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ABSTRACT

This paper will discuss the current research in building
models of conditional variances using the Autoregressive
Conditional Heteroskedastic (ARCH) and Generalized ARCH {GARCH)
formulations. The discussion will be motivated by 2 simple asset
pricing theory which 1is particularly appropriate for examining
futures contracts with risk averse agents. A new class of models
defined to be integrated in variance is then introduced. This new
class of models includes the variance analogue of a unit root in
the mean as a special case. The models are arpued to be hoth
theoretically  important for the asset pricing models and
empirically relevant. The conditional density is then generalized
from a normal to a Student-t with unknown degrees of freedom. By
estimating the “degrees of freedom, implications about the
conditional kurtosis of these models and time aggregated models
can be drawn. A further generalization allows the conditional
variance to be a non-linear function of the squared innovations.
Throughout, empirical estimates of the logarithm of the exchange
rate between the U.S, dollar and the Swiss franc are presented to
illustrate the modeis.
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I. INTRODUCTION

The economic theory of behavior under uncertainty forms the
basis for much of modern finance and monetary theory. An agent
must make a decision based upon the distribution of a random vari-
_able some time in the future. In many rational expectations wmod-
els it is assumed that only the mean of the conditional distribu-
tion affects the decision, however for more general utility func—
tions and risk averse agents, a measure of dispersion will also be
of primary importance. Conventional econometric methods bave not
been responsive to the need to develop quantitative measures of

risk and uncertainty. This is particularly clear in time series
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analysis where the very convenient assumption of linear covariance
stationary models implies that most measures of uncertainty would
remain constant over time.

This paper will discuss the current research in building
models of conditional variances using the Autoregressive Condi-
tional Heteroskedastic (ARCH)} and Generalized ARCH (GARCH) form-
ulations. The paper will motivate the discussion by introducing 2
simple asset pricing theory which is particﬁlarly appropriate for
examining forward and futures contracts with risk averse agents.
A new class of models defined to be integrated in variance is then
introduced. This new é}ass of models include the variance analog-
ue of a unit root in the mean as a special case. The models are
argued to be of both theoretical importance for the asset pricing
models as well as empirically relevant. The conditional density
is thenx generalized from a normal to a Student-t with unknown
degrees of freedom. By estimating the degrees of freedom implica-
tions about the conditional kurtosis of these models and time
aggregated models can be drawn. A further generalization allows
the conditional heteroskedasticity to be a non-linear function of
the squared innovations. Throughout, empirical estimates of the
logarithm of the exchange rate between the U.S. dollar and the
Swiss franc are presented to illustrate the models, The data are
weekly observations on the Wednesday spot closing-price and were
generously provided by Frank Diebold. The same data set was

examined in Diebold and Nerlove (1985).
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1I. THE SIMPLEST ARCH MODEL
To illustrate the unsatisfactory nature of time series and
standard econometric models for modelling risk and uncertainty,

consider the first order autoregressive model:

(1) v.=0y _, + g, . &, 1.i.d.,

where

E(e,) =0. V(e = o

ahd for stationarity || < 1. The expected value of Yeep 18
simply zero but the conditional! mean of Yeel given the past

information equa.ls:1

Et(yt+l) - ¢ Yt

which obvicusly is a random variable depending on the information
set at time t. Similarly, the variance and the conditional vari-

ance can be expressed as:
2
Vi, )= /(147

2 2
Velrea) = Bl - E v =¢

Therefore. even though the conditional and unconditional variances

are different, unless ¢ = O, they are both constants. By repeated

substitution in (1) we get

-

10f course, here and in what follows the conditional expectations
are only defined almost surely. Without the loss of any essential
results we shall simply ignore the technicalities arrising from
this.
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5
(2) Vers = Oy, + E ¢* e,

i=1

where the first term equals the conditional expectation of Yiss 86
time t and the second term gives the corresponding forecast error.

Thus, the conditional variance of ¥, s steps ahead can be computed

by

S
(3) V() = o2 E ¢2(s-1)

i=1

so that although the copditional variance depends upon the fore-
cast horizon it does not depend on the available information set
or the forecast origin, t.

In more general models, the conditional variance s steps into
the future would depend on the available information set and could
therefore change over time. One might claim that the success of
time series models islattributable to the use of the conditional
mean for forecasting rather than the unconditional mean. Presum-—
ably similar gains are available for variances from using more
sophisticated models of the conditional variances. The ARCH meodel
introduced in Engle (1982) was designed to generalize the class of
models used in time series analysis with exactly this point in
mind. The conditional variance as well as the conditional mean
were parameterized as functions of the available information set.
¥hile this allowed a vast increase in the potential models only a
few of the parameterizations have been particularly useful. These

are the ARCH(q) and the GARCH(p.q) models to be described below.
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The simplest generalization of the AR(1} model given in (1)}

has an ARCH{1) model for the errors

Ye =_¢ Yeor * &y

§
<

(4) Et—l(et) =

1
o
n
£
+
4
Yl
|

vt—l(et) = e

where [$] <1, @ > 0 and a > 0.

The first order ARCH model described in {4) has several
interesting properties. The disturbances are serially
uncorrelated but not independent as they are related through
second moments. If @« <1, the unconditional variance of €, is

given by:

V(e,) = o® = o (1-a)! .

Using this notation the conditional variance of €. <can therefore

be rewritten as:

(5) h - 02 =g (et_l - &%)

so that the conditional variance will be above the unconditional
variance whenever the squared surprise last period exceeds its
unconditional expectation. The marginal distribution of ¥, will be
symmetric if the conditional distribution of €, is symmetric. If
€, is conditionally normal, the fourth unconditional moment of &,

will exceed 304 so that the marginal distribution of €, exhibits

fatter tails than the normal.
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It follows immediately from (4) that the conditional mean and
the conditional variance of Yiel evaluated at time t mway be

expressed as?
E () =9V,

2
V(¥y) =hyy =0 +aly, -®y )

so that both the conditional mean and the conditional variance of
the one-step ahead forecast depend on the available information
set, In particular ‘the conditional wvariance is increased by
either large positive or negative surprises in Y-

Multi-step forecasﬁs_from the AR({1)-ARCH(1} model can be
computed using the expféssion for'y“_s given in (2) leading to:

s
Vv = 2 ¢2(Sd1) E (gl

i=1

Provided a < 1 and i > 2, it follows from (5) by the law of

iterated expectations that:

2 2

Efby) =0 +aE(h ;-0

and the multi-step conditional variance equals:

s-1 s—1i

2¢ 21, s-1 2 21 i

{6} Vv, =9 E ¢ +a “(h O } z ¢ a .
i=0 i=0

Thus, the conditional variance is clearly not independent of the

curfent information set, but for long term forecasts and o less
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than one the dependence on ﬁht+1 - az) becomes negligible and the
expression in {6) is well approximated by (3}.

Assuming €. to be conditionally mormal distrisuted, it fol-
lows by the prediction error decomposition, that for a sample of T
observations the log likelihood functien is, apart from some ini-

tial conditions, given by
T

M Logl = - ~1— log(2w) - =) (log(h,) + Enly .
t=1

Expressions for the gradient, the Hessian and Fishers information
matrix are given in Engle (1982), along with a discussion of meth—
ods for maximization of (7).

All of the above arguments and calculations extend in a stra—
ight forward manner to the more géneral ARCH(q) model in which ht

depends linearly on q lagged values of e2.

q
_ _ 2
Ver (8 = b =w+ E 2

vhere now ay 20, 1i=1,....9. For a more detailed discussion of

the ARCH{q) model the reader is referred to the original paper by
Engle (1982).

. IIT. SURVEY OF APPLICATIONS AND EXTENSIONS
In a series of papers, the ARCH wmodel has been analyzed,

generalized, extended to the multivariate context, and used to
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test for time varying risk premia in the term structdre of inter-
est rates and in other financial markets. These papers include
Engle {1983) and Engle and Kraft {1983) where a measure of the
variance of inflation are given. The ARCH model is extended to a
multivariate framework in Kraft and Engle (1982). In Engle,
Granger and Kraft (1984) and Granger, Robins and Engle (1984)
bivariate ARCH models of inflation with changing covariances as
well &as variances are cénstructed. Engle, Brown and Stern {1984}
and Granger and Engle (iQB&) examine the effectiveness of ARCH
models for forecasting purposes. The power of ARCH tests and the
finite samplé properties of various ARCH estimators, are analyzed
in Engle, Hendry and Trumble {1985} by means of Monte Carlo
metheds. In Bollerslev {1985a, 1985b) the Generalizedl ARCH or
GARCH wodel is developed, and the GARCH model with conditionally
Student-t distributed errors is studied in Bollerslev (1985c).
Engle, Lilien and Robins (1985) and Bollerslev, Engle and
Wooldridge (1985) examine the term structure of interest rates and
a three asset Capital Asset Pricing Model (CAPM) to determine
vhether risk premia are varying over time. These papers introduce
the ARCH in mean or ARCH-M model in a univariate and multivariate
context respectively. Engle and Watson (1985) recast the GARCH-M
model in a full information state space form.

In gddition to this work, a variety of papers have begun to
appear from different parts of the world. Without attempting an
exhaustive list of these, particularly interesting are papers by

Milh¢j (1985a) who develops far more general moment conditions
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than those in the original Engle ({1982) paper. Linnel-Nemec
(1984a. 1984b) establishes statignarity and ergodicity of ARCH
models. Pantula (1984) and Weiss (1982) derive the limiting dis-
tribution of ARCH estimators in more general contexts. Pagan,
Hall and Trivedi (1983)f VWeiss (1984) and Coulson and Robins
{1985) provide empirical time series examples of ARCH and related
models of changing variances. Domowitz and Hakkio {1985), Diebold
and Fauly (1985). Diebold and Nerlove (1985), Milh¢j (1985b),
Hsieh (1985) and McCurdy and Morgan (1985), apply the ARCH, the
ARCH-M and the GARCH model to the foreign exchange market. Amsler
(1984af 1884b) investigate whether using the risk premia estimated
by ARCH models will make long bonds satisfiy the Shiller variance
bounds. Poterba and Summers {1584} derive a pricing formula for
stock market prices in the spirit of the asset pricing formulas
presented in this paper. The price is related to its own vari-
ance, which is modelled as a simple AR{1) process. Similar ideas
are employed in the paper by French, Schwert and Stambaugh (1985).
Blanchard and Watson (1984) and Bodie, Kane and McDonald (1983,
1984) present evidence that macroeconomic and financial time
series mod;ls can usefully be reformulated as a form of multi-
variate ARCH processes.

These applications can all be viewed in a common .econometric
framework with a focus on modelling the behavior of economié

agents to risk in a time series context. The general model ijs a

simul taneous equations system where the elements of the ARCH dis— .

turbance covariance matrix also appear as TegTessors. To esta-

biish® notation, let Y be a vector of endogenous random variables
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and ¥, the information set available at time t. Also, let B and
H{ denote the conditional mean and the conditional variance of Y.
respectively:

p, = E[y ¥, 4]

B

1t

El(y, 1 )y 1) W, 4] -

Finally, let Xt be a vector of weakly exogenous gpq lagged depend-
ent variables in the sense of Engle, Hendry and Richard (1983).

The conditional mean and variance of the general model can then be

parameterized as:

My Xtﬁ + vech(Ht) &

Hy

it

A+ (16X, )'C (18X )

where vech{Ht) denotes the vector of all the unique elements of Ht
obtained by stacking the lower triangle of Ht' A is a positive
definite matrix and C is a positive semi-definite matrix. This
class of models represents the reduced form of a structural simal-
taneous equations system where the mean of the observed behavior
is affected by the covariance matrix of =all observed endogenous

variables. Such a system could be described as:

By +D Bt F vech(Ht) + G Xt =&

t t

which is closely related to Wallis (1980)'s rational expectations
version of a similtaneous system except that in this case both
conditional means and conditional variances and covariances enter

the structural relation.
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If in the above reduced form 6=0, this is simply a2 multivar—
iate heteroskedasticity model. If in addition Xt enters the het-
eroskedasticity function only through squares and cross products
of &, = Y. H.. the multivariate ARCH model of Kraft and Engle
{1582} is obtained. " The multivariate GARCH model of Bollerslev,
Engle and Wooldridge (1985} has Ht depending on past squares of
&t's and past values of Ht's. In effect, this corresponds to a
different lag structure on past squared Ec's.

