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a b s t r a c t

The use of a conditionally unbiased, but imperfect, volatility proxy can lead to undesirable outcomes in
standard methods for comparing conditional variance forecasts. We motivate our study with analytical
results on the distortions caused by some widely used loss functions, when used with standard volatility
proxies such as squared returns, the intra-daily range or realised volatility. We then derive necessary and
sufficient conditions on the functional form of the loss function for the ranking of competing volatility
forecasts to be robust to the presence of noise in the volatility proxy, and derive some useful special cases
of this class of ‘‘robust’’ loss functions. The methods are illustrated with an application to the volatility of
returns on IBM over the period 1993 to 2003.
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1. Introduction

Many forecasting problems in economics and finance involve
a variable of interest that is unobservable, even ex post. The
most prominent example of such a problem is the forecasting
of volatility for use in financial decision making. Other problems
include forecasting the true rates of inflation, GDP growth or
unemployment (not simply the announced rates); forecasting
trade intensities; and forecasting default probabilities or ‘crash’
probabilities. While evaluating and comparing economic forecasts
is a well-studied problem, dating back at least to Cowles (1933),
if the variable of interest is latent then the problem of forecast
evaluation and comparison becomes more complicated.1

This complication can be resolved, at least partly, if an unbiased
estimator of the latent variable of interest is available. In volatility
forecasting, for example, the squared return on an asset over
the period t (assuming a zero mean return) can be interpreted
as a conditionally unbiased estimator of the true unobserved

✩ Matlab code used in this paper is available from
http://econ.duke.edu/~ap172/code.html.
∗ Corresponding address: Department of Economics, Duke University, 213 Social

Sciences Building, Box 90097, Durham NC 27708-0097, USA.
E-mail address: andrew.patton@duke.edu.

1 For recent surveys of the forecast evaluation literature see Clements (2005) and
West (2006). For recent surveys of the volatility forecasting literature, see Andersen
et al. (2006), Poon and Granger (2003) and Shephard (2005).
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conditional variance of the asset over the period t .2 Many of the
standard methods for forecast evaluation and comparison, such
as the Mincer and Zarnowitz (1969) regression and the Diebold
and Mariano (1995) and West (1996) tests, can be shown to be
applicable when such a conditionally unbiased proxy is used, see
Hansen and Lunde (2006) for example. However, it is not true
that using a conditionally unbiased proxy will always lead to the
same outcome as if the true latent variable were used: Andersen
and Bollerslev (1998) and Andersen et al. (2005), amongst others,
study the reduction in finite-sample power of tests based on noisy
volatility proxies; we focus, like Hansen and Lunde (2006), on
distortions in the rankings of competing forecasts that can arise
when using a noisy volatility proxy in some commonly used tests
for forecast comparison.

For example, in the volatility forecasting literature numerous
authors have expressed concern that a few extreme observations
may have an unduly large impact on the outcomes of forecast
evaluation and comparison tests, see Bollerslev and Ghysels
(1994), Andersen et al. (1999) and Poon and Granger (2003)
amongst others. One common response to this concern is to
employ forecast loss functions that are ‘‘less sensitive’’ to large
observations than the usual squared forecast error loss function,
such as absolute error or proportional error loss functions. In

2 The high/low range and realised volatility, see Parkinson (1980) and Andersen
et al. (2003) for example, have also been used as volatility proxies. These are
discussed in detail below.
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this paper we show analytically that such approaches can lead
to incorrect inferences and the selection of inferior forecasts over
better forecasts.

We focus on volatility forecasting as a specific case of the
more general problem of latent variable forecasting. In Section 5
we discuss the extension of our results to other latent variable
forecasting problems. Our research builds on work by Andersen
and Bollerslev (1998), Meddahi (2001) and Hansen and Lunde
(2006), who were among the first to analyse the problems
introduced by the presence of noise in a volatility proxy. This
paper extends the existing literature in two important directions,
discussed below.

Firstly, we derive explicit analytical results for the distortions
that may arise when some common loss functions are employed,
considering the three most commonly used volatility proxies: the
daily squared return, the intra-daily range and a realised variance
estimator. We show that these distortions can be large, even for
favourable scenarios (such as Gaussianity). Further, we show that
the distortions vary greatly with the choice of loss function, thus
providing a theoretical explanation for the widespread finding of
conflicting rankings of volatility forecasts when ‘‘non-robust’’ loss
functions (defined precisely in Section 2) are used in applied work,
see Lamoureux and Lastrapes (1993), Hamilton and Susmel (1994),
Bollerslev and Ghysels (1994) and Hansen and Lunde (2005),
amongst many others.3

Secondly, we provide necessary and sufficient conditions on the
functional form of the loss function to ensure that the ranking of
various forecasts is preserved when using a noisy volatility proxy.
These conditions are related to those of Gourieroux et al. (1984)
for quasi-maximum likelihood estimation. Interestingly, we find
that there are an infinite number of loss functions that satisfy
these conditions, and that these loss functions differ in meaningful
ways (such as the penalty applied to over-prediction versus under-
prediction). Thus our class of ‘‘robust’’ loss functions is not simply
the quadratic loss function or minor variations thereof.

The canonical problem in point forecasting is to find the
forecast that minimises the expected loss, conditional on time t
information. That is,

Ŷ ∗

t+h,t ≡ argmin
ŷ∈Y

E

L

Yt+h, ŷ


|Ft


(1)

where Yt+h is the variable of interest, L is the forecast user’s loss
function, Y is the set of possible forecasts, and Ft is the time t
information set. Starting with the assumption that the forecast
user is interested in the conditional variance, we effectively take
the solution of the optimisation problem above (the conditional
variance) as given, and consider the loss functions that will
generate the desired solution. This approach is unusual in the
economic forecasting literature: the more common approach is
to take the forecast user’s loss function as given and derive the
optimal forecast for that loss function; related papers here are
Granger (1969), Engle (1993), Christoffersen and Diebold (1997),
Christoffersen and Jacobs (2004) and Patton and Timmermann
(2007), amongst others. The fact that we know the forecast user
desires a variance forecast places limits on the class of loss
functions that may be used for volatility comparison, ruling out

3 All of the results in this paper apply directly to the problem of forecasting
integrated variance (IV), which Andersen et al. (2010), amongst others, argue is
a more ‘‘relevant’’ notion of variability. We focus on the problem of conditional
variance forecasting due to its prevalence in applied work in the past two decades.
If we take expected IV rather than the conditional variance as the latent object
of interest, then we only require that an unbiased realised variance estimator
is available for the results to go through. In the presence of jumps in the price
process, quadratic variation (QV) is amore appropriatemeasure of risk, and a similar
extension is possible.
some choices previously used in the literature. However we show
that the class of ‘‘robust’’ loss functions still admits awide variety of
loss functions, allowing much flexibility in representing volatility
forecast users’ preferences.

