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Abstract

This paper presents new methods for formally comparing the accuracy of estimators of the

quadratic variation of a price process. I provide conditions under which the relative average

accuracy of competing estimators can be consistently estimated (as T ! 1) from available

data, and show that existing tests from the forecast evaluation literature may be adapted to

the problem of ranking these estimators. The proposed methods eliminate the need for speci�c

assumptions about the properties of the microstructure noise, and the need to estimate quantities

such as integrated quarticity or the noise variance, and facilitate comparisons of estimators that

would be di¢ cult using methods from the extant literature, such as those based on di¤erent

sampling schemes (calendar-time vs. tick-time). In an application to high frequency IBM stock

price data between 1996 and 2007, I �nd that tick-time sampling is generally preferable to

calendar-time sampling, and that the optimal sampling frequency is between 15 seconds and 5

minutes, when using standard realised variance.
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1 Introduction

The past decade has seen an explosion in research on volatility measurement, as distinct from

volatility forecasting1. This research has focussed on constructing non-parametric estimators of

price variability over some horizon (for example, one day) using data sampled at a shorter horizons

(for example, every 5 minutes). These �realised volatility�(RV) estimators or �realised measures�

generally aim at measuring the quadratic variation or integrated variance of the log-price process

of some asset or collection of assets.

This profusion of research has lead to a need for some practical guidance on which RV estimator

to select for a given empirical analysis. In addition to the particular estimator to use, the perfor-

mance of RV estimators is generally a¤ected by the frequency used to sample the price process (for

example, every 5 minutes or every 30 seconds), see Zhou (1996) and Bandi and Russell (2008) for

example, and may also be a¤ected by the decision to sample in calendar time or in �tick time�(for

example, every r minutes or every s trades), and the decision to use prices from transactions or

from quotes, see Bandi and Russell (2006b), Hansen and Lunde (2006a) and Oomen (2006).

This paper provides new methods for comparing RV estimators, which complement the ap-

proaches currently in the literature (discussed further below). Denoting the latent quadratic vari-

ation of the process over some interval of time as �t, estimators of this quantity as Xi;t; and a

distance measure as L; the primary theoretical contribution of this paper is to provide methods to

consistently estimate:

E [�L (�t;Xt)] � E [L (�t; Xi;t)]� E [L (�t; Xj;t)] (1)

The latent nature of �t makes estimating E [�L (�t;Xt)] more di¢ cult than in standard forecasting

applications, as we cannot simply use the sample mean of the loss di¤erences as an estimator.

Further, the fact that the estimators Xit usually use data from the same period over which �t is

measured makes this problem distinct from (and more di¢ cult than) volatility forecasting applica-

tions.
1See Andersen and Bollerslev (1998), Andersen, et al. (2001a, 2003), Barndor¤-Nielsen and Shephard (2002, 2004),

Aït-Sahalia, et al. (2005), Zhang, et al. (2005), Hansen and Lunde (2006a), Christensen and Podolskij (2007), and

Barndor¤-Nielsen, et al. (2008a) amongst many others. Andersen, et al. (2006) and Barndor¤-Nielsen and Shephard

(2007) present recent surveys of this burgeoning �eld. Older papers on this topic include Merton (1980), French, et

al. (1987) and Zhou (1996).
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With an estimator of E [�L (�t;Xt)] in hand, it is possible to employ one of the many tests from

the literature on forecast evaluation and comparison, such as Diebold and Mariano (1995) and West

(1996) for pair-wise comparisons, White (2000), Hansen (2005), Hansen, et al. (2005) and Romano

and Wolf (2005) for comparisons involving a large number of RV estimators, and Giacomini and

White (2006) for conditional comparisons of RV estimators. These tests rely on standard large

sample asymptotics (T !1) rather than continuous-record asymptotics (m!1) ; and thus can

be used to compare the ��nite m�performance of di¤erent estimators. I provide conditions under

which these tests can be applied to the problem of ranking RV estimators. The proposed methods

rely on the existence of a volatility proxy that is unbiased for the latent target variable, �t; and

satis�es an uncorrelatedness condition, described in detail below. This proxy must be unbiased but

it does not need to be very precise; a simple and widely-available proxy is the daily squared return,

for example.

