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1 Introduction

Most financial and macroeconomic time series exhibit time-varying volatility. Accurate assessments

of said volatilities are important for financial decision making and the evaluation of economic

policies alike. Accordingly, a large econometrics literature has emerged over the past several

decades dedicated to the development of ever more reliable volatility estimation procedures. We

add to this burgeon literature by providing new optimal range-based volatility estimators.1 We rely

on a novel decision-theoretic approach together with a coupling-type asymptotic representation to

explicitly tailor the form of the optimal estimator to the volatility measure of interest and relevant

loss function. In so doing, we demonstrate nontrivial efficiency gains for the new optimal estimators

compared to commonly used procedures.

Prompted by the increased availability of high-frequency intraday prices for a variety of fi-

nancial assets and markets, most of the volatility estimation procedures proposed in the more

recent literature have been nonparametric, built on the notion of ever finer sampled returns and

corresponding infill asymptotic arguments (see, e.g., the introductory discussion in Andersen and

Bollerslev (2018)). In a stylized theoretical setting, the use of finely sampled intraday returns

naturally affords more accurate volatility estimates than the use of coarser, say daily, returns. Em-

pirically, however, the presence of market microstructure “noise” presents formidable challenges

to the direct use of ultra high-frequency returns, necessitating more advanced robust inference

procedures and/or the use of “not-too-finely” sampled intraday returns (see, e.g., the discussion in

Jacod et al. (2017) and Li and Linton (2022), along with the many additional references therein).

Meanwhile, pioneering work by Parkinson (1980) and Garman and Klass (1980), dating back

almost half-a-century, first demonstrated the increased accuracy for daily variance estimation af-

forded by harnessing the richer information embedded in the daily high-low range and so-called

“candlestick charts,” comprised of the open, high, low, and close prices over the day.2 This type of

daily data has long been freely available for a vast array of financial assets. It is now also readily

available on an intraday basis.3 Importantly, and in parallel to the common use of “not-too-finely”

1Following the existing literature, we will refer to any estimator that exploits not only the information in the

high and low prices over a given time interval, but also the first and last prices over the interval, as a “range-based”

estimator. When there is no ambiguity, we will also frequently use the word “volatility” as a catchall for any scale

measure, the variance included.
2Candlestick charts are also routinely used by finance practitioners in the formulation of technical trading strate-

gies. The first such documented use of candlestick charting dates back to the 18th century and the Japanese rice

trader Munehisa Homma; see, for example, Nison (2001) for an introduction to the main ideas.
3High-frequency candlestick data is provided by various online trading platforms (e.g. E-Trade, Robinhood),

publicly available databases (e.g., Yahoo Finance), and commercial databases (e.g., Bloomberg, Tick Data, TAQ).
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sampled high-frequency intraday returns, intraday candlesticks sampled at “not-too-fine” a fre-

quency offer a similar built-in robustness to market microstructure noise, and as such holds the

promise of easy-to-implement improved volatility estimation.4 Yet, it remains an open question

how to optimally exploit the full information inherent in such candlesticks for said estimation?

We rely on ideas from decision theory to provide a definitive answer to this question. Classical

decision theory generally invokes specific parametric distributional assumptions to determine the

optimal estimator that minimizes the specific risk. By contrast, our high-frequency framework

adopts a nonparametric approach. We leverage the infill asymptotic “coupling” method recently

developed by Bollerslev et al. (2021) to bridge the gap between our setting and the classical

decision-theoretic approach. This enables us to derive unique optimal high-frequency range-based

spot volatility estimators corresponding to particular loss functions (e.g., Quadratic or Stein) and

volatility measures (e.g., σt, σ
2
t , σ

4
t , or σ−1

t ). For spot estimation based on a single candlestick,

we derive closed-form analytical expressions for the optimal estimators. These estimators are non-

standard, but straightforward to implement in practice. In cases involving multiple candlesticks,

we provide semi-closed form solutions for the optimal estimators and illustrate how to employ

machine learning tools to numerically compute the optimal estimation functions.

Our results are most closely related to the recent work of Li et al. (2022). Extending the original

analysis in Garman and Klass (1980) based on the assumption of a continuous-time price process

with constant volatility to a high-frequency nonparametric infill asymptotic setting, Li et al. (2022)

propose a range-based estimator for the spot volatility that achieves the minimum asymptotic

variance within the class of unbiased linear estimators. Their proposal may be regarded as the best

linear unbiased estimator (BLUE) for spot volatility. While that analysis is informative, it is also

incomplete, and by design much simpler than the present analysis. In particular, a priori restricting

the functional form of the estimator to be linear simplifies the search for the “optimal” estimator

to a search for the optimal set of weights, as opposed to a search for the risk-minimizing estimator

in an infinite-dimensional functional space. Importantly, restricting the functional form also does

not guarantee that the resulting “shape-constrained” optimal estimator is actually the optimal

estimator.5 Indeed, as we demonstrate below, the “unconstrained” optimal nonparametric range-

4Extending our ideas to range-based estimation with even finer sampled intraday candlesticks for which the noise

cannot be ignored would be an interesting direction for future research. However, as discussed further below, the

requisite task of pinning down the fine structure of the noise and the underlying economic mechanisms presents

formidable challenges beyond our main research question.
5Of course, seemingly ad hoc functional-form restrictions do not necessarily result in efficiency loss. For example,

in Gaussian linear regression models, the ordinary least-squares estimator is also the uniformly minimum-variance

unbiased estimator by the Lehmann–Scheffé theorem (see, e.g., Shaffer (1991)). That is, the BLUE estimator is also

the best unbiased estimator (BUE); see also the related recent discussion pertaining to possibly non-Gaussian linear
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based spot volatility estimators derived here often provide nontrivial efficiency gains compared to

existing procedures hitherto derived in the literature under various simplifying assumptions, the

classical Garman–Klass estimator and the BLUE estimator of Li et al. (2022) included.

Further relating our work to the existing high-frequency literature on nonparametric volatility

estimation, most of the prior theoretical work on optimal estimation of spot volatility (see, e.g.,

Foster and Nelson (1996), Comte and Renault (1998), Kristensen (2010), and Chapter 13 in Jacod

and Protter (2012)) has primarily been concerned with rate optimality. However, that optimality

criterion sheds little light on the estimators’ actual finite-sample performance.6 Another strand of

the literature has instead been concerned with the semiparametric efficient estimation of integrated

volatility functionals (see, e.g., Mykland and Zhang (2009), Jacod and Rosenbaum (2013), Renault

et al. (2017), and Li and Liu (2021)). The optimality concept typically adopted in that literature

has been built on the convolution theorem and the related local asymptotic minimaxity results

for locally asymptotically mixed normal (LAMN) models (see, e.g., Le Cam (1960), Hájek (1972),

Jeganathan (1982, 1983)). By contrast, our coupling theory directly links the nonparametric range-

based spot volatility estimation/decision problem with a non-Gaussian limit experiment. As a

result, the functional form of our new optimal estimators generally depend on the loss function

and are quite nonstandard, although straightforward to implement in practice.

The remainder of this paper is organized as follows. In Section 2, we start by outlining our

nonparametric high-frequency setting and basic assumptions, followed by a discussion of our key

coupling arguments. We then introduce the new optimal range-based spot volatility estimators and

provide a characterization of their asymptotic properties. Section 3 illustrates the practical appli-

cability of the new estimators, and shows the intraday candlestick-based spot volatility estimates

for a market portfolio for each of the eight 2022 prescheduled Federal Open Market Committee

(FOMC) announcement days. We conclude with a few suggestions for future research. All proofs

are included in the Appendix, while additional theoretical and numerical results can be found in

the online Supplemental Appendix.

regression models in Hansen (2022) and Pötscher and Preinerstorfer (2022).
6Kristensen (2010) does seek to characterize the optimal choice of the smoothing kernel. However, the underlying

assumption that the volatility process has differentiable sample paths rules out all Brownian stochastic volatility

models, as well as any model featuring volatility jumps.
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2 Nonparametric Range-Based Volatility Estimation

2.1 Theoretical Setting and Decision-Theoretic Framework

The (log) price process P is assumed to follow an Itô semimartingale defined on a filtered probability

space
(
Ω,F , (Ft)t≥0,P

)
of the form

Pt = P0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, 0 ≤ t ≤ T, (2.1)

where the drift process b and the volatility process σ are both càdlàg adapted, W is a standard

Brownian motion, and J is a pure-jump process driven by a Poisson random measure. We are

interested in the optimal nonparametric estimation of the pth power of the spot volatility, σpt , at

some fixed time t under a standard infill asymptotic setting with the sampling interval ∆n → 0.

We will focus our discussion in the main text on cases with p = 2 (variance) and p = 1 (volatility).