One practical implication of this paper is that the stated goal
of forecasting the conditional variance is not consistent with the
use of some loss functions when an imperfect volatility proxy
is employed. However, these loss functions are not inherently
invalid or inappropriate: if the forecast user’s preferences are
indeeddescribedby an ‘‘non-robust’’ loss function, then this simply
implies that the object of interest to that forecast user is not the
conditional variance but rather some other quantity.4 In academic
research the preferences of the end-user of the forecast are often
unknown, and a common response to this to is to select forecasts
based on their average distance, somehow measured, to the true
latent conditional variance. In such cases, the methods outlined in
this paper can be applied to identify the forecast that is closest to
the true conditional variance by using imperfect volatility proxy
and a ‘‘robust’’ loss function.

The remainder of this paper is as follows. In Section 2 we
analytically consider volatility forecast comparison tests using an
imperfect volatility proxy, showing the problems that arise when
using some common loss functions. We initially consider using
squared daily returns as the proxy, and then consider using the
range and realised variance. In Section 3 we provide necessary and
sufficient conditions on the functional form of a loss function for
the ranking of competing volatility forecasts to be robust to the
presence of noise in the volatility proxy, and derive some useful
special cases of this class of robust loss functions. One of these
special cases is a parametric family of loss functions that nests two
of themost widely used loss functions in the literature, namely the
MSE and QLIKE loss functions (defined in Eqs. (5) and (6) below).
In Section 4 we present an empirical illustration using two widely
used volatility forecasting methods, and in Section 5 we conclude
and suggest extensions. All proofs and derivations are provided in
Appendix.

1.1. Notation

Let rt be the variable whose conditional variance is of interest,
usually a daily or monthly asset return in the volatility forecast-
ing literature. The information set used in defining the conditional
variance of interest is denoted Ft−1, which is assumed to contain
σ(rt−j, j ≥ 1), but may also include other variables and/or vari-
ables measured at a higher frequency than rt (such as intra-daily
returns). Denote V [rt |Ft−1] ≡ Vt−1[rt ] ≡ σ 2

t . We will assume
throughout that E[rt |Ft−1] ≡ Et−1[rt ] = 0, and so σ 2

t = Et−1[r2t ].
Let εt ≡ rt/σt denote the ‘standardised return’. Let a forecast of
the conditional variance of rt be denoted ht , or hi,t if there is more
than one forecast under analysis. We will take forecasts as ‘‘primi-
tive’’, and not consider the specificmodels and estimators thatmay
have generated the forecasts. The loss function of the forecast user
is L : R+ × H → R+, where the first argument of L is σ 2

t or some
proxy for σ 2

t , denoted σ̂ 2
t , and the second is ht . R+ and R++ denote

the non-negative and positive parts of the real line respectively,
andH is a compact subset of R++. Commonly used volatility prox-
ies are the squared return, r2t , realised volatility, RVt , and the range,
RGt . Optimal forecasts for a given loss function and proxy are de-
noted h∗

t and are defined as:

h∗

t ≡ argmin
h∈H

E

L

σ̂ 2
t , h


|Ft−1


. (2)

4 For example, the utility of realised returns on a portfolio formed using a
volatility forecast, or the profits obtained from an option trading strategy based on a
volatility forecast, see West et al. (1993) and Engle et al. (1993) for example, define
economically meaningful loss functions, even though the optimal forecasts under
those loss functions will not generally be the true conditional variance.
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2. Volatility forecast comparison using an imperfect volatility
proxy

We consider volatility forecast comparisons based on expected
loss, or distance to the true conditional variance. These compar-
isons can be implemented in finite samples using the tests of
Diebold and Mariano (1995) and West (1996), (henceforth DMW).
If we define ui,t ≡ L(σ 2

t , hi,t), where L is the forecast user’s loss
function, and let dt = u1,t − u2,t , then a DMW test of equal
predictive accuracy can be conducted as a simple Wald test that
E[dt ] = 0.5

Of primary interest is whether the feasible ranking of two
forecasts obtained using an imperfect volatility proxy is the
same as the infeasible ranking that would be obtained using the
unobservable true conditional variance. In such a case we are able
to compare average forecast accuracy even though the variable of
interest is unobservable. We define loss functions that yield such
an equivalence as ‘‘robust’’:

Definition 1. A loss function, L, is ‘‘robust’’ if the ranking of any two
(possibly imperfect) volatility forecasts, h1t and h2t , by expected
loss is the same whether the ranking is done using the true
conditional variance, σ 2

t , or some conditionally unbiased volatility
proxy, σ̂ 2

t . That is,

E

L

σ 2
t , h1t


R E


L

σ 2
t , h2t


⇔ E


L

σ̂ 2
t , h1t


R E


L

σ̂ 2
t , h2t

 (3)

for any σ̂ 2
t s.t. E[σ̂ 2

t |Ft−1] = σ 2
t .

Meddahi (2001) showed that the ranking of forecasts on the
basis of the R2 from the Mincer–Zarnowitz regression:

σ̂ 2
t = β0 + β1hit + eit (4)

is robust to noise in σ̂ 2
t . Hansen and Lunde (2006) showed that

the R2 from a regression of log(σ̂ 2
t ) on a constant and log(ht) is

not robust to noise, and showed more generally that a sufficient
condition for a loss function to be robust is that ∂2L(σ 2, h)/∂(σ 2)2

does not depend on h. In Section 3 we generalise this result by
providing necessary and sufficient conditions for a loss function to
be robust.6,7

It is worth noting that although the ranking obtained from
a robust loss function will be invariant to noise in the proxy,
the actual level of expected loss obtained using a proxy will
be larger than that which would be obtained when using the
true conditional variance. This point was compellingly presented
in Andersen and Bollerslev (1998) and Andersen et al. (2004).
Andersen et al. (2005) provide a method to estimate the distortion
in the level of expected loss and thereby obtain an estimator of the

5 The key difference between the approaches of Diebold and Mariano (1995)
and West (1996) is that the latter explicitly allows for forecasts that are based
on estimated parameters, whereas the null of equal predictive accuracy is based
on population parameters, see West (2006). The problems we identify below arise
even in the absence of estimation error in the forecasts, thus our treatment of the
forecasts as primitive, and so for our purposes these two approaches coincide.
6 Our use of the adjective ‘‘robust’’ is related, though not equivalent, to its use in

estimation theory, where it applies to estimators that insensitive/less sensitive to
the presence of outliers in the data, see Huber (1981) for example. A ‘‘robust’’ loss
function, in the sense of Definition 1, will generally not be robust to the presence of
outliers.
7 In recent work Giacomini and White (2006) propose ranking forecasts by

expected loss conditional on some information set Gt , rather than by unconditional
expected loss as in Definition 1. The numerical examples provided belowwill differ
in this more general case, of course, however the theoretical results in this paper go
through if Gt ⊆ Ft−1 , which is true for all of the examples considered by Giacomini
and White (2006).
level of expected loss that would be obtained using the true latent
variable of interest.

It follows directly from the definition of a robust loss function
that the true conditional variance is the optimal forecast (we
formally show this in the proof of Proposition 1), and thus a
necessary condition for a loss function to be robust to noise is that
the true conditional variance is the optimal forecast. In this section
we determine whether this condition holds for some common loss
functions, and analytically characterise the distortion for those
cases where it is violated.

