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Abstract

We explore the impact of possible non-linearities on aggregate credit risk in a vector autore-

gression framework. By using aggregate data on corporate credit in the UK we investigate the

non-linear transmission of macroeconomic shocks to aggregate corporate default probability. We

show two important results: �rstly, we �nd that non-linearities matter for the level and shape

of impulse response functions of credit risk following small as well as large shocks to systematic

risk factors. Secondly, we show that ignoring estimation uncertainty in stress tests can lead to a

substantial underestimation of credit risk, particularly in extreme conditions.
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1 Introduction

Stress tests have become a well-established risk management tool to assess the impact of severe

but plausible events on banks�exposures. A �stress test�is an estimate of the impact of a (large)

shock to a systematic risk factor on a given set of exposures, an estimate that is closely related

to traditional impulse response analyses. For market risk, stress tests are routinely undertaken

and are used to complement Value-at-Risk (VaR) measures, see BIS (2005). However, quantitative

stress tests for credit risk are not yet as well-developed, though a lot of banks extensively undertake

qualitative stress tests. In the future, this is likely to change as stress tests have to be undertaken

for banks to be eligible for the internal ratings approach under Basel II. Stress tests have also

recently gained increased prominence as a tool to assess the �nancial stability of banking systems.

For example, more than 90 �stress tests�have been currently completed/in progress as part of the

IMF�s Financial Stability Assessment Programme.

One of the main challenges stress tests face is that the models used are generally speci�ed in

(log-) linear form. Of course, if the underlying data generating process (DGP) is linear, then this

assumption is correct. Alternatively, if interest lies in studying the impact of small shocks around

the equilibrium of the process, then a standard linear model may produce adequate forecasts even

if the true DGP is non-linear. In such a case the linear model may be interpreted as a �rst-order

Taylor series approximation to the true DGP. However, stress tests do not consider small shocks,

and it is not likely that the relevant data generating processes are all log-linear. In Drehmann et

al. (2006) we explore the generally made assumption of log-linearity and the impact of large macro

shocks on �rm speci�c PDs. This companion paper looks at the same questions, but investigates

the impact of large macro shocks on aggregate liquidation rates often used to proxy aggregate

credit risk in stress testing models. We show that allowing for non-linearities leads to substantially

di¤erent predictions of losses in scenarios typically considered for stress testing.

Sorge (2004) provides an excellent overview of the current state of the macro stress testing

literature. Broadly speaking there are three strands of macro stress testing models, reduced form

models, portfolio credit risk models and structural models. Reduced form models are often based

on time series or panel-analysis which link write-o¤s or provisions to macroeconomic factors. These

reduced form equations are then used to assess how severe macro scenarios impact on provisions or

write-o¤s of banks. Pain (2004) constructs such a model for the UK and shows that in particular

real GDP growth, real interest rates and lagged aggregate lending growth have a strong impact on

banks�provisioning.
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Another class of models which is extensively used is based on the idea of CreditPortfolioView

(see Wilson, 1997a and1997b). Here, the default process it modelled using a Probit model which

relates macroeconomic factors to the probability of default of companies. In this spirit Boss (2002)

develops a stress testing model for the aggregate Austrian banking sector, whereas Virolainen (2004)

applies such a model to the Finnish banking system.

So far, few structural models for stress testing have been developed. One such model is at the

core of the Bank of England�s stress testing agenda (see Bunn et al. (2005)). This model starts

by feeding shocks through the Bank�s structural macroeconomic model, then through a structural

�satellite�model linking macroeconomic variables to arrears and liquidation rates, and then �nally

to a reduced-form model assessing the impact of liquidations rates and arrears on banks�write-o¤s

and pro�ts. DeBandt and Oung (2004) describe a structural model for France. Generally, structural

models are very useful from a central bank�s perspective as they are tractable and conform to the

way central bankers communicate. Hence, they provide an ideal framework to discuss �nancial

stability risks. By design these models assume a linear relation between macro factors and credit

risk. Even in a Probit speci�cation, as used in applications of Credit PortfolioView, the underlying

relationship is modelled in a linear fashion. But as discussed above, it is not clear whether the

DGP is linear, especially when focusing on extreme down side risks.

This paper studies the aggregate corporate liquidation rate, often used in macro stress tests.