Previous research on the selection of estimators of quadratic variation has predominantly fo-

cussed on �nding the sampling frequency that maximises the accuracy of a given estimator. Con-

sider the simplest RV estimator:

RV
(m)
t �

mX
i=1

�
p� i � p� i�1

�2 (2)

where p� i is the log-price at time � i, f�0; �1; :::; �mg are the times at which the price of the asset is

available during period t, and m is the number of intra-period observations used in computing the

estimator. In the absence of market microstructure e¤ects, distribution theory for the simplest RV

estimator would suggest sampling prices as often as possible, see Merton (1980) for example, as the

asymptotic variance of the estimator in this case declines uniformly asm!1: In practice, however,

the presence of autocorrelation in very high frequency prices leads the standard RV estimator to

become severely biased2, and several papers have attempted to address this problem: Zhou (1996)

derives the mean-squared-error (MSE) optimal sampling frequency (or, equivalently, optimal choice

2Early research in this area, see Zhou (1996) and Andersen, et al. (2000), employed �volatility signature plots�to

show graphically that sampling at the highest possible frequency is not optimal in practice: at very high frequencies,

e¤ects such as bid-ask bounce and stale prices can lead to large biases in simple RV estimators. More sophisticated

estimators, such as the two-scale estimator of Zhang, et al. (2006) and the realised kernel estimator of Barndor¤-

Nielsen, et al. (2008a) provide consistent estimates of quadratic variation using very high frequency data, under some

conditions, by taking these autocorrelations into account in the construction of the estimator.
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of m) for the RV AC1 estimator assuming iid noise and intra-daily homoskedasticity3; Aït-Sahalia,

et al. (2005) derive the MSE-optimal choice of m for the standard RV estimator under a variety of

cases (iid noise, serially correlated noise, and noise correlated with the e¢ cient price); Andersen,

et al. (2007) derive the MSE-optimal choice of m for the RV ACq estimator, the realised kernel

estimator of Barndor¤-Nielsen, et al. (2008a) and the two-scale estimator of Zhang, et al. (2006),

under the assumption of iid noise; Hansen and Lunde (2006a) derive the MSE-optimal choice of m

for RV ACq estimators assuming iid noise; Bandi and Russell (2006a,c) derive the optimal choice

of the m for standard RV, and the optimal ratio of q=m for RV ACq estimators using m intra-daily

observations, under the assumption of iid noise; Bandi, et al. (2007) consider the optimal choice of

m when the noise process is conditionally mean zero but potentially heteroskedastic; and Barndor¤-

Nielsen, et al. (2008a) examine the optimal sampling frequency and number of lags to use with a

variety of realised kernel estimators, under the assumption of iid noise. While the methods of these

papers di¤er, they have in common their use of continuous-record asymptotics in their derivations,

the use of MSE as the measure of accuracy, and, importantly, generally quite speci�c assumptions

about the noise process4 ;5.

In contrast to the theoretical studies of the optimal sampling frequency cited above, the data-

based methods proposed in this paper allow one to avoid taking a stand on some important proper-

ties of the price process. In particular, the proposed approach allows for microstructure noise that

may be correlated with the e¢ cient price process and/or heteroskedastic, c.f. Hansen and Lunde

(2006a), Kalnina and Linton (2007), and Bandi, et al. (2007). Further, this approach avoids the

need to estimate quantities such as the integrated quarticity and the variance of the noise process,

which often enter formulas for the optimal sampling frequency, see Andersen, et al. (2007) and

Bandi and Russell (2008) for example, and which can be di¢ cult to estimate in practice. This

approach does, however, require some assumptions about the time series properties of the vari-

ables under analysis, which are not required in most of the existing literature, and so the proposed

tests complement, rather than substitute, existing methods; they provide an alternate approach to

3The RV ACq estimator adjusts the standard RV estimator in equation (2) to account for autocovariances up to

order q.
4Gatheral and Oomen (2007) provide an alternative analysis of the problem of choosing an RV estimator via a

detailed simulation study.
5 It should be noted that several of these papers derive the asymptotic distribution of their estimators, as m!1,

under weaker assumptions on the noise than are required to derive optimal sampling frequencies.
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addressing the same important problem.