The same ideas may similarly be applied in the construction of optimal estimators for other powers

p.7

The baseline Itô semimartingale in (2.1) is directly motivated by no-arbitrage arguments. How-

ever, it is well-known that the process is misspecified empirically at ultra high, or tick level, fre-

quencies. In addition to a host of market microstructure frictions that “contaminate” the actually

observed prices (see, e.g., Diebold and Strasser (2013) for a discussion of the underlying economic

mechanisms), prices are also not truly recorded on a continuous-time scale. The most commonly

used approach to circumvent these difficulties for the purpose of volatility estimation is to “down-

sample” the available data, and rely on returns at “not-too-high” a frequency 1/∆n. The practical

choice of ∆n has typically been guided by the so-called volatility signature plot introduced by

Andersen et al. (2000) (see also the discussion in Hansen and Lunde (2006), and the recent for-

malization of that approach in Aı̈t-Sahalia and Xiu (2019)). The new estimation method proposed

here is similarly intended to be used with “not-too-finely” sampled data. Put differently, acknowl-

edging that the workhorse Itô semimartingale model is only meant as a plausible approximation

over “coarser” time scales, effectively allows us to follow the common approach in the literature

and remain agnostic about the fine structure of the market microstructure noise.8

7Analogous results for p = 4 (quarticity) and p = −1 (precision) are presented in the online Supplemental

Appendix.
8Alternatively, one could impose more explicit assumptions about the form of the noise, and the way in which

the prices observed at ultra high frequencies differ from the efficient prices. However, it is far from obvious how

the noise component should be modeled, plus the “right” choice is invariably asset and/or market specific. For

instance, are the conditional moments of the noise constant or time-varying; does the noise exhibit conditional

and/or unconditional serial dependence; should the noise be treated as “small” (i.e., local-to-zero) or “large;” is the
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The existing high-frequency econometrics literature on nonparametric volatility estimation has

primarily been focused on estimators formed using high-frequency returns; i.e., Pi∆n − P(i−1)∆n
.

We augment the information in the high-frequency return by “looking inside” the ∆n time-interval

through the lens of high-frequency candlesticks. More specifically, denote the ith sampling inter-

val by Ti = [(i − 1)∆n, i∆n]. The corresponding candlestick then provides information on the

open, high, low, and close prices, formally defined by P(i−1)∆n
, supt∈Ti Pt, inft∈Ti Pt, and Pi∆n ,

respectively. This information may be summarized in the form of the three (normalized) returns

ri ≡
Pi∆n − P(i−1)∆n√

∆n
, ui ≡

supt∈Ti Pt − P(i−1)∆n√
∆n

, li ≡
inft∈Ti Pt − P(i−1)∆n√

∆n
, (2.2)

where ri denotes the usual open-close return traditionally used for high-frequency-based volatility

estimation, and ui (resp. li) refers to the high (resp. low) return brought by the candlestick

(to help fix ideas, see Figure 1). All range-based estimators may be expressed as functions of

(ri, ui, li). To facilitate our representation and subsequent discussion of the optimal estimators, it

is convenient to also define the scaled range wi ≡ ui − li (as also indicated in Figure 1), and a

measure of asymmetry ai ≡ |ui+li−ri|. The asymmetry measure quantifies the absolute difference

between the lengths of the “wicks” above and below the rectangular box of the candlestick. The

candlestick is symmetric if and only if ai = 0.

To more clearly highlight the key novelty of our approach, we first focus on estimators based

on a single high-frequency candlestick “neighboring” t in the sense that |i∆n− t| = o(1).9 Optimal

estimation with multiple adjacent candlesticks is discussed in Section 2.4. Accordingly, we will

express our estimators for σpt generically as

S = f(ri, ui, li), (2.3)

for some function f(·). Since spot volatility is fundamentally a “scale parameter,” we will restrict

our attention to scale-equivariant estimators, requiring the function f(·) to be homogeneous of

degree p, that is, f(λx) = λpf(x) for any λ > 0. We will further refer to the estimator as regular

noise correlated with the latent efficient price (see, e.g., Kalnina and Linton (2008), Zhang et al. (2005), Jacod et al.

(2017), and Li and Linton (2022)). Further complicating matters, the broader econometrics literature on nonclassical

measurement errors (see, e.g., Schennach (2020)) also calls into question the “classical” additive separability and mean

independence assumptions routinely invoked in the high-frequency econometrics literature, and instead suggests that

the noise may be better accounted for using nonclassical models (as in, e.g., Berkson (1950) and Hyslop and Imbens

(2001)). Hence, while it is conceivable that the new approach developed here could be extended to allow for the

use of ultra high-frequency data by explicating the “fine structure” of the noise, any associated theoretical efficiency

claims would come with the perhaps even more challenging task of justifying the additional requisite assumptions.
9Note, the index i generally also depends on n. We purposely suppress this dependence in our notation so as to

avoid nested subscripts.
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Figure 1: The figure shows two prototypical candlesticks, bearish and bullish, comprised of the

open, high, low, and close prices. The corresponding return ri, range wi, high return ui, and low

return li, as defined in equation (2.2), are explicitly highlighted.

if f(·) is continuous (Lebesgue) almost everywhere. This regularity requirement seems rather

innocuous. However, it ensures that any candidate estimator has a limit distribution that is also

scale-equivariant.10 As shown in Theorem 1 below, it also proves sufficient to “couple” the original

nonparametric estimation problem with a much simpler limit decision problem.

In the analysis of scale estimation problems, it is also standard to gauge the estimator’s per-

formance by a scale-invariant loss function. For any non-negative loss function L(·) this is readily

achieved by considering the scaled loss L(S/σpt ). Correspondingly, the risk of the estimator S may

be succinctly expressed as

R(S;L) ≡ E[L(S/σpt )]. (2.4)

It is impossible to obtain an optimal estimator that minimizes R(S;L) under the general non-

parametric model in (2.1). Intuitively, as the joint distribution of the data vector (ri, ui, li) is

determined by the unknown joint law of the (b, σ,W, J) process this would essentially amount to

an optimization problem with an infinite-dimensional nuisance parameter. Importantly, however,

under mild regularity conditions on the price process, the multiplicative estimation error S/σpt may

10This mirrors the notion of regularity in Gaussian shift limit experiments that requires the estimator to be

asymptotically location-equivariant (see, e.g., Van der Vaart (1998)).
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be shown to be asymptotically pivotal for any regular scale-equivariant estimator. Consequently,

the asymptotic loss and risk are both nuisance-free, simplifying the optimality analysis.

The following regularity condition, which is standard in the literature on nonparametric volatil-

ity estimation (see, e.g., Jacod and Protter (2012), Jacod et al. (2021), Bollerslev et al. (2021),

and Li et al. (2022)) suffices for this pivotalization scheme to obtain.

Assumption 1. Suppose that the price process P has the form in (2.1) and that there exists

a sequence (Tm)m≥1 of stopping times increasing to infinity and a sequence (Km)m≥1 of finite

constants such that the following conditions hold for each m ≥ 1: (i) for all t ∈ [0, Tm], |bt|+ |σt|+
|σt|−1 + Ft(R \ {0}) ≤ Km, where Ft denotes the spot Lévy measure of J ; (ii) for some constant

κ > 0, E[|σt∧Tm − σs∧Tm |2] ≤ Km|t− s|2κ for all s, t ∈ [0, T ].

Assumption 1 necessitates that various processes are bounded by a finite constant Km up to

a stopping time Tm, without requiring the bound to hold over the entire sample span. This setup

is commonly employed when applying localization, a standard technique in stochastic calculus

used for extending limit theorems under weaker conditions. For a comprehensive discussion on

its application in the analysis of high-frequency data, see, e.g., Section 4.4.1 in Jacod and Protter

(2012). The parameter κ, defined as the Hölder continuity index for the volatility process σ under

the L2 norm, pertains to the smoothness of σ. If the volatility is driven by a Brownian motion, κ

is at most 1/2, and the volatility path is non-differentiable everywhere. This setting differs from

typical nonparametric problems, where unknown functions are often assumed to be differentiable of

higher order. Values of κ < 1/2 also permits the volatility to exhibit “rough” paths, as emphasized

by Gatheral et al. (2018) among others.

The following theorem stipulates a general asymptotic representation for any regular scale-

equivariant estimator S = f(ri, ui, li) allowed under these mild conditions. By linking the non-

parametric estimation problem with that in a limit non-Gaussian experiment, the result differs

notably from the Gaussian shift experiment commonly used in the analysis of semiparametric

efficiency, the estimation of integrated volatility functionals included.