A common response to the concern that a few extreme
observations drive the results of volatility forecast comparison
studies is to employ alternative measures of forecast accuracy
to the usual MSE loss function, see Pagan and Schwert (1990),
Bollerslev and Ghysels (1994); Bollerslev et al. (1994), Diebold
and Lopez (1996), Andersen et al. (1999), Poon and Granger
(2003) and Hansen and Lunde (2005), for example. A collection
of loss functions employed in the literature on volatility forecast
evaluation is presented below.8 In the next two sub-sections we
will study the properties of these loss functions and show that for
almost all choices of volatility proxy most of these loss functions
are not robust and can lead to incorrect rankings of volatility
forecasts.

MSE : L

σ̂ 2, h


=


σ̂ 2

− h
2

(5)

QLIKE : L

σ̂ 2, h


= log h +

σ̂ 2

h
(6)

MSE-LOG : L

σ̂ 2, h


=


log σ̂ 2

− log h
2

(7)

MSE-SD : L

σ̂ 2, h


=


σ̂ −

√
h
2

(8)

MSE-prop : L

σ̂ 2, h


=


σ̂ 2

h
− 1

2

(9)

MAE : L

σ̂ 2, h


=

σ̂ 2
− h

 (10)

MAE-LOG : L

σ̂ 2, h


=

log σ̂ 2
− log h

 (11)

MAE-SD : L

σ̂ 2, h


=

σ̂ −
√
h
 (12)

MAE-prop : L

σ̂ 2, h


=

 σ̂ 2

h
− 1

 . (13)

2.1. Using squared returns as a volatility proxy

In this section we will focus on the use of daily squared
returns for volatility forecast evaluation, and in Section 2.2 we
will examine the use of realised volatility and the range. We will
derive our results under three assumptions for the conditional
distribution of daily returns:

rt |Ft−1 ∼


Ft


0, σ 2

t


Student’s t


0, σ 2

t , ν


N

0, σ 2

t


where Ft(0, σ 2

t ) is some unspecified distribution with mean
zero and variance σ 2

t , and Student’s t(0, σ 2
t , ν) is a Student’s t

distributionwithmean zero, varianceσ 2
t and ν degrees of freedom.

8 Some of these loss functions are called different names by different
authors: MSE-prop is also known as ‘‘heteroskedasticity-adjusted MSE (HMSE)’’;
MAE-prop is also known as ‘‘mean absolute percentage error (MAPE)’’ or as
‘‘heteroskedasticity-adjusted MAE (HMAE)’’.
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In all cases it is clear that Et−1[r2t ] = σ 2
t , and so the squared daily

return is a valid volatility proxy.
It is trivial to show that the MSE loss function generates an op-

timal forecast equal to the conditional variance: h∗
t = Et−1[r2t ] =

σ 2
t , and thus satisfies the necessary condition for robustness. Fur-

ther, the MSE loss function also satisfies the sufficient condition
of Hansen and Lunde (2006), and thus MSE is a ‘‘robust’’ loss func-
tion. Another commonly used loss function is theMSE loss function
on standard deviations rather than variances, MSE-SD, see Eq. (8).
The motivation for this loss function is that taking square root of
the two arguments of the squared-error loss function shrinks the
larger values towards zero, reducing the impact of the most ex-
treme values of rt . However it also leads to an incorrect volatility
forecast being selected as optimal:

h∗

t ≡ argmin
h∈H

Et−1

[
|rt | −

√
h
2

]
FOC 0 =

∂

∂h
Et−1

[
|rt | −

√
h
2

] 
h=h∗

t

so h∗

t = (Et−1 [|rt |])2 (14)

= σ 2
t (Et−1 [|εt |])2

=


ν − 2

π


0


ν − 1

2

 
0

ν

2

2

σ 2
t ,

if rt |Ft−1 ∼ Student’s t

0, σ 2

t , ν

, ν > 2

2
π

σ 2
t ≈ 0.64σ 2

t , if rt |Ft−1 ∼ N

0, σ 2

t


.

(15)

This distortion is present even under Gaussianity, and excess kur-
tosis in asset returns exacerbates the distortion: For example, if
returns follow the Student’s t distribution with six degrees of free-
dom then the coefficient on σ 2

t in the above expression is 0.56.
As mentioned in the Introduction, if the forecast user’s loss

function truly is the square of the difference between the absolute
return and the square root of the forecast, then the ‘‘distortion’’ in
the optimal forecast above is desirable, as this is the forecast that
minimises his/her expected loss. However, if the goal is to find
the forecast that is closest to the true conditional variance, then
this distortion in the optimal forecast can lead to an incorrect
ranking of competing forecasts.9 Thus the MSE-SD loss function is
not consistent with the goal of ranking volatility forecasts by their
distance to the true conditional variance when using the squared
return as the volatility proxy: either the proxy has to be re-scaled
by a term that depends critically on the underlying conditional
distribution of returns, or, more simply, a different loss function
must be chosen.

The corresponding calculations for the remaining loss functions
in Eqs. (5) to (13) are provided in Patton (2006), and the results
are summarised in Table 1. This table shows that the degree of
distortion in the optimal forecast according to some of the loss
functions used in the literature can be substantial. Under normality
the optimal forecast under these loss functions ranges from about
one quarter of the true conditional variance to three times the true
conditional variance. If returns exhibit excess conditional kurtosis
then the range of optimal forecasts from these loss functions is
even wider.

Table 1 provides a theoretical explanation for the widespread
finding of conflicting rankings of volatility forecasts when non-
robust loss functions are used in applied work. Lamoureux and
Lastrapes (1993), Hamilton and Susmel (1994), Bollerslev and

9 This distortion remains if the target is instead the conditional standard
deviation, as the absolute return is not an unbiased proxy for that quantity.
Ghysels (1994) and Hansen and Lunde (2005), amongst many
others, use some or all of the nine loss functions considered in
Table 1 and find that the best-performing volatility model changes
with the choice of loss function. Given that, for example, the
MSE-prop loss function leads to an optimal forecast that is biased
upwards by at least a factor of three, while the MAE loss function
leads to an optimal forecast that is biased downwards by at least a
factor of two, it is no surprise that different rankings of volatility
forecasts are found.

2.2. Using better volatility proxies

It has long been known that squared returns are a rather
noisy proxy for the true conditional variance. One alternative
volatility proxy that has gainedmuch attention recently is ‘‘realised
volatility’’, see Andersen et al. (2001, 2003), and Barndorff-Nielsen
and Shephard (2002, 2004). Another commonly used alternative
to squared returns is the intra-daily range. It is well known that
if the log stock price follows a Brownian motion then both of
these estimators are unbiased and more efficient than the squared
return. In this section we obtain the rate at which the distortion in
the ranking of alternative forecasts disappears when using realised
volatility as the proxy, as the sampling frequency increases, for a
simple data generating process (DGP).

Assume that there arem equally-spaced observations per trade
day, and let ri,m,t denote the ith intra-daily return on day t . While
recent work on realised volatility would enable us to consider a
quite general class of DGPs, in order to obtain analytical results
for problems involving the range as a volatility proxy we consider
only a simple DGP: zero mean return, no jumps, and constant
conditional volatility within a trade day.10 Patton and Sheppard
(2009) present the corresponding results for a range of more
realistic DGPs via simulation.11 Let

rt = d log Pt = σtdWt (16)
στ = σt ∀τ ∈ (t − 1, t] (17)

ri,m,t ≡

∫ i/m

(i−1)/m
rτdτ = σt

∫ i/m

(i−1)/m
dWτ (18)

so

ri,m,t

m
i=1 ∼ i.i.d. N


0,

σ 2
t

m


. (19)

The ‘‘realised volatility’’ or ‘‘realised variance’’ is defined as:

RV(m)
t ≡

m−
i=1

r2i,m,t .