The data-based methods proposed in this paper also allow for comparisons of estimators of

quadratic variation that would be di¢ cult using existing theoretical methods in the literature.

For example, theoretical comparisons of estimators using quote prices versus trade prices require

assumptions about the behaviour of market participants: the arrival rate of trades, the placing and

removing of limit and market orders, etc., and theoretical comparisons may be sensitive to these

assumptions. Likewise, theoretical comparisons of tick-time and calendar-time sampling requires

assumptions on the arrival rate of trades. Finally, the methods of this paper make it possible

to compare estimators based on quite di¤erent assumptions about the price process, such as the

�alternation� estimator of Large (2005) which is based on the assumption that the price process

moves in steps of at most one tick, versus, for example, the multi-scale estimator of Zhang (2006),

which is based on a quite di¤erent set of assumptions.

The main empirical contribution of this paper comes from a study of the problem of estimat-

ing the daily quadratic variation of IBM equity prices, using high frequency data over the period

January 1996 to June 2007. I consider simple realised variance estimators based on either quote or

trade prices, sampled in either calendar time or in tick time, for many di¤erent sampling frequen-

cies. I �nd that Romano-Wolf (2005) tests clearly reject the squared daily return in favour of a

RV estimator using higher frequency data, and corresponding tests also indicate that there are sig-

ni�cant gains to moving beyond the rule-of-thumb of using 5-minute calendar-time RV: estimators

based on data sampled at between 15 seconds and 2 minutes are signi�cantly more accurate than

5-minute RV. In general, I �nd that using tick-time sampling leads to more accurate RV estimation

than using calendar-time sampling, particularly when trades arrivals are very irregularly-spaced. I

also �nd that quote prices are signi�cantly less accurate that trade prices in the early part of the

sample, but this di¤erence disappears in the most recent sub-sample of the data.

The remainder of the paper is structured as follows. Section 2 presents the main theoretical

results of this paper, and discusses the important di¤erences between comparing estimators of

quadratic variation and comparing volatility forecasts. Section 3 presents a simulation study of

the methods of this paper for a realistic stochastic volatility process, and Section 4 presents an

application using high frequency quote and trade data on IBM over the period January 1996 to

June 2007. Section 5 concludes, and all proofs are collected in the Appendix.
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2 Data-based ranking of RV estimators

2.1 Notation and background

The target variable, generally quadratic variation (QV) or integrated variance6 (IV), is denoted �t.

I assume that �t is Ft-measurable, where Ft is the information set generated by the complete path

of the log-price process. For the remainder of the paper I assume that �t is a scalar; I discuss the

extension to vector (or matrix) target variables in the conclusion. The estimators of �t are denoted

Xi;t, i = 1; 2; :::; k. Often these will be the same estimator applied to data sampled at di¤erent

frequencies, for example 1-minute returns vs. 30-minute returns, though they could also be RV

estimators based on di¤erent functional forms, di¤erent sampling schemes, etc.

In order to rank the competing estimators we need some measure of distance from the estimator,

Xi;t; to the target variable, �t: Two popular (pseudo-)distance measures in the volatility literature

are MSE and QLIKE:

MSE L (�;X) = (� �X)2 (3)

QLIKE L (�;X) =
�

X
� log

�
�

X

�
� 1 (4)

The de�nition of QLIKE above has been normalised to yield a distance of zero when � = X: The

methods below apply to rankings of RV estimators using the general class of �robust� pseudo-

distance measures proposed in Patton (2008), which nests MSE and QLIKE as special cases:

L (�;X) = ~C (X)� ~C (�) + C (X) (� �X) (5)

with C being some function that is decreasing and twice-di¤erentiable function on the supports

of both arguments of this function, and where ~C is the anti-derivative of C. In this class each

pseudo-distance measure L is completely determined by the choice of C. MSE and QLIKE are

obtained (up to location and scale constants) when C (z) = �z and C (z) = 1=z respectively.