In the univariate context with 6 # 0, the ARCH-M model is
obtained. Engle, Lilien and Robins {1985) uses this type of model
behavior in modelling the term structure of interest rates where
the varianceA of the excess holding yield on a long bond is a de-
terminant of the expected returnm on that asset. The ARCH-M model
is extended to a multivariate setting in Bollerslev, Engle and
Wooldridge (1985). where a Capital Asset Pricing Model (CAPM) with
tim¢ varying betas is estimated. The expected return on an asset
is proportional to the covariance with the market return, that is

the CAPM gives the restriction

By = 0 How,
vwhere w is the vector of value weights for all the assets, assum-
ed to be in the information set. The results - for a model with
.three risky assets: bills, bonds and stocks, are promising. There
is strong evidence for a time varying conditional covariance ma—
trix for the asset returns. The coefficient of agggegate relative

risk aversion. &, is statistically significant. The trivariate
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model in which the risk premium is associated with the covariance
with the market outperforms a set of univariate models where the
premia depend only on the own variances. The model, however, does
fail some of the more demanding specification tests suggesting

further work along these lines might be fruitful.

IV. SIMPLE ASSET PRICING THEORIES

To motivate the new class of models called integrated 1in
variance to be defined below, a very simple illustrative model of
asset pricing will be presénte&. It has a familiar form and can
be solved to give previously unreported pricing equations.

Models of asset pricing invelve agents maximizing expected
utility over uncertain future events. The competitive outcome sets
a price for the assetltoday which equates supply with demand. For
example suppose a representative agent must allocate his wealth,

Wt, between shares of a risky asset q ata price P, and those of

a sure asset X with a price equal to 1. The shares of the risky

asset will be worth Yeel each at the end of the pericd, and the
sure asset will be worth T, vwhere L denotes one plus the risk

free rate. Note, that if there are no dividends y p

t+1 ~ Petl

Also, suppose the representative agent has a mean variance utility

X . With these as—

function in end of period wealth, Y 141 + T X,

sumptions the allocation problem becomes:

(8) Max 2B (quy gtrex) - v Vilaye )
q
i

s.t. Wt= X, * P,
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which has the selution

1 T
(©) P = ?;Et(yt+1) S, Velreny) -

T
If the outstanding stock of the risky asset is fixed at q, then
(9) describes the asset pricing model. Typically, Wt. T, and -~
are also taken as constants in such a formulation, even though
this is not required by the model. However, for ease of exposi-
tion we shall treat W, q, v and r as constants in what follows.

It is worth considering exactly what is implied by the rela—
tion given in (9). Both the conditional mean and the conditional
variance are functions of the conditioning informatioh set which
includes P, The situation is therefore similar to the Walrasian
auctioneer who must declare a price known to all agents that
clears the market. The equation therefore has no error term
unless there are other sources of uncertainty and these may be
problematic from a theoretical point of view. We are indebted to
Roman Frydman for this observation.

If now the risky asset is interpreted as a forward contract
for delivery in s periods, the price a pure speculator character—

ized by (8) would be willing to pay is simply

(10) Py =t B (v, ) - 6V (v, )]

v

-s . .
where r gives the discounted present value at the sure rate r

and & = vq. Note, P, is the price paid in full at time t for
L]

delivery at time t+s. Of course, Pipg =¥ by definition. In

t+s

| 1
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the foreign exchange ma;ket this model relates the price of a
forward contract for delivery in s periods to the expected future
value of the spot exchange rate Yies and the variance of that fate
discounted at the sure domestic interest rate r. Typically it is
assumed that 5=0 so that there is no risk premium and the forward
rate is an unbiased predictor of the future spot rate corrected
for interest rate diffefentials. .

A simple redatiﬁé of the model shows that the price of the
forward contract at time t+l for s > 2 periods remaining to matur-
ity can be expressed as:

1-s
Piy1 =7 [Et+1(yt+s) "V el -

. . -1 :
Teking expectations at time t, multiplying by r = and subtracting

from (10} gives:

(11) L e Et(b;+1) Y V) B (Vi ()]

Now. suppose y, can be represented by an infinite moving average
process where the increments are uncorrelated but have time vary-

ing conditionnal variance ht’

o

yt = eiet"‘i = G(L)Et

i=1 B

(12)

Vel = Velegy) = by

It follows that
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2
(13) Vel¥ins) = El( Z Os—i €pag )

2
= Z Bs-~1 t+1)
i=]

Consequently the expression in square brackets in (11} is simply

2 -
6, _1Pps; leading to:
-1 -5,2
(14) p, =T Et(pt+1) - or 65"1 ht+1

which is the familiar formula for a one period holding yield with
the explicit calculation of the effect of the changing variance of
yt+s for a risk averse agent. Notice, howeve}, that the expecta—

L]
tion of the final spot price no longer enters this equation di-

Also, if @

rectly, but only through its effect on Et(pt+l)' s-1

becomes small for large s, the only relevant information about the
risk of the contract is already incorporated in that expectat1on
In the simple model above the only source of uncertainty
derives from the future spot price to which the contract relates.
In many other situations however, there is a flow of . uncertain
distributions which accrue to the owner of the asset. For ex-~
ample, the pfice of a share of a stock is presumably determined by
the present discounted value of the expected dividend stream. The
rate of‘interest on a long bond is conjectured by the expectations
hypothesis to be the present discounted value of the sequence of
short term rates expectéd during the life of the bond. The value
of a }ruit tree is the present discounted value aof the expected
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A

lue of the fruit. In each case, the model is based on the as-
Va .

Y g T consump-
51 llPthn Of risk neu tral investors and ex(:genousl ive

tion.

However, risk avérse investors would everything else equal

i AMS .
pay less for streams of income the more wuncertain the stre

The precise fashion in which the variability of future payoffs
enters the asset pricipg formulation depends among other things
upon the wutility function of the agents and the intertemporal
substitutability of the payouts. The two simplest formulations

are the variance of the discounted paycffs and the discount of the

variance of the payoffs, i.e. either of the following two forms:

o
(15) b =) rOIE(¥,.) - 6V (y,)]

s=1
or

o .

-5
Py = 2 TE (yiee) — 8V E yc+s
s=1
income stream generated

where Yeerr Yisorooo refer to the future i

by the asset. The latter of these two can also be expressed as

[+5] [++] o

_s s .

(16} Py = z rE (¥ -0 E E wijcov(yt+i‘yt+3)
s=1 . i=1 j=1

Under the same set of assumptions as in (12) about the pro-

i ield ex—
cess generating Y, (15} can be converted to a holding yie

pression:
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-1
{17) Pe =7 LEp ) +Ely ) - 67 bl

where M depends upon the polynomial ©(L) and the risk free rate r.
Assuming ht+1 is generated by an integrated GARCH(1,1) wmodel, to
be defined below, a similar expression holds for {16}. The impor-
tant feature of this result is that Vt(pt+1) does not independent-—
ly enter the asset pricing equation. The variance of next periods
payout 1is sufficient information for risﬁ averse agents. This
differs from the Summers and Poterba (1984; formulation where
Vt(pt+1] enters the pricing equation explicitly.

Examining expressions (11) through {17) it is clear that if
020, the conditional variance of yt in the future will_affect the
price of the asset today. The extent of the effect cannot be seen
directly from (14) or (17) vhich are stated in terms of future
expectations about the price, but can be seen from the discount
expressions (10}, (15) or {16). If variances can be forecast as
in the ARC& example in the preceeding section, then the current
inforTation on y, and the current conditional variance will have
an effect on the current price. However, the size ofl the effect
will depend upon the persistence of the variance. That is, it
wil} depend upon how important current information is in predict-

ing future variances. This question is of great importance since

"it explains how new information influences current asset prices.
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V. MULTI-STEP FORECASTING WITH THE GARCH MODEL
Bollerslev (1983a) has recently introduced the Generalized
ARCH or GARCH model which incorporates in a simple form many of
the properties which have been found useful in ARCH estimation. A

; " if
random variable e, is said to follow a GARCH(p.q) process i

Eioglegd =0
w q 2
(18) Vo (e)=h =0+ )a e +
i=1 i

B. h

i Te-i
1

N~

i

W + a(L)e% + ﬁ(L)ht

where w > 0, a, >0 aﬁd ﬁi 2 0 for all i. This formulation gener-
alizes the ARCH{q) model by allowing non-zero ﬁi’s. Simple sub-
stitution reveals that the GARCH model is simply an infinite order
ARCH model with exponentially decaying weights for larger lags.
Thus, a low order GARCH mo&el may have properties similar toe high
order ARCH models without the problems of estimating many paramet-
ers subject to mnon-negativity constraints. In fact, the ARCH
models estimated iﬂ Engle (1983}, Engle and Kraft (1983), and
Engle, Lilien and Robins (1985}, impose linearly declining weights
in the ai's so that the only free parameters are q and the sum of
the weights. Seleétion of q can be addressed by model selection
techniques but is somewhat awkward. Thus the GARCH model appears
to be a patural and simple generalization of the ARCH model, and -

empirical evidence suggests that it fits as well or even better
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than the ARCH model with linearly declining weights with roughly
the same mean lag. see Bollerslev (1985a) for more details.
Sastry Pantula has pointed out that the GARCH model can be

rewritten in an alternative and from a theoretical time series
-

- 2
point of view maybe more interpretable forp. Let v, el - ht .

then the conditional variance in expression (18) may be rearranged

as:
m P
(19) &2 = + E {(ax, + B )52 - z B.v + v
t i i’ Te-1 i t-1 t
=} i=1
where m = max{p.q}, a, 20 for i > q and ﬁi =0 for i > p. This

reveals that e% follows an ARMA(m,p) process with serially uncor-
related inmovations - Note, however, the peculiar feature that
the innovations v, have different support in each time period and
conseqaentiy are heteroskedastic with a very complicated distri-
bution. It is clear that the autoregressive part of the process
is given by the sum of the ai's and the Bi’s. and the moving
ave;age part is characterized by minus the Bi coefficients. Such
.an analogy has been used by Bollerslev {1985b) to motivate the use

of the autocorrelogram and partial autocorrelogram for ef in model

identification.

if e% is generated by a GARCH(p.q) model, the forecast of the
conditional variances is a non~trivial function of the informa—
tion set today, just as in the ARCH(1) model illustrated in Sec-
tion II. This allows a solution to the rational expectations

models of the preceeding section. The conditional variance s

steps ahead can be written:
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n
2 +
(20} h,g=or E [ai€ig-i ¥ PiPrasy]
i=1
i
T2
+ 2 Faiet+s—i * ﬁiht+s~i]

1=35

where n = min{m, s—1} and by definition summation from 1 to 0 and

from s > m to m both are equal to zero. Thus,

o
= o+ ) [l +BIE(h, )]+

i=1

(21) Eclheys)

m
2
+ z [oie i * Pilrsid

1=5

which gives a recursive solution for the conditional expectations.
In particular for the GARCH{1,1} model and s 2 2 this expression
reduces to

(22) E.(h

£ ) =0+ (a+B)Ec(h, )

t+s

In the stationary case where all the roots of the autoregres—
sive polynomial «(z)+B{z)=0 lie outside the unit circle and there-
- 's i ne, the uncon-—
fore the sum of the a,’s and the ﬁi s is less than o
ditional variance of €, is given by:

in
E(E%) = o = of1 - E (o + Bi)]ml .

i=1
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By simple substitution equation (21} becomes*

n
(23) B (b)) =0+ ) [(a, + B)E, (b

i=1

2
t+s—i) B

m
2
+ § [oergmi ¥ RN

i=s

and it follows that Et(ht+s) - 02 as s »+ @ when the process is
stationary.

