Realized Semibetas:
 Disentangling "good" and "bad" downside risks

Tim Bollerslev
Duke University

Andrew J. Patton
Duke University

Rogier Quaedvlieg
Erasmus University
Rotterdam

2021 North American Summer Meeting of the Econometric Society

Motivation

- Do expected returns vary significantly with the degree of diversification offered during market downturns/upturns?
- We measure this using semibetas, defined below.
- Can we better explain the cross-section of expected returns by drawing on the information in semibetas? Compare with:
- Mean-semivariance framework of Hogan and Warren (1972, 1974, JFQA)
- Downside beta framework of Ang Chen and Xing (2006, RFS)
- Co-skewness and co-kurtosis pricing, see Kraus and Litzenberger (1976, $J F)$, Harvey and Siddique (2000, JF), Langlois (2019, JFE) and others.

Semicovariances and Semibetas

- Ignoring the mean, the covariance between a stock (r) and the market (f) is:

$$
\begin{aligned}
\operatorname{Cov}(r, f)= & E[r \cdot f] \\
= & E[r \cdot f \cdot \mathbf{1}(r<0, f<0)]+E[r \cdot f \cdot \mathbf{1}(r>0, f>0)] \\
& +E[r \cdot f \cdot \mathbf{1}(r<0, f>0)]+E[r \cdot f \cdot \mathbf{1}(r>0, f<0)]
\end{aligned}
$$

Semicovariances and Semibetas

- Ignoring the mean, the covariance between a stock (r) and the market (f) is:

$$
\begin{aligned}
\operatorname{Cov}(r, f)= & E[r \cdot f] \\
= & E[r \cdot f \cdot \mathbf{1}(r<0, f<0)]+E[r \cdot f \cdot \mathbf{1}(r>0, f>0)] \\
& +E[r \cdot f \cdot \mathbf{1}(r<0, f>0)]+E[r \cdot f \cdot \mathbf{1}(r>0, f<0)] \\
\equiv & \mathcal{N}+\mathcal{P}+\mathcal{M}^{+}+\mathcal{M}^{-}
\end{aligned}
$$

Semicovariances and Semibetas

- Ignoring the mean, the covariance between a stock (r) and the market (f) is:

$$
\begin{aligned}
\operatorname{Cov}(r, f)= & E[r \cdot f] \\
= & E[r \cdot f \cdot \mathbf{1}(r<0, f<0)]+E[r \cdot f \cdot \mathbf{1}(r>0, f>0)] \\
& +E[r \cdot f \cdot \mathbf{1}(r<0, f>0)]+E[r \cdot f \cdot \mathbf{1}(r>0, f<0)] \\
\equiv & \mathcal{N}+\mathcal{P}+\mathcal{M}^{+}+\mathcal{M}^{-}
\end{aligned}
$$

- Scaling by $\operatorname{Var}(f)$, we obtain an exact decomposition of beta into semibetas:

$$
\begin{aligned}
\beta & =\frac{\operatorname{Cov}(r, f)}{\operatorname{Var}(f)} \\
& =\frac{\mathcal{N}+\mathcal{P}+\mathcal{M}^{+}+\mathcal{M}^{-}}{\operatorname{Var}(f)} \\
& \equiv \beta^{\mathcal{N}}+\beta^{\mathcal{P}}-\beta^{\mathcal{M}+}-\beta^{\mathcal{M}-}
\end{aligned}
$$

- As $\mathcal{M}<0$, we switch the sign when defining $\beta^{\mathcal{M}}$ to ease interpretation.

Which asset would you prefer?

A: Gaussian, B: Correlated booms, C: Correlated crashes, D: Less correlated crashes

Asset C and the Market

Asset B and the Market

Asset D and the Market

Which asset would you prefer?

A: Gaussian, B: Correlated booms, C: Correlated crashes, D: Less correlated crashes

Outline

- Mean-semivariance pricing
- Realized semibetas
- Cross-sectional pricing
- Betting on semibetas

Mean-Semivariance Pricing

- Investors only care about downside return variation
- Only the covariation with negative aggregate market returns should be priced
- Standard CAPM and single beta security market line too simplistic
- Traces back to early work by Roy (1952, Ecta), Markowitz (1959, book), Mao (1970, JF), Hogan and Warren (1972, 1974, JFQA), Bawa and Lindenberg (1977, JFE), Fishburn (1977, AER)
- May also be justified by prosect theory and the notion of loss aversions proposed by Kahneman and Tversky (1979, Ecta)

Mean-semivariance pricing

- Hogan and Warren, 1974, JFQA:

- Naturally suggests measuring risk using semibetas:

$$
\beta \equiv \frac{\operatorname{Cov}(r, f)}{\operatorname{Var}(f)}=\beta^{\mathcal{N}}+\beta^{\mathcal{P}}-\beta^{\mathcal{M}^{+}}-\beta^{\mathcal{M}^{-}}
$$

Realized semibetas

- True semibetas are latent:

$$
\beta_{t, i}^{\mathcal{N}} \equiv \frac{\mathcal{N}_{t, i}}{\mathcal{V}_{t}} \quad \beta_{t, i}^{\mathcal{P}} \equiv \frac{\mathcal{P}_{t, i}}{\mathcal{V}_{t}} \quad \beta_{t, i}^{\mathcal{M}^{+}} \equiv \frac{-\mathcal{M}_{t, i}^{+}}{\mathcal{V}_{t}} \quad \beta_{t, i}^{\mathcal{M}^{-}} \equiv \frac{-\mathcal{M}_{t, i}^{-}}{\mathcal{V}_{t}}
$$