For the remainder of the paper I will use the following notation to describe the (k � 1 vector
6Broadly stated, the quadratic variation of a process coincides with its integrated variance if the process does not

exhibit jumps, see Barndor¤-Nielsen and Shephard (2007) for example.
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of) di¤erences in the distances from the target variable to a collection of RV estimators:

�L (�;Xt) �

26664
L (�; X1t)� L (�; X2t)

...

L (�; X1t)� L (�; Xkt)

37775 (6)

where Xt � [X1t; :::Xkt]
0

Throughout, variables denoted with a ���below are the bootstrap samples of the original vari-

ables obtained from the stationary bootstrap, P is the original probability measure, and P � is the

probability measure induced by the bootstrap conditional on the original data.

2.2 Ranking volatility forecasts vs. ranking RV estimators

Ranking volatility forecasts, as opposed to estimators, has received a lot of attention in the econo-

metrics literature, see Poon and Granger (2003) and Hansen and Lunde (2005) for two recent and

comprehensive studies, and this is the natural starting point for considering the ranking of realised

volatility estimators. Hansen and Lunde (2006b) and Patton (2008) show that rankings of volatility

forecasts using a �robust�loss function and a conditionally unbiased volatility proxy are asymptot-

ically equivalent to rankings using the true latent target variable �this is stated formally in part

(a) of the proposition below. Part (b) shows that this result does not hold for rankings of volatility

estimators, due to a critical change in the time at which they are observable.

Proposition 1 Let �t be the latent scalar quantity of interest, let Ft be the information set gener-

ated by the complete path of the log-price process until time t, and let ~Ft � Ft be the information

set available to the econometrician at time t. Let (X1t; X2t) be two estimators of �t; and let ~�t be

the proxy for �t:

(a) [Volatility forecasting] If �t 2 Ft�1; (X1t; X2t) 2 ~Ft�1, ~�t 2 ~Ft and E
h
~�tjFt�1

i
= �t; and if

L is a member of the class of distance measures in equation (5), then

E [L (�t; X1t)] Q E [L (�t; X2t)], E
h
L
�
~�t; X1t

�i
Q E

h
L
�
~�t; X2t

�i
(b) [Volatility estimation] If �t 2 Ft; (X1t; X2t) 2 ~Ft, ~�t 2 ~Ft and E

h
~�tjFt

i
= �t; and if L is a

member of the class of distance measures in equation (5), then

E [L (�t; X1t)] Q E [L (�t; X2t)]< E
h
L
�
~�t; X1t

�i
Q E

h
L
�
~�t; X2t

�i
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All proofs are presented in the Appendix. The reason the equivalence holds in part (a) but fails

in part (b) is that estimation error in (X1t; X2t) will generally be correlated with the error in ~�t in

the latter case. This means that the ranking of RV estimators needs to be treated di¤erently to

the ranking of volatility forecasts, and it is to this that we now turn.

2.3 Ranking RV estimators

In this section we obtain methods to consistently estimate the di¤erence in average accuracy of

competing estimators of quadratic variation, E [�L (�t;Xt)] ; by exploiting some well-known em-

pirical properties of the behaviour of �t and by making use of a (function of a) proxy for �t; denoted

~�t: This proxy may itself be a RV estimator, of course, and it may be a noisy estimate of the latent

target variable, but it must be conditionally unbiased.

Assumption P1: ~�t = �t + �t, with E [�tjFt�1; �t] = 0, a.s.

For many assets the squared daily return can reasonably be assumed to be conditionally un-

biased: the mean return is generally negligible at the daily frequency, and the impact of market

microstructure e¤ects is often also negligible in daily returns. It should be noted, however, that the

presence of jumps in the data generating process will a¤ect the inference obtained using the daily

squared return as a proxy: in this case we can compare the estimators in terms of their ability

to estimate quadratic variation, which is the integrated variance plus the sum of squared jumps

in many cases, see Barndor¤-Nielsen and Shephard (2007) for example, but not in terms of their

ability to estimate the integrated variance alone. If an estimator of the integrated variance that

is conditionally unbiased, for �nite m; in the presence of jumps is available, however, then the

methods presented below apply directly.