We start by estimating a non-linear vector autoregression model (VAR) of the underlying macro-

economic drivers of risk. We concentrate on the three key macroeconomic factors: GDP growth,

in�ation and the interest rate. We then investigate how macroeconomic shocks feed through to the

aggregate liquidation rate.

Nonlinear models for macroeconomic variables have been studied by Koop et al. (1996) and

Jorda (2005), inter alia. We employ the methodology of Jorda (2005) in this paper. Jorda�s

approach builds on the fact that a standard VAR can be interpreted as a �rst-order approximation

to the true unknown DGP. Thus, a more �exible approximation may be obtained by considering, for

example, a quadratic or cubic approximation. An important implication of considering a standard

linear VAR as a linear approximation to the true DGP is that it is no longer clear that forecasts

or stress tests of horizons greater than one period should be obtained by iterating the one-period

model forward, which is the standard practice when deriving impulse response functions for VAR

models. As Jorda (2005) points out, if the one-period model is mis-speci�ed, then iterating it

forward may well lead to a compounding of mis-speci�cation error. He suggests an alternative

approach, namely to estimate a di¤erent model for each horizon of interest. If the DGP is truly
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a VAR then this approach is consistent but not e¢ cient, while if the DGP is not a VAR then

this approach o¤ers the best approximation at each horizon, rather than just at the one-quarter

horizon. This modelling approach has its roots in the direct multi-step versus iterated forecasting

approaches (see for example Stock and Watson, 1999). A bene�t of this approach is that simple

ordinary least squares (OLS) techniques can be used to obtain the impulse response functions from

the non-linear VAR used in the stress tests.

In this paper we show that the results of the non-linear VAR are signi�cantly di¤erent to results

using standard linear models, especially when considering large shocks. This can be seen in the

simple three variable macro model of in�ation, GDP growth and a short term interest rate. More

importantly, we show that accounting for non-linearities in the underlying macroeconomic environ-

ment leads to substantially di¤erent conclusions for credit risk projections in stressed conditions.

The remainder of the paper is as follows. In Section 2 we brie�y discuss the more formal

motivation for the consideration of non-linear multivariate models when studying the impact of

large shocks as presented in Drehmann et al. (2006). In Section 3 we discuss the estimation of the

macro model and the resulting impulse response functions. Further we introduce the model for the

corporate liquidation rate and present the results of our analysis of large macroeconomic shocks on

default probabilities. Section 4 concludes. Technical details and estimation results are presented

in the Appendix.

2 Why non-linearities matter

Suppose we are interested in a scalar variable yt, which is follows the following general process:

yt = h (yt�1; "t; �) , t = 1; 2; ::: (1)

where the residual "t is independent of yt�1; h is some (possibly non-linear) function, and � is a

parameter vector. In the standard linear setting we would have

h (yt�1; "t; �) = �0 + �1yt�1 + "t (2)

and so yt would follow a �rst-order autoregressive process. In this case the conditional mean

function,

� (y) � E [ytjyt�1 = y] = �0 + �1y (3)

is a¢ ne in yt�1 and so a �rst-order Taylor series approximation of � corresponds exactly to �.

For other data generating processes the conditional mean function need not be a¢ ne in yt�1. For
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example, in the Appendix we describe a simple non-linear speci�cation for h, under which yt is

stationary and unconditionally normally distributed, with �rst-order autocorrelation coe¢ cient of

0.5, and a nonlinear conditional mean function. The conditional mean function is plotted in Figure

1.

Figure 1 illustrates why linear approximations my be inadequate for stress testing: such ap-

proximations may work satisfactorily in the middle of the distribution, but can perform poorly in

the tails. In this example the linear approximation matches the true conditional mean function

reasonably well for jYt�1j � 1:5, but deviates outside this region1. For the study of �small�shocks
to Yt�1 the linear approximation may be acceptable, but for the study of large shocks (two or

more standard deviations) it is not. For example, if Yt�1 = �3; corresponding to a three standard
deviation shock in this setting, the linear approximation would predict Yt = �1:5, while the true
conditional mean of Yt is �2:7. Consider now a quadratic approximation to the conditional mean
function, also plotted in Figure 1. This approximation is very close to the true conditional mean

function for jYt�1j � 2. More importantly, for our interest in studying large shocks, the quadratic
approximation also does a lot better in the tails. Continuing our previous example, if Yt�1 = �3
the quadratic approximation predicts Yt = �2:8, close to the true value of �2:7: This simple ex-
ample highlights the potential for more �exible models to provide better estimates of the impact

of �large�shocks.