Theorem 1. Under Assumption 1, any regular scale-equivariant estimator S = f(ri, ui, li) with

|i∆n − t| → 0 may be expressed as
S

σpt
= f(ζi) + op(1), (2.5)

where ζi ≡ (ζi,r, ζi,u, ζi,l) and

ζi,r ≡
Wi∆n −W(i−1)∆n√

∆n
, ζi,u ≡

sups∈Ti(Ws −W(i−1)∆n
)

√
∆n

, ζi,l ≡
infs∈Ti(Ws −W(i−1)∆n

)
√

∆n
.
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The theorem shows that the multiplicative estimation error in S may be decomposed into a

nondegenerate leading term f(ζi) and an asymptotically negligible op(1) term. The op(1) term

absorbs various nonparametric biases stemming from the drift, time-variation of volatility, and

jumps. If the price was simply a scaled Brownian motion, this term would be identically equal

to zero. Importantly, the distribution of the ζi random variable that determines the leading f(ζi)

term is known in finite samples. To appreciate this point, let B denote a generic copy of the

standard Brownian motion on the unit interval [0, 1] with B0 = 0. It then follows that

ζi
d
= ζ̃ ≡

(
B1, sup

t∈[0,1]
Bt, inf

t∈[0,1]
Bt

)
. (2.6)

Since this distribution, and by implication the f(ζi) term in (2.5), are both nuisance-free, the

multiplicative estimation error S/σpt is therefore also asymptotically pivotal.11

If the loss function L(·) is continuous, Theorem 1 further implies an analogous coupling result

for the estimation loss

L(S/σpt ) = L
(
f(ζi)

)
+ op(1). (2.7)

Following the literature (e.g., Le Cam (1986) and Van der Vaart (1998)), this naturally suggests

defining the asymptotic risk of any regular scale-equivariant estimator as the expected value of the

limit loss L
(
f(ζi)

)
. By (2.6) the asymptotic risk may thus be expressed as

R̃(S;L) ≡ E
[
L
(
f(ζ̃)

)]
. (2.8)

The distribution of ζ̃ is known in finite sample and so R̃(S;L) can be readily evaluated for any

loss function L(·) and estimator f(·). We will refer to a regular scale-equivariant estimator S as

optimal, or more precisely as an Asymptotic Minimum-Risk scale-Equivariant (AMRE) estimator,

if it minimizes R̃(S;L). Since this asymptotic risk does not depend on any unknown quantities in

the nonparametric model in (2.1), this optimality concept is valid in a uniform sense. As such, it

also implies asymptotic admissibility and minimaxity (within the class of regular scale-equivariant

estimators). Consequently, any suboptimal estimator is necessarily asymptotically inadmissible.

Theorem 1 is based on the Itô semimartingale model (2.1), which as previously noted does not

explicitly incorporate microstructure noise. However, the same result remains valid if the observed

prices are affected by “small” noise. Specifically, if the magnitude of the noise is of order op(∆
1/2
n ),

the “noisy” observation of (ri, ui, li) deviates from their true value by op(1), which, according to the

11This nuisance-free limit distribution also permits the construction of asymptotically valid confidence intervals

for σp
t . For any α ∈ (0, 1), let L and U be constants such that P

(
L ≤ 1/f(ζ̃) ≤ U

)
= 1 − α. Then [LS,US] is a

confidence interval for σp
t at asymptotic level 1− α. The length of the interval is minimized by taking [L,U ] as the

1− α level highest density interval of the distribution of 1/f(ζ̃).
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continuous mapping theorem, implies that (2.5) also holds for the “noisy” estimator. Intuitively,

the op(∆
1/2
n ) rate requirement for the noise is more plausible when ∆n is not “too-small,” consistent

with the idea of not using “too-finely” sampled data, or coarse sampling.12

In order to construct an AMRE estimator, it is helpful to recognize that the asymptotic risk

of a regular estimation function f(·) can be equivalently represented in terms of its finite-sample

risk in a limit parametric model, where the (log) price process P is a simple scaled Brownian

motion (i.e., Pt = σWt). This, in turn, facilitates the use of classical finite-sample theory for

optimal equivariant estimation in determining the optimal estimation function and the AMRE

estimator.13 The AMRE estimators presented in Section 2.2 and Section 2.4 below, as well as

the additional estimators discussed in the online Supplemental Appendix, are developed using this

approach.

2.2 Optimal Estimation for Spot Variance and Volatility

To streamline the presentation and more clearly highlight our main theoretical contributions, we

will focus our discussion on the optimal estimation of the spot variance σ2
t and the spot volatility

σt.
14 We will restrict our attention to optimal estimators based on Stein’s loss and the standardized

quadratic loss,

LStein(x) ≡ x− log(x)− 1, LQuad(x) ≡ |x− 1|2. (2.9)

These specific loss functions arguably constitute the two most commonly used losses in practice.

AMRE estimators for other, possibly case-specific, loss functions could be derived similarly.

To facilitate the representation of the optimal estimators, it is helpful to define the functions

12In line with the existing empirical literature on high-frequency-based volatility estimation, we recommend adopt-

ing a ∆n = 5-minute sampling scheme as the default choice in practice. Simulation results in the online Supplemental

Appendix also demonstrate that the noise, when calibrated to empirically realistic levels, has a negligible effect on

the resulting 5-minute estimators.
13According to Corollary 3.3.4 in Lehmann and Casella (1998), the solution to the functional minimization problem

minf E[L(f(ζ̃))] exists and is unique, provided that an equivariant estimator with finite risk exists and the function

x 7→ L(ex) is strictly convex and not monotone.
14Analogous derivations for the spot quarticity σ4

t and spot precision σ−1
t are provided in the online Supplemental

Appendix.
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Gq(·) and Hq(·) for any integer q ≥ 0 as,

Gq(x) ≡ ψq

(1− x
2

)
+ ψq

(1 + x

2

)
− x

q + 1

(
ψq+1

(1− x
2

)
− ψq+1

(1 + x

2

))
− 1− x2

4(q + 1)(q + 2)

(
ψq+2

(1− x
2

)
+ ψq+2

(1 + x

2

))
, (2.10)

Hq(x) ≡ ψq

(
1− x

2

)
+ ψq

(x
2

)
− x

q + 1

(
ψq+1

(
1− x

2

)
− ψq+1

(x
2

))
+

x2

4(q + 1)(q + 2)

(
ψq+2

(
1− x

2

)
+ ψq+2

(x
2

))
, (2.11)

where ψq(x) denotes the polygamma function of order q, that is, the (q + 1)th-order derivative of

the logarithm of the Gamma function. The Gq(·) and Hq(·) functions are both continuous almost

everywhere, making them suitable for constructing regular estimators.15 Using these definitions,

the subsequent theorem offers explicit analytical expressions for the AMRE estimators of the spot

variance and spot volatility under each of the two loss functions.

Theorem 2. Under the same setting as Theorem 1, we have

(a) the AMRE range-based estimator for σ2
t under Stein’s loss is asymptotically unbiased and

given by

σ̂2
Stein ≡

4w2
i

3
· G0(ai/wi)−H0(|ri|/wi)
G2(ai/wi)−H2(|ri|/wi)

,

while the AMRE range-based estimator for σ2
t under standardized quadratic loss equals

σ̂2
Quad ≡

32w2
i

5
· G2(ai/wi)−H2(|ri|/wi)
G4(ai/wi)−H4(|ri|/wi)

;

(b) the AMRE range-based estimator for σt under Stein’s loss is asymptotically unbiased and

given by

σ̂Stein ≡
√

2π

3
wi ·

G0(ai/wi)−H0(|ri|/wi)
H1(|ri|/wi)−G1(ai/wi)

,

while the AMRE range-based estimator for σt under standardized quadratic loss equals

σ̂Quad ≡ 2

√
2

π
wi ·

H1(|ri|/wi)−G1(ai/wi)

G2(ai/wi)−H2(|ri|/wi)
.

Comment 1. The asymptotic unbiasedness of the σ̂2
Stein and σ̂Stein estimators is reminiscent of

the classical finite-sample result that minimum-risk estimators under Stein’s loss are guaranteed

to be unbiased. As demonstrated by Brown (1968), Stein’s loss is also the unique loss function

15The almost everywhere continuity of the Gq(·) and Hq(·) functions follows from the fact that polygamma

functions are formally meromorphic, meaning that they are analytic except for a discrete set of points.
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(up to affine transformations) that satisfies this property. Consequently, AMRE estimators under

other loss functions are necessarily asymptotically biased.

Comment 2. The AMRE estimators depend solely on the shape of the candlestick, as summarized

by the scaled range wi ≡ ui − li, the scaled absolute return |ri|, and the ai asymmetry measure.

These shape-related features remain unaffected by a “color change” or an “upside-down flip” of the

candlestick.16 Consequently, the optimal volatility estimators are also invariant to these “direc-

tional” transformations. This feature reduction is due to a sufficiency argument, as formalized by

Lemma A1 in the Appendix, which shows that the shape features (wi, |ri|, ai) are indeed sufficient

statistics for σ in the limit model Pt = σWt. Recall that according to the Rao–Blackwell theorem,

optimal estimators depend on data only through sufficient statistics.