In the propositions below I consider using a convex function of leads of ~�t:

Assumption P2: Yt =
PJ
i=1 !i

~�t+i, where 1 � J <1; !i � 0 8 i and
PJ
i=1 !i = 1:

Using leads of the proxy is important for breaking the correlated measurement errors problem,

which makes it possible to overcome the problems identi�ed in Proposition 1. Yt is thus interpretable

as an instrument for ~�t: Our focus on di¤erences in average accuracy makes this a non-linear

instrumental variables problem, and like other such problems it is not su¢ cient to simply assume

that Corr
h
Yt; ~�t

i
6= 0; some more structure is required. I obtain results in this application by

considering two alternative approximations of the conditional mean of �t.

Numerous papers on the conditional variance (see Bollerslev, et al., 1994, Engle and Patton,
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2001, and Andersen, et al., 2006 for example), or integrated variance (see Andersen, et al., 2004,

2007) have reported that these quantities are very persistent, close to being (heteroskedastic) ran-

dom walks. The popular RiskMetrics model, for example, is based on a unit root assumption for the

conditional variance. It should be noted that Wright (1999) provides thorough evidence against the

presence of a unit root in daily conditional variance for several assets, however, despite this, it has

proven to be a good approximation in many cases. Given this, consider the following assumption:

Assumption T1: �t = �t�1 + �t, with E [�tjFt�1] = 0; a.s.

2.3.1 Unconditional rankings of RV estimators

This section presents results that allow the ranking of RV estimators based on unconditional average

accuracy, according to some distance measure L. Importantly, the methods presented below allow

for the comparison of multiple estimators simultaneously, via the tests of White (2000) and Romano

and Wolf (2005) for example.

Proposition 2 (a) Let assumptions P1, P2 and T1 hold, and let the pseudo-distance measure

L belong to the class in equation (5). Then

E [�L (�t;Xt)] = E [�L (Yt;Xt)]

for any vector of RV estimators, Xt; and any L such that these expectations exist.

(b) If we further assume A1 and A2 in the Appendix, then:

p
T

 
1

T

TX
t=1

�L (Yt;Xt)� E [�L (�t;Xt)]
!
!d N (0;
1) , as T !1

where 
1 is given in the proof.

(c) If B1 in the Appendix also holds then the stationary bootstrap may also be employed, as:

sup
z

�����P �
" 1T

TX
t=1

�L (Y �t ;X
�
t )�

1

T

TX
t=1

�L (Yt;Xt)

 � z
#

� P
" 1T

TX
t=1

�L (Yt;Xt)� E [�L (�t;Xt)]
 � z

#�����!p 0, as T !1

Part (a) of the above proposition shows that it is possible to obtain an unbiased estimate of

the di¤erence in the average distance from the latent target variable, �t; using a suitably-chosen

volatility proxy, under certain conditions. This opens the possibility to use existing methods from
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the forecast evaluation literature to help us choose between RV estimators. Parts (b) and (c) of the

proposition uses the existing forecast evaluation literature to obtain moment and mixing conditions

under which we obtain an asymptotic normal distribution for estimates of the di¤erences in average

distance. The conditions in part (b) are su¢ cient to justify the use of Diebold-Mariano (1995) and

West (1996)-style tests for pair-wise comparisons of RV estimator accuracy. Part (c) justi�es the

use of the bootstrap �reality check�test of White (2000), the �model con�dence set�of Hansen, et

al. (2005), the SPA test of Hansen (2005), and the stepwise multiple testing method of Romano

and Wolf (2005), which are based on the stationary bootstrap of Politis and Romano (1994).

The methods proposed above are complements rather than substitutes for existing methods: the

assumptions required for the above result are mostly non-overlapping with the conditions usually

required for existing comparison methods. For example, the above proposition does not require

any assumptions about the underlying price process (subject to the moment and mixing conditions

being satis�ed), the microstructure noise process, the trade or quote arrival processes, or the

arrivals of limit versus market orders. This means that tests based on the above proposition allow

for comparisons of RV estimators that would be di¢ cult using existing methods in the literature.