Realized semibetas

- True semibetas are latent:

$$
\beta_{t, i}^{\mathcal{N}} \equiv \frac{\mathcal{N}_{t, i}}{\mathcal{V}_{t}} \quad \beta_{t, i}^{\mathcal{P}} \equiv \frac{\mathcal{P}_{t, i}}{\mathcal{V}_{t}} \quad \beta_{t, i}^{\mathcal{M}^{+}} \equiv \frac{-\mathcal{M}_{t, i}^{+}}{\mathcal{V}_{t}} \quad \beta_{t, i}^{\mathcal{M}^{-}} \equiv \frac{-\mathcal{M}_{t, i}^{-}}{\mathcal{V}_{t}}
$$

- But using results in Bollerslev, Li, Patton and Quaedvlieg (2020, Econometrica), these can be consistently $(m \rightarrow \infty)$ estimated by realized semibetas:

$$
\begin{aligned}
\widehat{\beta}_{t, i}^{\mathcal{N}} \equiv \frac{\sum_{k=1}^{m} r_{t, k, i}^{-} f_{t, k}^{-}}{\sum_{k=1}^{m} f_{t, k}^{2}} & \widehat{\beta}_{t, i}^{\mathcal{P}} \equiv \frac{\sum_{k=1}^{m} r_{t, k, i}^{+} f_{t, k}^{+}}{\sum_{k=1}^{m} f_{t, k}^{2}} \\
\widehat{\beta}_{t, i}^{\mathcal{M}^{-}} \equiv \frac{-\sum_{k=1}^{m} r_{t, k, i}^{+} f_{t, k}^{-}}{\sum_{k=1}^{m} f_{t, k}^{2}} & \widehat{\beta}_{t, i}^{\mathcal{M}^{+}} \equiv \frac{-\sum_{k=1}^{m} r_{t, k, i}^{-} f_{t, k}^{+}}{\sum_{k=1}^{m} f_{t, k}^{2}}
\end{aligned}
$$

where $r_{t, k, i}^{+} \equiv \max \left(r_{t, k, i}, 0\right)$ and $r_{t, k, i}^{-} \equiv \min \left(r_{t, k, i}, 0\right)$

Realized semibetas

- True semibetas are latent:

$$
\beta_{t, i}^{\mathcal{N}} \equiv \frac{\mathcal{N}_{t, i}}{\mathcal{V}_{t}} \quad \beta_{t, i}^{\mathcal{P}} \equiv \frac{\mathcal{P}_{t, i}}{\mathcal{V}_{t}} \quad \beta_{t, i}^{\mathcal{M}^{+}} \equiv \frac{-\mathcal{M}_{t, i}^{+}}{\mathcal{V}_{t}} \quad \beta_{t, i}^{\mathcal{M}^{-}} \equiv \frac{-\mathcal{M}_{t, i}^{-}}{\mathcal{V}_{t}}
$$

- But using results in Bollerslev, Li, Patton and Quaedvlieg (2020, Econometrica), these can be consistently $(m \rightarrow \infty)$ estimated by realized semibetas:

$$
\begin{aligned}
\widehat{\beta}_{t, i}^{\mathcal{N}} \equiv \frac{\sum_{k=1}^{m} r_{t, k, i}^{-} f_{t, k}^{-}}{\sum_{k=1}^{m} f_{t, k}^{2}} & \widehat{\beta}_{t, i}^{\mathcal{P}} \equiv \frac{\sum_{k=1}^{m} r_{t, k, i}^{+} f_{t, k}^{+}}{\sum_{k=1}^{m} f_{t, k}^{2}} \\
\widehat{\beta}_{t, i}^{\mathcal{M}^{-}} \equiv \frac{-\sum_{k=1}^{m} r_{t, k, i}^{+} f_{t, k}^{-}}{\sum_{k=1}^{m} f_{t, k}^{2}} & \widehat{\beta}_{t, i}^{\mathcal{M}^{+}} \equiv \frac{-\sum_{k=1}^{m} r_{t, k, i}^{-} f_{t, k}^{+}}{\sum_{k=1}^{m} f_{t, k}^{2}}
\end{aligned}
$$

where $r_{t, k, i}^{+} \equiv \max \left(r_{t, k, i}, 0\right)$ and $r_{t, k, i}^{-} \equiv \min \left(r_{t, k, i}, 0\right)$

- By construction $\widehat{\beta}_{t, i}=\widehat{\beta}_{t, i}^{\mathcal{N}}+\widehat{\beta}_{t, i}^{P}-\widehat{\beta}_{t, i}^{\mathcal{M}^{+}}-\widehat{\beta}_{t, i}^{\mathcal{M}^{-}}$, for all m

Realized semibetas

- High-frequency intraday data from TAQ
- S\&P 500 constituent stocks, 1993-2014
- $T=5,541$ trading days
- 1,049 unique securities ($\bar{N}=722$)
- 15-minute returns excluding overnight (so $m=26$)
- Total daily returns based on CRSP to account for overnight and dividends

Realized semibetas

- Unconditional distributions and autocorrelations:

- Distributions of two (dis)concordant semibetas almost indistinguishable
- Semibetas more strongly autocorrelated than conventional betas

Realized semibetas

- Average deviations from implied Gaussian values as a function of ρ
- $\beta^{\mathcal{N}}$ and $\beta^{\mathcal{M}^{-}}$typically higher; $\beta^{\mathcal{P}}$ and $\beta^{\mathcal{M}^{+}}$typically lower

Cross-sectional pricing

- Standard Fama-MacBeth approach, with cross-sectional regressions:

$$
r_{t+1, i}=\lambda_{0, t+1}+\lambda_{t+1}^{\mathcal{N}} \hat{\beta}_{t, i}^{\mathcal{N}}+\lambda_{t+1}^{\mathcal{P}} \hat{\beta}_{t, i}^{\mathcal{P}}+\lambda_{t+1}^{\mathcal{M}^{+}} \hat{\beta}_{t, i}^{\mathcal{M}^{+}}+\lambda_{t+1}^{\mathcal{M}^{-}} \hat{\beta}_{t, i}^{\mathcal{M}^{-}}+\epsilon_{t+1, i}
$$

