similar findings.
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regressions does indeed result in more accurate estimates and highly significant
tNW-statistics of 10.91 at the 4-month horizon. The average panel regression R2(h)s
for the eight countries also gradually rise from less than 2% at the 1-month hori-
zon to a large 6.21% for the 4-month returns, tapering off to 0 for the longer 9- to
12-month return horizons.

These key empirical findings are succinctly summarized in Figure 9, which
plots the panel regression estimates for the b(h)s based on the country-specific
VRPs and the global VRP proxy along with their two NW (1987) based stan-
dard error bands (Graphs A and C) and the corresponding panel regression R2(h)s

FIGURE 9

Panel Regression Coefficients and R2s

Graphs A and C of Figure 9 show the estimated panel regression coefficients from regressing the returns on the individual
country variance risk premia VRPi

t and the global variance risk premia VRPGLOBAL
t , respectively, reported in Table 5,

together with two NW (1987) based standard error bands. Graphs B and D show the R2(h)s from the same two panel
regressions. The regressions are based on monthly data from Jan. 2000 to Dec. 2011.
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(Graphs B and D). The VRPGLOBAL-based regressions (depicted in Graphs C and
D) obviously result in sharper coefficient estimates and stronger average pre-
dictability across the eight countries than do the individual country VRPi regres-
sions (depicted in Graphs A and B).

The average panel regression R2(h)s, of course, mask important cross-
country differences in the degree of predictability. We therefore also show in
Figure 10 the country-specific implied R2(h)s obtained by evaluating the
individual country regressions in equation (3) at the more precisely estimated
common â(h) and b̂(h) obtained from the panel regressions in equation (4).

FIGURE 10

Global VRP Panel Regression R2s

Figure 10 shows the adjusted R2(h)s implied by the VRPGLOBAL
t panel regressions reported in Panel A Table 5. The

regressions are based on monthly data from Jan. 2000 to Dec. 2011.
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Comparing Figure 10 to Figure 8 for the individual country regressions, it is
clear that the added precision afforded by restricting the ai(h) and bi(h) coeffi-
cients to be the same across countries sacrifices very little in terms of the implied
predictability.

TABLE 5

Panel Regressions

Table 5 presents the results based on the monthly global and country-specific panel regressions in equations (4) and (5),
respectively. NW (1987) based t-statistics are reported in the parentheses. The sample period extends from Jan. 2000 to
Dec. 2011.

Horizon

1 2 3 4 5 6 9 12

Panel A. Global Regressors

Constant −7.90 −7.99 −8.04 −8.13 −8.18 −7.44 −6.13 −5.64
(−3.08) (−3.98) (−4.56) (−5.06) (−5.29) (−4.88) (−4.63) (−5.89)

VRPGLOBAL
t 0.29 0.27 0.28 0.29 0.27 0.19 0.06 0.03

(5.23) (7.27) (7.58) (10.91) (8.44) (6.33) (3.26) (1.72)

Adj. R2 1.92 3.03 4.67 6.21 5.91 3.43 0.44 0.06

Constant 3.09 −1.20 0.17 7.60 9.71 9.67 6.96 −1.59
(0.14) (−0.06) (0.01) (0.56) (0.70) (0.72) (0.72) (−0.22)

VRPGLOBAL
t 0.30 0.28 0.29 0.31 0.28 0.21 0.07 0.03

(5.95) (9.41) (9.97) (13.58) (10.79) (9.04) (5.19) (2.30)

log(Pt/Et)GLOBAL −5.07 −3.13 −3.78 −7.24 −8.23 −7.86 −5.99 −1.85
(−0.49) (−0.34) (−0.52) (−1.14) (−1.28) (−1.25) (−1.32) (−0.58)

Adj. R2 1.88 2.97 4.65 6.38 6.21 3.74 0.66 0.00

Panel B. Country-Specific Regressors

Constant −6.87 −7.03 −6.98 −7.24 −7.32 −6.89 −6.08 −5.73
(−2.56) (−2.72) (−3.22) (−3.52) (−4.09) (−4.29) (−5.11) (−5.27)

VRPi
t 0.20 0.19 0.18 0.21 0.20 0.15 0.07 0.05

(4.64) (4.08) (5.48) (6.92) (5.69) (4.14) (2.76) (2.47)

Adj. R2 1.17 1.88 2.57 4.06 4.25 2.77 0.79 0.50

Constant 2.31 3.15 2.80 2.97 3.15 2.93 2.48 0.33
(0.40) (0.57) (0.54) (0.68) (0.81) (0.78) (0.87) (0.15)

VRPi
t 0.21 0.20 0.19 0.22 0.21 0.16 0.08 0.06

(5.58) (5.62) (9.51) (10.47) (7.24) (5.39) (3.78) (3.61)

log(P i
t /E i

t ) −4.61 −5.11 −4.91 −5.12 −5.24 −4.91 −4.27 −3.02
(−1.79) (−2.22) (−2.24) (−2.63) (−2.98) (−2.82) (−3.05) (−2.62)