Realised variance, like the daily squared return (which is obtained
in the above framework by settingm = 1), is a conditionally unbi-
ased estimator of the daily conditional variance. Itsmain advantage
is that it is more efficient estimator than the daily squared return:
for this DGP it can be shown that Et−1[(r2t − σ 2

t )2] = 2σ 4
t while

Et−1[(RV
(m)
t − σ 2

t )2] = 2σ 4
t /m. Thus RV(m)

t →
p σ 2

t as m → ∞,
under these assumptions, and we find in this case that σ 2

t is ob-
servable. As expected, all distortions vanish in this case.

10 Analytical and empirical results on the range and ‘‘realised range’’ under more
flexible DGPs are presented in two recent papers by Christensen and Podolskij
(2007) and Martens and van Dijk (2007).
11 When the DGP is specified to be log-normal or GARCH stochastic volatility
diffusions, Patton and Sheppard (2009) find results very similar to those obtained
for the case below. Using the same parameterisations as those in the simulations
of Gonçalves and Meddahi (2009), slightly larger biases from the non-robust loss
functions are found, but they generally differ from those in Table 2 only in the
second decimal place. In contrast, the biases are found to be much larger under
the two-factor stochastic volatility diffusion considered by Gonçalves andMeddahi
(2009).
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Table 1
Optimal forecasts under various loss functions.

Loss function Distribution of daily returns
Ft (0, σ 2

t ) Student’s t(0, σ 2
t , ν)

ν ν = 6 ν = 10 ν → ∞

MSE σ 2
t σ 2

t σ 2
t σ 2

t σ 2
t

QLIKE σ 2
t σ 2

t σ 2
t σ 2

t σ 2
t

MSE-LOG exp{Et−1[log ε2
t ]}σ

2
t exp


Ψ

 1
2


− Ψ


ν
2


(ν − 2)σ 2

t 0.22σ 2
t 0.25σ 2

t 0.28σ 2
t

MSE-SD (Et−1[|εt |])
2σ 2

t
ν−2
π


0


ν−1
2


/0


ν
2

2
σ 2
t 0.56σ 2

t 0.60σ 2
t 0.64σ 2

t

MSE-prop Kurtosist−1 [rt ]σ 2
t 3 ν−2

ν−4σ 2
t 6.00σ 2

t 4.00σ 2
t 3.00σ 2

t

MAE Mediant−1 [r2t ]
ν−2
ν

Median [F1,ν ]σ 2
t 0.34σ 2

t 0.39σ 2
t 0.45σ 2

t

MAE-LOG Mediant−1 [r2t ]
ν−2
ν

Median [F1,ν ]σ 2
t 0.34σ 2

t 0.39σ 2
t 0.45σ 2

t

MAE-SD Mediant−1 [r2t ]
ν−2
ν

Median [F1,ν ]σ 2
t 0.34σ 2

t 0.39σ 2
t 0.45σ 2

t

MAE-propa n/a

2.36 +

1.00
ν

+
7.78
ν2


σ 2
t 2.73σ 2

t 2.55σ 2
t 2.36σ 2

t

Notes: This table presents the forecast that minimises the conditional expected loss when the squared return is used as a volatility proxy. That is, h∗
t minimises Et−1[L(r2t , h)],

for various loss functions L. The first column presents the solutions when returns have an arbitrary conditional distribution rt |Ft−1 ∼ Ft with mean zero and conditional
variance σ 2

t , the second, third, and fourth columns present results with returns have a Student’s t distribution with mean zero, variance σ 2
t and degrees of freedom ν, and

the final column presents the solutions when returns are conditionally normally distributed. 0 is the gamma function and Ψ is the digamma function.
a The expressions given for MAE-prop are based on a numerical approximation, see Patton (2006) for details.
The range, or the high/low, estimator has been used in finance
formany years, see Garman andKlass (1980) and Parkinson (1980).
The intra-daily log range is defined as:

RGt ≡ max
τ

log Pτ − min
τ

log Pτ , t − 1 < τ ≤ t. (20)

Under the dynamics in Eq. (16) Feller (1951) presented the density
of RGt , and Parkinson (1980) presented a formula for obtaining
moments of the range, which enable us to compute:

Et−1

RG2

t


= 4 log (2) · σ 2

t ≈ 2.7726σ 2
t . (21)

Details on the distributional properties of the range under this DGP
are presented in Patton (2006). The above expression shows that
squared range is not a conditionally unbiased estimator of σ 2

t ; we
will thus focus below on the adjusted range:

RG∗

t ≡
RGt

2
√
log (2)

≈ 0.6006RGt (22)

which,when squared, is an unbiased proxy for the conditional vari-
ance. Note that the adjustment factor depends critically on the
assumed DGP, which is a potential drawback of the range as a
volatility proxy. Using the results of Parkinson (1980) it is simple to
determine that MSEt−1[RG∗2

t ] ≈ 0.4073σ 4
t , which is approxi-

mately one-fifth of the MSE of the daily squared return.
We now determine the optimal forecasts obtained using the

various loss functions considered above,when σ̂ 2
t = RV(m)

t or σ̂ 2
t =

RG∗2
t is used as a proxy for the conditional variance rather than r2t .

We initially leave m unspecified for the realised volatility proxy,
and then specialise to three cases: m = 1, 13 and 78, correspond-
ing to the use of daily, half-hourly and 5-min returns, on a stock
listed on the New York Stock Exchange (NYSE).

For MSE and QLIKE the optimal forecast is simply the
conditional mean of σ̂ 2

t , which equals the conditional variance, as
RV(m)

t and RG∗2
t are both conditionally unbiased. The MSE-SD loss

function yields (Et−1[σ̂t ])
2 as the optimal forecast. Under the set-

up above,

RV(m)
t ≡

m−
i=1

r2t,i =
σ 2
t

m

m−
i=1

ε2
t,i

so mσ−2
t RV(m)

t ∼ χ2
m

so h∗

t =
σ 2
t

m


E

[
χ2
m

]2
E
[

χ2
m

]
≈

√
m −

1
4
√
m

by a Taylor series approximation

so h∗

t ≈ σ 2
t


1 −

1
2m

+
1

16m2


≈

0.5625 · σ 2
t for m = 1

0.9619 · σ 2
t for m = 13

0.9936 · σ 2
t for m = 78.

The results for the MSE-SD loss function using realised volatility
show that reducing the noise in the volatility proxy improves
the optimal forecast,12 consistent with Hansen and Lunde (2006).
Using the range we find that

h∗

t =

Et−1


RG∗

t

2
=

2
π log 2

σ 2
t ≈ 0.9184σ 2

t

and so the distortion from using the range is approximately
equal to that incurred when using a realised volatility constructed
using 6 intra-daily observations. Calculations for the remaining
loss functions are collected in Patton (2006), and the results are
summarised in Table 2.