2.1 A nonlinear VAR(p) model

Consider a (k � 1) vector of macroeconomic variables, Yt. The most widely used model for the
dynamics of macroeconomic time series is the linear vector autoregression.

Yt = B0 +B1Yt�1 + :::BpYt�p + et (4)

More generally, we can think about the mapping between Yp
t�1 �

�
Y0
t�1; :::;Y

0
t�p
�0 and Yt as

some general unknown function, g : Rpk!Rk

Yt = g
�
Yp
t�1
�
+ et (5)

and interpret the standard VAR above as a simple �rst-order Taylor series approximation to the

1The linear approximation to the true conditional mean function is obtained by noting that the optimal mean

squared error approximation is a line through zero with slope equal to one-half. This follows from the fact that

E [Yt] = 0, V [Yt] = 1 and Cov [Yt; Yt�1] = 0:5. The quadratic approximation can similarly be derived analytically

from the properties of the joint distribution of (Yt; Yt�1).

5



unknown function g: For notational simplicity let us assume that all variables have mean zero.

g
�
Yp
t�1
�
� g (0) +rg (0)Yp

t�1

� B0 +B
p
1Y

p
t�1

� B0 +B1Yt�1 + :::+BpYt�p (6)

If we are primarily interested in studying the dynamics of Yt �near� its unconditional mean,

then the �rst-order approximation of g provided by a standard VAR may be su¢ ciently accurate.

By convention, VAR studies show impulse response functions to one standard deviation shocks.

But it is well known (see for example Koop et al. (1996)) that for standard linear VAR models the

magnitude of the shock has no impact on the shape of the impulse response function; it merely

a¤ects the scale. As discussed above, in stress testing studies interest lies not in small- or medium-

sized shocks, but extreme shocks. Considering three or �ve standard deviation shocks means

considering the dynamics of the variables �far� from their unconditional mean. In such case the

�rst-order Taylor series approximation may be a poor approximation to the true, unknown, data

generating process.

An obvious extension is to expand to a second or third-order Taylor series approximation of g:

As shown in the Appendix, the mean function, up to a second order approximation2, will be given

by:

g
�
Yp
t�1
�
= B0 +

pX
m=1

B1mYt�m +

pX
i=1

pX
j=i

B2ijvech
�
Yt�iY

0
t�j

�
(7)

where vech (X) stacks only the lower triangle of the matrixX. We use the vech function rather than

the vec function as Yp
t�1Y

p0

t�1 includes both Y1;t�1Y2;t�1 and Y2;t�1Y1;t�1, for example, and we can

collect such terms. The number of unknown parameters is larger for the second-order Taylor series

approximation relative to the �rst-order approximation. The �rst-order approximation has k+pk2

free parameters while the more �exible model has k + pk2 + pk2 (p+ 1) (k + 1) =4 free parameters.

Several possibilities exists for reducing the number of free parameters. First, one could restrict all

second-order e¤ects in equation i to include Yt�m;i. Alternatively, we could restrict the second-order

terms to only include lagged squared terms. Possibly due to the high parameterisation of non-linear

VAR models, these are not widely-used. In the next section we describe a method, proposed by

Jorda (2005), to estimate non-linear VAR models.

2The same analysis can easily be repeated for the third-order Taylor series approximation, adding greater �exibility

at the cost of additional parameters.
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3 Estimation results for the non-linear macro VAR

3.1 Estimation of �exible non-linear approximations

We employ a third-order approximation in our models of the relationships between the macroeco-

nomic variables and the measures of corporate default. In the interests of parsimony we drop all

cross-product terms from this approximation, and consider only one lag of the higher-order terms.

Thus, our model for the macroeconomic variables at the one-quarter horizon is:

Yjt = �0j +

pX
m=1

�01jmYt�m + 

0
2jYt�1 �Yt�1 + 
 03jYt�1 �Yt�1 �Yt�1 + ejt (8)

for j = 1; 2; 3, where � is the Hadamard product. This model is estimable via OLS, and thus is

very simple to implement.