To 1illustrate the ideas discussed abové consider the time
series of weekly data on the exchange rate between the U.S. dollar
and the Swiss franc from July 1973 through August 1985 for a total

of 632 observations. The data are interbank closing spot bid

prices on Wednesdays taken from the International Monetary Markets

Yea}book. This particular series is chosen for the analysis
.because the first differences of the logarithm show—no significant
serial qorrelation in the mean, a finding also reported in the
paper by Digbold and Nerlove (1985), who kindly provided the data.
Thus, attention can simply be focused upon the variance models,

A plot of the first differences of the logarithm of the
series is given in Figure 1. It follows, that even though the
series seems to beluncorrelated over time, the observations are
clearly not independent. There is a tendency for large changes to
be followed by large changes but of unpredictable sign. The modi~
fied Box-Pierce test statistic for up to tenth order serial cor-—

relation takes the value Q(10} = 9.127 corresponding to the .480
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fractile in a x2(10) distribution, whereas the test statistic for
. 5 ‘ .

the first ten squared changes equals Q (10) = 99.435 which is

highly significant at any level. For a precise definition of the

Box-Pierce test statistic and a discussion of its applicability in
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1, q
test 123 {OI abSEIlCe of serial correlation in squared IeSlduals See

Mcleod and Li (1983).

The first ten i
autocorrelations, pk, and

Pa 1 . q% 1
rtial AutOCoTY elat: Ons . fOl the Squared dl.ff erences are

given in Table I.
TABLE I
Correlation Structure for Squared Log Differences

k 1 2 3 4 5 6 7 8 9 10

A 114 117 L169) L212) (0837 .110 -162] .012| .102(~.003

4Lk -114( 1061 .148| .178| .024| .049

-0941-.070 .053|-.077

a . .
Judged by their asymptotic standard error, .040, both the auto
. . cor-—

relations i
and the partial autocorrelations die out fairly slowly

Th ki i
us, taking into account the small sample variability of th
e

CQIlelaEIOn es tlmates. cf. Bollerslev (1985b]. a GARCH:(I,I) I]lodel
with a +
1 B CIDSe to one seems a reasonable fll‘st model candldate

Assuming conditional normality maximum likelihood

of the GARCH(1,1) model yields:2

estimation

log(yt+1/yt) =€

et+1’wt ~ N(P.ht+1)

2To start up the recursions defined by (7) and (18) we need

resampl 2
P ple values for € and hO' A natural choice is given by the

sample analogue "%H'E ef .

wob b L ING PERSISTENGCE OF CONDITIONAL VARIANCES 25
(21)
W = 3.27102 + .996e2 -.871(> - h)

t1 7 (1136.10°)  (.011)" (.011)

logld = 1750.061

where the estimates in paféntheses are asympototic standard errors
obtained from the last auxilary regression in the Berndt, Hall,
Hall and Hausman (1974) algorithm used to maximize the likelihood
function.3 Note, the estimated model in (24} does not have a
finite unconditional fourth moment which may undermined the valid-
ity of the correlatioﬁ structure for e% as an identification tool.
It is clear from the parameterization in (24) that the sum of «
and B is very close to ome, and that a conventional Wald type test
would accept the h&pothesis @+ B =1. Multi-step forecast from
(24) would approach the unconditional variance gquite slowly as
powers of .996 approach zero. The estimated mean lag of this
variance expression, 1/(1-B), equals 7.752 or about eight weeks.

A series of Lagrange Multiplier tests for higher order ARCH,
or equivalently GARCH, and moving average terms in & _were applied
to determine the adequacy of the model specification. None of
these tests detects model failure, which is quite surprising with
over 600 observations. For instance the test for up to fourth
order ARCH in additioﬁ.to the CARCH(1.1} model equals .568, or

096 in a x2(3) distribution. The LM test for a constant in the

3Due to the complexity of the amalytical derivatives for the GARCH
model, numerical derivatives were used here and in what follows.
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mean, i.e. a random walk with drift, equals .196, and the test for
up to fourth order serial correlation takes the value 3.628, none

of which are significant at traditional levels:

VI. INTEGRATED VARTANCE MODELS
The estimate for the GARCH{1,1) model as well as the theoret-
ica{ expression in (23) suggests consideration of a particular
'class of GARCH models which bave the property that the multi-step
forecasts of the variance do not approach the unconditional vari-

ance. A GARCH model with this property is here defined to be

integrated in variance.

DEFINITION

The GARCH(p.q) process characterized by the first two conditional

moments:

;
<

Bl =

2
E (0

il
=2
-
|
€
+
M
R
-

m
(a2 ]
+
N ~17g
@
=4

where w » O, a; 2 0 and Bi 2 0 for all i and the polynomial
q P
1 - E aiz1 - E ﬂizl =0
i=1 i=1

has d > 0 wmit root(s) and max{p.q}-d root{s) outside the unit

circle is said to be:
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(i) Integrated in variance of order d if o = 0.

{ii) Integrated in variance of order d with trend if @ > 0.

It is obvious, that for the GARCH(p.q) process to be inte-
grated in variance a necessary condition is that the ai's and the
5i’s sum to one. In such models the miltistep variance condition—
al on wt will always depend upon ht+1, but for shorter ferecast
horizons additional information will also be important in forming
optimal forecasts of the conditional variances. The integrated
GARCH{p,q) models, both with or without trend, are therefore part
of a wider class of models with a property called "persistent
variance” in which the cufrent information remains important for
the forecasts of the conditional variances for all horizons.

To illustrate consider the integrated GARCH(1,1} model

2
by =ael + {1 - a)ht
where 0 < a < 1. Frém {22) it follows that for this particular

model

(25) Eglhe gl =hey

The conditiona)l variance s steps in the future is the same as the
conditional variance one stép ahead for all horizons s. This
model is obviously very closely related to the traditicnal random
walk with a unit root in the conditional mean. In a random walk
without a drift the predjction of the mean s steps in the future

is just equal to the level today. Thus, the information today is
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important in forecasting forever. Shocks t¢ to the system are
permanent. In the same way shocks to the conditional variance in
the integrated GARCH{1,1) model will not be forgotten.

In the integrated GARCH{1,1) model with trend

2
ht+1 =0+ e+ {1 - a)ht

and therefore

E (b, ) =s0+h,

1 -
Again this model resembles very closely the traditional random
walk with a drift in the mean. Even though the relative impor-
tance of ht+1 in the expression for the conditional variance s
steps ahead decreases with the horizon, the effect is persistent.

The empirical plausibility of integrated GARCH models has
already been established by the findings in Engle, Lilien and
Robins (1985) and Bollerslev, Fngle and Wooldridge (1985) that
ARCH and GARCH models for interest rates typically exhibit
parameters which are not in the stationary region. The estimates
presented above for the U.S. dollar/Swiss franc exchange rate also
suggests an iﬁtegrated variance model.

Reestimating the GARCH(1, 1)} model limposing the restriction

for integration in variance, yields:

(26) h .= .0906% + (1-.090) h
L Coogyt t
logL = 1745.295.
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The log likelihood is reduced below that of the unrestricted
GARCH{1,1} by 4.836 which implies a likelihood ratio test statis—
tic of 9.672 with two degrees of freedom. However, this reduction
is almost entirely due to the restriction w = O since the
t-statistic on this‘paramefer equals 2.408. Indeed if the model
is reestimated allowing a trend in the variance, the Ilog
likelihood is essentially unchanged relative te (23) and the
parameter o is estimated to .118(.013). Here we leave out the
intercept on the theoretical ground that a trend in the variance
seems unreasonable for this particular model.

It follows from (19} that the integrated GARCH(1,1) model may

be rewritten as

2 2 2
Aet =-{1- a)(et_l - ht—l) + (&) - ht)

= - {1 —‘a} vt

Therefore. even though the population autecorrelation and partial
autocorrelations for Ae% don’t exist if (26} is the true model, it
is interesting to note that the sample correlation structure for
Ae% resembles that of an MA(1) process with moving average para-
meter close to minus one fairly well, see Table II.

The appropriate procedure for testing for integration in
variance is mnot yet clear. It is possible that all of the well
known difficulties when testing for unit roots in the mean as

discussed by Dickey.and Fuller {1979} applies in this context as
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TABLE I7T

Correlation Structure for Differences of Squared Log Differences

k 1 2 3 1 5}6 7 8 9 ] 10

Py —.514].002 1-.018f.113 |-.100).007 |.110 -.133}.114 [-.142

¢Lk -.514(~.357|-.312 —.105'—.123 -129| .061(-.045| .090|-.079

well, see Engle and Granger {1985) for some recent references on
this subject. However in a few simple Monte Carlo runs, the
standard test statistics appear to be relatively well behaved.
The knife edge condition for the unit root in variance does not
Seem as severe as in the mean. Estimation by maximum likelihood
essentially does a CGLS correction and this may be sufficient to
give standard asymptotic normality. At the moment, this is a
conjecture.

Another complication when testing in (26} and in GARCH models
in general invelve the issues of one-sided tests, as the null
hypothesis is on the boundary of the parameter space. Therefore,
under the above conjecture, it may be simpler to construct
Lagrange Multiplier tests for the adequacy of model (26). The
troublesome trend term, w, then appears to be in the wrong tail as
the likelihood function increases in the negative direction from
zero. Thus, the local LM test will accept the null for any one
sided test. Similarly. the LM test against the unrestricted
GARCH(1,1) with o = O equals 3.565 which is close to the 95 per—

R 2. .
cent fractile in a x (1) distribution. However, the test is in the
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explosive direction and therefore if one chooses to consider only
stationary alternatives it would also accept the null at any lev~
el. The tests for other forms of ARCH and serial correlation in
the mean are again insignificant. In particular the test for up
to fourth order ARCH equals 4.026 corresponding to the .597
fractile in a x2(4) distribution, and the test for up to fourth
order serial correlation takes the value 2.164 corresponding to

the .294 fractile in a x2(4) distribution.

VII. DISTRIBUTION OF MULTISTEP FORECAST ERRORS AND TIME
AGGREGATION

Section V examined the second conditional moment of muelti-
step forecasts. In this section, the properties of higher order
moments will be developed. Engle (1682) and Bollerslev {1985a)
established that the unconditional distribution of ARCH and GARCH
processes with conditionally normal errors in general have fatter
tails than the normal, i.e. they are leptokurtotic. They also
showed that the conditions for existence of finiﬁe unconditional
fourth moments restrict the maximum temporal dependence by re-
stricting the admissable parameter space, and therefore in
particular that =2ll integrated GARCH models will have infinite
unconditional fourth moments in the population. In this section
we discuss the distribution of the fourth conditional moments.

Although most of the applications of the ARCH and GARCH mod-
els have assumed that the conditional distribution is normal,
there is no necessity for this assumption. Recently, Bollerslev

{1985¢c) has postulated that the conditional distribution is =a
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standardized Student-t with unknown degrees of freedom v. By
estimating this parameter along with the other GARCH parameters it
is possible not only to have a fat tailed unconditional distribu-
tion but also a fat tailed conditiomal distribution. If v is

twenty-five or larger the conditional distribution is essentially

Indistinguishable from the normal, while smaller values of » give

larger fourth conditional moments.