The results in Table 2 confirm that as the proxy used tomeasure
the true conditional variance gets more efficient the degree of
distortion decreases for all loss functions. Using half-hour returns
(13 intra-daily observations) or the intra-daily range still leaves
substantial distortions in the optimal forecasts, but using 5-min
returns (78 intra-daily observations) eliminates almost all of the
bias, at least in this simple framework. While high frequency data
is available and reliable for some assets (the most liquid assets on
well-developed exchanges), for most assets it is not possible to
obtain reliable high-frequency data, and thus the impact of noise
in the volatility proxy cannot be ignored.

3. A class of robust loss functions

In the previous section we showed that amongst nine loss
functions commonly used to compare volatility forecasts, only the
MSE and the QLIKE loss functions lead to h∗

t = Et−1[σ̂
2
t ] = σ 2

t ,
which is a necessary condition for a loss function to be robust

12 Note that the result for m = 1 is different to that obtained in Section 2, which
was h∗

t =
2
π
σ 2
t ≈ 0.6366σ 2

t . This is because form = 1we can obtain the expression
exactly, using results for the normal distribution, whereas for arbitrarymwe relied
on a second-order Taylor series approximation.



A.J. Patton / Journal of Econometrics 160 (2011) 246–256 251
Table 2
Optimal forecasts under various loss functions, using realised volatility and range.

Loss function Volatility proxy
Range Realised volatility

Arbitrarym m = 1 m = 13 m = 78 m → ∞

MSE σ 2
t σ 2

t σ 2
t σ 2

t σ 2
t σ 2

t

QLIKE σ 2
t σ 2

t σ 2
t σ 2

t σ 2
t σ 2

t

MSE-LOGa 0.85σ 2
t e−1.2741/mσ 2

t 0.28σ 2
t 0.91σ 2

t 0.98σ 2
t σ 2

t

MSE-SD 0.92σ 2
t

1
m


E


χ2
m

2
σ 2
t 0.56σ 2

t 0.96σ 2
t 0.99σ 2

t σ 2
t

MSE-prop 1.41σ 2
t


1 +

2
m


σ 2
t 3.00σ 2

t 1.15σ 2
t 1.03σ 2

t σ 2
t

MAE 0.83σ 2
t

1
m Median [χ2

m]σ 2
t 0.45σ 2

t 0.95σ 2
t 0.99σ 2

t σ 2
t

MAE-LOG 0.83σ 2
t

1
m Median [χ2

m]σ 2
t 0.45σ 2

t 0.95σ 2
t 0.99σ 2

t σ 2
t

MAE-SD 0.83σ 2
t

1
m Median [χ2

m]σ 2
t 0.45σ 2

t 0.95σ 2
t 0.99σ 2

t σ 2
t

MAE-propa 1.19σ 2
t


1 +

1.3624
m


σ 2
t 2.36σ 2

t 1.10σ 2
t 1.02σ 2

t σ 2
t

Notes: This table presents the forecast that minimises the conditional expected loss when the range or realised volatility is used as a volatility proxy. That is, h∗
t minimises

Et−1[L(σ̂ 2
t , h)], for σ̂ 2

t = RG∗2
t or σ̂ 2

t = RVt , for various loss functions L. In all cases returns are assumed to be generated as a zero mean Brownian motion with constant
volatility within each trade day and no jumps. The cases ofm = 1, 13, 78 correspond to the use of daily squared returns, realised variance with 30-min returns and realised
variance with 5-min returns respectively. The case thatm → ∞ corresponds to the case where the conditional variance is observable ex post without error.

a For the MSE-LOG and MAE-prop loss functions we used simulations, numerical integration and numerical optimisation to obtain the expressions given. Details on the
computation of the figures in this table are given in Patton (2006).
to noise in the volatility proxy. The following proposition is the
main theoretical contribution of the paper; it provides a necessary
and sufficient class of robust loss functions for volatility forecast
comparison, which are related to the class of linear-exponential
densities of Gourieroux et al. (1984), and to thework of Gourieroux
et al. (1987).Wewill showbelow that this class contains an infinite
number of loss functions, and allows for asymmetric penalties
to be applied to over- versus under-predictions, as well as for a
symmetric penalty. We make the following assumptions:

A1: Et−1[σ̂
2
t ] = σ 2

t for all t .
A2: σ̂ 2

t |Ft−1 ∼ Ft ∈ F̃ , the set of all absolutely continuous dis-
tribution functions on R+.

A3: L is twice continuously differentiable with respect to h and
σ̂ 2, and has a unique minimum at σ̂ 2

= h.
A4: There exists some h∗

t ∈ int(H) such that h∗
t = Et−1[σ̂

2
t ],

where H is a compact subset of R++.
A5: L and Ft are such that: (a) Et−1[L(σ̂ 2

t , h)] < ∞ for some h ∈

H ; (b) |Et−1[∂L(σ̂ 2
t , h)/∂h|h=σ 2

t
]| < ∞; and (c) |Et−1[∂

2L(σ̂ 2
t , h)/

∂h2
|h=σ 2

t
]| < ∞, for all t .

Proposition 1. Let assumptions A1 to A5 hold. Then a loss function L
is robust, in the sense of Definition1, if and only if it takes the following
form:

L

σ̂ 2, h


= C̃ (h) + B


σ̂ 2

+ C (h)

σ̂ 2

− h


(23)

where B and C are twice continuously differentiable, C is a strictly
decreasing function on H , and C̃ is the anti-derivative of C.

Remark 1. If we normalise the loss function to yield zero loss
when σ̂ 2

= h, then B(σ̂ 2) = −C̃(σ̂ 2).

Remark 2. Up to additive andmultiplicative constants, MSE loss is
obtained by setting C(z) = −z, C̃(z) = −z2/2 and B(z) = z2/2,
and QLIKE is obtained by setting C(z) = 1/z, C̃(z) = log(z) and
B(z) = 0.

Given the widespread interest in economics and finance
in loss functions that depend only on the forecast error or
the standardised forecast error, we present below a somewhat
surprising result on the subset of robust loss functions that satisfy
one of these restrictions.
Proposition 2. (i) The ‘‘MSE’’ loss function is the only robust loss
function satisfying assumptions A1–A5 that depends solely on the
forecast error, σ̂ 2

− h.
(ii) The ‘‘QLIKE’’ loss function is the only robust loss function satisfying

assumptions A1–A5 that depends solely on the standardised
forecast error, σ̂ 2/h.

The standardised forecast error will be centred approximately
around 1 (if h is somewhat accurate) and, more interestingly,
the conditional variance of the standardised forecast error will
be approximately 2 (under Gaussianity) regardless of the level
of volatility of returns. Thus the average QLIKE loss will be less
affected (generally) by the most extreme observations in the
sample. The MSE loss, on the other hand, depends on the usual
forecast error, σ̂ 2

−h, whichwill be centred approximately around
zero, butwill have variance that is proportional to the square of the
variance of returns, i.e., σ 4. As noted by several previous authors,
this implies that MSE is sensitive to extreme observations and the
level of volatility of returns.