The AMRE estimation functions defined in Theorem 2 are relatively complex. Clearly, it

would have been challenging to accurately “intuit” these specific functional forms when search-

ing for optimal estimators within a restricted class of functions. Since the AMRE estimators are

uniquely determined (Corollary 3.3.4 in Lehmann and Casella (1998)), any ad hoc restrictions on

the functional form used in the derivation of “shape-constrained” optimal estimators would there-

fore also generally result in suboptimal and, as previously mentioned, asymptotically inadmissible

estimators.

For a more direct comparison, recall that Garman and Klass’s (1980) minimum-variance unbi-

ased quadratic estimator for spot variance is given by17

σ̂2
GK ≡ 0.511(ui − li)2 − 0.019

(
ri(ui + li)− 2uili

)
− 0.383r2

i

= 0.5015w2
i + 0.0095a2

i − 0.3925r2
i ,

while the BLUE for spot volatility proposed by Li et al. (2022) is given by

σ̂BLUE ≡ 0.811wi − 0.369|ri|.

Meanwhile, approximating the functional forms of the AMRE estimators described in Theorem

2 by cubic polynomials of the (maximal invariant) ratio statistics, |ri|/wi and ai/wi, the spot

16More precisely, the color change corresponds to changing the sign of ri and the upside-down flip amounts to

swapping the upper and lower shadows of the candlestick.
17A simplified “practical” version of the Garman–Klass estimator, defined by 0.5w2

i −
(
2 log(2)− 1

)
r2i ≈ 0.5w2

i −
0.386r2i , has also sometimes been used in empirical applications.

11



variance estimator may be expressed as18

σ̂2
Stein ≈ 0.5921w2

i − 0.2066|ri|wi − 0.1289a2
i − 0.5874r2

i − 0.0001
a3
i

wi

+0.0382
|ri|a2

i

wi
− 0.0001

r2
i ai
wi

+ 0.3872
|ri|3

wi
,

σ̂2
Quad ≈ 0.4936w2

i − 0.0002aiwi − 0.2436|ri|wi − 0.1003a2
i + 0.0001|ri|ai

−0.4316r2
i − 0.0006

a3
i

wi
+ 0.0883

|ri|a2
i

wi
− 0.0005

r2
i ai
wi

+ 0.3282
|ri|3

wi
,

while the analogous approximations for the AMRE spot volatility estimators take the form

σ̂Stein ≈ 0.7859wi − 0.1010|ri| − 0.0888
a2
i

wi
− 0.4798

r2
i

wi
− 0.0178

a2
i |ri|
w2
i

+ 0.2341
|ri|3

w2
i

,

σ̂Quad ≈ 0.7526wi − 0.1366|ri| − 0.0846
a2
i

wi
− 0.0001

ai|ri|
wi
− 0.4345

r2
i

wi
+ 0.0181

a2
i |ri|
w2
i

−0.0001
air

2
i

w2
i

+ 0.2284
|ri|3

w2
i

.

While not exact, these cubic expansions formally highlight the differences between the AMRE esti-

mators and the shape-constrained estimators, by explicating the former’s dependence on additional

higher-order nonlinear features.

To help more clearly visualize these differences, Figure 2 present the estimation functions

for the three spot variance estimators: σ̂2
Stein, σ̂2

Quad, and σ̂2
GK. As the estimators are all scale-

equivariant, we compare them without loss of generality under the scale normalization wi = 1 (i.e.,

|ri| and ai are interpreted in a relative sense). In the left panel of Figure 2, we further fix the

asymmetry factor at ai = 0, and plot the spot variance estimators as functions of the absolute

return |ri|. Looking at the two asymptotically unbiased estimators, σ̂2
Stein and σ̂2

GK, the former

is higher when |ri| is close to 0 or 1, and lower when |ri| takes medium values.19 Meanwhile,

the estimation function associated with σ̂2
Quad is systematically below the estimation functions for

the two unbiased estimators, indicating that the AMRE estimator under quadratic loss exhibits a

certain “shrinkage” and therefore also is downward biased.

In the right panel of Figure 2, we fix |ri| = 0.3 and plot the estimators as functions of the

asymmetry factor ai.
20 While σ̂2

GK displays a slightly positive dependence on the asymmetry

18The approximation for σ̂2
Stein is constructed by projecting

(
G0(ai/wi)−H0(|ri|/wi)

)
/
(
G2(ai/wi)−H2(|ri|/wi)

)
onto a cubic polynomial of the maximal invariant (|ri|/wi, ai/wi) under the L2 distance. The approximations for

the other AMRE estimators are obtained similarly.
19As a point of reference, in the Brownian limit model, the interquartile range of |ri|/wi spans 0.243 to 0.676,

while the interdecile range covers 0.099 to 0.817.
20Since ai measures the absolute difference between the lengths of the upper and lower shadows of the candlestick,

it takes values in [0, wi − |ri|].
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Figure 2: Alternative Range-Based Variance Estimators. The figure plots the AMRE

estimators for the variance under Stein’s loss (Stein) and quadratic loss (Quadratic), together with

the Garman–Klass estimator. The range wi is normalized to unity. The left panel plots the spot

variance estimator as a function of the absolute return |ri|, with the asymmetry factor fixed at

ai = 0. The right panel plots the spot variance estimator as a function of the asymmetry factor

ai, with the absolute return fixed at |ri| = 0.3.
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Figure 3: Alternative Range-Based Volatility Estimators. The figure plots the AMRE

estimators for the volatility under Stein’s loss (Stein) and quadratic loss (Quadratic), together

with the BLUE estimator proposed by Li et al. (2022). The range wi is normalized to unity. The

left panel plots the spot volatility estimator as a function of the absolute return |ri|, with the

asymmetry factor fixed at ai = 0. The right panel plots the spot volatility estimator as a function

of the asymmetry factor ai, with the absolute return fixed at |ri| = 0.3.
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factor, the two AMRE estimators evidence a more pronounced negative dependence. Comparing

the left and right panels further reveals that the absolute return has a greater impact on variance

estimation than the asymmetry factor.

A similar comparison for the three spot volatility estimators, σ̂Stein, σ̂Quad, and σ̂BLUE, is

provided in Figure 3. The overall patterns generally mirror those of Figure 2. Underscoring the

difference between the two AMRE and the BLUE estimator of Li et al. (2022), which does not

depend on ai, the right panel clearly shows that the two optimal estimators both depend negatively,

and nontrivially, on the asymmetry factor.

We turn next to a more direct assessment of how these differences in the functional forms of

the estimators translate into asymptotic biases, variances, and differences in Stein and quadratic

risks.

2.3 Risk Comparisons

We will focus our comparisons of the risks of the different estimators by considering the relative

efficiency, defined as the ratio between the risk of the relevant AMRE estimator and the estimator

under consideration. Table 1 reports the results for the three spot variance estimators: σ̂2
Stein,

σ̂2
Quad, and σ̂2

GK. Since σ̂BLUE is the BLUE for spot volatility, we also include (σ̂BLUE)2 as a

fourth contender for estimating the spot variance. Table 2 presents the analogous results for the

three spot volatility estimators: σ̂Stein, σ̂Quad, and σ̂BLUE. For comparison, we also include the

transformed (σ̂2
GK)1/2 spot volatility estimator.21

Looking first at Table 1, the optimal σ̂2
Quad estimator exhibits substantial downward asymptotic

bias. This “shrinkage” feature is attributable to the fact that the quadratic loss assigns a heavier

penalty to overestimation than underestimation, and as such the corresponding optimal estimator

naturally sacrifices some downward bias in order to further reduce the variance. Indeed, the

asymptotic variance of the σ̂2
Quad estimator is notably lower than the corresponding numbers for

all of the other estimators. Compared to the optimal estimator σ̂2
Quad, the relative efficiencies of

the shape-constrained σ̂2
GK and (σ̂BLUE)2 estimators equal 77.0% and 69.8% respectively.22

Although the shape-constrained estimators clearly demonstrate suboptimal performance under

21All of the numbers are computed numerically based on ten million Monte Carlo draws of a standard Brownian

motion (Bt)t∈[0,1] (recall (2.6)) as the simulated sample averages corresponding to E[f(ζ̃)] − 1, Var
(
f(ζ̃)

)
, and

E
[
L
(
f(ζ̃)

)]
, respectively.

22Interestingly, σ̂2
Stein exhibits lower quadratic risk than σ̂2

GK. Since both of these two estimators are asymptotically

unbiased, this suggests that under quadratic loss the Garman–Klass estimator is asymptotically inadmissible, not

only within the class of regular scale-equivariant estimators, but also within the subclass of asymptotically unbiased

estimators.
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Table 1: Asymptotic Properties of Spot Variance Estimators

Relative Efficiency

Estimator Bias Variance Stein Quadratic

σ̂2
Stein 0.000 0.259 1.000 0.803

σ̂2
Quad −0.205 0.165 0.813 1.000

σ̂2
GK 0.000 0.270 0.968 0.770

(σ̂BLUE)2 0.062 0.295 0.976 0.698

Note: The table reports the asymptotic biases, variances, and relative efficiency under

Stein’s and quadratic risks for each of the spot variance estimators indicated in the first

column.