Consider now the GARCH(1.1) process characterized by the

first four conditional moments:

Et(et+1) =0
2 2
Et(et+1) =h, =e+ aeg + Bh
(27) .
E (2 )=o0
the+ld T

4 2
Et(&t'l'l) = K:ht'f‘l -

Of .courge, for the GARCH(1,1} with conditionally normal errors
k = 3 and for the standardized Studemt t with v > 4 degree of
freedom we have k = 3(v—2)(u—4)_1 > 3 so the conditional distri-
bution is also leptokurtic in that situation.

It follows that the fourth conditional moment of a forecést

error s periods in the future equals

4 2 2
Eflerg) = KBl g1 (Mgl = E (hipg)

Y

and for s > 2
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| 2
2 2 + Bh
(28) Et(ht+s) = Et[Et+s-2(u a1 B t+s—1) ]

2

2
= Et[az('c_l)hus—-l pCIRER o LIRRY I B

In the stationary case, the series defined by this expression will
converge whenever the unconditional fourth moment exists, i.e. if
o + 208 + B2 < 1 see Bollerslev (1985a).

For the integrated GARCH(1,1) model where w = 0 and § = l-a,

(28} reduces to

s-1 .2

(29) E (h2 =01+ (K—l)az] ht+1 .

t t+s}
The further into the future this process is forecast, the larger
the conditional kurtosis of the forscast errors. The rate of e
increase depends positively upon the kurtosis of the original
process and upon the parameter a.
Of special interesf for questions of time aggregation is the

conditional kurtosis of the sum of future €, 's- Define

2.2
(30) K£2)= E (e * Et~|-2)4 S LE e * ereo) ]

+1
which will be the conditional kurtosis of a random walk process
which is sampled every two periods. Therefore, if a conditional

(2)

kurtosis of k is found using weekly data, a kurtosis of Ke would
be expected for biweekly data. HNote, that in general the biweekly
kurtosis will have a time subscript if the weekly model in {27) is

true. Simple calculations yield:
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4 4 4 2 2
Eileri*een) = Eleg) + Eilegsg) * 6 Ellel180ss)

2 2 .2
KB teEh )+ 6 LN GNP NPY

Using {28) and substituting back into (30) we get:

hi_lf(B—:c)(%E - %)+ 2a(a+2)] + gmhtﬂ(?»_:s,)

(31) . K.E2)= K + K 5
[b,,,(1+a+p) + @]

Thus, the kurtosis of the conditional distribution for the
two-step estimator will be smaller than the one—-step kurtosis

whenever the numerator in this expression is negative. In parti-
. -2, .

cular, when 3 < «k < 2Ba © it is possible to have a decrease in
(2) lati . .

ke * Telative to k. For k = 3 and @ > 0 there is an unambig~ uous

increase in kurtosis. If a and f are both zero, so the process

defined in (27) has constant variance, x(z) becomes time

independent,

and the familar result from the central limit theorem that x(z) is
closer to three than k applies. The time dependence of x£2) also
vanishes for the integrated GARCH(1,1) model. In that situation

the two step conditional kurtosis becomes:

@2 P en k302U L 2 saany

General conditions for a decrease in kurtosis is theréfore easy to

find in this case. For example if a = .1, K(2) < k provided
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3,940 ¢ k < 137.0680, and for @ = .05 the condition for a decrease
in kurtosis is 3.365 { k < 677.635.

For the exchange rate data, the integrated GARCH(1,1) model
given in (26) was reestimated allowing for conditionally standard-
ized Student-t distributed errors treating 1/p as an additional
parameter to be esximétpd. The log likelihood function for a

sample of T cbservations becomes in this situation

T
) logl=) [log@(%L) - toa(T(L) - -Elogo-2n,)
t=1 =

_ .%_.(1,4.1) log(1 + e%hzl(v—2)m1 . »>2

where I'(-} denotes the usual gamma function. It is possible to
show, that for v - @, or equivalently 1/v - 0, (33) converges to

the log likelihood function with conditionally normal errors de—

fined in (7). Maximization by the BHHH algorithm leads to the
estimates: A
e by ~t , 1/p = .096
vt wh {.009)
2
{34) h = .104e” + {1-.104}h
t+1 (.013)1: t

logl = 1751.735 .

The likelihood ratio test statistic for conditional normality,
i.e. 1/v = 0, takes the value 13.019 which is highly significant
at any reasonable level, see Bollerslev (1985c) where it is shown

by means of Monte Carlo methods that the likelihood ratio test
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statistic is more concentrated towards the origin than a xz(lj
distribution in this situation. Also, a conventional t—test on
1/v overwhelmingly rejects the assumption of conditional normality
for this model. It follows from the formila k = 3(u—2)(u—4)_1
that the conditional kurtosis in (34) is estimated to 3.94. This
compares quite well with a sample kurtosis of the standardized
residuals equal to 3.74.  The unrestricted GARCH(1,1) was also
- estimated with conditionally Student—t distributed errors with the
finding that 1/» = .115(.016). The likelihood ratio test statis-
tic for i/u = 0 equals here 10.183, which again is highly signifi-
cant. The estimated conditional kurtesis for Ehis model is 4.28
while the sample analog is 3.93.

To examine the effects of time aggregation the series was
split into two subseries of 315 non-overlapping biweekly observa—
tions. We confirm the findings by Boothe and Glassman (1985) and
others summarized therein that the unconditional kurtosis declines
with- time aggregation dropping from 4.47 for the whole sample to
an average of 3.55 for each of the two subsamples. However, if
the true model is indeed the integrated GARCH(1,1) model in {34),
the population fourth moment in each case is infinite. The de-
cline in the sample kurtosis might therefore merely be due to the
decline in sample size.

The interesting question in this context is the effect of
time aggregation on thg conditiona]l fourth moment. Recognizing
that an integrated GARCH(1,1) weekly model does not aggregate to

an integrated GARCH(1,1) biweekly model, we proceed to estimate
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this biweekly model. The result for the first subsample is

nt2) - 1182 + (1--118)nf2) /v = .074
(.023) {.002)
The estimated conditional kurtosis for this model is 3.63. This

is in close accordance with the implied estimate from the weekly
model {34)}. Substituting the parameter values from the estimated
weekly model in {32) we obtain an estimate of m(2) = 3.96. Note,
this estimate of x(z) is essentially unchanged from the weekly
estimate, k = 3.94;‘ Thelparameters are just at the point where
the conditional kurtosis does not change with ageregation. The
second biweekly sample has a larger estimated value of v, and

therefore a kurtosis closer to 3.

VIII. NON-LINEAR QONDITIONAL HETEROSKEDASTICITY

One explanation for the success of the conditional Student—t
distribution in medelling the exchange rate series is that the
observations are contaminated by some outliers or extreme values
which make the conditional distribution look fat tailed. If in—
deed thesg exXtreme values are interpreted as outliers, then they
may not be helpful inrpredicting future variances, and furthermore
the estimates in the variance function may be unduely influenced
by a few extreme observations. To examine.this issue, a series
of alternative specifications for the conditional variance were

estimated. Here we shall only consider thé two most successful of

these alternative specifications. These are:
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(35) h . =w+ph + e ™M
t+l T t 1"
and
(36) h . = w+ Bh + 7,(2F(e2/A,) - 1)
t+l ~ t 2 t 2

where F denotes the standard normal cumulative distribution func~
tion. If Al = 2 in (35) the model is simply GARCH(1.1). In (36)

if A, is large relative to the standard deviation of & , the model

2

is essentially linear.

¢’

Models (35) and (36) were both estimated with the same maxi-
mum likelihood routiné using the BHHH algorithm simply by substi-
tuting in the new expressions for the conditional " variances.
Assuming conditional wnormality the likelihood function increases
from 1750.061 for the unrestricted GARCH{1,1) to 1752.571 and
1753.461  for models (35) and (36) respectively. The likelihood
ratio test statistic for {35) versus the unrestricted GARCH{1,1}
equals therefore 5.020 corresponding to the .975 fractile in a

xz(l) distribution. The maximum likelihood estimate of hl is

1.543(.130). The estimated value of lz in (36) is .765'10_3

(.253-10_3). Since the unconditional residual variance equals

o = .268-107, it follows that (A,)"?

= 1.690+0, and there is an
important attenuation of the largest residuals in (36). Also,
(36) exhibits a slightly higher likelihood function than (35) and
converged more easily.

The improvements for the non~linear models are somewhat

greater when the conditional Student-t distribution 1is employed.

In that case the likelihood function increases from 1756.497 for
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the unrestricted GARCH(1,1} to 1760.297 and 1761.730 for wmodels
{35} and (36) respecti#eiy. However, the non-linear models with
conditionally t~distributed errors were much harder to iterate to
convergence. Both the estimates of il = 1.428(.149) and
iz = .408-10_3(.148-10~3) are lower when 1/» > 0. It is interest-—
ing to note that the esfimates of B are very similar across the
six models, ranging from a high of .8391(.013) for (36) with condi-
tionally normal errors to a low of .852(.031) for (35} with condi-
tionally t—distributgd errors.

This new non—linear class of conditional variance models may
provide important improvements for some time series, however in
this case it is mnot clear that the improvements ;re worth the
analytical complexity which arises from the non-linearities. An
alternative approach tdé°' the non-linear models might be to use
non-parametric techniques. For a recent discussion and some
references on this subject see Engle, Granger, Rice and Weiss

(1986).

IX. SOLVING THE ASSET PRICING EQUATION
Using the class of @odels described above it is now possible
to obtain simple closed-form solutions to the asset pricing equa-
tions given in {10), (15} and (16)}. In each case a solution is a
stochastic process forrlthe asset price which depends upon the
process of the forcing variable. In particular, for the forward
contract in {10) the process of the price should depend upon the

process of the spot price, Yoo
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(10) p, =T [E (¥ ) — 8V, (v )]

There are several special cases to be considered in solving
equation (10)}. To illustrate let Y, be a random walk with innova-
tions which follow an integrated GARCH{1,1) process. In that sit-

- uation Ec(y

t+s) =¥, and

s s

2

Velyg,gd = Et(E €eri) = Et(E heyy) =shey
i=1 i=1

so that

-3
(37) P, =T [yt - 5sht+1} .

For a future contract where no money changes hands until the
terminal date at t+s, the alternative sure rate of return is equal

to zero so that r=1. Thus, in that case (37) simpl{fies to:

(38} Py =¥y ~ Osh.y,y

Therefore, if & # O there will be a time varying risk premium in
the future contract. For contracts far in the future new informa-
tion will have a substantial effect on asset prices as it changes
agent's perceptions of the variance of the final payoff as well as
all the intermediate variances. The persistence of the variance
gives time varying risk premia even for contracts many periods in
the future and implies sizeable effects on asset prices. Note,

because the innovation in Ve enters both linearly and as a square
-

in (37) the future price series may exhibit some skewness.
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Suppose now as an alternative case, that Ve is 2 simple rand-
R . . . 2
om walk with serially independent innovations and variance O .

Then Vt(y = 502 and the solution to {10} proceeds in identical

t+5)

fashion. leading to the future contract pricing equation:

(39) P, =Y, - S5t

t
This is essentially the solution achieved by Hellwig (1982), al-
though in a different‘context. The variance of the spot price
also enters the pricing equation in this situétion. but does not
give rise to a time varying risk premium. New information casts
no light on future uncertainty.

Finally, consider the case where the spot price Yo is a ran-
dom walk with iﬁnovations distributed as a stationary GARCH(l.I).
Letting 02 = w/{1-a-B), it follows from (23) that the multi-step
forecasts of the conditional variance of the innovations, ht+s‘

can be written as

2

- @®) = (@) b, - o)

E {h

th tts

and

s

2 2

V(¥pag) = ) 0% Eglby, - 0%)
i=1

S (a+B)°® _

= §02 +‘[h 1-a-f

t+l

By substitution in {10} the solution for the future comstract is:
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P e a2 2, 1 - (atp)®
(40 Py =¥~ 00+ 8h,, -0 1= aamﬁﬁ

When atf < 1. the current information continues to be an important

part of the time varying risk premium even for large s, but the

relative importance decreases with the length of the contract

This 1is in contrast to the solution for the integrated GARCH(1,1)}
model given in (38) wh i i
(38) ere the importance of ht+1 increases with

the length of the contract.