However, unlike most existing tests, the above proposition relies on a long time series of data rather

than a continuous sample of prices (i.e., T ! 1 rather than m ! 1), on mixing and moment

conditions, and on the applicability of the random walk approximation for the latent target variable.

In Section 3 below I show that these assumptions are reasonable in a realistic simulation design.

In the next proposition I substitute assumption T1 with one which allows the latent target

variable, �t; to follow a stationary AR(p) process. The work of Meddahi (2003) and Barndor¤-

Nielsen and Shephard (2002) shows that integrated variance follows an ARMA(p,q) model for a wide

variety of stochastic volatility models for the instantaneous volatility, motivating this generalisation

of the result based on a random walk approximation in Proposition 2. Whilst allowing for a general

ARMA model is possible, I focus on the AR case both for the ease with which this case can be

handled, and the fact that it has been found to perform approximately as well as the theoretically

optimal ARMA model in realistic scenarios, see Andersen, et al. (2004).

Assumption T2: �t = �0 +
Pp
i=1 �i�t�i + �t, with E [�tjFt�1] = 0; �1 6= 0; the matrix 	

de�ned in equation (35) is invertible, and � �
�
�1; :::; �p

�0 is such that �t is covariance stationary.
When the order of the autoregression is greater than one, I also require assumption R1, below.

This assumption is plausible for most RV estimators in the literature, as they are generally based
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on data from a single day, although Barndor¤-Nielsen, et al. (2004) and Owens and Steigerwald

(2007) are two exceptions.

Assumption R1: Xt is independent of �t�j for all j > 0:

Proposition 3 Let assumptions P1, P2 and T2 hold, let the pseudo-distance measure L belong to

the class in equation (5), and let R1 hold if p > 1: Further, de�ne Q0 �
�
�0;0

0
p

�0, Q1 �
24 00p 0

Ip 0

35,
P �

24 1 ��0

0p Ip

35where 0p is a p� 1 vector of zeros. Then:
(a) E [�L (�t;Xt)] = E [�L (Yt;Xt)]� �

where � = E [�C (Xt)]
JX
j=1

!j
g
(j)
0

g
(j)
1

+
JX
j=1

!j

 
1� 1

g
(j)
1

!
E
h
�C (Xt) ~�t+j

i

+
JX
j=1

!j

pX
i=2

g
(j)
i

g
(j)
1

E
h
�C (Xt) ~�t+1�i

i
for any vector of RV estimators, Xt; and any L such that these expectations exist. The variable

g
(j)
0 is de�ned as the �rst element of the vector

�
I �

�
P�1Q1

�j� �
I � P�1Q1

��1
P�1Q0; and g

(j)
i

is de�ned as (1; i) element of the matrix
�
P�1Q1

�j
:

(b) If we further assume A1 and A2 in the Appendix hold for the series Bt, de�ned in equation

(34), then:

p
T

 
1

T

TX
t=1

�L (Yt;Xt)� �̂T � E [�L (�t;Xt)]
!
!d N (0;
2) , as T !1

where �̂T �
 
1

T

TX
t=1

�C (Xt)

!0@ JX
j=1

!j
ĝ
(j)
0

ĝ
(j)
1

1A+ JX
j=1

!j

 
1� 1

ĝ
(j)
1

!
1

T � j

T�jX
t=1

�C (Xt) ~�t+j

+

JX
j=1

!j

pX
i=2

ĝ
(j)
i

ĝ
(j)
1

1

T + 1� i

TX
t=i

�C (Xt) ~�t+1�i

where ĝ(j)i ; i = 0; 1; :::; p; j = 1; 2; :::; J are estimators of g
(j)
i described in the proof.

(c) If B1 in the Appendix also holds then the stationary bootstrap may also be employed, as:

sup
z

�����P �
" 1T

TX
t=1

�L (Y �t ;X
�
t )� �̂

�
T �

1

T

TX
t=1

�L (Yt;Xt) + �̂T

 � z
#

� P
" 1T

TX
t=1

�L (Yt;Xt)� �̂T � E [�L (�t;Xt)]
 � z

#�����!p 0, as T !1
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Proposition 3 relaxes the assumption of a random walk, at the cost of introducing a bias term

to the expected loss computed using the proxy. This bias term, however, can be consistently

estimated under the assumption that the target variable follows a stationary AR(p) process. The

cost of the added �exibility in allowing for a general AR(p) process for the target variable is the

added estimation error induced by having to estimate the AR(p) parameters, and having to estimate

additional terms of the form E
h
�C (Xt) ~�t+j

i
: This estimation error will lead to reduced power

to distinguish between competing RV estimators than would otherwise be the case.