In most economic and financial applications, the choice of units
ofmeasurement is arbitrary, e.g.,measuring prices in dollars versus
cents, or measuring returns in percentages versus decimals. Given
this, it is useful to consider the impact of a simple change in
units on the ranking of two competing forecasts by expected loss.
The class of loss functions presented in Proposition 1 guarantees
that the true conditional variance will be chosen (subject to
sampling variation) over any other forecast regardless of the choice
units. However it does not guarantee that the ranking of two
imperfect forecasts will be invariant to the choice of units. The
following proposition shows that by using a homogeneous robust
loss function, the ranking of any two (possibly imperfect) forecasts
is invariant to a re-scaling of the data. It further provides an
example where the ranking can be reversed simply with a re-
scaling of the data if a non-homogeneous robust loss function is
used.

Proposition 3. Recall that a loss function L is homogeneous of order
k if

L

aσ̂ 2, ah


= akL


σ̂ 2, h


∀a > 0 for some k.

Then:

(i) The ranking of any two (possibly imperfect) volatility forecasts
by expected loss is invariant to a re-scaling of the data if the loss
function is homogeneous.
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(ii) The ranking of any two (possibly imperfect) volatility forecasts by
expected loss may not be invariant to a re-scaling of the data if the
loss function is robust but not homogeneous.

With the above motivation for homogeneous loss functions,
we now derive the subset of homogeneous, robust loss functions.
It turns out that this subset of functions is indexed by a single
parameter, which determines the both degree of homogeneity and
the shape of the loss function. Naturally, the MSE loss function is
nested in this case (homogeneous of order 2), as is the QLIKE loss
function (homogeneous of order zero).

Proposition 4. The following family of loss functions, indexed by the
scalar parameter b, corresponds to the entire subset of robust and
homogeneous loss functions. The degree of homogeneity is equal to
b + 2.

L

σ̂ 2, h; b


=



1
(b + 1) (b + 2)

(σ̂ 2b+4
− hb+2)

−
1

b+1h
b+1


σ̂ 2

− h

, for b ∉ {−1, −2}

h − σ̂ 2
+ σ̂ 2 log

σ̂ 2

h
, for b = −1

σ̂ 2

h
− log

σ̂ 2

h
− 1, for b = −2.

(24)

The MSE loss function is obtained when b = 0 and the QLIKE
loss function is obtained when b = −2, up to additive and multi-
plicative constants. In Fig. 1 we present the above class of func-
tions for various values of b, ranging from 1 to −5, and includ-
ing the MSE and QLIKE cases. This figure shows that this family of
loss functions can take awide variety of shapes, ranging from sym-
metric (b = 0, corresponding to MSE) to asymmetric, with heav-
ier penalty either on under-prediction (b < 0) or over-prediction
(b > 0). Fig. 2 plots the ratio of losses incurred for negative fore-
cast errors to those incurred for positive forecast errors, to make
clearer the form of asymmetries in these loss functions. Other con-
siderations when choosing a loss function from the class in Eq. (24)
include the moment conditions required for formal tests and the
finite-sample power of these tests. Patton (2006) presents results
on how moment and memory conditions required for DMW tests
varywith the shape parameter b. It is noteworthy that themoment
conditions required underMSE loss are substantially stronger than
those using QLIKE loss. Related to this, Patton and Sheppard (2009)
find that the power of DMW tests using QLIKE loss are higher than
those usingMSE loss, providing further motivation for using QLIKE
rather than MSE in volatility forecasting applications.

4. Empirical application to forecasting IBM return volatility

In this section we consider the problem of forecasting the
conditional variance of the daily open-to-close return on IBM,
using data from the TAQ database over the period from January
1993 to December 2003. We consider two simple volatility
forecasting models that are widely used in industry: a 60-day
rolling window forecast, and the RiskMetrics volatility forecast
based on daily returns:

Rolling window : h1t =
1
60

60−
j=1

r2t−j (25)

RiskMetrics : h2t = λh2t−1 + (1 − λ) r2t−1, λ = 0.94. (26)

We use approximately the first year of observations (272 obser-
vations) to initialise the RiskMetrics forecasts, and the remaining
2500 observations to compare the forecasts. A plot of the volatility
forecasts is provided in Fig. 3. Recall that the theory in the previous
Fig. 1. Loss functions for various choices of b. True σ 2
= 2 in this example, with

the volatility forecast ranging between 0 and 4. b = 0 and b = −2 correspond to
the MSE and QLIKE loss functions respectively.

Fig. 2. Ratio of losses from negative forecast errors to positive forecast errors, for
various choices of b. Trueσ 2

= 2 in this example,with the volatility forecast ranging
between 0 and 4. b = 0 and b = −2 correspond to theMSE andQLIKE loss functions
respectively.

section requires that the volatility proxy (σ̂ 2
t ) is conditionally unbi-

ased, but no such assumption is required for the volatility forecasts
(hit): the rolling window and RiskMetrics forecasts can be biased,
or inaccurate in other ways. (Indeed, Mincer–Zarnowitz tests re-
ported in Patton (2006) indicate that both of these forecasts are
biased.)

We employ a variety of volatility proxies in the comparison
of these forecasts: the daily squared return, and realised variance
(RV) computed using 65-min, 15-min and 5-min returns.13 In order
for the theory in the previous section to be applied, we require the
proxy to be conditionally unbiased. For a liquid stock such as IBM,
all of these proxies can plausibly be considered free from market
microstructure effects. The same is not likely true for very high

13 We use 65-min returns rather than 60-min returns so that there are an even
number of intervals within the NYSE trade day, which runs from 9.30 am to 4 pm.
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Fig. 3. Conditional variance forecasts for IBM returns from 60-day rolling window and RiskMetrics models, January 1994 to December 2003.
Table 3
Comparison of rolling window and RiskMetrics forecasts.

Loss function Volatility proxy
Daily squared return 65-min realised vol. 15-min realised vol. 5-min realised vol.

b = 1 −1.58 −1.66 −1.30 −1.35
b = 0 (MSE) −0.59 −0.80 −0.03 −0.13
b = −1 1.30 1.04 1.65 −1.55
b = −2 (QLIKE) 1.94 2.21∗ 2.73∗ 2.41∗

b = −5 −0.17 0.25 1.63 0.65

Notes: This table presents the t-statistics from Diebold–Mariano–West tests of equal predictive accuracy for a 60-day rolling window forecast and a RiskMetrics forecast, for
IBM over the period January 1994 to December 2003. A t-statistic greater than 1.96 in absolute value indicates a rejection of the null of equal predictive accuracy at the 0.05
level. These statistics are marked with an asterisk. The sign of the t-statistics indicates which forecast performed better for each loss function: a positive t-statistic indicates
that the rolling window forecast produced larger average loss than the RiskMetrics forecast, while a negative sign indicates the opposite.
frequencies (such as 1-s or 30-s), and may not be true for 5-min
RV for less liquid stocks.

In comparing these forecasts we present the results of
Diebold–Mariano–West tests using the loss function presented in
Proposition 4, for five different choices of the loss function param-
eter: b = {1, 0, −1, −2, −5}. MSE loss and QLIKE loss correspond
to b = 0 and b = −2 respectively. Table 3 presents tests com-
paring the RiskMetrics forecasts based on daily returns with the
60-day rolling window volatility forecasts. The only loss function
for which the difference in forecast performance is significantly
different from zero is the QLIKE loss function: the difference is sig-
nificant at the 0.05 level using 65-min, 15-min and 5-min realised
variances as the volatility proxy, and significant at the 0.10 level
using daily squared returns as the proxy. In all of these cases the
t-statistic is positive, indicating that the rolling window forecasts
generated larger average loss than the RiskMetrics forecasts.