Cross-sectional pricing

- Standard Fama-MacBeth approach, with cross-sectional regressions:

$$
r_{t+1, i}=\lambda_{0, t+1}+\lambda_{t+1}^{\mathcal{N}} \hat{\beta}_{t, i}^{\mathcal{N}}+\lambda_{t+1}^{\mathcal{P}} \hat{\beta}_{t, i}^{\mathcal{P}}+\lambda_{t+1}^{\mathcal{M}^{+}} \hat{\beta}_{t, i}^{\mathcal{M}^{+}}+\lambda_{t+1}^{\mathcal{M}^{-}} \hat{\beta}_{t, i}^{\mathcal{M}^{-}}+\epsilon_{t+1, i}
$$

- Risk premium estimates, $\hat{\lambda}^{j}=\frac{1}{T-1} \sum_{t=2}^{T} \hat{\lambda}_{t}^{j}$:

β	$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\beta^{\mathcal{M}^{+}}$	$\beta^{\mathcal{M}^{-}}$	R^{2}
4.58					2.70
3.04					
	22.54	-1.58	-4.29	-8.48	5.43
	5.62	-0.52	-0.86	-2.02	

- Stocks with higher $\beta^{\mathcal{N}}$ earn significantly higher risk premium
- Stocks with higher $\beta^{\mathcal{M}^{-}}$earn significantly lower risk premium

Cross-sectional pricing

- Standard Fama-MacBeth approach, with cross-sectional regressions:

$$
r_{t+1, i}=\lambda_{0, t+1}+\lambda_{t+1}^{\mathcal{N}} \hat{\beta}_{t, i}^{\mathcal{N}}+\lambda_{t+1}^{\mathcal{P}} \hat{\beta}_{t, i}^{\mathcal{P}}+\lambda_{t+1}^{\mathcal{M}^{+}} \hat{\beta}_{t, i}^{\mathcal{M}^{+}}+\lambda_{t+1}^{\mathcal{M}^{-}} \hat{\beta}_{t, i}^{\mathcal{M}^{-}}+\epsilon_{t+1, i}
$$

- Risk premium estimates, $\hat{\lambda}^{j}=\frac{1}{T-1} \sum_{t=2}^{T} \hat{\lambda}_{t}^{j}$:

β	$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\beta^{\mathcal{M}^{+}}$	$\beta^{\mathcal{M}^{-}}$	R^{2}
4.58					2.70
3.04					
	22.54	-1.58	-4.29	-8.48	5.43
	5.62	-0.52	-0.86	-2.02	

- Stocks with higher $\beta^{\mathcal{N}}$ earn significantly higher risk premium
- Stocks with higher $\beta^{\mathcal{M}^{-}}$earn significantly lower risk premium
- $H_{t}^{C A P M}: \lambda_{t}^{\mathcal{N}}=\lambda_{t}^{\mathcal{P}}=-\lambda_{t}^{\mathcal{M}^{+}}=-\lambda_{t}^{\mathcal{M}^{-}}$
- Rejected at 5% level for 68% of 5,541 days in sample

Short-sales constraints

- In a frictionless market without any short-sales constraints:

$$
H_{t}^{S Y M}: \lambda_{t}^{\mathcal{N}}=-\lambda_{t}^{\mathcal{M}^{-}} \cap \lambda_{t}^{\mathcal{P}}=-\lambda_{t}^{\mathcal{M}^{+}}
$$

Short-sales constraints

- In a frictionless market without any short-sales constraints:

$$
H_{t}^{S Y M}: \lambda_{t}^{\mathcal{N}}=-\lambda_{t}^{\mathcal{M}^{-}} \cap \lambda_{t}^{\mathcal{P}}=-\lambda_{t}^{\mathcal{M}^{+}}
$$

- Rejected at 5% level for 58% of 5,541 days in sample

Short-sales constraints

- In a frictionless market without any short-sales constraints:

$$
H_{t}^{S Y M}: \lambda_{t}^{\mathcal{N}}=-\lambda_{t}^{\mathcal{M}^{-}} \cap \lambda_{t}^{\mathcal{P}}=-\lambda_{t}^{\mathcal{M}^{+}}
$$

- Rejected at 5% level for 58% of 5,541 days in sample
- D'Avolio (2002, JFE) and Henderson, Jostova and Philipov (2019, wp) indicate that almost all of the S\&P 500 stocks can easily and cheaply be borrowed
- Diffs in risk premia cannot be attributed to "hard" short-selling constraints

Short-sales constraints

- In a frictionless market without any short-sales constraints:

$$
H_{t}^{S Y M}: \lambda_{t}^{\mathcal{N}}=-\lambda_{t}^{\mathcal{M}^{-}} \cap \lambda_{t}^{\mathcal{P}}=-\lambda_{t}^{\mathcal{M}^{+}}
$$

- Rejected at 5% level for 58% of 5,541 days in sample
- D'Avolio (2002, JFE) and Henderson, Jostova and Philipov (2019, wp) indicate that almost all of the S\&P 500 stocks can easily and cheaply be borrowed
- Diffs in risk premia cannot be attributed to "hard" short-selling constraints
- Legal and institutional constraints impede many individual and institutional investors from short-selling
- Creates limits to arbitrage as in Pontiff (1996, QJE) and Schleifer and Vishny (1997, JF), and related arbitrage risks (Hong and Sraer, 16, JF)