Of course, the set of solutions presentédd here is far from

exhaustive, but merely serves to illustrate the general idea

Namely, that a given solution to the asset pricing equations (10)
(}5) or (16) depends in a crucial way on the distribution of the

-forcing varial i i
= ble, Yo and in particular on the conditional vari-

ance of Y-

X. COONCLUSIONS
The statistical properties as well as the empirical relevance

of the ARCH mogel in modelling risk and uncertainty in economies

is by now well established. In this paper, however, several new

unanswered questions have been raised.

Both from an empirical and theoretical economic point of view
do i

the integrated GARCH models constitute an interesting develop-

me; isti i
nt, but the statistical properties for this new class of models

are largely unknown. Some preleminary Monte Carlo evidence sug—

gests that the knife edge properties when estimating and testing

for a i i i
) unit root in the mean might not be as severe in the inte-
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grated variance models. So far this is a conjecture. Similarly,
the empirical regularity and statistical properties of the more
complicated non-)inear conditonal heteroskedasticity models remain
open questions. Another related issue invelves the problem of
testing for one sided alternatives when the null hypothesis is on
the boundary of the admissable parameter space, as is typically
the case when testing in.GARCH models with non-negativity con-
straints. It would aiso be of interest to see how the aggregation
formulas derived here hold up against a more detailed and broader
empirical analysis. Finally, the validity of the asset pricing
formulas presented throughout the paper, especially the pricing
equations for futures contracts given in the last section, in
explaining observed price behavior is another wvery interesting
question. We leave the answer to all of these quesfions for fu—

ture research.
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DATA APPERDIX

¥Weekly Swiss Franc/Dollar Exchange Rate

(data to be read across rows)

2.7470 2.86890 2.7820 2.7850
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3.0210 3.0180 3.0190 3.0100
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2.89%0 2.9150 2.8940 2.9940
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MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT

Professors Engle and Bollerslev have delivered an excellent
blend of "forest™ and “trees"; their important exteasions of the
basic ARCH{q} model nicely complement the comprehensive survey. In
these comments 1 will focus on some general issues which perhaps
received insufficient attention, as well as on specific issues
related to the authors' new results. In the former category are
the statistical versus economic motivations for GARCH, the effects
of GARCH on other standard diagnosties (in particulax, tests for
linear and nonlinear serial correlation), and multivariate GARCH
modeling. In the latter category are specification caveats
regarding integrated variance models, and the effects of temporal

aggregation on the unconditional distribution of GARCH processes.

The statistical motivation for the ARCH{q) model, as well as
all of the extensions iantroduced by Engle and Bollerslev, is best
seen by recalling the fundamental Wold decomposition: every
covarlance stationary stochastic process may be written as the sum
of 1) a 1inearly determimnistic component, and 2) a linearly

indeterministic component with one-sided MA representation:

{1) b, By » where
jmp J £

(2) £ b2 <=, and
j=0 7

2
E(et eT) =¢ <= if t = 1, 0 otherwise -
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Notice that, while the innovations are uncorrelated, they need not
be independent since neither their conditional nor unconditional
density need be Gaussian. Furthermore, it is only the
unconditional innovation variance E(Ef) which must be comnstant and
finite; this is a restriction of constancy and finiteness on the

expectational integral of the conditional innovation wvariance

(i.e., on EQ(E /o Ei) ), but itzin no way requires constancy of
the conditional variance ({ Es/Q(Et)) itself. 1In summary, then, (1)
allows for a time—varying conditional mean while (2) allews for a
time-varying conditional wvariance. Although all staticonary ARMA
models satisfy (1) and (2), the converse is not true. Similarly,
while all GARCH models satisfy (1) and (2), there are many
conditional wvariance structures not captured by the models
considered by Engle and Bollerslev. The search for a parsimenious
and descriptively accurate subclass of conditional~mean models has
largely ended; we now routinely consider only models with rational
spectral densities {e.g. ARMA models). The Engle-Bollerslev paper
makes great progress in the search for a similar “consensus”
conditional variance specification. 1 believe that the GARCH(p,q)
model, with Student's-t conditional density, is the major
contribution of the paper due to the improvements in descriptive
accuracy and parsimony which it facilitates relative to the
conditionally normal ARCH(q) meodel. The nonlinear conditional
variance models will probably prove less useful, unless as-yet-
nonexistent evidence is uncovered indicating that ‘the linear
specification is an inadequate approximation for economic

phenomena.

The statistical considerations sketched above indicate that
the presence of GARCH is possible, but is it probable in economic
terms? My guess is yes. First, the results of Clark (1973), as
extended by Stock's (1984) iwmportant work on time deformation,
indicate that inappropriate use of a "calendar” time scale may lead
to GARCH-type volatility clustering. Consider, for example, an

econonic variable evolviang at the rate of one step per unit of some
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non-calendar time té.g., "business—cycle time" or “information—
arrival time). Then, relative to calendar Eime, the process
actually evolves more guickly in some periods than in others, with
associated movements in prediction error variances. Stock's work
also provides a good example of the association of continucus—time
phenomena and GARCH effects, as stressed in Professor Sims’'
comments, The linkage between time deformation and GARCH needs
further study, presumably leading to testable restrictions between

the two.

Assuming that there exist economic time series not subject to
time deformation but nevertheless displaying GARCH, we need a truly
economic theory leading to GARCH in an eguilibrium model of
optimizing agents. Because eccnomic theory wusually does not
generate testable implications for higher-ordered moments of
economic variables, this appears an arduous task, but some progress

may not be too far off.

To the extent that GARCH is present in observed economic time
series or in model disturbances, it invalidates other important
diagnostics, such as tests for serial correlation. Domowitz and
Hakkio (1984) develop an LM test for serial correlation which is
robust to heteroskedasticity of unknown form, while Diebold (1986a)
develops serial correlation tests specifically rohust te ARCH. The
relative power of the two approaches depends on the accuracy of the
ARCH approximation; further work on “robustifying” other model

diagnostics is needed as well.

While all covariance~stationary stochastic processes have a
Wold representation (1}-(2), it is not necessarily the most
efficient form for prediction; a well-known example is the class of
bilinear models. GARCH effects in the residuals of linear models
may indicate the superiority of a nonlinear conditional mean
specification, leading to improved point prediction relative to a
linear model with GARCH disturbances. Some initial progress in

distinguishing GARCH from bilinearity {and in combining the two
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models) has been made by Weiss {1986), but further research 1is
needed.

Multivariate GARCH, which is only briefly discussed in the
paper, may prove particularly useful in the modeling of time=~varing
risk premia and general disturbance-related economic phenomena; the
main problem so far has been the huge number of parameters which
must be estimated. Even the "diagonal” model in which conditional
variances depend only on own lags and squared innovation lags, and
conditional covariances depend- only on own lags and innovation
cross products, is tractible only in low-dimensional cases.
Furthermore, the diagonality restriction sometimes appears invalid,
as in Engle,‘Granger and Xraft (1984). A factor—analytic model
with OARCH effects may prove to be a particularly attractive

alternative. Consider the N-dimensional time series {yc} , given

by:
(3 yit=)\iFt+sit,i«-»l, vee, N, =1, 40, T,
where:
EF =Ee, =0, for all i and t
3 it

E Ft FT =0, 2ll € # T, and E Ft €5t =1, alk i, t, T

2
Ft / Qt—l - ?U’ Gt)

- q p
2 2 2
cf =w+ I a, F__.+ LB, 0
L o FoETLgE
E e g, = g, if i = j and £ =T, 0 otherwise.
it it i

In obvious matrix notation, we write the model as:

= +e.
{4) e X Ft €%
Immediately, then,
2
= = Al.’_e
(5) Et = cov, (yt) ct A R

where 8 = cov (g ).

The substantive wmotivation of such an approach is quite
strong. The “common factor,” F, represents general influences
which tend to affect all variables, albeil with different strengths

captured by the li's . The “unique factors,” represented by

MODELLING PERSISTENCE OF CONDITLONAL VARIANCES - COMMENT 535

the Ei's, are uncorrelated variable-specific shocks. The rich (and
testable) conditional variance—covariance structure of the observed
variables arises from their joint dependence on the common factor
F; this leads to commonality in temporal volatility movements
across economic variables, which is frequently observed. For
example, Diebold and MNerlove (1%86) find strong evidence of one
common GARCH-factor in a seven—-variable system of dollar exchange
rates and provide estimates of the corresponding multivariate

nodel.

In c¢losing, 1 bave a few remarks concerning integrated
variance models and temporal aggregation. While the dintegrated
variance model may prove very useful, it should be considered
“dangerous” at this preliminary stage. First, the authors
correctly note that all of the problems which plague conditional
mean unit root tests may carry over to the conditional variance.
In particular, it may prove very difficult in specific cases to
determine whether a trend or a unit root {or both) is operative, in
spite of the fact that the models have very different properties
and implications. Second, the problem of imitial conditions
becomes very important for the estimation of integrated variance
models, which are nonstationary. Third, while one motivation for
the use of the GARCH approximation is that appropriate variance
“forcing" variables are rarely known in the time-series context,
this arguement is less convineing when the wvariance appears
integrated. Integration implies persistent movements in variance,
in which case we should search harder for some economic explanaticn
of the movements. For example, while interest—-rate equations may
appear to have integrated-variance disturbances, it may be due to a
failure to include wmonetary-regime dummies for the conditional
variance intercept, . 'Tyis would correspond to stationary GARCH
movements .within regimes, with an wunconditiocnal “jump" occuring

between regimes.

Finally, in work complementary to the authors' results on the

effects of temporal aggregation on the conditiomal density, Diebold
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(1986b) has shown that temporal aggregation of GARCH processes
leads to unconditional normality, im spite of the faect that
successive observations are not independent. Thus, as a
distributional model for asset returns, GARCH leads to high
frequency unconditional leptokurtosis, volatility clustering, and
convergence to normality under temporal aggregation, all of which

are observed in the data.

Francis X. Diebold

Federal Reserve Board
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COMMENT

As economic theory has turned toward behavior under uncer—
tainty econometricians have increasingly worked with models that
explicitly involve the dispersion of random variables. Robert
fngle's work with conditional heteroskedasticity has been notable
for its methodological innovations, the variants it has inspired
other econometricians to.produce, and the rapidity with which it
has become a standard part of the methodological repertoire of
applied econometricians. In this survey Engle and Bollerslev have
described several of the variants of conditional hateroskedastici-
ty models, and have introduced a new class of models, integrated
in variance.

The models considered in this paper allow conditional hetero—
skedasticity to be persistent., The structure of this persistence
is similar to that for conditional weans in more traditional
linear models. Section II of the paper provides a simple but
important example of the way linear models have been adapted to
this purpose. Taking the paper's equation (4) with & = 0,

e J¥ o~ N(Q,ht); h =y + aei_ (1)

[ = 3 [

In this model it is necessary to have > 0 and o » 0 so that
conditional variances will be nonnegative; a finite unconditional
variance further demands o < 1. These conditions are usually
met in empirical applicétions of two-parameter models of condi-
tional heteroskedasticity., As such models begin to involve more

parameters, e.g.,
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e _|¥ ~ N(D,ht);

- P, 2
el ¥y ht w + I

. :
i=1"1i"g-1"

(2)

Y

the conditions for nonnegative conditional variance are typically

violated by maximum likelihood estimates; e.g., Diebold and

Nerlove (1985).

One can enforce these restrictions by Bayesian

methods, as I have described elsewhere (Geweke 1986a, 1986b).