As discussed in the introduction, an implication of considering a standard linear VAR as an

approximation to the true DGP, rather than as the DGP itself, is that it is no longer clear that

forecasts or stress tests of horizons greater than one period should be obtained by iterating the

one-period model forward. Jorda (2005) proposes an alternative approach, namely to estimate

a di¤erent approximation model for each horizon of interest. Following this argument, one can

estimate a set of models for the three macroeconomic variables and eight horizons:

Yj;t+h�1 = �
h
0j +

pX
m=1

�h01jmYt�m + 

h0
2jYt�1 �Yt�1 + 
h03jYt�1 �Yt�1 �Yt�1 + ehjt (9)

for j = 1; 2; 3 and h = 1; 2; :::; 8: For each variable and each horizon this model is estimable via

OLS.

Estimating the model for each horizon of interest it is simple to obtain the con�dence intervals

on the impulse responses, or stress tests: they come directly from the covariance matrix of the

parameters estimated for each horizon. This is in contrast with standard linear VAR approach,

where the con�dence intervals for horizons greater than one period must be obtained either via the

�delta�rule, or a bootstrap procedure.

3.2 Data

We use quarterly data on three key UK macroeconomic variables, GDP growth, the three-month

Treasury bill rate, and in�ation, to summarise the state of the macro economy. To proxy for

corporate credit risk we use the corporate liquidation rate de�ned as the number of defaulting
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companies in a given quarter relative to the total number of companies. Our macro model is small

relative to some of the macroeconomic models used in the analysis of credit risk, Pesaran et al.

(2005) being a prominent example. But it is large enough to convey the main ideas of this paper.

The sample period is 1992Q4 to 2004Q3. These series are available for a much longer period, but

we focus on data after 1992Q4, as at this point the UK adopted an in�ation targeting regime and

it has been recognized that in�ation targeting in the UK and other countries lead to a signi�cant

reduction in the volatility of macroeconomic series (see for example Kuttner and Posen, 1999 or

Benati 2004). It is, therefore, reasonable to assume that the introduction of in�ation targeting

induced a structural break in the UK macroeconomic time series in 1992Q4. In Figure 3 we plot

the macroeconomic variables and some descriptive statistics of the data set can be found in Table

1.

3.3 The estimated macroeconomic non-linear VAR

One of the properties of a standard linear VAR is that the size and the sign of the shock, as well as

the starting values of the variables, do not change the shape of the impulse response function3 (IRF),

see Koop et al. (1996). In the non-linear VAR, however, the size, the sign and starting values are

important. In all cases we evaluate the IRF holding all non-shocked variables at their unconditional

averages4. Consistent with the existing macroeconomic literature, we order the variables as GDP

growth, in�ation, interest rate.

In line with Jorda (2005) and much of the VAR literature, we use a Cholesky factorisation of the

covariance matrix of errors to obtain the scenarios. The use of a simple Cholesky factorisation may

be restrictive, but for the purpose of this paper this method is su¢ cient to illustrate our results.

The methodology outlined below, however, is general enough to consider any type of scenario. To

distinguish between small and large shocks we consider the impact on variables in the VAR from

unexpected one and three standard deviation shocks to GDP growth, in�ation and the interest

rate.

In Figures 4 to 7 we plot the impulse response functions (IRFs) of the three-variable macro-

economic VAR to shocks of various sizes and signs. Figure 4 reveals that in most one-standard

deviation IRFs the cubic and the linear models yield similar results. But the response of interest

rates to GDP growth shocks and interest rate shocks do di¤er substantially: the response of inter-

3Given the correspondence between impulse response functions and stress tests in our study, we will use these

terms interchangeably.
4For details on the computation of IRFs in this setting see Jordà (2005).
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est rates to a GDP growth shock and an interest rate shock is signi�cantly greater, for horizons 1

through 4 quarters, if cubic terms are considered than if these are ignored.

Figure 5 shows the IRFs for a -1 standard deviation shock. For the linear model this �gure is

just a sign change of the plots in Figure 4, whereas this is not necessarily so for the cubic model.