Arbitrage risk

- We adopt two proxies for the arbitrage risk of a stock

Arbitrage risk

- We adopt two proxies for the arbitrage risk of a stock
- Idiosyncratic volatility (Pontiff, 96, QJE; Stambaugh, Yu and Yuan, 15, JF)
- Turnover (Harris and Raviv, 93, RFS; Blume, Easley and O'Hara, 94, JF)

Arbitrage risk

- We adopt two proxies for the arbitrage risk of a stock
- Idiosyncratic volatility (Pontiff, 96, QJE; Stambaugh, Yu and Yuan, 15, JF)
- Turnover (Harris and Raviv, 93, RFS; Blume, Easley and O'Hara, 94, JF)
- We apply a linear rotation to our model to make it easier to observe whether there is a violation of the "symmetric" pricing restrictions:

$$
r_{i}=\lambda_{0}+\lambda^{\mathcal{N}}\left(\beta_{i}^{\mathcal{N}}-\beta_{i}^{\mathcal{M}^{-}}\right)+\lambda^{\mathcal{P}}\left(\beta_{i}^{\mathcal{P}}-\beta_{i}^{\mathcal{M}^{+}}\right)+\delta^{\mathcal{M}+} \beta_{i}^{\mathcal{M}^{+}}+\delta^{\mathcal{M}-} \beta_{i}^{\mathcal{M}^{-}}+\epsilon_{t+1}
$$

- If the symmetric pricing restrictions hold, then $\delta^{\mathcal{M}+}=\delta^{\mathcal{M}-}=0$

Arbitrage risk and semibeta pricing

$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\delta^{\mathcal{M}-}$	$\delta^{\mathcal{M}+}$	$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\delta^{\mathcal{M}-}$	$\delta^{\mathcal{M}+}$	R^{2}

Panel A: Full-Sample Estimates

$$
\begin{array}{rrrrr}
22.54 & -1.58 & 12.16 & -5.81 & 5.43 \\
5.62 & -0.52 & 2.22 & -0.93 &
\end{array}
$$

Panel B: Sorting on Arbitrage Risk

	Below Median					Above Median					
IVOL	22.29	-0.10	3.99	-3.41		17.43	-4.63	34.81	10.19	6.62	
	5.45	-0.03	0.72	-0.52		4.03	-1.52	4.73	1.33		
TO	22.23	-12.64	-2.10	-9.54		19.57	1.69	8.06	-5.13	6.93	
	5.42	-4.40	-0.34	-1.37		4.66	0.50	2.27	-0.76		

- Differences in semibeta risk premia are driven by stocks that are more difficult to short (higher IVOL) or are more difficult to value (higher turnover).

Including control variables

- Including some "standard," lower frequency, control variables:

$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\beta^{\mathcal{M}^{+}}$	$\beta^{\mathcal{M}^{-}}$	ME	BM	MOM	REV	IVOL	ILLIQ	R^{2}
22.54	-1.58	-4.29	-8.48							5.43
5.62	-0.52	-0.86	-2.02							
22.47	-5.67	-2.90	-12.20	-2.23	-1.77	0.11				8.23
5.75	-2.02	-0.65	-3.14	-3.83	-1.95	3.47				
20.36	-2.91	1.68	-6.15	-7.42	-1.65	0.09	-0.55	-3.07	-4.88	10.32
5.44	-1.08	0.41	-1.68	-7.71	-1.87	2.55	-5.82	-3.56	-6.42	

- Average R^{2} s increase
- Still the case that:
- Stocks with higher $\beta^{\mathcal{N}}$ earn higher returns
- Stocks with higher $\beta^{\mathcal{M}^{-}}$earn lower returns

Comparison with up- and down-side betas

- Up- and down-side betas (Ang, Chen and Xing, 2006, RFS):

$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\beta^{\mathcal{M}^{+}}$	$\beta^{\mathcal{M}^{-}}$	β^{+}	β^{-}	R^{2}
22.54	-1.58	-4.29	-8.48			5.43
5.62	-0.52	-0.86	-2.02			
				-1.17	6.88	3.70
				-1.11	5.54	
17.31	-8.10	-12.66	-3.86	-2.40	7.90	6.61
3.86	-0.13	0.03	-1.79	-1.67	0.82	

where $\quad \hat{\beta}_{t, i}^{+} \equiv \frac{\sum_{k=1}^{m} r_{t, k, i} f_{t, k}^{+}}{\sum_{k=1}^{m}\left(f_{t, k}^{+}\right)^{2}} \quad$ and $\quad \hat{\beta}_{t, i}^{-} \equiv \frac{\sum_{k=1}^{m} r_{t, k, i} f_{t, k}^{-}}{\sum_{k=1}^{m}\left(f_{t, k}^{-}\right)^{2}}$

- $\beta^{\mathcal{N}}$ and $\beta^{\mathcal{M}^{-}}$remain significant in combined regression

Comparison with up- and down-side betas

- Up- and down-side betas (Ang, Chen and Xing, 2006, RFS):

$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\beta^{\mathcal{M}^{+}}$	$\beta^{\mathcal{M}^{-}}$	β^{+}	β^{-}	R^{2}
22.54	-1.58	-4.29	-8.48			5.43
5.62	-0.52	-0.86	-2.02			
				-1.17	6.88	3.70
				-1.11	5.54	
17.31	-8.10	-12.66	-3.86	-2.40	7.90	6.61
3.86	-0.13	0.03	-1.79	-1.67	0.82	