Adj. R2 1.18 2.00 2.75 4.33 4.60 3.12 1.15 0.71

C. Robustness Checks

To assess the robustness of these striking international predictability pat-
terns, Panel B of Table 5 reports the results obtained by including a capitalization
weighted average of the country-specific PE ratios as an additional regressor in
equation (4). Consistent with the results for the U.S. market in isolation reported
in BTZ (2009), the global PE ratio adds nothing to the predictability afforded
by VRPGLOBAL within the 1-year horizons reported in the table, leaving all of
the estimates for b(h) and the R2(h)s almost the same. The predictability of the
global variance risk premium is effectively “orthogonal” to that documented in
the existing literature based on more traditional macrofinance variables, such as
the PE ratio, dividend yields, and consumption-wealth ratios, which are typically
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significant only over longer multiyear return horizons (see, e.g., the classic stud-
ies by Fama and French (1988), Campbell and Shiller (1988), and Lettau and
Ludvigson (2001)).18

To further highlight the predictive gains afforded by the use of our global
VRP as opposed to the own-country VRPs, Panel B of Table 5 shows the estimates
obtained by including each individual country’s premium in a panel regression in
place of VRPGLOBAL,

h−1ri
t,t+h = a(h) + b(h)VRPi

t + ui
t,t+h .(5)

While the results still point to overall efficiency gains from the use of the panel
regression relative to the country-specific regressions in Table 3, the magnitude
of the return predictability is obviously much lower than for VRPGLOBAL. The
global variance risk premium is clearly a much better predictor of the future re-
turns for most of the countries than the individual country-specific premia. Again,
including the country-specific PE ratios in the same panel regression does not ma-
terially affect the overall predictability as measured by the R2s nor the values of
the estimated regression coefficients for the variance risk premia.

D. Forward-Looking Global Variance Risk Premium

Our proxy for the global variance risk premium underlying our main find-
ings discussed above is based on a weighted average of the variance difference for
each of the countries. This directly mirrors the original proxy for the U.S. vari-
ance risk premium employed in BTZ (2009) and the proxy used in the country-
specific regressions in Section III. To assess the sensitivity of our results to this
simple and easy-to-implement proxy, we briefly summarize the results obtained
by replacing the model-free lagged monthly realized variances with forward-
looking model-based expectations in the way we define the global variance risk
premium.

Specifically, let Et(RVi
t,t+1) denote the time t expectation of the 1-month

ahead return variation for country i. Additionally, let FVRPi
t = IVi

t − Et(RVi
t,t+1)

denote the corresponding forward-looking variance risk premia for country i.
We then define a forward-looking global variance risk premium by

FVRPGLOBAL
t ≡

8∑
i=1

wi
tFVRPi

t .

In contrast to the VRPGLOBAL defined above, FVRPGLOBAL necessitates the use
of a model for generating the forward expectations Et(RVi

t,t+1). In the results re-
ported on below, we follow Andersen, Bollerslev, and Diebold (2007) and Corsi
(2009) in generating these forecasts from heterogeneous autoregressive model of
the realized volatility (HAR-RV) type models in which we regress RVi

t,t+1 for

18Further corroborating the results for the U.S. market in BTZ (2009), we also found that includ-
ing the implied global variance or the realized global variance together with the global variance risk
premium resulted in mostly insignificant coefficient estimates. These additional results are available
from the authors.
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each of the eight countries on the daily, weekly, and monthly realized variances,
RVi

t−Δ,t, RVi
t−5Δ,t, and RVi

t−1,t (where Δ = 1/20), respectively, along with the
option-implied variances, IVi

t, for all of the other seven countries.19

The resulting FVRPGLOBAL is plotted in Figure 11 (Graph B), together with
the previously used simple VRPGLOBAL proxy (Graph A). While the two series

FIGURE 11

Variance Risk Premia

Figure 11 shows our proxies for the monthly global variance risk premia VRPGLOBAL
t (Graph A) and FVRPi

t (Graph B), as
defined in the main text. The sample period spans Jan. 2000 to Dec. 2011.

19We make sure that all of the regressors are properly aligned to correct for the different time zones,
so that none of the predictions involve any future information. We also experimented with the use of
a standard VAR(1) model involving only the current monthly realized variation measures, RVi

t−1,t ,
and option-implied variation measures, IVi

t , for generating Et(RVi
t,t+1), resulting in qualitatively sim-

ilar, albeit not as significant, predictive return regressions. Further details concerning these additional
results are summarized in the Supplementary Appendix available from the authors.
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obviously differ, the general dynamic dependencies are obviously quite similar.
The large negative spike in VRPGLOBAL observed at the height of the financial
crisis is slightly diminished in the forward-looking FVRPGLOBAL.