2.3.2 Conditional rankings of RV estimators

In this section we extend the above results to consider expected di¤erences in distance conditional

on some information set, thus allowing the use of Giacomini-White (2006)-type tests of equal

conditional RV estimator accuracy. The null hypothesis in a GW-type test is:

H�
0 : E [�L (�t;Xt) jGt�1] = 0 a.s. t = 1; 2; ::: (7)

For pair-wise comparisons of forecasts (or RV estimators, in our case), �L (�t;Xt) is a scalar and

the above null is usually tested by looking at simple regressions of the form:

�L (�t;Xt) = �
0Zt�1 + et (8)

where Zt�1 2 Gt�1 is some q � 1 vector of variables thought to be useful for predicting future

di¤erences in estimator accuracy, and testing:

H0 : � = 0 (9)

vs. Ha : � 6= 0

The following proposition provides conditions under which a feasible form of the above regression:

�L (Yt;Xt) = ~�0Zt�1 + ~et (10)

provides consistent estimates of the parameter � in the infeasible regression.

Proposition 4 (a) Let assumptions P1, P2 and T1 hold, and let the pseudo-distance measure

L belong to the class in equation (5). If Gt�1 � Ft; then

E [�L (�t;Xt) jGt�1] = E [�L (Yt;Xt) jGt�1] a.s., t = 1; 2; :::
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for any vector of RV estimators, Xt; and any L such that these expectations exist:

(b) Assume �L (�t;Xt) is a scalar and denote the OLS estimator of ~� in equation (10) as �̂T .

Then if we further assume A3 and A4 in the Appendix:

D̂
�1=2
T

p
T (�̂T ��)!d N (0; I)

where D̂T � M̂�1
T 
̂T M̂

�1
T , M̂T �

1

T

TX
t=1

Zt�1Z
0
t�1, 
T � V

"
1p
T

TX
t=1

Zt�1et

#

and with 
̂T some symmetric and positive semi-de�nite estimator such that 
̂T � 
T !p 0:

Part (a) of the above proposition shows that the corresponding part of Proposition 2 can be

generalised to allow for a conditioning set Gt�1 � Ft without any additional assumptions. Part (b)

shows that the OLS estimator of the feasible GW regression in equation (10) is centred on the true

parameter in the infeasible regression in equation (8), thus enabling GW-type tests. The variance

of the OLS estimator will generally be in�ated relative to the variance of the infeasible regression,

but nevertheless the variance can be estimated using standard methods.

The above proposition can also be extended to allow the latent target variable, �t; to follow

a stationary AR(p) process. The proposition below shows that the AR approximation can be

accommodated by using an adjusted dependent variable in the GW-type regression. That is, the

infeasible regression is again:

�L (�t;Xt) = �
0Zt�p + et (11)

while the adjusted regression becomes:

^�L (�t;Xt) = ~�0Zt�p + ~et (12)

Note that the variable Zt must be lagged by (at least) the order of the autoregression, so for an

AR(p) the right-hand side of the GW-type regression would contain Zt�p: Under the random walk

approximation the adjusted dependent variable is simply ^�L (�t;Xt) = �L (Yt;Xt), while under

the AR(p) approximation it will contain terms related to the parameters of the AR(p) model. For

example, specialising the proposition below to an AR(1) with J = 1 (so that Yt = ~�t+1) we have:

^�L (�t;Xt) = �L
�
~�t+1;Xt

�
� �0
�1
�C (Xt) +

1� �1
�1

�C (Xt) ~�t+1 (13)

This adjusted dependent variable is constructed such that ~� =�; and thus estimating equation