However, if one were to posit not (1) but

variances would be positive by construction.

e | o~ N(O,ht); log(ht) m o b alog(si_ ) ' (3)

th t-1 1

Since the gradients

are simple,

2 2 )—Qe—w _ 1]’

I
dlogl/dw = (1/2)2__, [st(atml

113

dlogl/da = (1/2)I__, 1og(6§_1)[€

and the log=likelihood function is globally concave with Hessian

A
1 logle ;)

log(si_l) . [10g(5%_1)]2

standard classical methods for inference should be straightfor-

ward.

(1),

It would be interesting to see how this model compares with

and its obvious extension with (2), in some of the empirical

applications taken to date.

of conditional variances.

variance these considerations are even more important.

The model (3) is motivated by thinking about the nonnegativity
In more elaborate models of conditional

An example

is provided by the integrated GARCH models introduced in this

paper.

The leading, simple case is
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_ 2
el¥pey ~ NORD5 By = ael

+ {(l1-a)h

(1~a)h,_,

This model is motivated by the traditional random walk with a unit
toot in the conditional mean, and it shares with the traditional
is positive

model the property Et(ht+s) =h However, h,

t+1°
by construction, and ian this regard it is quite different from a

Just how different is suggested by the higher

{e b

random walk.

momeants of the k—step-ahead conditional distribution of

_ /2 -
let e =h_""z, =z 1IDN(0O,1l), We have
h o= [azz + (1-a)]h
t+s t+s~1i t+s-1°
2 2 4 2 2 2
ht+s - [a Zris-1 + (1-a) +_2a(1_u)zt+s—l]ht+s—l’
2 = (22 2 _ eq 2 s-1, 2
EChp, f) = (o + DEGL, ) = (20" + D7 h,
. 4 2 4 2 s=1.2
Siace E(Et+s'¥t) = E(ht+s'¥t)E(zt+s) = 3(2a” + 17 h,s

2

2 2 s—1
var(etﬁs'yt) = [3(2a + 1) - l]ht+l

. , 2 .
As s increases, the expectation of ¢ remaing the same but

t+s

its variance increases exponentially. This means that for large
2 25 .

s Plep <l =1,

€rrs 22 £ . Just how fast this happens is shown by the examples

in Table

but there is a small probability thac
2
t
1, which provide numerical approximations to the true

distribution of ¢ based eon 10,000 Monte Carlo replications

L5
for some values of & and s. Clearly, the integrated GARCH
process is not typical of anything we see in economic time

series. Similar problems arise if one takes

log(h ) = alog(Ei_l) + (I-a)loglh _,);
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TABLE 1®

Fracrile points for c.d.f. of €c+5|¢t’
Z .2 -

et|q;twl ~ N0, b)), h_=ae _; + (l-adh '

|-—-—-a = 1.0 ~mrrmm | e a = 0.5 —————n
Fractile g=2 s=4 g=6 5;6 s=12 s=18
.005 -3.58  ~4.23 -3.96 -3.67 -3.75 -3.34
050 ~1.63 ~1.06 ~.54 ~1.43 ~1.14 -.82
250 -.37 -.10 -.03 ~42 -.27 -.14
.500 : .00 .00 .00 .00 .00 .00
750 .36 .11 .03 W41 .25 .15
950 1.60 1.03 .56 1.43 1.15 .84

.995 3.75 4.59 4.09 3.42 4.10 3.37

_aFractile points are based on 10,000 Monte Carlo replications.
An indication of the error due to numerical approximation is the
asynmetry of the distribution, since the true distribution is
symmetric about zero.

TABLE 112

Fract}le points for c.d.f. of Et+sl¢t’

= 2 _
Etiwt—l ~ N(O, ht), 1og(ht) = ulog(st_l) + (1 u)log(ht_l)

1 ——————— a = l.0 ——————— i l ——————— a = 0.5 ————-— |
Fractile s=2 s=4 s=6 s=6 s=12 s=18
.005 -3.51 —4,37 —5.45 =2.35 ~1.15 —~.38
.050 -1.59 ~1.04 -.56 ~-.76 -,23 ~.05
«250 -.38 ~,10 -.03 —-o 127 -.019 -.003
.500 .00 .00 .00 .000 000 000
.750 .35 .11 .03 124 021 .003
.950 1.60 1.08 54 .76 .22 .05
.995 : 3.62 4.58 3.28 2.15 1.03 N

8Fractile points are based on 10,000 Monte Carlo replications.
An indication of the error due to numerical approximation is the
asymmetry of the distribution, since the true distribution is
symmetric about zero.
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see the numerical approximations to thé true distributions in
Table 2. The idea of drift in variance is intuitively appealing,
bat is difficult to formalize by analogy with ﬁodels of drift in
meAan.

In most of the models of the persistence of conditional
variance that have been considered to date the degree of persis-
tence and the form of the unconditional distribution are very
tightly linked. 1In (1) or (3), for example, the autocorrelation
function of the conditional variances and the moments of the
standardized conditional distribution are both functions of
a; more autocorrelation implies greater kurtosis in the
unconditional distribution (up to the point where the fourth
moment fails to exist). It would be desirable to treat
persistence and the form of the unconditional distribution as
distinct properties withiﬁ‘the same model, and it 1s encouraging
to see the authors' use of the studeat—t with unknown degrees of
freedom and tﬁe report of the anmalytical tractability of this
model. This is a worthwhile generalization which could be pursued
in models of the persistence of conditional means as well.

John Geweke
Duke University

ADDITIONAL REFERENCES
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constrained normal linear regression model. Journal of Applied
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Geweke, J., (1986b). Exact inference In models with autoregres-
sive conditional heteroskedasticity. Dynamic Econometric
Modeling (E. Berndt, H. White, & W. Barnett, Eds.) Cambridge:
Cambridge University Press. Forthcoming.
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AN EXCURSION INTO CONDITIONAL VARIANCELAND*

I, Introduction

It was a pleasure to read such a clearly written and
helpful paper on a Eapidly developing topic, and Rob Engle and
Tim Bollerslev are to be congratulated on making their ideas
80 accessible. Tne'coﬁcgpt of conditional variances bids fair
to be almost as important in practice as that of conditional
means in some areas of economics, including efficient markets
of the type studied in the paper, and the accurate evaluation
of forecast variances. Moreover, ARCH processes have a
wonderful role to play in teaching econometrics, providing
classical illustrations of many ©points of theory which
hitherto have been left at the abstract level. Consider the
simplest data generating process with ARCH characteristies

(2ee Engle, Hendry and Trumble, 1985):

(1) « - nt/wfae§_1 w, a > 0 with n. = IN(O, 1)

L
Clearly:
2 _ "2
(2} E(et]et"1) =, e ta el
whereas if Jo| < 1:

¥ The title is a quote from eorrespondence with Rob Engle.
Financial Support from the Economiec and Social Research
Council Grant B00220012 is gratefully acknowledged.
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(3) E(€§) = w/(1-a) 2 and E(e

]
(=]

t€t-1)

Hence {et; is:

{a) unconditionally homoscedastic white-noise and

(b) conditionally normaliy distributed although it is ARCH;

but

(¢) successive €, are not independent, and

(d) (e ee. Eq) is not {(jointly) distributed as a multi-’
1 T not

variate normal (it has fatter tails),.

Moreover, in the linear regression model:
£ vy, = X{B *+ €, where x, 1is strongly exogenous for g

(see Engle et al..(1983)); then:

(e) the Ordinary Least Squares estimator § of 8 is B.L.U.E.
and the estimated variance of & is an unbiased estimator of
the actual sampling variance; but

(f) 'OLS can be extremely inefficient asymptotically relative

to the Maximum Likelihood Estimator if o is close to unity; '

and
{g) the MLE of 8 is also unbiased (but non-linear).
Further, Engle et al. (1985) show that:

{(h) a pretest estimator first testing Ho : a = 0 and using.

0LS or MLE (according to the not reject/reject outcome) is

unbiased in this context., Finally:

(1) the Durbin-Watson statistic is an inconsistent test of Ho
as i3 easily proved, Thus, this simple ARCH process hneatly
illustrates a wide range of important theoretical econometrics
ideas and distinctions. Three issues arising in this
pedagogical role merit further analysis: (1) the persistence
of shocks, (2) the fatness of tails to distributions and (3}
how the presence of ARCH in data gets explained in a model.

II. Persistence of Variances

"If you do live simulations in a classroom using (1) to
illustrate ARCH behaviour iIn error terms, be prepared for some

embarrassments: frequently no ARCH effects appear! This is
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pecause (1) actually has remarkably little persistence in the
conditional variance despite equation (5) in the paper. Way?
As noted above, the unconditional expectation of w *+ « 52_1
is o®* and Pr(|n.}f < 1) = 0.68. So in (1) above, two-
thirds of the time, the next shock € is smaller than €p_1
in absolute value (and 40% of the time it is halved or more).
Equation (5) in [Engle and Bollerslev arises because in
variances, big shocks get large weights and s0 a large
variance is required to characterise the whole distribution.
However, the probability of a segquence of "big shocks"™ 1is

small: e.g. Pr(|n | > 2) < .05 =and this would generate an

unusually large &f only if it happered to coinecide with a
value of E;-, already above average. This negative outcome
happens even if a .= 1, which only serves to retain all

(rather than part) of the previous shoek (buyt again merely for
one period). This deseripfion of what appears to happen
numerically when generating data by (1) 1Is consistent with the
findings of Engle et al. (1985) and accounts for their results
to terms of many of the samples simply not "reveazling" the
underlying ARCH effect.

The GARCH process generates manifestly more persistence

as of course does ARCH with a lag of longer than one period.

The extreme is thHe new class of IGARCH processes, which the
authors admit were formulated by analegy with unit rcots in
linear autoregressions. The iatter certainly seem set for a
bright future (see Engle and Granger, 1986 and Hendry, 1986):
are the former? Here the need to restrict w to zero to
avoid a trend in variance is worrying and I would c¢onjecture
that current information gradually fades in relevance as
horizons increase (as in their equation {(6)}, rather than
persisting eternally. Certainly, on weekly data this might be
hard to detect as different from a unit root, which therefore
would be a good firat approximation, although "policy implica-
tions" (e.g. asset purchase decisions) c¢ould differ radiecally
between roots on or within the wunit cirecle for relevant

horizons.
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III, Fat Tails

Since the disturbance term on an econometric equaticon is
the composite of everything not explicitly included in the
model, GARCH errors could refleect a wmultitude of silns of
omission. Whether or not to "treat" a signifticant diagnostiec
test outcome of ARCH or revise the overall model specification
must depend on the context, ineluding both the data series
under analysis and the theoretical model gulding the research.
A large shock treated as hetercscedacticity when estimating
paraﬁeters is downweighted (as in ARCH MLE), in contrast to
ité role in say an adaptive Kalman Filtep {as discussed e.g.
by Strutn, 1984). Agents in an ARCH world would presumably
try to discern permanent from transitory changes in variances
and hence seek to appraise whether or not outlliers wWere
informative (or perhaps simply represented measurement error).

While ARCH processes have fatter tails for {st} than
the Normal) the evidence in the paper and in Bollerslev {1985)
suggests that there remains a need £o assume Ffatter tails than

Normal in the conditional distributions. Like Prucha and
Kelejian (1984) they consider 't'-distributions and gbtain
improved fits. This suggests a need to discount some of the

larger shocks rather than allow them full {inverse) weight in
estimation: alternatively, in a loose sense very large shocks
do not cause &s much variance persistence as the average
shoek. Or relating back to Section II, while GARCH generates
more outliers than the Normal, it also generates more small
values (these persist too) which together are insufficiently
leptokurtic for the data, hence necessitating assuming an
initially leptokurtic distributional form. {Other discussants
-noted alternative functional forms for GARCH itselr, including
log GARCH and these may generate more leptokurtic outcomes.)