Table 2: Asymptotic Properties of Spot Volatility Estimators

Relative Efficiency

Estimator Bias Variance Stein Quadratic

σ̂Stein 0.000 0.061 1.000 0.967

σ̂Quad −0.058 0.055 0.909 1.000

(σ̂2
GK)1/2 −0.030 0.060 0.938 0.952

σ̂BLUE 0.000 0.063 0.968 0.937

Note: The table reports the asymptotic biases, variances, and relative efficiency under

Stein’s and quadratic risks for each of the spot volatility estimators indicated in the first

column.
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quadratic loss, they exhibit “near-optimal” behavior under Stein’s loss. Specifically, the relative

efficiencies of σ̂2
GK and (σ̂BLUE)2 are 96.8% and 97.6%, respectively, when compared to the AMRE

σ̂2
Stein. In other words, in scenarios where an economic agent’s loss function closely resembles

Stein’s loss, the classical Garman–Klass and the BLUE estimators are both reasonable practical

choices. Of course, since the AMRE estimator can also easily be calculated in practice using our

explicit closed form solution, there is really no need to suffer any efficiency loss, however small it

might be.

Turning to Table 2 and spot volatility estimation, the results again evidence notable bias

for the σ̂Quad estimator. In general, the efficiency gaps between the shape-constrained volatility

estimators and the optimal estimator are smaller than for variance estimation. Intuitively, the

optimal estimation of σt is “easier” than the optimal estimation of its nonlinear transform σ2
t .

23

As such, the Garman–Klass estimator and the simple linear estimator proposed by Li et al. (2022)

turn out to perform quite well for spot volatility estimation under both quadratic and Stein’s loss

functions, although both estimators, strictly speaking, are inadmissible.

More broadly, these numerical comparisons also demonstrate that the relative asymptotic risks

of alternative estimators, and in turn the design of optimal estimators, can depend quite strongly

on the underlying loss function. This reflects the finite-sample nature of our coupling-based asymp-

totic analysis in a non-Gaussian limit experiment. By contrast, in the conventional “large sample”

asymptotic setting with Gaussian shift limit experiments, different loss functions (as long as they

are bowl-shaped) result in the same optimal estimators (see, e.g., Chapter 8 in Van der Vaart

(1998)).

Acknowledging the practical challenge of precising the loss function in some applications, we

observe an intriguing pattern for the risk comparisons in Tables 1 and 2. In both tables, the AMRE

estimators derived under Stein’s loss exhibit lower risks than the shape-constrained estimators,

not only under Stein’s loss (which holds by construction), but also under quadratic loss.24 Hence,

for users who are uncertain about their specific loss function, we recommend employing σ̂2
Stein and

σ̂Stein as “general purpose” estimators for spot variance and spot volatility estimation, respectively.

23Consistent with this intuition, Tables S1 in the online Supplemental Appendix shows that the efficiency gap

between the AMRE estimators and the shape-constrained estimators is also larger for the quarticity σ4
t , an even

“more nonlinear” transform of the volatility than the variance. For example, under quadratic loss, the relative

efficiencies of (σ̂2
GK)2 and (σ̂BLUE)4 are only 31.2% and 25.5%, respectively, in comparison with the AMRE estimator

for σ4
t .

24Additional results reported in the online Supplemental Appendix show that this phenomenon remains true for

estimating the spot quarticity, σ4
t , and the spot precision, σ−1

t .
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2.4 Optimal Estimators with Multiple Candlesticks

The estimators discussed above rely on a single candlestick for optimally estimating the spot

volatility, or the spot variance. In this section we describe how to combine multiple adjacent

candlesticks (over asymptotically shrinking time intervals) for optimally estimating σpt .

To set out the notation, given a fixed integer k ≥ 1, let ci = (ri+j−1, ui+j−1, li+j−1)1≤j≤k

collect the observed features of k successive candlesticks starting at the ith observation. Denote

the corresponding estimator for σpt that utilizes the k candlesticks by f(ci). A direct extension of

Theorem 1 produces the following analogous coupling result for the k-candlestick setting.

Corollary 1. Under Assumption 1, given any fixed integer k ≥ 1, any regular scale-equivariant

estimator S = f(ci) with |i∆n − t| → 0 may be expressed as

S

σpt
= f(ζi, ζi+1, . . . , ζi+k−1) + op(1),

where the variables ζi+j, j = 1, . . . , k, are defined as in Theorem 1.

Building on the same reasoning outlined in Section 2.2, we may therefore couple the original

estimation problem with that in the Brownian limit experiment. Moreover, by a direct extension of

the proof of Theorem 2, we can also derive semi-closed form expressions for the AMRE estimators

that utilize k successive candlesticks. Concretely, the AMRE estimators under Stein’s loss and

standardized quadratic loss may be expressed as

σ̂pStein(k) = wpi ·
1

Fk,p

(
|ri|
wi
, aiwi

, wi+1

wi
, |ri+1|

wi
, ai+1

wi
, · · · , wi+k−1

wi
,
|ri+k−1|
wi

,
ai+k−1

wi

) ,

σ̂pQuad(k) = wpi ·
Fk,p

(
|ri|
wi
,
ai
wi
,
wi+1
wi

,
|ri+1|
wi

,
ai+1
wi

,··· ,
wi+k−1

wi
,
|ri+k−1|

wi
,
ai+k−1

wi

)
Fk,2p

(
|ri|
wi
,
ai
wi
,
wi+1
wi

,
|ri+1|
wi

,
ai+1
wi

,··· ,
wi+k−1

wi
,
|ri+k−1|

wi
,
ai+k−1

wi

) .
(2.12)

The function Fk,p : R3k−1 → R that enters these expressions is formally defined as an conditional

expectation function:

Fk,p

(
|ri|
wi
,
ai
wi
,
wi+1

wi
,
|ri+1|
wi

,
ai+1

wi
, · · · , wi+k−1

wi
,
|ri+k−1|
wi

,
ai+k−1

wi

)

≡ E
[
ξpw,1

∣∣∣∣ξw,jξw,1
=
wi+j−1

wi
,
ξr,j
ξw,1

=
|ri+j−1|
wi

,
ξa,j
ξw,1

=
ai+j−1

wi
for all 1 ≤ j ≤ k

]
, (2.13)

where (ξw,j , ξr,j , ξa,j), j = 1, 2, . . . , k, are independent copies of(
sup
t∈[0,1]

Bt − inf
t∈[0,1]

Bt, |B1|,
∣∣∣ sup
t∈[0,1]

Bt + inf
t∈[0,1]

Bt −B1

∣∣∣). (2.14)
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In parallel to the optimal estimators that rely on a single candlestick, the two AMRE es-

timators defined in (2.12) are also structurally similar. The wpi component, in particular, acts

as a generic scale-equivariant estimator for σpt , while the Fk,p(·) function depends on candle-

stick observations solely through the maximal invariant statistics, defined as the shape features

(wi+j−1, |ri+j−1|, ai+j−1)1≤j≤k normalized by wi. The earlier closed form solutions for the single-

candlestick case, or k = 1, detailed in Theorem 2 were obtained by explicitly deriving the functional

form of F1,p(·). Regrettably, analytical solutions for Fk,p(·) for k ≥ 2 are currently unattainable.

Nonetheless, the semi-closed form solutions in (2.12) still suggest a strategy for numerically

computing the optimal estimation functions. In particular, since Fk,p(·) is defined as the conditional

expectation of wpi given the maximal invariant statistics under the limit experiment, one may

simulate the (ξw,j , ξr,j , ξa,j)1≤j≤k variables as i.i.d. copies of the Brownian functionals defined in

(2.14) and then calculate the requisite conditional expectation function in (2.13) via Monte Carlo

integration. This calculation, which formally entails the formation of a predictor that minimizes

the mean squared error, may be conveniently implemented using popular machine learning tools

such as neural networks, or random forests. We stress that for a given k and p, the function Fk,p(·)
only needs to be computed once.

To illustrate the idea, consider the case with two candlesticks, or k = 2. Employing a neural

network to compute the conditional expectation functions F2,p(·) and F2,2p(·) numerically, Tables

3 and 4 report the resulting asymptotic bias, variance, and relative efficiency for the AMRE

estimators for estimating the spot variance and volatility, respectively, obtained by using these

numerical approximations in place of the true unknown functions in (2.12).25 The k = 2 versions

of the shape-constrained σ̂2
GK and σ̂BLUE estimators, also included in the tables, are constructed

as simple averages of their respective single-candlestick estimates, following the suggestion of Li

et al. (2022).