For example, the response of interest rates to a positive GDP shock was signi�cantly greater using

the cubic model than the linear model, whereas this di¤erence between the two models essentially

disappears for a negative GDP shock.

In Figure 6 we present the IRFs for a positive 3 standard deviation shock. For the linear model

these IRFs are just 3 times the IRFs from Figure 4, while this is not so for the cubic model. Some

interesting di¤erences appear comparing Figures 4 and 6. For example, the response of interest

rates to a 1 standard deviation in�ation shock was small and positive (negative) for the linear

(cubic) model, slowly increasing as the horizon approached eight quarters. However, for a three

standard deviation shock the cubic model suggests a large positive response of interest rates for

the �rst 5 quarters, followed by a decrease in interest rates at the 8th quarter. This indicates a

di¤erence between small shocks to in�ation, which lead to modest changes in interest rates, and

very large shocks to in�ation, which lead to much di¤erent interest rate reactions.

3.4 Impulse response function for the liquidation rate

To estimate the impact of macroeconomic shocks on the aggregate liquidation rate we estimate the

following Logit model:

�h��1 (Pt+h�1) = �
h
0+�

h
1��

�1 (Pt�1)+�
h0
1jYt�1+


h0
2jYt�1�Yt�1+
h03jYt�1�Yt�1�Yt�1+et+h�1

(10)

for h = 1; 2; :::; 8; where �hXt � Xt �Xt�h; � (x) = 1= (1 + e�x) is the standard logistic function
and Yt = [Y1t; Y2t; Y3t]

0 is the vector of the three macroeconomic variables. Since the model above

involves a nonlinear transformation of the liquidation rate, to obtain the results from a stress test,

or impulse response function, we use a simulation-based method5. Although we estimate the model

in di¤erences (of the transformed rates), we present the impulse responses for the liquidation rate

in levels, as this is the object of economic interest.

5The stress test results and con�dence intervals are obtained by estimating the above model and then simulating

10,000 draws from the asymptotic distribution of the parameter estimates, and a Normal distribution for the regression

residual, to obtain an estimated impact of a shock above what would be observed when all variables are held at their

unconditional values.
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In Figure 8-11 we present the results of the stress tests for the liquidation rate. Again, in all

cases we evaluate the IRF holding all non-shocked variables at their unconditional averages. Since

the variable of interest is a probability, it is more natural to present the results as a proportion

of the base case, i.e. as E
h
~P
(j)
t+h�1

�
~Yt�1

�
= �P

(j)
t+h�1

i
, rather than as a di¤erence from the base

case, E
h
~P
(j)
t+h�1

�
~Yt�1

�
� �P

(j)
t+h�1

i
. Hence to interpret the impulse response function, a value of 2

corresponds a doubling, relative to the sample average, of the probability of default.

Figure 8 presents the results of a 1 standard deviation shock to each of the three macroeconomic

variables, using either the linear or the cubic model. This �gure reveals that the mean impact on

the corporate liquidation rate from a macroeconomic shock is relatively small: the largest impact

on the liquidation rate occurs 8-quarters after a shock to GDP (as estimated from the cubic model)

where the liquidation rate increases by almost 10% from its sample average. In Figure 9 we show

the results of the 3 standard deviation macroeconomic shocks. In comparison to Figure 8 it is clear

that large shocks have a signi�cantly di¤erent impact on the liquidation rate than small shocks.

For a positive 3 standard deviation shock to GDP the non-linear model predicts a signi�cant fall

in the liquidation rate 2 quarters ahead - based on the linear VAR one would falsely conclude that

the liquidation rate does not change in the quarters following large GDP shocks.

In all cases, the con�dence bounds on the impulse responses are wide. In some applications the

fact that the con�dence intervals always include 1, the base case, would be taken as evidence that

corporate liquidations are independent of business cycle shocks. But the estimation uncertainty is

important for regulators as well as banks to set capital at a su¢ ciently conservative level. Therefore,

we should pay more attention to the upper con�dence interval bound which is the upper bound on

the mean impact of a shock to each of these variables at the 95% con�dence level in our �gures.