Interestingly, under MSE loss, the differences in average loss
favour the rolling window forecasts, though these differences
are not statistically significant. Mincer–Zarnowitz tests (presented
in Patton (2006)) revealed, unsurprisingly, that neither of these
forecasts is optimal. Robust loss functions are designed to always
select the true conditional variance over any competing forecast,
but when comparing two imperfect forecasts the ranking can, as
in this example, change depending on the choice of loss function.
This emphasises the flexibility that remains even when we restrict
attention to homogeneous, robust loss functions.

5. Conclusion

This paper analytically demonstrated some problems with
volatility forecast comparison techniques used in the literature.
These techniques invariably rely on a volatility proxy, which is
some imperfect estimator of the true conditional variance, and
the presence of noise in the volatility proxy can lead an imperfect
volatility forecast being selected over the true conditional variance
for certain choices of loss function. Thus noisy volatility proxies
not only reduce power, as discussed in Andersen and Bollerslev
(1998) for example, they can also seriously affect the asymptotic
size of commonly used tests. We showed analytically that less
noisy volatility proxies, such as the intra-daily range and realised
volatility, lead to less distortion, though in many cases the degree
of distortion is still large.

We derived necessary and sufficient conditions for the loss
function to yield rankings of volatility forecasts that are robust
to noise in the proxy. We also proposed a new parametric family
of robust and homogeneous loss functions, which yield inference
that is invariant to the choice of units of measurement. The
new family of loss function nests both squared-error (MSE) and
the ‘‘QLIKE’’ loss functions, two of the most widely used in the
volatility forecasting literature. A small empirical study of IBM
equity volatility illustrated the new loss functions in forecast
comparison tests.

Whilst volatility forecasting is a prominent example of a
problem in economicswhere the variable of interest is unobserved,
there are many other such examples: forecasting the true rate
of GDP growth (not simply the announced rate); forecasting
default probabilities; and forecasting covariances or correlations.
The derivations in this paper exploited the fact that the latent
variable of interest in volatility forecasting (namely the conditional
variance) is a positive random variable, and the proxy is non-
negative and continuously distributed. Extending the results in this
paper to handle latent variables of interest with support on the
entire real line, as would be required for applications to studies
of the ‘‘true’’ rates of growth in macroeconomic aggregates or
to conditional covariances, should not be difficult. Extending our
results to handle proxies with discrete support, such as those that
would be used in default forecasting applications, may require
a different method of proof. We leave such extensions to future
research.
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Appendix

Proof of Proposition 1. Weprove this proposition by showing the
equivalence of the following three statements:

S1: The loss function takes the form given the statement of the
proposition;

S2: The loss function is robust in the sense of Definition 1;
S3: The optimal forecast under the loss function is the

conditional variance.
We will show that S1 ⇒ S2 ⇒ S3 ⇒ S1. That S1 ⇒

S2 follows from Hansen and Lunde (2006): their assumption 2 is
satisfied given the assumptions for the proposition and noting that
∂2L(σ̂ 2, h)/∂(σ̂ 2)2 = B′′(σ̂ 2) does not depend on h.

We next show that S2 ⇒ S3: by the definition of h∗
t we have

Et−1

L

σ̂ 2
t , h∗

t


≤ Et−1


L

σ̂ 2
t , h̃t


for any other sequence of Ft−1-measurable forecasts h̃t . Then

E

L

σ̂ 2
t , h∗

t


≤ E


L

σ̂ 2
t , h̃t


by the LIE

and E

L

σ 2
t , h∗

t


≤ E


L

σ 2
t , h̃t


since L is robust under S2.

But L(σ̂ 2, h) has a unique minimum at σ̂ 2
= h, and if we set

h̃t = σ 2
t then it must be the case that h∗

t = σ 2
t .

Proving S3 ⇒ S1 is more challenging. For this part we follow
the proof of Theorem 1 of Komunjer and Vuong (2006), adapted to
our problem. We seek to show that the functional form of the loss
function given in the proposition is necessary for h∗

t = Et−1[σ̂
2
t ],

for any Ft ∈ F̃ . Notice that we can write

∂L

σ̂ 2
t , ht


∂h

= c

σ̂ 2
t , ht

 
σ̂ 2
t − ht


where c(σ̂ 2

t , ht) = (σ̂ 2
t −ht)

−1∂L(σ̂ 2
t , ht)/∂h, since σ̂ 2

t ≠ ht a.s. by
assumption A2. Now decompose c(σ̂ 2

t , ht) into

c

σ̂ 2
t , ht


= Et−1


c

σ̂ 2
t , ht


+ εt

where Et−1[εt ] = 0. Thus

Et−1


∂L


σ̂ 2
t , h∗

t


∂h


= Et−1


c

σ̂ 2
t , h∗

t

 
σ̂ 2
t − h∗

t


= Et−1


c

σ̂ 2
t , ht


Et−1


σ̂ 2
t − h∗

t


+ Et−1


εt


σ̂ 2
t − h∗

t


.

If Et−1[∂L(σ̂ 2
t , h∗

t )/∂h] = 0 for h∗
t = Et−1[σ̂

2
t ], then it must be

that Et−1[σ̂
2
t − h∗

t ] = 0 ⇒ Et−1[εt(σ̂
2
t − h∗

t )] = 0 for all
Ft ∈ F̃ . Employing a generalised Farkas lemma, see Lemma 8.1 of
Gourieroux andMonfort (1996), this implies that ∃λ ∈ R such that
λ(σ̂ 2

t − h∗
t ) = εt(σ̂

2
t − h∗

t ) for every Ft ∈ F̃ and for all t . Since
σ̂ 2
t − h∗

t ≠ 0 a.s. by assumption A2 this implies that εt = λ a.s.
for all t . Since Et−1[εt ] = 0 we then have λ = 0. Thus c(σ̂ 2

t , h∗
t ) =
Et−1[c(σ̂ 2
t , h∗

t )] for all t , which implies that c(σ̂ 2
t , h∗

t ) = c(h∗
t ), and

thus that ∂L(σ̂ 2
t , ht)/∂h = c(ht)(σ̂

2
t − ht).

The remainder of the proof is straightforward: A necessary con-
dition for h∗

t to minimise Et−1[L(σ̂ 2
t , h)] is that Et−1[∂

2L(σ̂ 2
t , h∗

t )/

∂h2
] ≥ 0, using A5 to interchange expectation and differentiation.