Note: $\quad \hat{\beta}_{t, i}^{+}=\left(\widehat{\beta}_{t, i}^{\mathcal{P}}-\widehat{\beta}_{t, i}^{\mathcal{M}^{+}}\right) \frac{\sum_{k=1}^{m} f_{t, k}^{2}}{\sum_{k=1}^{m}\left(f_{t, k}^{+}\right)^{2}} \quad$ and $\quad \hat{\beta}_{t, i}^{-}=\left(\widehat{\beta}_{t, i}^{\mathcal{N}}-\widehat{\beta}_{t, i}^{\mathcal{M}^{-}}\right) \frac{\sum_{k=1}^{m} f_{t, k}^{2}}{\sum_{k=1}^{m}\left(f_{t, k}^{-}\right)^{2}}$

- Pricing implications coincide if $H_{t}^{S Y M}: \lambda_{t}^{\mathcal{P}}=-\lambda_{t}^{\mathcal{M}^{+}} \cap \lambda_{t}^{\mathcal{N}}=-\lambda_{t}^{\mathcal{M}^{-}}$
- Rejected at 5% level for 58% of 5,541 days in sample

Comparison with co-skewness and co-kurtosis

- Coskewness and Cokurtosis (Harvey and Siddique, 2000, JF):

$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\beta^{\mathcal{M}^{+}}$	$\beta^{\mathcal{M}^{-}}$	CSK	CKT	R^{2}
22.54	-1.58	-4.29	-8.48			5.43
5.62	-0.52	-0.86	-2.02			
				-4.40	0.81	1.52
				-1.55	0.76	
30.92	-3.79	-3.89	-16.33	10.09	-3.59	6.26
6.20	-1.12	-0.76	-3.69	2.66	-3.22	

$$
\begin{aligned}
& C S K_{t, i} \propto \frac{1}{m} \sum_{k=1}^{m}\left(r_{t, k, i}-\bar{r}_{t, i}\right)\left(f_{t, k}-\bar{f}_{t}\right)^{2} \\
& C K T_{t, i} \propto \frac{1}{m} \sum_{k=1}^{m}\left(r_{t, k, i}-\bar{r}_{t, i}\right)\left(f_{t, k}-\bar{f}_{t}\right)^{3}
\end{aligned}
$$

- $\beta^{\mathcal{N}}$ and $\beta^{\mathcal{M}^{-}}$remain significant; additional information about the tails captured by CSK and CKT

High frequency data; longer investment horizons

- $\beta^{\mathcal{N}}$ and $\beta^{\mathcal{M}^{-}}$remain significant at weekly and monthly horizons; estimated premiums decrease with horizon as predictability diminishes

Lower frequency data

- Now we consider monthly semibetas based on daily data
- All CRSP common stocks (with codes 10 and 11 and price>\$5)
- $\bar{N}=390$ stocks per period (unbalanced panel)
- Longer January 1963 to December 2017 sample
- $T=660$ months
- Fewer "high frequency" observations per period
- $m \approx 21$ observations

Lower frequency data

- Consider monthly semibetas and monthly Fama-MacBeth regressions:

β	$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\beta^{\mathcal{M}^{+}}$	$\beta^{\mathcal{M}^{-}}$	ME	BM	MOM	REV	IVOL	ILLIQ	R^{2}
4.10											2.36
3.77											
	10.43	1.40	4.15	-6.42							5.22
	4.46	0.87	1.15	-2.03							
	8.66	-0.66	5.60	-14.09	-2.55	-0.47	0.06				10.70
	3.56	-0.43	1.42	-3.72	-4.93	-0.40	2.14				
	6.59	-1.90	6.33	-15.59	-2.08	-0.75	0.07	-0.12	-1.60	2.40	13.38
	2.85	-1.06	1.50	-3.82	-4.22	-0.66	2.61	-1.97	-1.48	2.44	

- Premiums for $\beta^{\mathcal{N}}$ and $\beta^{\mathcal{M}^{-}}$remain significant

Lower frequency data

- Consider monthly semibetas and monthly Fama-MacBeth regressions:

β	$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\beta^{\mathcal{M}^{+}}$	$\beta^{\mathcal{M}^{-}}$	ME	BM	MOM	REV	IVOL	ILLIQ	R^{2}
4.10											2.36
3.77											
	10.43	1.40	4.15	-6.42							5.22
	4.46	0.87	1.15	-2.03							
	8.66	-0.66	5.60	-14.09	-2.55	-0.47	0.06				10.70
3.56	-0.43	1.42	-3.72	-4.93	-0.40	2.14					
	6.59	-1.90	6.33	-15.59	-2.08	-0.75	0.07	-0.12	-1.60	2.40	13.38
	2.85	-1.06	1.50	-3.82	-4.22	-0.66	2.61	-1.97	-1.48	2.44	

- Premiums for $\beta^{\mathcal{N}}$ and $\beta^{\mathcal{M}^{-}}$remain significant
- $H_{t}^{C A P M}: \lambda_{t}^{\mathcal{N}}=\lambda_{t}^{\mathcal{P}}=-\lambda_{t}^{\mathcal{M}^{+}}=-\lambda_{t}^{\mathcal{M}^{-}}$
- Rejected at 5% level for 45% of 659 months in sample

Comparison with other measures

- Monthly semibetas and other measures:

$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\beta^{\mathcal{M}^{+}}$	$\beta^{\mathcal{M}^{-}}$	β^{+}	β^{-}	CSK	CKT	R^{2}
10.43	1.40	4.15	-6.42					5.22
4.46	0.87	1.15	-2.03					
				1.06	3.16			3.42
				1.61	3.74			
12.37	2.90	2.41	-7.56	-6.64	-0.90			5.57
4.97	1.03	1.20	-2.48	-0.95	-0.28			
						5.00	1.98	1.69
						2.81	2.57	
18.11	-2.27	2.87	-12.09			12.10	-2.80	6.49
4.98	-1.04	0.81	-3.40			4.26	-3.43	