IV. The Origins of ARCH in Models

Many data series manifest ARCH (according to eye-ball
tests at least) and modelling this by ARCHEH errors is clearly

cne potential route. The authors are careful to distinguish
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gcases where ARCH only influences the variance from where it
also (or instead) enters the mean. In view of thelr Cindings
on ARCH fer spot pﬁices it would have been very interesting to
aee tests of their theory model of how fqrward prices are
determined (which I found somewhat unpersuasive In the absence
of evidential support, given its switch of exogeneity between
Py and qy and the assumed fixed stock of a risky asset like
foreign currency).

When data are highly autoregressive or even integrated of
order one, denoted I(1) (see Granger, 198t} there must be an
important interaction between functional form-assumptions and
the occurrence of (I)(G)ARCH errors, analogous to that between
heteroscedasticity and funetional form in static models.
Thus, some tests of ARCH-type assumptions seem merited. In
terms of the expository model, insatead of the usual tests for
o2 being constant, testsa for the constancy of {(w, o) should
be employed. Similarly, one might atteampt to discriminate
between conditionél and unconditional heteroscedasticity/

functional form mias-specification {(as in White, 1980), For
the US M1 data in Baba et al. (1985), the ARCH-like behaviour

of the percentage groewth in M1 i= modelled by ecorresponding
patterns in interest rates and hence 1a treated as a property
of the mean - but models of interest rates may in turn require
ARCH errors to explain their rapfd changes in variances.
Thus, the usual modelling problems of choices between repre-
sentations recur and so testing against reasonable alter-

natives remains important,

V. Conclusions

(GYARCH models are an important contribution to modelling
varying variances, with implications as spelt out by Engle andg
Bollerslev for forecast confidence intervals, valid infer-
ences, and efficient estimation, and potential applications to
many economic phenomena. I also consider they have a useful
role in illustrating econometrics concepts.

A further role is considered in Engle and Hendry (1985)

for testing super-exogeneity. Ir B in (4) is asserted not
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to be an invariant, but to alter with changes in some variable

N this gould be tested directly. However, if a legitimate
information set It—1 for predicting Zy existed, then the .
dependence of 8 on the anticipated compohents E(ztlftv1)
aqd. var(zt|It_1} could be evaluated. A more powerful test

would also check for dependence on unanticipated components of
‘mean-and variance corresponding to the decomposition of z,
into {E(zt|It_1)} and vy = zy - E(zy] ;)1 (the latter
being a conventional component of tests for weak exogeneity)

z2

§  into fE(uélIt_1)}. and  {vi - E{vglIt_1)}. The
variance terms could fruitfully be modelled by a (G)ARCH

and of v

process, and the deviation therefrom. Doubtless, many further

roles for (GJARCH models wili appear in due course.

David F. Hendry
Nuffield College, Oxford

August 1986
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COMMENT

The aufhors discuss an interesting ciass of models called the
Generalized Autoregressive Conditionally Heteroskedastic (GARCH)
models, in which both the conditional mean and the conaitional
variance of a time series are functions of the past behavior of
the time serijes. The popularity of the ARCH model is clear from
the number of apolications published since it was introducec in
1982. Motivated by a simpie asset pricing theory the authors
introduce two new models: (i) integrated in variance and {ii)
nonlinear conditional variances. The paper highliights the
relevance of conditional heteroskedastic models andlraises some
important open problems.

The problem of modelling conditional variance is a very
important topic and deserves a serious consideration. A unified
approach to the problem is warranted. Consider a simole AR(1)
mode} Y, = p¥y 4 + & where the innovations €, are uncorrelated
(0,02) random variables. The models considered in the paper
assume that E{Et'¢1—1] = 0 and Eieilwt_11 = h, where ¢ _, is the
information uo to time t-1 and hy is a function of the past. They
considered two formulations for Nes (i} GARCH (a,p} where hy =& +

£9.1a; €2_; + E3.qBjhe_; and (i) nonlinear conditional

heteroskedasticity where h. is a noniinear function of EE_j and
by_.» 3 > 0. Let us consider a ciass of modeis given by

€, = Nthlfz where W, is a seaguence of +id random varjabies with
zero mean and unit variance. Note then that Ezet(¢E—13 = 0 and
E{E%l¢tu11 = ht‘ In the paper it 4s assumed that the

distribution of W, is either the standard normal distribution or a

student's t distribution.
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Suppose we assume that {e%} is a regular stationary time
series with an absolutely continuous spectral density. Then we
can a i i

pproximate the correlation structure of the time series {eg}

by that of a stationary ARMA process. Note tnat e% =h, + v
t

= 2. :
where Ve @ (wt 1} ht 18 a sequence of uncorrelated random

variables. If = 9 z
hy = @+ E5_18; €5 - E§=1ﬂjvt_j then the

2
process ey has the same correlation structure as that of an

ARMA(q,p) process with th

: e AR parameters ©; and the MA parameters
Bj . herefore, for a = p, the sauare of a GARCH(q,p) dinnovation
process has the correlation structure of an ARMA(g,D) process withn

the AR parameters 8, = @t By for 1 € p, ei = ay for i > p and
the Mg parameters g,

A more general model is to aliow for a function ¥ of EE to
be a regular stationary process. For example, we may assume that
Xy = 2n e% is a reguliar stationary process with an absolutely
continuous spectral density. Therefore the correlation structure
of X, can be well abproximated by that of an ARMA process., Note
that X; = &n hy + a; where a, = fn w% is a seguence of iid

random variables. If we now let

- q
nohy = e+ B v X - B8

i j=16

§%e5 = 0 b))

then th i i =
e time series X, = &n e% has the same correlation
5t
. Structure as that of an ARMA(q,.p)} process with the AR parameters
7; and the MA parameters §. . Assume that g > p, and let

J

a; =% - 4; for i £p and @ =Yy, 1> p and 65 . Alsoc, assume

that 9 q0; + ER_;8; < 1 . Note then the R0g-GARCH(q,p) is
given by € = W, hglz where

c q FOEEN- & ;
hey = @ ["i=1(et—i) 1] ["j21(ht~j)JJ] '

and {Ht} is @ sequence of iid random variables. We can define

#0g-GARCH{q,p) to be integrated in variance if

q
Efoqe; + £§=1dj = 1. It can be shown that if
W, =2, or W, = sgn(Z, - 0.5) exp[0.5(2t - 0.5)] where {Z;}

is a se i
quence of standard normal variables then both Xy = &n e%

2
and €; have ali of the moments finite. Since the innovations a
t
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in the model for X, are iid the traditional time series
identificatfon and estimation procedures can be used to model the
20g-GARCH(g,p) process. For the f0g-GARCH model the marginal
probability density of {&%} can be derived. Consider now

the probiem of testing for unit roots.

1. Testing for unit roots ip the wean model:

1f the innovation process is either GARCH{g.p) or
20g=GARCH(q.p) With E9_jo; + £3.q8; < 1 then the Dickey-Fuller
criterion for testing p = 1 based on the ordinary least squares
estimator By, g is valid. If the jnnovation process is
integrated in variance then n~l £2=1E§ converges to a random
variable and hence I do not petieve that the Dickey-Fuller
criterion will be valid to test o = 1.
2. Testing for unit rogts in the variance mode} :

Since the innovations a; in the %og-GARCH(g,p) model are 1iid,

Dickey and Fuller {1979) and Said and Dickey {1984) procedures can

be used to test the integrated in variance hypothesis. However,
there is no reason to believe why such tesis should be valid when
the innovation model is GARCH{qg,p).

Finally, the maximum 1ikelihood procedure suggested in the
paper requires the evaluation of numerical derivatives. Also, the
ML estimators may be sensitive to the distributional assumptions.
This is because higher moments enter the information matrix. A
4-stage least squares procedure similar to the one suggested in
pantula {1985) may be more robust. '

I must congratulate the authors for their contribution to the
econometric literature. In the next few years, much progress is
sure to be made on these and other alternative aporoaches to
modelling conditional heteroskedasticity. In this process of
advancement, the ideas provided by Engie and Bollersiev are

important and thought provoking.

Sastry G. Pantulas
North Carclina State University
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COMMENT

One would think that providing a summary of a literature that
has had only a few years to develop would be a relatively simple
task. For the literature on ARCH models, this is clearly not the
case. Upon my first reading of this paper by Professors Engle and
Bollerslev, 1 was struck by the sheer quantity of high quality
research that has emerged since Professor Engle's original paper
was published in 1982 -- the authors cite thirty-six papers that
either apply or extend the ARCH framework. This is, however, just
the tip of the iceberg as the LM-test for ARCH errors has become a
routinely applied regression diagnostic. Therefore, even though
the i°-ervature is still in its infancy, it seems an appropriate
cime to take stock of what has been accomplished with this model
and to set a course for future research in the area.

The paper prevides a very readable survey of both.the statis-
tical aspects of modelling conditional variances and the economic
implications of these models for simple equilibrium asset pricing
equations. Further, the'paper explores a number of interesting
excensions to the familiar ARCH and GARCH specifications: (i) a
new cliass of models that are integrated in variance 1is proposed as
a way of parameteriziug conditional variance processes with long
memories, (ii) models with conditional Student-t densities are
employed to allow the degree of conditicnal kurtosis to be esti~
mated rather than imposed, and finally, (iii) parameterizations for
the conditicnal variance process that allow for nonlinearities in
lagged innovations are also proposed. I will focus my discussion
on the first of these extensions concentrating on some of rhe

unresoclved issues that the authors have raised.
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The authors motivate their analysis of integrated variance
models in part by noting an empirical regularity in the conditional
variance process of a GARCH(1,1) model applied to weekly changes in
the spot Dollar/Swiss Franc exchange rate. The sample autocorrela-
rions and partial autocorrelatioms of the squared innovatiocns pro-—
cess remain large for long lags. Further, the parameter estimates
for the variance process in the fitted GARCH(1,1) model have a sum
close to one which is a necessary condition for an integrated
variance model. This property of exchange rates does not appear
to be specific to the particular currencies or data set chosen in
their example. McCurdy and Morgan (1985, 1986} present similar
evidence for GARCH(1,1) models applied te both futures and spot
prices for a wide variety of currencies measured both daily and
weekly. These inferences, as noted by the authors, are strictly
casual since a formal testing procedure has not yet been developed.
The methodology would obviously be more complete if the theoretical
issuss surrounding tests of this hypothesis were resolved. The
message in the data, however, seems sufficiently strong to indicate
that conditiconal variances demonstrate a degree of persistence that
is well approximated by an integrated variance process. If we,
therefore, assume that persistent variance models are an important
consideration when characterizing risk and uncertainty in economics,
a number of statistical and economic issues arise as a result. I
will briefly address two such issues.

One of the most popular applications of ARCH and GARCH models
has been in estimating time-varylng risk premiums in finsncial data.
As noted in the paper this application is a natural implication of
¢imple equilibrium asset pricing theory. By including conditional
second moments in the mean of 2 regression, risk premiums are
modelled exactly, as in the asset pricing theory provided in the
paper, or at the very least they are well approximated. The authors
¢ite numerous applied papers that exploit these time varying second
moments to capture market returns to bearing risk. Unfortunately,
in the empirical examples provided in the paper there is noexplicit

role played by risk premiums. One could, however, envision appli~
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cations in which the innovations follow an integrated GARCH{1,1)
process, and the conditional variance enters the regression mean
through a time-varying risk premium. Two fundamental problems
arise in this situation. First, the identification of the order

of the conditional variance process and the search for integration
in this process through the inspection of the correlation structure
of the squared innovations may prove unsuccessful since the innova-
tions or forecast errors cannot be distinguished from risk premiums
until the GARCH process is itself specified. This problem is evi-
dent in specificaticns such as equation (14) of the paper. The
magnitude of the effect this has on the estimated correlations is
difficult to anticipate but is sure te be problem specific. A
second (and perhaps more serious) problem involves the statistical
properties of a maximum likelihood estimator for an integrated
GARCH-M model. As noted by the authors with respect to the esci-
mated model in equation (24), under the null hypothesis of an inte-
grated GARCH process the unconditional fourth moment of the innova-
tion process is infinite. Therefore, including as a regressor the
conditional second moment of the impovation process, which is a
function of the squared innovation process, implies a regressor
with an infinire population second moment, i.e., the fourth moment
of the innovatiom. This clearly violates the classical conditions
most commonly employed to justify asymptotic normality of maximum
likelihood parameter estimators. For these reasons, it would seem
that an applied researcher must approach the identification and
estimation of 2 GARCH-M model when integration in variance is a
consideration with extreme caution.