Following a 1 standard deviation shock the upper bound is approximately 1.1 for all three shocks

at the one-quarter horizon, and is between 1.3 and 1.4 at the eight-quarter horizon. Thus it is

plausible that the mean impact of a one standard deviation shock is a 30% to 40% increase in

the probability of default, meaning that the liquidation rate could move from 1.32% to as high as

1.85%, a substantial increase. This e¤ect is even more signi�cant if the shocks are large, where the

impact from macro shocks can lead to a more than a 100% increase of PDs at a 95% con�dence

level.

Of course, the upper con�dence interval bound could be made arbitrarily close to 100% by

including more and more, potentially irrelevant, variables in the model for the liquidation rate.

Doing so would increase the estimation error, increasing the uncertainty surrounding the estimated

impact of a shock, and thus increase the upper con�dence bound. For this reason it is important
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to carefully consider which variables to include in the model and the degree of �exibility to allow.

By including numerous irrelevant variables we will likely obtain an upper con�dence bound that

is too conservative; by excluding the possibility of non-linearities and other e¤ects we may instead

obtain an upper con�dence bound that is too low that does not re�ect the true uncertainty.

Our conclusions are con�rmed when looking at the impact of small and large negative shocks

(Figure 10 and 11 in the Appendix). Following a negative 3 standard deviation shock to GDP the

liquidation rate increases signi�cantly (borderline) in the second quarter by roughly 50% relative

to the sample average. Independent of the forecast horizon we �nd that the liquidation rate falls

strongly, and signi�cantly, in the quarters after large negative shocks to the interest rate. The

maximum fall occurs after 8 quarters when the liquidation rate is roughly 30% lower than on

average. Overall, our results suggest that large positive as well as negative unexpected changes in

interest rates have some impact on the corporate liquidation rate both in the very short and in the

more intermediate term (up to 2 years).

3.5 Estimating the non-linear VAR over di¤erent samples

Looking at the write-o¤ ratio of UK banks, Hoggarth et al. (2005) �nd that the sample period

is important for their conclusions on the link between credit risk and macroeconomic shocks. In

particular, they �nd that the impact of a shock to output, relative to potential, is stronger in the

years after the UK adopted an in�ation targeting regime. As discussed in Section 3.2, this may

be due to a structural break in the relation between the macroeconomic variables. Obviously, if a

structural break is present in 1992 then it would be better to focus on the post 1992 estimations as

we have done so far. However, we extend our sample back to 1985Q1 for comparison. This sample

period includes the recession of the early 1990s, which may contain useful information for stress

testing. The IRFs from the estimated VAR based on the longer sample shocks can be found in

Figure 12 and 13. We only show the impact on the liquidation rate following large macroeconomic

shocks as small shocks have an insigni�cant impact on the liquidation rate at all horizons.

This robustness check leads to some interesting conclusions. First, we �nd that large positive

GDP shocks imply a signi�cant fall in the corporate liquidation rate, using the cubic model, up

to 1 year following the shock. Although negative GDP shocks are found to increase the corporate

liquidation rate in the short run the impact is insigni�cant - the maximum impact from a large

negative GDP shock is after 3 quarters, rather than 2 quarters using the 1992Q4-2004Q3 sample.

Second, we �nd a substantially di¤erent impact from interest rate shocks on the corporate liqui-

dation rate in comparison with the VAR estimated on the 1992Q2-2004Q3 sample. Large positive
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shocks to the interest rate increases the corporate liquidation rate signi�cantly at all horizons with

a maximum impact after 8 quarters, which is 8 times as high as its sample average. Large negative

interest rate shocks, on the other hand, decrease the corporate liquidation rate signi�cantly, in

particular 2-6 quarters following the interest rate shock. The largest fall in the liquidation rate

after large negative interest rate shocks is in the �fth quarter when the level of the liquidation rate

is around 90% lower relative to its sample average.

The results from this alternative sample period indicate that the corporate liquidation rate is

much more strongly related to the interest rate once the recession of the early 1990s is included in

the sample. Large negative shocks to GDP do not lead to a signi�cant increase in the corporate

liquidation rate whereas both large positive GDP and large negative interest rate shocks imply a

fall in the corporate liquidation rate. These results emphasise that some care must be taken in

the choice of sample period: in our case this involved trading o¤ valuable information from the

recession of the early 1990s against the use of data from a di¤erent statistical regime.