- Premiums for $\beta^{\mathcal{N}}$ and $\beta^{\mathcal{M}^{-}}$always significant

Comparison with other measures

- Monthly semibetas and other measures:

$\beta^{\mathcal{N}}$	$\beta^{\mathcal{P}}$	$\beta^{\mathcal{M}^{+}}$	$\beta^{\mathcal{M}^{-}}$	β^{+}	β^{-}	CSK	CKT	R^{2}
10.43	1.40	4.15	-6.42					5.22
4.46	0.87	1.15	-2.03					
				1.06	3.16			3.42
				1.61	3.74			
12.37	2.90	2.41	-7.56	-6.64	-0.90			5.57
4.97	1.03	1.20	-2.48	-0.95	-0.28			
						5.00	1.98	1.69
						2.81	2.57	
18.11	-2.27	2.87	-12.09			12.10	-2.80	6.49
4.98	-1.04	0.81	-3.40			4.26	-3.43	

- Premiums for $\beta^{\mathcal{N}}$ and $\beta^{\mathcal{M}^{-}}$always significant
- $H_{t}^{S Y M}: \lambda_{t}^{\mathcal{N}}=-\lambda_{t}^{\mathcal{M}^{-}} \cap \lambda_{t}^{\mathcal{P}}=-\lambda_{t}^{\mathcal{M}^{+}}$
- Rejected at 5% level for 34% of 659 months in sample

Betting on semibetas

- We next consider long/short portfolios based on semibetas
- Conventional CAPM security market line "too flat"
- Friend and Blume (1970, AER), Black, Jensen and Scholes (1972, Book), Kandel (1984, JFE), Shanken (1985, JFE), Fama and French (1992, JF), Fama and French (2006, JF)
- Recent literature on betting against beta (BAB)
- Frazzini and Pedersen (2014, JFE), Cederburg and O'Doherty (2016, JF), Bali, Brown, Murray and Tang (2017, JFQA), Novy-Marx and Velikov (2018, wp), Schneider, Wagner and Zechner (2020, JF)

Betting on semibetas

- We will look at:
- Betting on β (standard case)
- Betting on $\beta^{\mathcal{N}}$
- Betting against $\beta^{\mathcal{M}^{-}}$
- Betting on $\beta^{\mathcal{N}}$ and against $\beta^{\mathcal{M}^{-}}$("Semi $\beta^{\prime \prime}$)

Betting on semibetas

- We will look at:
- Betting on β (standard case)
- Betting on $\beta^{\mathcal{N}}$
- Betting against $\beta^{\mathcal{M}^{-}}$
- Betting on $\beta^{\mathcal{N}}$ and against $\beta^{\mathcal{M}^{-}}$("Semi $\beta^{\text {") }}$
- Value-weighted long/short positions in high/low quintile of S\&P 500 stocks
- Avoids small and difficult to short micro-cap stocks, and the use of rank-weighted portfolios

Betting on semibetas

- We will look at:
- Betting on β (standard case)
- Betting on $\beta^{\mathcal{N}}$
- Betting against $\beta^{\mathcal{M}^{-}}$
- Betting on $\beta^{\mathcal{N}}$ and against $\beta^{\mathcal{M}^{-}}$("Semi $\beta^{\prime \prime}$)
- Value-weighted long/short positions in high/low quintile of S\&P 500 stocks
- Avoids small and difficult to short micro-cap stocks, and the use of rank-weighted portfolios
- Sharpe ratios, alphas and factor loadings:
- Four-factor Fama-French-Carhart model: MKT, SML, HML, MOM
- Five-factor Fama-French model: MKT, SML, HML, RMW (profitability: robust minus weak), CMA (investment: conservative minus aggressive)

Betting on semibetas

- Daily rebalancing:

	β		Semi β		$\beta^{\mathcal{N}}$		$\beta^{\mathcal{M}^{-}}$	
Avg ret Std dev Sharpe	4.98		9.76		10.98		7.66	
	16.57		9.30		16.89		8.00	
	0.30		1.05		0.65		0.96	
α	2.19	4.17	8.35	9.68	8.05	10.62	7.76	7.88
	0.87	1.77	6.32	7.38	3.36	4.58	4.17	4.19
$\beta_{M K T}$	0.59	0.51	0.30	0.25	0.61	0.52	-0.02	-0.03
	67.61	55.78	64.70	47.90	73.15	56.89	-2.34	-3.44
$\beta_{S M B}$	0.30	0.12	0.30	0.21	0.40	0.22	0.20	0.20
	18.10	7.36	33.91	22.61	25.00	13.49	16.08	14.98
$\beta_{H M L}$	-0.02	0.18	-0.01	0.11	-0.08	0.13	0.05	0.08
	-1.24	10.58	-1.61	11.10	-4.75	7.57	3.82	6.08
$\beta_{M O M}$	-0.24		-0.14		-0.22		-0.07	
	-19.53		-22.46		-19.01		-7.31	
$\beta_{R M W}$		-0.50		-0.28		-0.53		-0.04
		-22.15		-22.56		-23.70		-2.28
$\beta_{C M A}$		-0.35		-0.28		-0.44		-0.13
		-13.21		-19.09		-16.74		-5.95
R^{2}	58.15	60.26	55.92	59.55	60.59	64.38	6.72	7.42

Betting on semibetas

- Weekly rebalancing:

	β		Semi β		$\beta^{\mathcal{N}}$		$\beta^{\mathcal{M}^{-}}$	
Avg ret	1.18		5.47		7.76		2.40	
Std dev	15.30		8.64		15.50		7.52	
Sharpe	0.08		0.63		0.50		0.32	
α	-1.11	0.71	4.37	5.66	5.54	7.71	2.40	2.84
	-0.46	0.31	3.45	4.35	2.52	3.46	1.46	1.72
$\beta_{M K T}$	0.52	0.44	0.25	0.20	0.51	0.43	-0.02	-0.04
	60.65	48.93	55.60	38.70	66.56	49.31	-3.40	-5.54
$\beta_{S M B}$	0.30	0.13	0.30	0.22	0.39	0.23	0.21	0.21
	18.43	7.83	35.58	23.57	26.64	14.41	19.12	17.76
$\beta_{H M L}$	-0.08	0.08	-0.06	0.02	-0.12	0.05	0.00	-0.01
	-4.68	4.54	-7.02	2.26	-8.05	2.96	-0.10	-0.55
$\beta_{\text {MOM }}$	-0.20		-0.11		-0.20		-0.01	
	-17.14		-17.93		-19.12		-1.85	
$\beta_{R M W}$		-0.47		-0.26		-0.48		-0.05
		-21.38		-21.18		-22.57		-3.05
$\beta_{C M A}$		-0.26		-0.22		-0.35		-0.08
		-9.80		-14.89		-14.07		-4.48
R^{2}	51.93	54.10	47.31	51.03	53.19	56.27	7.21	8.44

Betting on semibetas

- Monthly rebalancing:

	β		Semi β		$\beta^{\mathcal{N}}$		$\beta^{\mathcal{M}^{-}}$	
Avg ret	-0.64		4.04		3.10		4.33	
Std dev	14.43		8.39		14.72		7.18	
Sharpe	-0.04		0.48		0.21		0.60	
α	-2.48	-1.34	2.96	4.22	1.17	2.85	4.09	4.94
	-1.17	-0.64	2.30	3.24	0.55	1.34	2.83	3.42
$\beta_{M K T}$	0.46	0.41	0.23	0.19	0.46	0.39	0.00	-0.02
	62.38	50.99	51.68	36.54	62.55	47.54	0.90	-4.01
$\beta_{S M B}$	0.26	0.11	0.31	0.23	0.38	0.23	0.24	0.23
	18.67	7.27	36.10	24.59	26.93	14.85	25.18	22.62
$\beta_{H M L}$	-0.08	0.05	-0.06	0.01	-0.08	0.08	-0.04	-0.06
	-5.79	3.22	-6.46	1.06	-5.48	5.15	-3.64	-5.76
$\beta_{M O M}$	-0.21		-0.10		-0.22		0.02	
	-20.65		-16.43		-21.44		2.22	
$\beta_{R M W}$		-0.42		-0.26		-0.45		-0.08
		-21.18		-21.10		-21.89		-5.86
$\beta_{C M A}$		-0.17		-0.19		-0.30		-0.08
		-7.03		-12.88		-12.57		-4.91
R^{2}	49.21	49.52	46.76	50.29	50.83	52.42	11.71	13.32

Betting on semibetas

- What about transaction costs?
- Many practical procedures to help mitigate the cost of trading
- Bertsiman and Lo (1998, JFinMkts), Engle and Ferstenberg (2007, JPorMgmt), Obizhaeva and Wang (2013, JFinMkts)
- Dependent on specific trading strategies and settings

Betting on semibetas

- What about transaction costs?
- Many practical procedures to help mitigate the cost of trading
- Bertsiman and Lo (1998, JFinMkts), Engle and Ferstenberg (2007, JPorMgmt), Obizhaeva and Wang (2013, JFinMkts)
- Dependent on specific trading strategies and settings
- Trading only partially towards the "target" (Garleanu and Pedersen, 2013, JF):

$$
\omega_{t}=\lambda \omega_{t-1}+(1-\lambda) \omega_{t}^{\text {Target }}, \quad \lambda=0.95
$$

- We will assume transaction costs proportional to the turnover of the long and short positions
- We will consider round-trip costs of 0.5% and 1.0% (Novy-Marx and Velikov, 2016, RFS)

Betting on semibetas: T-costs and partial adjustment

- Alphas remain economically large and statistically significant:

T-cost	0\%		0\%		0.5\%		1.0\%	
Adjustment	Full		Partial		Partial		Partial	
Avg ret Std dev Sharpe	4.04		4.62		4.32		4.02	
	8.39		7.77		7.77		7.77	
	0.48		0.59		0.56		0.52	
α	2.96	4.22	3.09	5.31	2.79	5.01	2.49	4.71
	2.30	3.24	3.05	5.33	2.76	5.03	2.46	4.72
$\beta_{M K T}$	0.23	0.19	0.25	0.17	0.25	0.17	0.25	0.17
	51.68	36.54	69.25	44.87	69.23	44.85	69.18	44.81
$\beta_{S M B}$	0.31	0.23	0.27	0.20	0.27	0.20	0.27	0.20
	36.10	24.59	40.61	27.95	40.58	27.93	40.54	27.89
$\beta_{H M L}$	-0.06	0.01	-0.13	-0.11	-0.13	-0.11	-0.13	-0.11
	-6.46	1.06	-18.72	-14.51	-18.69	-14.49	-18.66	-14.46
$\beta_{M O M}$	-0.10		0.01		0.01		0.01	
	-16.43		2.59		2.59		2.59	
$\beta_{R M W}$		-0.26		-0.26		-0.26		-0.26
		-21.10		-27.01		-27.01		-27.00
$\beta_{C M A}$		-0.19		-0.20		-0.20		-0.20
		-12.88		-18.16		-18.15		-18.13
R^{2}	46.76	50.29	52.20	58.90	52.19	58.90	52.16	58.87