The general results are qualitatively very similar to the ones for the single-candlestick estimators

previously reported in Tables 1 and 2. The optimal estimators are notably more accurate, especially

for estimating the spot variance under quadratic loss. At the same time, the “near optimality”

property of the shape-constrained estimators under Stein’s loss observed for the single-candlestick

case does not appear to hold as well. For instance, the relative efficiency of the Garman–Klass

25More specifically, we rely on a logistic sigmoid activation function, and an architecture comprised of an input

layer with 32 neurons, followed by two hidden layers with 16 and 8 neurons, respectively. We train the model based

on five million random draws of (ξw,j , ξr,j , ξa,j)j=1,2, where the Brownian motion (Bt)t∈[0,1] is generated using an

Euler scheme with a mesh size of 10−7. Underscoring the accuracy of the approach, using the same procedures to

calculate the functions for k = 1 results in numerical solutions that are practically indistinguishable from the closed

form solutions detailed in Theorem 2.
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Table 3: Asymptotic Properties of Spot Variance Estimators Based on Two Candlesticks

Relative Efficiency

Estimator Bias Variance Stein Quadratic

σ̂2
Stein(2) 0.000 0.128 1.000 0.891

σ̂2
Quad(2) −0.103 0.103 0.833 1.000

σ̂2
GK 0.000 0.135 0.923 0.844

(σ̂BLUE)2 0.062 0.147 0.923 0.755

Note: The table reports the asymptotic biases, variances, and relative efficiency under

Stein’s and quadratic risks for each of the spot volatility estimators indicated in the first

column.

Table 4: Asymptotic Properties of Spot Volatility Estimators Based on Two Candlesticks

Relative Efficiency

Estimator Bias Variance Stein Quadratic

σ̂Stein(2) 0.000 0.030 1.000 0.966

σ̂Quad(2) −0.025 0.029 0.939 1.000

(σ̂2
GK)1/2 −0.030 0.030 0.940 0.935

σ̂BLUE 0.000 0.031 0.942 0.935

Note: The table reports the asymptotic biases, variances, and relative efficiency under

Stein’s and quadratic risks for each of the spot volatility estimators indicated in the first

column.
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variance estimator drops from 96.8% in the k = 1 case to 92.3% in the k = 2 case, while the

relative efficiency of the BLUE volatility estimator drops from 96.8% to 94.2%. These findings

further motivate the use of the AMRE estimators in practice.

Putting the results in Tables 3 and 4 further into perspective, it is, of course, not surprising

that the spot estimators constructed by combining two candlesticks exhibit smaller theoretical

asymptotic variances than their single-candlestick counterparts. At the same time, the temporal

aggregation of multiple candlesticks can easily be harmful in practice, especially when the volatility

fluctuates rapidly. In such situations, the limit experiment with constant volatility that formally

underlies the theoretical asymptotic comparisons will likely not provide a good finite-sample guide

either. Of course, this type of empirical scenario is precisely when spot estimation can be most

useful and informative. The empirical application discussed in the next section further highlights

these issues.

3 An Empirical Illustration

To demonstrate the practical applicability and insights afforded by the new optimal estimators,

we present spot volatility estimates for a market portfolio on the eight 2022 prescheduled FOMC

announcement days. Putting the results into perspective, at the start of the year U.S. inflation

had already soared to its highest level since the 1980s. In response to this, the Federal Reserve

indicated at its January 2022 meeting that it would soon be appropriate to raise the target range

for the federal funds rate. Subsequently, the target rate was indeed increased by 25 basis points

(bps) in March, followed by a more substantial 50 bps hike in May. The pace of rate increases

further accelerated to 75 bps for the next four meetings, before moderating to a 50 bps rise at the

final 2022 meeting in December. Each of these rate increases were detailed in a short formal release

by the FOMC at exactly 14:00 EST, followed by additional comments and a press conference led

by Federal Reserve Chairman Jerome Powell starting half-an-hour later.

It is well established that financial markets often reacts quite strongly to the initial 14:00 FOMC

announcement.26 It is much less clear, however, what happens to market volatility at the exact

time of the FOMC announcement, let alone in its immediate aftermath and during the subsequent

26Andersen et al. (2007), Lee and Mykland (2008), Lee (2012), and Bollerslev et al. (2018), among others, have

previously associated high-frequency jumps in asset prices with FOMC announcements. FOMC announcements have

also been used as a powerful tool for the high-frequency identification of monetary policy shocks, as exemplified by

Cochrane and Piazzesi (2002), Rigobon and Sack (2004), Bernanke and Kuttner (2005), and Nakamura and Steinsson

(2018), while Savor and Wilson (2014), Lucca and Moench (2015), Cieslak et al. (2019), and Ai and Bansal (2018)

have emphasized the significance of an FOMC announcement risk premium and pre-announcement drifts.
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press conference. We shed new light on this issue by utilizing intraday candlestick data for the

S&P 500 index, in the form of the VOO exchange-traded fund (ETF) managed by the Vanguard

Group, to estimate high-frequency spot volatilities. Guided by the simulation results discussed

above, to mitigate the impact of microstructure noise, we employ 5-minute VOO candlesticks,

sourced directly from Bloomberg. We focus our analyses on the 5-minute σ̂Stein AMRE spot

volatility estimator; comparisons with the other estimators discussed above are presented in the

online Supplemental Appendix.27

Figure 4 displays the resulting estimates, together with 90% level pointwise confidence intervals.

To facilitate comparison across the different days, all of the plots are presented on a uniform

percentage daily scale. As the figure shows, the market volatility generally spikes immediately

following the initial FOMC announcement at 14:00.28 The volatility then generally reverts towards

a more “normal” level in the half-hour window between the initial release and the start of the press

conference. By comparison, the volatility patterns observed during the press conference appear less

systematic. In addition to reiterating key policy decisions, also summarized in the initial release,

the press conference and the subsequent interaction with the media often provide additional forward

guidance about future Fed policies, interspersed with comments about the general economic outlook

as perceived by the Fed. The staggered information flow delivery throughout this process naturally

manifest in event specific volatility spikes linked to the exact timing of the new information.

The November 2 announcement provides an interesting case in point. In line with the general

pattern noted above, the spot volatility shows an initial burst at 14:00, followed by a gradual

decline to a lower, albeit still elevated, level at 14:30. Then, concurrent with the start of Chairman

Powell’s speech, the 14:30-14:35 volatility estimate increased moderately, reflecting the limited new

information presented in the opening, relatively structured, portion of the speech. This modest

uptick is then followed by a dramatic volatility spike, of even greater magnitude than the initial

surge that accompanied the 14:00 announcement. This volatility spike coincided with the time

at which Powell concluded his opening remarks and began the press conference by mentioning

that the ultimate level of interest rates would be “higher than previously expected.”29 Powell’s

brief interaction with the media shortly thereafter further underscored the looming uncertainty

surrounding the central bank’s monetary tightening agenda.30 These comments on the likely

27The online Supplemental Appendix also reports analogous results for the Dollar/Yen exchange rate.
28Interestingly, for some of the days, most notably March 16, May 4, and June 15, the volatility actually increased

slightly in advance of the official 14:00 announcement. Whether these “abnormal” pre-announcement increases can

be attributed to information leaks during the Fed’s official blackout period may warrant further scrutiny.
29A complete transcript of Powell’s statement is availabale at:

https://www.federalreserve.gov/monetarypolicy/fomcpresconf20221102.htm
30The first two questions from the media, posed by Colby Smith of the Financial Times and Howard Schneider
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Figure 4: Spot Volatility Estimates for the VOO ETF on FOMC Announcement Days.

The figure plots the σ̂Stein spot volatility estimates based on 5-minute VOO ETF candlesticks,

expressed in daily percentage units. Pointwise confidence intervals at the 90% level is calculated

as detailed in footnote 11. The vertical lines included in each of the panels indicate the official

14:00 FOMC announcement times.
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trajectory of monetary policy offered crucial forward guidance, and their unexpected nature in

effect amounted to a “policy shock” resulting in a sharp increase in market volatility at the time.

In sum, asset price volatilities often experience large changes over short time windows in re-

sponse to the release of important new economic information. The new optimal high-frequency

candlestick estimators developed here allows for meaningful estimation of such changes, which

would otherwise be obscured by the use of longer estimation windows, in turn affording a more

nuanced depiction and better understanding of the economic mechanisms at work.

4 Concluding Remarks

We develop a new class of optimal range-based nonparametric volatility estimators. The new

optimal estimators are explicitly geared to the volatility object of interest and relevant loss function.

They involve complex, yet closed-form and easy-to-evaluate, nonlinear functions of the range, the

absolute return, and a measure of asymmetry. The efficiency gains provided by the new estimators

compared to currently used suboptimal range-based estimators rooted in ad hoc functional-form

assumptions can be substantial.