4 second issue that I would like to address relates to the
economic environment that could in fact be generating time series
that exhibit integration in variance. AL the present time it is
difficult to point to an economic theory that has integration in
variance as a direct implication as is the case with integration in
the mean [for example Hall (1978} derives integratiom in the mean
of consumption as a consequence of intertemporal optimization by

households]. This is obviously a difficult problem well beyond the
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scope of this short comment. However, in an attempt to shed some
light on this issue, I will proceed in a comewhat different direc-
ticn. By generating data from a fairly well received asset pricing
model we can examine the correlation structure of squared iunovation
processes and perhaps learn scmething about the type of economic
behaviour that could generate persistent comditional variances. 1
have, therefore, constructed a simple example from a dynamic
stochastic general equilibrium model of the term structure of in-
terest rates based on the work of Backus, Gregory and Zin £1986).

A representative agent maximizes time additive expected utility
over his infinite lifetime consuming a stochastic endowment of a
single commodity in each period. Relative prices of state-contin-
gent claims are derived from marginal rates of substitution and the
size of the endowment each period is determined by a finite state,
stationary Markov chain. TFor complete details of the model and its
calibracion, the interested reader is referred to Backus, Gregory
and Zin {1986). For the purpose at hand, it is sufficient to note
that when calibrated with actual time series data this asset pricing
model generates price data that closely mimic the behaviour of
actual asset price series. It would be of some interest to examine
whether such a model is capable of generating the persistent con-
ditional variances that are so prevalent in foreign exchange data.

In the following example the artificizl economy had three

states for the growth rate of the consumption endowment with a high
degree of persistence specified for the conditional process gener-
ating these growth rates of endowments. The average sample auto-
correlations and partial autocorrelations for the square of the
innovation to the spot price for a two-pericd discount bond were
computed. The experiment was replicated 1000 times and 500 time
series observations were genmerated at each replication. The aver-

age correlation structure is as follows:

Lag 1 2 3 4 5 8 10
ple .23 . .Q5 .02 .007 L0004 -.001
Prre .23 .06 .01 -.001 -.002 -.002 -.003

L
g =T %= .047
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It is clear from these resulets that this economy failed to generate
the type of persistence in variance that would require an integrated
variance specification. Combining the risk premium with the inno-
vation process did net contribute appreciably to the persistence in
the variance. Further, these autocorrelations are indicative of
the behaviour of economies with different Markov forcing processes
and different degrees of risk aversion.

It is extremely difficult to generalize from such a stylized
model, but perhaps two obvious points can be made., First, the per-
sistence of the conditional variance seems to depend directly on
the serial dependence of the forcing precess. In this case, a first
order process was assumed based on the observed time series be-—
haviour of growth rates in aggregate consumption. A higher order
process could conceivably generate conditional variances with more
persistence, however, the model would be poorly calibrated. Second,
even though this model is capable of generating data with first
moment properties that closely resemble actual term structure data,
the second meoment properties of the artificial data do not reflect
the behaviour of second moments in exchange markets., The obvious
implications being that this model is inappropriate for describing
foreign exchange behavicur on a weekly or daily basis and alse that
consumption based medels of asset pricing are not very likely to
generate conditional variance processes with long memories. In
general, it seems that little is knewn about the source of persis-—
tent variances and how they are related to the structure and the
underlying sources of uncertainty in an equilibrium asset pricing
model. Theoretical guidance would seem to be especially valuable
in this context given the unresolved statistical issues surrounding

testing the integrated variance hypothesis.

Stanley E. Zin

Queen's University
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REPLY

We would like to thank the discussants for their careful and
insightful comments on our paper and in fact on the whole
development of conditionally heteroskedastic models in economics.
Several themes reappeared in most of the discussions and these ve
would like to treat first. We would like to discuss the economic
underpinning of GARCH or Integrated GARCH models, the simulation
properties of IGARCH models, and the appropriateness of the log
GARCH formulation.

Most of the discussants particularly Hendry, Diebold and Zin,
sought an economic model which could motivate the GARCH model o7
more specifically , the IGARCH model. We agree entirely with this
objective. Our first response however is that it is not
heteroskedasticity but homoskedasticity which needs to Dhe
justified as it is a restriction on the possible conditional
densities. Once heteroskedasticity is taken as a potential
complication of rteal data, the question of the parameterization
and modelling of the process becomes important. A simple approach
is to assume that there is an unmeasured variable which causes the
heteroskedasticity but that it is only slowly evolving. In this

context, it can be shown that an optimal predictor of the variance
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would depend only on past residuals, not on the full information
set. The form of such dependence hinges on the process of this
unobservable cause. Possibly if it has a unit root, the variance
process would also be integrated.

Hendry also tacitly suggested another approach which is to
consider the variance process as composed of permanent and
transitory components. Such a model in time series is an
unobserved components model with a unit root in the permanent
component. The observable process therefore also has a unit root.
Applying this approach to the GARCH models might lead to more
complex dynamics with a unit root in variance.

A complimentary justification can be found in the continuous
time stochastic differential equations used so often in analysis
of financial data.

dy = f(y,o)dt + g(yr,a)dz}r

do = k(y,o)}dt + l(y.a)dza
where dz are standard Brownian motion, y is the asset price and
g{y.o) is its instantaneous variance. The expectation of o at some
point T+h in the future made at time T,is given by a complicated
Ito stochastic integral which will depend upon the state variables
¥ and Op- Although the process is not a discrete time IGARCH, it
has the persistence property of such processes as well as slowly
changing variance.

A second point raised very persuasively by John Geweke is
that a process with a constant second moment and a fourth moment

which goes to infinity. must have most of its probability

MODELLING PERSISTENCE OF CONDITIONAL VARIANCES - REPLY 83

distribution centered about =zero. In the simplest integrated
ARCH{1) model,
ely. . “N(OL). b ==
t'Te-1 B A t t-1

it is clear that whenever e equals zero, all subsequent e's will
be zero. Thus zero is an absorbing state. Furthermore since zero
is the mean of the distribution and the variance is finite, it
follows from Chebyschev's inequality that there is a positive

probability of e being arbitrarily close to zero and thereby

t+s
getting a whole string of e’s close to zero. Geweke's simulations
indicate that the density for this process masses about zero for
very short series. After six steps the theqretical variance
remains unity, but 90% of the distribution lies below .56 in
absolute value while 99% lies below 4. Thus there are very long
tails but the bulk of the probability lies very close to zero.
For the GARCH(1,1)}
h = ae? |, + (l-a)h
4 t-1 -1

with parameter a=.5, the corresponding numbers after 18 steps are
.84 and 3.35 respectively. In this case it takes a string of
small e’s to drive the conditional variance close to its absorbing
state.

The estimated value of a from the foreign exchange data was
muich smaller than the values used by Geweke. Taking the estimate
of .1 as the true value some additional similations were carried
out. Visual inspection of 1000 steps of the first three

simulations cenfirms the general tendency but notes that it occurs

much later. All three showed bursts of volatility as one expects
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from GARCH processes for the first 400-800 observations, however
the amplitude in each case decreased substantially by mumber 1000.
As our data set was OC0 observations long, this is exactly the
relevant region. A histogram of the GOOth step from 2000
similations revealed a concentrated distribution with a 90% point
of .41 and a 99% point of 2.46. Thus again we see a concentrated
distribution but not one which has collapsed to zero. Although
many of the simulations decrease in amplitude, a few become very
large. Interestingly. there is no natural starting point for such
a series; a scaled picture of the distribution starting at any
point in its history will look the same. The problem is wuch like
the random walk model which has theoretically imfinite
unconditional variance, but conditional on a starting value, the
variance is finite and the distribution is centered.

A possible implication of this analysis is that the drift
term in the ICARCH formulation should be allowed. With any drift,
zero is no longer an absorbing state and further simulations
suggested that a very small intercept would eliminate the tendency
of the distribution te collapse to =zero. Furthermore, the
empirical results we report suggested that the data also support a
drift parameter for the model.

The third point raised in both Geweke and Pantula's
discussions was an alternative parameterization of the ARCH
process to deal with the non—negativity restrictions inherent in
variance models. They suggest a log—GARCH formulation:

~ _ 2
e ¥y “MOh), logh =e+aloge y+Flogh
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which of course could have its integrated version. No longer must
the parameters o,a,8 be positive. Geweke shows that the log
likelihood is globally concave with respect to o and a, and
Pantula shows that In e% may be assumed to be a regular stationary
process with an absolutely continuous spectral density which may
be approximated by an ARMA or ARIMA process with independent and
identically distributed inncvations. Consequently, standard
identification, estimation and testing procedures can be used,
including Dickey Fuller types of tests for the unit root in
variance. We think this line of modelling should be pursued but
have several reasons to believe it will nct provide a useful class
of models. These reasons are again centered on the possibility
that & will be close or exactly equal to zero and therefore log &
will go to minus infinity.

In the log—-GARCH model with o > O, zero is again an absorbing
state since any single zero in the & process will make the
subsequent h equal to zero and thus all succeeding e’s will be
zero. Notice that one zero collapses the subsequent distribution
regardless of the size of . Of course if a < G any e, = 0 will
lead to an infinite variance next period. The tendency for the
integrated log model to decay to zero is even more pronounced in
Geweke's simulations with ¢ > O. Although the probability of 6. =
0 1is =zeroc, in practical applications with observable and
inherently discrete data, that is not the case. Indeed for the
exchange rate data studied in the paper, nine of the changes were
exactly zero. When e is a residual from a linear regression model

such as
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e =y - xB

then the log likelihood with respect to 6 will be particularly
i{11-behaved. For any value of 8 where one or more e’'s are ZeTo,
the log likelihood will be minus infinity. For a single
explanatory variable there will generally be a pole for each
observation so that the log likelihood will be as rough as a saw
blade. It is our belief that these complexities will outweigh the
previously mentioned advantages of the log model.

Diebold, Hendry and Zin each felt the need for additional
guidance in specifying a GARCH model. Specification tests of
various kinds such as tests for serial correlation in the presence
of ARCH, for constantancy of the ARCH parameters, for the lag
length and structure of the GARCH process as well as tests for the
degree of integration in variance were requested. In fact, all of
these are easily available as Lagrange Multiplier tests and
several were calculated in the paper. Tests for serial
correlation and tests for the order of the GARCH nodel were
regularly computed and are reported. Both Diebold and Zin were
concerned that asymptotic theory would break down in the presence
of the IGARCH model. In fact, Diebold went so far as to cali it
"dangerous”. The IGARCH-M model would indeed have z regressor with
infinite fourth moment as an independent variable and therefore
the test statistics might be non—Gaussian. This however remains
to be shown since the model is essentially transformed by the same
variable for heteroskedasticity. In any case a damped or bounded

function of the variance could turna out to be the preferred
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functional form. Finally, we would agree with Diebold that the
multivariate version of this model possibly with factor structure
or integrated or co—integrated multivariate variance processes is
an interesting next step. It should serve to better deal with the
portfolio issues which are so important in financial analysis.

In conclusion, we would like to thank the discussants for

extremely interesting and constructive comments.

Robert F. Engle
{Iniversity of California, San Diego

Tim Bollerslev
Northwestern University