Summary

- We propose the use of semibetas to gain richer information about the diversification benefits offered by various assets
- Semibetas offer an exact decomposition: $\beta=\beta^{\mathcal{N}}+\beta^{\mathcal{P}}-\beta^{\mathcal{M}+}-\beta^{\mathcal{M}-}$
- We estimate realized semibetas using high frequency data
- We show that semibetas are better able to explain the cross-section of expected returns than existing alternatives
- As expected, much better than the CAPM, and also significantly better than up- and down-side betas
- We find that the risk premium associated with $\beta^{\mathcal{N}}$ is around 23%, with $\beta^{\mathcal{M}-}$ around -9%, and is not different from zero for the other semibetas.
- We find that a long-short portfolio based on semibetas generates large and significant alphas
- Sharpe ratios are double that of the market; alphas are 8-9\%
- Don't bet on or against beta, bet on and against the "right" semibetas

Appendix

Computing semibetas

There's nothing to it (once you've got the data ready)

Mean-semivariance pricing

- Jointly normally distributed market and asset return:

Mean-semivariance pricing

- Jointly normally distributed market and asset return:

- No new information over traditional CAPM β :

$$
\begin{aligned}
& \beta^{\mathcal{N}}=\beta^{\mathcal{P}}=\frac{1}{2 \pi}\left(\sqrt{\frac{\sigma_{r}^{2}}{\sigma_{f}^{2}}-\beta^{2}}+\beta \arccos \left(-\frac{\sigma_{f}}{\sigma_{r}} \beta\right)\right) \\
& \beta^{\mathcal{M}^{-}}=\beta^{\mathcal{M}^{+}}=\frac{1}{2 \pi}\left(\sqrt{\frac{\sigma_{r}^{2}}{\sigma_{f}^{2}}-\beta^{2}}-\beta \arccos \left(\frac{\sigma_{f}}{\sigma_{r}} \beta\right)\right)
\end{aligned}
$$

Mean-semivariance pricing

- Jointly non-normally distributed market and asset returns:

- Identical CAPM betas, but very different semibetas and expected returns:
- $E\left(r^{B}\right)<E\left(r^{A}\right)<E\left(r^{D}\right)<E\left(r^{C}\right)$

Betting on the competition

	$\beta^{-}-\beta^{+}$		β^{-}		β^{+}		CKT - CSK		CSK		CKT	
Avg ret	2.96		7.53		-3.61		-0.16		-1.21		0.54	
Std dev	5.45		15.56		14.67		6.30		7.70		9.55	
Sharpe	0.54		0.48		-0.25		-0.03		-0.16		0.06	
α	2.56	2.93	4.78	6.80	-1.67	-2.94	-0.60	-0.03	-1.44	-1.27	-0.11	0.86
	2.10	2.42	1.90	2.76	-0.69	-1.28	-0.49	-0.02	-0.86	-0.76	-0.06	0.47
$\beta_{M K T}$	0.04	0.03	0.55	0.47	-0.47	-0.41	0.13	0.11	0.02	0.01	0.24	0.21
	9.32	6.38	61.82	48.63	-54.89	-45.37	30.25	23.49	2.60	1.94	36.63	28.96
$\beta_{S M B}$	0.01	0.01	0.27	0.12	-0.25	-0.10	-0.02	-0.06	0.02	0.03	-0.06	-0.15
	1.01	1.43	16.31	7.10	-15.85	-6.02	-2.58	-7.10	1.87	2.11	-4.96	-11.23
$\beta_{H M L}$	-0.02	-0.04	-0.04	0.13	-0.01	-0.20	-0.09	-0.06	-0.03	-0.06	-0.16	-0.06
	-2.53	-4.09	-2.07	7.05	-0.38	-11.98	-11.15	-6.98	-2.45	-4.85	-12.20	-4.72
$\beta_{M O M}$	0.04		-0.17		0.25		-0.01		0.04		-0.06	
	6.29		-14.09		21.19		-2.51		4.43		-7.07	
$\beta_{R M W}$		0.00		-0.43		0.42		-0.10		0.00		-0.21
		-0.30		-18.06		19.01		-9.15		0.26		-12.22
$\beta_{C M A}$		-0.01		-0.32		0.30		-0.04		0.03		-0.10
		-1.04		-11.57		11.42		-2.70		1.69		-5.05
R^{2}	2.67	1.93	52.93	55.64	50.17	50.32	17.43	18.91	0.89	0.58	27.91	30.36

- Lower Sharpe ratios, and smaller, less significant alphas

Betting on semibetas: Conditional alphas

- Time varying conditional betas may bias unconditional alphas
- Jagannathan and Wang (1996, JF), Lewellen and Nagel (2006, JFE)
- Conditional alphas following Cederburgh and O'Doherty (2016, JF):

	FFC4						FF5			
	β	Semi β	$\beta^{\mathcal{N}}$	$\beta^{\mathcal{M}^{-}}$		β	Semi β	$\beta^{\mathcal{N}}$	$\beta^{\mathcal{M}^{-}}$	
I	3.01	6.35	7.48	2.00		3.25	8.07	9.61	4.83	
	1.02	2.65	2.42	1.05		0.85	3.08	2.60	1.95	
II	3.87	7.72	10.09	4.25		3.18	7.59	9.32	4.91	
	1.27	3.56	3.38	1.86		1.01	4.15	2.90	2.36	
III	3.58	6.75	8.57	4.21		2.87	7.57	8.88	4.91	
	1.24	3.34	3.28	2.18		0.92	3.77	3.23	2.13	

- Same qualitative findings for all sets of instruments I, II and III
- Conditional alphas for semi β strategy remain large and significant

Betting on Semibetas

- Timing of returns:

- Semibeta strategy generally performs well
- Consistent with "betting against beta" (Frazzini and Pedersen, 2014, JFE), conventional beta strategy generally performs poorly