Using the previous result we have:

Et−1


∂2L


σ̂ 2
t , h∗

t


∂h2


= Et−1


c ′


h∗

t

 
σ̂ 2
t − h∗

t


− c


h∗

t


= −c


h∗

t


which is non-negative iff c(h∗

t ) is non-positive. From assumption
A4 we know that the optimum is in the interior of H and so we
know that c ≠ 0, and thus c(h) < 0 ∀h ∈ H . To obtain the loss
function corresponding to the given first derivative we simply in-
tegrate up:

L

σ̂ 2, h


= σ̂ 2

∫
c (h) dh −

∫
c (h) hdh

= B

σ̂ 2

+ σ̂ 2C (h) − C (h) h +

∫
C (h) dh

= C̃ (h) + B

σ̂ 2

+ C (h)

σ̂ 2

− h


where C is a strictly decreasing function (i.e. C ′
≡ c is negative)

and C̃ is the anti-derivative of C . By assumption A3 both B and C
are twice continuously differentiable. Thus S3 ⇒ S1, completing
the proof. �

Proof of Proposition 2. Without loss of generality, we work be-
low with loss functions that have been normalised to imply zero
loss when the forecast error is zero: L(σ̂ 2, h) = C̃(h) − C̃(σ̂ 2) +

C(h)(σ̂ 2
− h).

(i) We want to find the general sub-set of loss functions that
satisfy L(σ̂ 2, h) = L̃(σ̂ 2

− h) ∀(σ̂ 2, h) for some function L̃. This
condition implies

∂L

σ̂ 2, h


∂σ̂ 2

= −
∂L


σ̂ 2, h


∂h

∀

σ̂ 2, h


−C


σ̂ 2

+ C (h) + C ′ (h)

σ̂ 2

− h


= 0 ∀

σ̂ 2, h


.

Taking the derivative of both sides w.r.t. σ̂ 2 we obtain:

−C ′

σ̂ 2

+ C ′ (h) = 0 ∀

σ̂ 2, h


which implies C ′ (h) = κ1 ∀h

and since we know C is strictly decreasing, we also have κ1 < 0.

so C (h) = κ1h + κ2

σ̂ 2

C̃ (h) =
1
2
κ1h2

+ κ2

σ̂ 2 h + κ3


σ̂ 2

where κ2, κ3 are constants of integration, and may be functions of
σ̂ 2. Thus the loss function becomes

L

σ̂ 2, h


=

1
2
κ1h2

+ κ2

σ̂ 2 h + κ3


σ̂ 2

−
1
2
κ1σ̂

4

− κ2

σ̂ 2 σ̂ 2

− κ3

σ̂ 2

+

κ1h + κ2


σ̂ 2 

σ̂ 2
− h


= −

1
2
κ1


σ̂ 2

− h
2

.

Since proportionality constants do not affect the loss function,
we find that the only loss function that depends on (σ̂ 2, h) only
through the forecast error, σ̂ 2

− h, is the MSE loss function.
(ii) We next want to find the general sub-set of loss functions

that satisfy L(σ̂ 2, h) = L̃(σ̂ 2/h) ∀(σ̂ 2, h) for some function L̃. Note
that this condition implies that L is homogeneous of degree zero.



A.J. Patton / Journal of Econometrics 160 (2011) 246–256 255
Using Proposition 4 below, this implies that the loss function must
be of the form:

L

σ̂ 2, h


=

σ̂ 2

h
− log

σ̂ 2

h
− 1

which is the QLIKE loss function up to additive and multiplicative
constants. �

Proof of Proposition 3. (i) If L is homogeneous then E[L(aσ̂ 2
t ,

ah1t)] ≥ E[L(aσ̂ 2
t , ah2t)] ⇔ E[akL(σ̂ 2

t , h1t)] ≥ E[akL(σ̂ 2
t , h2t)] ⇔

E[L(σ̂ 2
t , h1t)] ≥ E[L(σ̂ 2

t , h2t)], for any a > 0.
(ii) Here we need only provide an example. Consider the

following stylised case: σ 2
t = 1 a.s. ∀t , (h1t , h2t) = (γ1, γ2) ∀t ,

and σ̂ 2
t is such that Et−1[σ̂

2
t ] = 1 a.s. ∀t . As a robust but non-

homogeneous loss we will use the one generated by the following
specification for C ′:

C ′ (h) = − log (1 + h)
so C (h) = h − (1 + h) log (1 + h)

and C̃ (h) =
1
4


h (3h + 2) − 2 (1 + h)2 log (1 + h)


.

For small h this loss function resembles the b = 1 loss function
from Proposition 4 (up to a scaling constant), but for medium
to large h this loss function does not correspond to any in
Proposition 4.

Given this set-up, we have

E

L

aσ̂ 2

t , ahit


=
1
4


aγi (3aγi + 2) − 2 (1 + aγi)

2 log (1 + aγi)


− E

C̃


aσ̂ 2

t


+ a [aγi − (1 + aγi) log (1 + aγi)] (1 − γi) .

Then define

dt (γ1, γ2, a) ≡ L

aσ̂ 2

t , aγ1

− L


aσ̂ 2

t , aγ2


E [dt (γ1, γ2, a)] =
a
4

(γ1 − γ2) (2 − 4a − a (γ1 + γ2))

+
1
2


a2 (γ1 − 1)2 − (1 + a)2


log (1 + aγ1)

−
1
2


a2 (γ2 − 1)2 − (1 + a)2


log (1 + aγ2) .

Let h1t = γ1 = 1/3 and let h2t = γ2 = 3/2. Then E[dt(h1t ,
h2t , 1)] = −0.0087, and so the first forecast has lower expected
loss than the second using the ‘‘original’’ scaling of the data. But
E[dt(h1t , h2t , 2)] = 0.0061, and so if all variables are multiplied
by 2 then the second forecast has lower expected loss than the
first. �

Proof of Proposition 4. We seek the subset of robust loss func-
tions that are homogeneous of order k : L(aσ̂ 2, ah) = akL(σ̂ 2, h)
∀a > 0. Let

λ

σ̂ 2, h


≡ ∂L


σ̂ 2, h


/∂h

= C ′ (h)

σ̂ 2

− h

for robust loss functions.

Since L is homogeneous of order k, λ is homogeneous of order (k−

1). This implies λ(aσ̂ 2, ah) = ak−1λ(σ̂ 2, h) = ak−1C ′(h)(σ̂ 2
− h),

while direct substitution yields λ(aσ̂ 2, ah) = aC ′(ah)(σ̂ 2
− h).

Thus C ′(ah) = ak−2C ′(h) ∀a > 0, that is, C ′ is homogeneous of
order (k − 2).

Next we apply Euler’s Theorem to C ′: C ′′(h)h = (k − 2)C ′(h)
∀h > 0, and so

(2 − k) C ′ (h) + C ′′ (h) h = 0.

We can solve this first-order differential equation to find:

C ′ (h) = γ hk−2
where γ is an unknown scalar. Since C ′ < 0 we know that γ < 0,
and as this is just a scaling parameter we set it to −1 without loss
of generality.

C ′ (h) = −hk−2

C (h) =

 1
1 − k

hk−1
+ z1 k ≠ 1

− log h + z1 k = 1

C̃ (h) =


z1h +

1
k (1 − k)

hk
+ z2 k ∉ {0, 1}

z1h + h − h log h + z2 k = 1
z1h + log h + z2 k = 0

where z1 and z2 are constants of integration. Finally, we substitute
the expressions for C and C̃ into Eq. (23), set B = −C̃ , and simplify
to obtain the loss functions in Eq. (24) with k = b + 2. �
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