4 Conclusion

In this paper we investigate the impact of possible non-linearities on credit risk in a VAR setup.

As standard VAR models are unable to deal with non-linearities we use the methodology proposed

by Jorda (2005). The key insight of Jorda was to interpret a general VAR as a �rst order Taylor

series approximation of an unknown data generating process. His approach allows to estimate

more �exible approximations, which capture possible non-linearities in the data. We apply this

methodology to a small model of the macro economy and extend it to analyse the interaction

between the aggregate corporate liquidation rate and macroeconomic variables. We show that

the results of the non-linear VAR are di¤erent to results using standard linear models, especially

when considering large shocks. This was illustrated using a simple three variable macro model.

Most importantly, we show that accounting for non-linearities in the underlying macroeconomic

environment leads to substantially di¤erent conclusions for aggregate credit risk projections. In

contrast to most other papers we explicitly account for the underlying estimation uncertainty of

the models. We show that this can have signi�cant implications for the estimated level of credit

risk, especially when looking at the tails of the credit risk distribution.

Overall, our analysis con�rms the �ndings of previous papers (see for example Benito et al.

(2001)) which suggest that large increases in interest rates are a key driver of credit risk, and that

large positive shocks to GDP tend to reduce risk signi�cantly. Our analysis also points to a stronger

12



relation between the liquidation rate and the macroeconomic variables, in particular interest rates,

once the early 1990s is included in the sample.

5 Appendix

5.1 A simple non-linear model

To illustrate the importance of di¤erent approximations to a non-linear data generating process

consider (yt; yt�1) the following joint distribution:

(yt; yt�1) s F = CC (�;�;�)

where F is some bivariate distribution with standard normal marginal distributions (denoted �)

connected with Clayton�s copula, CC , with dependence parameter �. This type of time series

process was �rst studied in economics by Chen and Fan (2004). This implies that we can write

yt = h (yt�1; "t;�)

where "tjyt�1 s N (0; 1)

CC (ujv;�) � @CC (u; v;�)

@v

h (y; ";�) � C�1C (� (") j� (y) ;�)

which is a general, stationary, non-linear data generating process that is simple to simulate.

In Figure 4 we show one simulated sample path from this process for k = 1:1, which yields

Corr [yt; yt�1] = 0:5:

5.2 A second order Taylor expansion

Consider the second order expansion for the �rst element of g, denoted g1, where g1 : Rpk!R

g1
�
Yp
t�1
�
� g1 (0) +rg1 (0)Yp

t�1 +
1

2
Yp0
t�1r2g1 (0)Y

p
t�1 (11)

We can re-write this expression in a more convenient form by making use of the vec operator

and the Kronecker product (denoted 
):
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g1 (Yt�1)
(1�1)

� g1 (0)
(1�1)

+rg1 (0)
(1�pk)

Yp
t�1

(pk�1)
+
1

2
vec(r2g1 (0))| {z }

(pk�pk)

0

| {z }
(1�p2k2)

(Yp
t�1

(pk�1)

 Yp

t�1
(pk�1)

)| {z }
(p2k2�1)

= g1 (0) +rg1 (0)Yp
t�1 +

1

2
vec

�
r2g1 (0)

�0
vec

�
Yp
t�1Y

p0
t�1
�

We can stack the equations to obtain:

g (Yt�1) � g (0) +rg (0)Yp
t�1 +

1

2

26666664
vec

�
r2g1 (0)

�0
vec

�
r2g2 (0)

�0
...

vec
�
r2gk (0)

�0

37777775 vec
�
Yp
t�1Y

p0
t�1
�

Let r2g (0) �

26666664
vec

�
r2g1 (0)

�0
vec

�
r2g2 (0)

�0
...

vec
�
r2gk (0)

�0

37777775
Then g

�
Yp
t�1
�

(k�1)
= g (0)

(k�1)
+rg (0)

(k�pk)
Yp
t�1

(pk�1)
+
1

2
r2g (0)
(k�p2k2)

�
Yp
t�1 
Y

p
t�1
�| {z }

(p2k2�1)

� B0
(k�1)

+ Bp1
(k�pk)

Yp
t�1

(pk�1)
+ Bp2
(k�pk(pk+1)=2)

vech
�
Yp
t�1Y

p0
t�1
�| {z }

(pk(pk+1)=2�1)