Turning to the predictive return regressions, Panel A of Table 6 reports the
estimates from the same panel regressions in equation (4) using FVRPGLOBAL in
place of VRPGLOBAL. While the NW (1987) based t-statistics for the 1- to 6-month
returns are all slightly lower than the comparable tNW-statistics reported in Panel A
of Table 5, they remain highly significant at any reasonable level. In fact, the sta-
tistical significance of the regressions based on FVRPGLOBAL extends to at least
the 9-month horizon. The R2s also show a similar hump-shaped pattern to those in
Table 5 and Figure 9, with the predictability now maximized at the slightly longer
5- to 6-month horizon. This shift in the location of the peak is also consistent with
the Monte Carlo results in Figure 2 and the slightly smaller first-order autocor-
relation of 0.31 for FVRPGLOBAL compared to 0.36 for VRPGLOBAL. Panel B of
Table 6 again further corroborates our key empirical findings and the idea that
the predictability inherent in the global variance risk premium is essentially or-
thogonal to that in the global PE ratio, which kicks in only over longer annual
horizons.

TABLE 6

Panel Regressions with Forecasted Global Variance Risk Premium

Table 6 presents the results based on the monthly forecasted global panel regressions in equations (4) and (5), respec-
tively. NW (1987) based t-statistics are reported in the parentheses. The sample period extends from Jan. 2000 to Dec.
2011.

Horizon

1 2 3 4 5 6 9 12

Panel A. Forecasted VRP

Constant −10.43 −9.24 −8.51 −8.54 −9.01 −8.70 −7.20 −6.39
(−3.50) (−3.58) (−3.56) (−3.90) (−4.42) (−4.61) (−4.72) (−5.37)

FVRPGLOBAL
t 0.49 0.35 0.28 0.28 0.32 0.30 0.17 0.10

(6.05) (6.26) (5.19) (5.98) (6.19) (5.07) (3.75) (2.49)

Adj. R2 4.86 4.26 3.91 4.80 7.68 7.63 3.22 1.56

Panel B. Forecasted VRP and PE

Constant 4.61 −2.52 −3.14 3.16 10.34 12.38 10.32 0.89
(0.19) (−0.12) (−0.18) (0.21) (0.73) (1.02) (1.03) (0.13)

FVRPGLOBAL
t 0.50 0.35 0.28 0.29 0.34 0.32 0.18 0.11

(6.79) (7.47) (7.01) (8.02) (7.87) (6.24) (5.46) (3.42)

log(Pt/Et)GLOBAL −6.95 −3.10 −2.48 −5.39 −8.90 −9.69 −8.03 −3.33
(−0.62) (−0.32) (−0.30) (−0.76) (−1.35) (−1.67) (−1.77) (−1.14)

Adj. R2 4.86 4.21 3.85 4.86 8.05 8.15 3.70 1.59

In sum, the estimated regression coefficients for the global variance risk pre-
mium are fairly similar across countries, and with the exception of the United
States, the R2(h)s for the panel regressions are generally larger for the global
VRP than for the “local” VRPs.

These empirical findings are directly in line with a stylized two-country
consumption-based equilibrium model. We show that the global variance risk
premia include a relatively larger amount of the aggregate volatility uncertainty
than the local variance risk premium from the smaller country (of which the
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consumption weight is less than one-half, directly mirroring the global variance
risk premium’s stronger return predictability). Conversely, for the larger country
(the United States), the local VRP gives rise to marginally higher slope coeffi-
cients than the global VRP.20

V. Conclusion

A number of recent studies have argued that aggregate U.S. stock market
return is predictable over relatively short 3- to 5-month horizons by the difference
between option-implied and actual realized variation, or the so-called variance
risk premium. We show that this newly documented predictability is not due to
finite sample biases in the statistical inference procedures, and that the apparent
hump-shaped pattern in the degree of predictability documented in overlapping
monthly returns regressions is entirely consistent with the implications from an
empirically realistic bivariate daily time-series model for the returns and variance
risk premia.

Further corroborating the existing empirical evidence for the United States,
we show that the same basic predictive relationship between future returns and
current variance risk premia holds true with more recent out-of-sample data
through 2011. We also show that the same basic results hold true for a set of
seven other countries, although the magnitude of the predictability and the statis-
tical significance of the own-country variance risk premium tend to be somewhat
muted relative to those observed for the United States.

Meanwhile, employing a capitalization weighted global variance risk pre-
mium results in similarly shaped predictability patterns across return horizons for
all of the countries in our sample, and uniformly larger t-statistics. Further re-
stricting the regression coefficients and the compensation for global variance risk
to be the same across countries, we find even stronger results and highly sig-
nificant test statistics, with the degree of predictability maximized at the 4- to
5-month horizon.

The global variance risk premium may be seen as a proxy for worldwide
aggregate economic uncertainty; therefore, global variance risk premia gener-
ally provide more accurate predictions of the future individual country returns
than the own-country variance risk premia. Alternatively, the global variance
risk premium may be interpreted as a measure of aggregate risk aversion (e.g.,
Bekaert, Engstrom, and Xing (2009)) or a summary measure of worldwide
disagreements in beliefs (e.g., Buraschi et al. (2014)). All of these different eco-
nomic mechanisms likely play some role in generating the strong international re-
turn predictability embodied in the global variance risk premium first documented
here. We leave it for future research to sort out this important question.
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