Looking ahead, the same infill asymptotic decision-theoretic framework developed here, based

on coupling the nonparametric volatility estimation problem with a finite-sample optimal esti-

mation problem, could possibly be adapted to study other outstanding optimal nonparametric

inference problems. High-frequency range-based estimators have also previously been used for the

estimation of integrated volatility over non-trivial time intervals (e.g., Christensen and Podolskij

(2007)). The new optimal estimators developed here could similarly be employed for that purpose,

as well as the estimation of other volatility functionals. The integrated quarticity, in particular, has

proven notoriously difficult to accurately estimate in practice, yet it plays a crucial role in assess-

ing the estimation error of traditional realized volatility type estimators (e.g., Barndorff-Nielsen

and Shephard (2002) and Bollerslev et al. (2016)). Prior empirical uses of range-based volatility

estimators for modeling and forecasting time-varying volatility abounds (early contributions in-

clude Gallant et al. (1999) and Alizadeh et al. (2002)). The range-based estimators developed here

may naturally be used in that context as well for obtaining more accurate inference. They could

also help sharpen the inference in the recent and growing literature that relies on high-frequency

identification through heteroskedasticity (following Rigobon (2003)), and volatilities being higher

over short “treatment” windows following news events (e.g., Nakamura and Steinsson (2018) and

Bollerslev et al. (2018)). We leave further work on all of these theoretical and more empirically

of Reuters, respectively, also both concerned the potential slowdown of future rate increases.
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oriented issues for future research.

Appendix: Proofs

Proof of Theorem 1. In this proof, we focus on a specific time point, denoted as t, and examine

in such that in∆n = t + o(1). To simplify our notation, we write i instead of in. We employ a

generic constant K > 0, which may vary throughout the proof. Relying on a standard localization

technique, we can strengthen Assumption 1 by assuming that the boundedness conditions hold

uniformly over the whole sample. For more details on the localization method, refer to Section

4.4.1 in Jacod and Protter (2012).

Under Assumption 1(i), the probability of the interval Ti containing at least one price jump is

O(∆n). Consequently, price jumps occur in Ti with asymptotically negligible probability. As our

analysis focuses on this particular interval, we can assume without loss of generality that there are

no jumps.

Denote r′i ≡ σ(i−1)∆n
ζi,r, u

′
i ≡ σ(i−1)∆n

ζi,u, and l′i ≡ σ(i−1)∆n
ζi,l. Since there is no jump within

the Ti interval, we can rewrite (ri, ui, li) as

ri = ∆−1/2
n

(∫ i∆n

(i−1)∆n

bsds+

∫ i∆n

(i−1)∆n

σsdWs

)
,

ui = ∆−1/2
n sup

s∈Ti

(∫ s

(i−1)∆n

budu+

∫ s

(i−1)∆n

σudWu

)
,

li = ∆−1/2
n inf

s∈Ti

(∫ s

(i−1)∆n

budu+

∫ s

(i−1)∆n

σudWu

)
.

Under Assumption 1(i), it is easy to see that∣∣∣∣ ∫ i∆n

(i−1)∆n

bsds

∣∣∣∣ ≤ ∫ i∆n

(i−1)∆n

|bs|ds = Op(∆n). (A.1)

Moreover, by the Burkholder–David–Gundy inequality and Assumption 1(ii), we have

E
[

sup
s∈Ti

∣∣∣∣ ∫ s

(i−1)∆n

(σu − σ(i−1)∆n
)dWu

∣∣∣∣2] ≤ KE
[ ∫ i∆n

(i−1)∆n

|σu − σ(i−1)∆n
|2du

]
≤ K∆1+2κ

n ,

and hence,

sup
s∈Ti

∣∣∣∣ ∫ s

(i−1)∆n

(σu − σ(i−1)∆n
)dWu

∣∣∣∣ = Op(∆
1/2+κ
n ). (A.2)
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By the triangle inequality, (A.1), and (A.2),

|ri − r′i| ≤ ∆−1/2
n

∣∣∣∣ ∫ i∆n

(i−1)∆n

bsds

∣∣∣∣+ ∆−1/2
n

∣∣∣∣ ∫ i∆n

(i−1)∆n

(σs − σ(i−1)∆n
)dWs

∣∣∣∣ = Op(∆
(1/2)∧κ
n ). (A.3)

In addition, we note that

|ui − u′i| = ∆−1/2
n

∣∣∣∣sup
s∈Ti

(∫ s

(i−1)∆n

budu+

∫ s

(i−1)∆n

σudWu

)
−σ(i−1)∆n

sup
s∈Ti

(Ws −W(i−1)∆n
)

∣∣∣∣
≤ ∆−1/2

n

(∫ i∆n

(i−1)∆n

|bu|du+ sup
s∈Ti

∣∣∣∣ ∫ s

(i−1)∆n

(σu − σ(i−1)∆n
)dWu

∣∣∣∣)
= Op(∆

(1/2)∧κ
n ), (A.4)

where the last line follows from (A.1) and (A.2). Similarly, we can derive

|li − l′i| = Op(∆
(1/2)∧κ
n ). (A.5)

Since f(·) is continuous a.e., the estimates from (A.3)–(A.5) imply that f(ri, ui, li) = f(r′i, u
′
i, l
′
i)+

op(1). Since σ is bounded away from zero under Assumption 1(i), we further have

f(ri, ui, li)

σp(i−1)∆n

=
f(r′i, u

′
i, l
′
i)

σp(i−1)∆n

+ op(1) = f(ζi) + op(1), (A.6)

where the second equality follows from the homogeneity of f(·) and the definition of ζi. By

Assumption 1(ii), |σt − σ(i−1)∆n
| = Op(|t − i∆n|κ) = op(1) as |i∆n − t| → 0, which together with

(A.6) implies the assertion of Theorem 1. Q.E.D.

To prove Theorem 2, we first prove two lemmas. Lemma A1 shows the sufficiency of the

shape features for volatility estimation under the limit model. Lemma A2 derives a closed-form

expression for the conditional expectation of certain Brownian functionals.

Lemma A1. Under the limit model Pt = σWt, the collection of shape features (|ri|, wi, ai) is a

sufficient statistic for σ given the observation (ri, ui, li).

Proof of Lemma A1. Recall that (Bt)t∈[0,1] is a standard Brownian motion with B0 = 0. Let

g(r, u, l) denote the probability density function of (B1, sup0≤t≤1Bt, inf0≤t≤1Bt). The density of

(ri, ui, li) is then given by the function

(r, u, l) 7→ 1

σ3
g
( r
σ
,
u

σ
,
l

σ

)
. (A.7)
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By equation (1.15.8) in Borodin and Salminen (2002),

P
(
l < inf

0≤t≤1
Bt, sup

0≤t≤1
Bt < u,B1 ∈ dr

)
=

1√
2π

∞∑
k=−∞

{
exp
(
−(2k(u− l) + r)2

2

)
− exp

(
−(2k(u− l) + r − 2l)2

2

)}
dr. (A.8)

The function g(r, u, l) is thus proportional to
∑∞

k=−∞
(
Ak(r, u, l)−Bk(r, u, l)

)
, where

Ak(r, u, l) ≡ k2{(2k(u− l) + r)2 − 1} exp
(
−(2k(u− l) + r)2

2

)
,

Bk(r, u, l) ≡ k(k + 1){(2k(u− l) + r − 2l)2 − 1} exp
(
−(2k(u− l) + r − 2l)2

2

)
.

By a change of variable via w = u− l and d = u+ l − r, we may identify these functions with

Ãk(r, w, d) ≡ k2{(2kw + r)2 − 1} exp
(
−(2kw + r)2

2

)
,

B̃k(r, w, d) ≡ k(k + 1){(2kw + w − d)2 − 1} exp
(
−(2kw + w − d)2

2

)
.

Note that for each k ≥ 0, Ãk(−r, w, d) = Ã−k(r, w, d) and B̃k(r, w,−d) = B̃−k−1(r, w, d). Thus,

g(r, u, l) depends on (r, u, l) only through (|r|, w, |d|). The assertion of the lemma then follows

from the Fisher–Neyman factorization theorem. Q.E.D.

Lemma A2. Let B be a standard Brownian motion on the unit interval with B0 = 0 and

ξ1 ≡ sup
t
Bt − inf

t
Bt, ξ2 ≡

| suptBt + inftBt −B1|
suptBt − inftBt

, ξ3 ≡
|B1|

suptBt − inftBt
,

where supt and inft are taken over [0, 1]. Then for each integer q ≥ 1 we have

E[ξq1|ξ2, ξ3] = (−1)q
(q + 2)√

2qπq!
Γ
(q + 3

2

)Gq(ξ2)−Hq(ξ3)

G0(ξ2)−H0(ξ3)
,

where Gq(·) and Hq(·) are defined as in (2.10) and (2.11).