, collecting terms

� B0
(k�1)

+

pX
m=1

B1m
(k�k)

Yt�m
(k�1)

+

pX
i=1

pX
j=i

B2ij
(k�k(k+1)=2)

vech
�
Yt�iY

0
t�j

�
| {z }

(k(k+1)=2�1)

, collecting terms

where vech (X) stacks only the lower triangle of the matrix X. We use the vech function rather

than the vec function as Yp
t�1Y

p0

t�1 includes both Y1;t�1Y2;t�1 and Y2;t�1Y1;t�1, for example, and

we can collect such terms. Moving from the penultimate to the �nal line above also follows from a

collection of terms, further reducing the number of free parameters.
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5.3 Tables

Table 1

Descriptive statistics Mean Standard deviation Skewness Kurtosis

Corporate liquidation rate 0.0132 0.0046 1.2919 4.3303

GDP growth 0.0072 0.0032 0.4080 1.9562

Interest rate 0.0130 0.0025 -0.1474 2.1483

In�ation 0.0062 0.0046 0.2076 2.7698
Descriptive statistics for data in VAR. 1992Q4-2004Q4:

5.4 Charts
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Figure 1: The conditional mean of Yt given Yt�1 assuming Yt s N (0; 1) and using a Clayton copula implying

�rst-order autocorrelation of 0.5.
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Figure 3: The Corporate liquidation rate and macroeconomic variables included in the VAR.
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Figure 4: The thick line marked with triangles is the impulse response for a 1 standard deviation shock from the

cubic projection; the thin line marked with circles is the impulse response from the linear projection; the dashed lines

are the 95% con�dence bounds on the impulse response from the linear projection.
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cubic projection; the thin line marked with circles is the impulse response from the linear projection; the dashed lines

are the 95% con�dence bounds on the impulse response from the linear projection.
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Figure 8: These �gures show the response of the liquidation ratio to a 1 standard deviation shock, relative to the

baseline liquidation ratio of 1.32% per year. The rows indicate the shocked variables; the columns show the model

used, either a linear projection or a cubic projection. 95% con�dence intervals are denoted with a thick line.
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Figure 9: These �gures show the response of the liquidation ratio to a 3 standard deviation shock, relative to the

baseline liquidation ratio of 1.32% per year. The rows indicate the shocked variables; the columns show the model

used, either a linear projection or a cubic projection. 95% con�dence intervals are denoted with a thick line.
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Figure 10: These �gures show the response of the liquidation ratio to a -1 standard deviation shock, relative to the

baseline liquidation ratio of 1.32% per year. The rows indicate the shocked variables; the columns show the model

used, either a linear projection or a cubic projection. 95% con�dence intervals are denoted with a thick line.

21



2 4 6 8
0

1

2

3

4

5

6

7
gd

p
linear

2 4 6 8
0

1

2

3

4

5

6

7

gd
p

cubic

2 4 6 8
0.5

0.75

1

1.25

1.5

1.75

2

in
fla

tio
n

2 4 6 8
0.5

0.75

1

1.25

1.5

1.75

2

in
fla

tio
n

2 4 6 8
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

in
t r

at
e

horizon
2 4 6 8

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

in
t r

at
e

horizon

Figure 11: These �gures show the response of the liquidation ratio to a -3 standard deviation shock, relative to the

baseline liquidation ratio of 1.32% per year. The rows indicate the shocked variables; the columns show the model

used, either a linear projection or a cubic projection. 95% con�dence intervals are denoted with a thick line.
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Figure 12: These �gures show the response of the liquidation ratio to a +3 standard deviation shock, relative to the

baseline liquidation ratio of 1.32% per year. The rows indicate the shocked variables; the columns show the model

used, either a linear projection or a cubic projection. 95% con�dence intervals are denoted with a thick line. Using

sample from 1985Q1-2004Q3.
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Figure 13: These �gures show the response of the liquidation ratio to a -3 standard deviation shock, relative to the

baseline liquidation ratio of 1.32% per year. The rows indicate the shocked variables; the columns show the model

used, either a linear projection or a cubic projection. 95% con�dence intervals are denoted with a thick line. Using

sample from 1985Q1-2004Q3.
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