Proof of Lemma A2. Let gξ(·) denote the joint density of (ξ1, ξ2, ξ3). The conditional expecta-

tion of interest can then be written as

E[ξq1|ξ2 = y, ξ3 = z] =

∫∞
0 xqgξ(x, y, z)dx∫∞

0 gξ(x, y, z)dx
.

The main task is to calculate the numerator
∫∞

0 xqgξ(x, y, z)dx for q ≥ 1 and the denominator∫∞
0 gξ(x, y, z)dx. (The calculation for the latter is not a special case of the former by simply setting
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p = 0, as it requires a slightly more refined technical argument due to the lack of convergence of

certain series.)

We first calculate
∫∞

0 xqgξ(x, y, z)dx. From (A.8) and the definition of (ξ1, ξ2, ξ3), we obtain

gξ(x, y, z) = 4
√

2/π
∑∞

k=−∞
(
Ck(x, z)−Dk(x, y)

)
, where

Ck(x, z) ≡ k2x2
(
(2k + z)2x2 − 1

)
exp
(
−(2k + z)2x2

2

)
,

Dk(x, y) ≡ k(1 + k)x2
(
(2k + 1− y)2x2 − 1

)
exp
(
−(2k + 1− y)2x2

2

)
.

Since z ∈ [0, 1], for q ≥ 1, by a direct integration, we have∫ ∞
0

∞∑
k=−∞

xqCk(x, z)dx = Mq ·
∞∑

k=−∞

k2

| z2 + k|q+3
, (A.9)

where we denote Mr ≡ 2−(r+5)/2(r + 2)Γ
(
(r + 3)/2

)
for any r ≥ 0. (Note that the convergence of

the above series requires the integer q ≥ 1.) We now express (A.9) using polygamma functions.

By (5.15.1) in Olver et al. (2010), for r ≥ 1 we have

ψr

(z
2

)
=
∞∑
k=0

(−1)r+1r!

( z2 + k)r+1
. (A.10)

Note that when k ≥ 0, the summand in (A.9) may be rewritten in the form of the summand in

(A.10) as

k2

( z2 + k)q+3
= (−1)q+1

(
1

q!
· (−1)q+1q!

( z2 + k)q+1
+

1

(q + 1)!
· z (−1)q+2(q + 1)!

( z2 + k)q+2

+
1

4(q + 2)!
· z2 (−1)q+3(q + 2)!

( z2 + k)q+3

)
. (A.11)

Combining (A.9)–(A.11) yields

∞∑
k=0

∫ ∞
0

xqCk(x, z)dx

=
(−1)q+1Mq

q!

(
ψq

(z
2

)
+

1

q + 1
zψq+1

(z
2

)
+

1

4(q + 1)(q + 2)
z2ψq+2

(z
2

))
.

The summation in (A.9) over k < 0 can be rewritten, with a change of variable m = −k − 1, as

−1∑
k=−∞

k2

(− z
2 − k)q+3

=
∞∑
m=0

(m+ 1)2

(1− z
2 +m)q+3

.

Using an argument similar to (A.11), we also have

−1∑
k=−∞

∫ ∞
0

xqCk(x, z)dx

=
(−1)q+1Mq

q!

(
ψq

(
1− z

2

)
− 1

q + 1
zψq+1

(
1− z

2

)
+

1

4(q + 1)(q + 2)
z2ψq+2

(
1− z

2

))
.
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Combining the above results for k ≥ 0 and k < 0 and recalling the definition of Hq(·), we obtain∫ ∞
0

∞∑
k=−∞

xqCk(x, z)dx =
(−1)q+1Mq

q!
Hq(z). (A.12)

By a similar argument leading to (A.12), we can also show that∫ ∞
0

∞∑
k=−∞

xqDk(x, y)dx =
(−1)q+1Mq

q!
Gq(y).

Hence, for q ≥ 1, ∫ ∞
0

xqgξ(x, y, z)dx = 4

√
2

π

(−1)qMq

q!

(
Gq(y)−Hq(z)

)
. (A.13)

For the denominator
∫∞

0 gξ(x, y, z)dx, by a direct integration, we have∫ ∞
0

∞∑
k=−∞

(
Ck(x, z)−Dk(x, y)

)
dx =

√
2π

8

∞∑
k=−∞

(
k2

| z2 + k|3
− k(k + 1)

|1−y2 + k|3

)
. (A.14)

By (5.7.6) in Olver et al. (2010), we obtain

ψ0

(1− y
2

)
− ψ0

(z
2

)
=

∞∑
k=0

(
1

z
2 + k

− 1
1−y

2 + k

)
. (A.15)

Note that when k ≥ 0, the summand in (A.14) may be rewritten in the form of the summand in

(A.10) and (A.15) as

k2

( z2 + k)3
− k(k + 1)

(1−y
2 + k)3

=

(
1

z
2 + k

− 1
1−y

2 + k

)
− z 1

( z2 + k)2
− y 1

(1−y
2 + k)2

− 1

8
z2 −2

( z2 + k)3
− 1

8
(1− y2)

−2

(1−y
2 + k)3

. (A.16)

Combining (A.10) and (A.14)–(A.16) yields

∞∑
k=0

∫ ∞
0

(
Ck(x, z)−Dk(x, z)

)
dx =

√
2π

8

(
ψ0

(1− y
2

)
− ψ0

(z
2

)
− zψ1

(z
2

)
− yψ1

(1− y
2

)
− 1

8
z2ψ2

(z
2

)
− 1

8
(1− y2)ψ2

(1− y
2

))
.

The summation in (A.14) over k < 0 can be rewritten, with a change of variable m = −k − 1, as

−1∑
k=−∞

(
k2

(− z
2 − k)3

− k(k + 1)

(−1−y
2 − k)3

)
=

∞∑
m=0

(
(m+ 1)2

(1− z
2 +m)3

− m(m+ 1)

(1+y
2 +m)3

)
.
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Using an argument similar to (A.16), we also have

−1∑
k=−∞

∫ ∞
0

(
Ck(x, z)−Dk(x, z)

)
dx

=

√
2π

8

(
ψ0

(1 + y

2

)
− ψ0

(
1− z

2

)
+ zψ1

(
1− z

2

)
+ yψ1

(1 + y

2

)
− 1

8
z2ψ2

(
1− z

2

)
− 1

8
(1− y2)ψ2

(1 + y

2

))
.

Combining the above results for k ≥ 0 and k < 0 and recalling the definition of G0(·), H0(·), and

M0, we obtain ∫ ∞
0

gξ(x, y, z)dx = 4

√
2

π
M0

(
G0(y)−H0(z)

)
. (A.17)

The assertion of the lemma then readily follows from (A.13), (A.17), and the fact that

Mq

M0
=

(q + 2)√
2qπ

Γ
(q + 3

2

)
. Q.E.D.

Proof of Theorem 2. We first consider the case with Stein’s loss. Recall that the asymptotic

risk E
[
L
(
f(ζ̃)

)]
equals the finite-sample risk of the estimator f(ri, ui, li) under the limit model Pt =

σWt. Therefore, minimizing the asymptotic risk is equivalent to finding the minimum-risk scale-

equivariant estimator for σ under the limit model. By Lemma A1 and the Rao–Blackwell theorem,

this optimal estimator only depends on the shape features (|ri|, wi, ai). Note that (wi, ai/wi, |ri|/wi)
has the same distribution as (ξ1, ξ2, ξ3) defined in Lemma A2. With an appeal to Corollary 3.3.8

in Lehmann and Casella (1998), the minimum-risk scale-equivariant estimation function under the

limit problem is given by wpi /E[ξp1 |ξ2 = ai/wi, ξ3 = |ri|/wi]. For estimating spot variance, taking

p = 2 and applying Lemma A2 with q = 2, we may rewrite this function in closed form as

4w2
i

3
· G0(ai/wi)−H0(|ri|/wi)
G2(ai/wi)−H2(|ri|/wi)

.

Recalling the meromorphic property of the polygamma functions, we see that this estimation

function is continuous almost everywhere. This estimator is thus regular, and so, is also the

AMRE estimator under the original nonparametric model as asserted in Theorem 2.

The proof for the quadratic loss is similar, except that we now apply (3.3.18) in Lehmann and

Casella (1998) and Lemma A2 above with p = 2, q = 2 and 4 to show that the optimal estimation

function of σ2 under the limit model is

w2
i ·

E[ξ2
1 |ξ2 = ai/wi, ξ3 = |ri|/wi]

E[ξ4
1 |ξ2 = ai/wi, ξ3 = |ri|/wi]

=
32w2

i

5
· G2(ai/wi)−H2(|ri|/wi)
G4(ai/wi)−H4(|ri|/wi)

.
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This estimator is also regular and thus is the AMRE estimator under the original nonparametric

model as asserted.

The derivation of AMRE estimators of spot volatility follows the same lines of arguments,

except for taking p = 1, q = 1 and 2. Q.E.D.
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