(12) by OLS yields a consistent estimator of the unknown true parameter �. (Note that if �0 = 0
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and �1 = 1; which corresponds to the random walk case, the adjustment term drops out and we

obtain the same result as in Proposition 4.) Of course, the parameters of the AR(p) process must

be estimated, leading to a feasible adjusted regression:

\�L (�t;Xt) = e~�0Zt�p + e~et (14)

where

\�L (�t;Xt) = �L
�
~�t+1;Xt

�
�
�̂0;T

�̂1;T
�C (Xt) +

1� �̂1;T
�̂1;T

�C (Xt) ~�t+1 (15)

in the AR(1) and J = 1 case. The dependent variable in the feasible adjusted regression depends

on estimated AR(p) parameters, and so standard OLS inference cannot be used.

The proposition below considers the more general AR(p) case, with a proxy that may depend

on a convex combination of leads of ~�t; and shows how to account for the fact that the adjustment

term involves estimated parameters. A strengthening of Assumption R1 is needed for the test of

conditional accuracy if the order of the autoregressive approximation is greater than one.

Assumption R1�: Xt is conditionally independent of �t�j given Ft�j�1; for all j > 0:

Proposition 5 Let assumptions P1, P2 and T2 hold, let the pseudo-distance measure L belong

to the class in equation (5), and let R1� hold if p > 1: Let Q0; Q1, P and g(j)i be de�ned as in

Proposition 3. Finally, assume that �L (�t; Xt) is a scalar, and de�ne:

^�L (�t;Xt) � �L (Yt;Xt) + �0�C (Xt) + �1�C (Xt) ~�t+1 +

pX
i=2

�i�C (Xt) ~�t+1�i

where �1 =
1

�1
�

JX
j=1

!j
g
(j)
1

�1
, and �i = �

�i
�1
�

JX
j=1

!j

�
g
(j)
i � g(j)1

�i
�1

�
, i = 0; 2; 3; :::; p

and \�L (�t;Xt) � �L (Yt;Xt) + �̂0;T�C (Xt) + �̂1;T�C (Xt) ~�t+1 +

pX
i=2

�̂i;T�C (Xt) ~�t+1�i

where �̂i;T , i = 0; 1; :::; p are the values of �i based on estimated values for �j and g
(j)
i : Then:

(a) E
h

^�L (�t;Xt)Zt�p
i
= E [�L (�t;Xt)Zt�p] for any Zt�p 2 Ft�p

(b) Denote the OLS parameter estimate of e~� in equation (14) as �̂T : If we further assume A1
and A2 in the Appendix hold for the series Dt, de�ned in equation (36), then:

p
T (�̂T ��)!d N (0;
3) as T !1:
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(c) If B1 in the Appendix also holds then the stationary bootstrap may also be employed, as:

sup
z
jP � [k�̂�T � �̂T k � z]� P [k�̂T ��k � z]j !p 0, as T !1:

As in Proposition 3, the AR assumption introduces additional terms to be estimated in order

to consistently estimate E [�L (�t; Xt) � Zt�p] : The above proposition shows that these terms are

estimable, though the additional estimation error will of course reduce the power of this test. It

is worth noting that Proposition 3 can be obtained as a special case of the above proposition by

simply setting Zt�p equal to one.

3 Simulation study

To examine the �nite-sample performance of the results in the previous section, I present the results

of a small simulation study. I use a log-normal stochastic volatility model with a leverage e¤ect,

with the same parameters as in Gonçalves and Meddahi (2009):

d logP � (t) = 0:0314d (t) + � (t)
�
�0:576dW1 (t) +

p
1� 0:5762dW2 (t)

�
(16)

d log �2 (t) = �0:0136
�
0:8382 + log �2 (t)

�
d (t) + 0:1148dW1 (t)

In simulating from these processes I use a simple Euler discretization scheme, with the step size

calibrated to one second (i.e., with 23,400 steps per simulated trade day, which assumed to be 6.5

hours in length). I consider sample sizes of T = 500 and T = 2500 trade days.

To gain some insight into the impact of microstructure e¤ects, I also consider a simple iid error

term for the observed log-price:

logP (tj) = logP � (tj) + � (tj) (17)

� (tj) s iid N
�
0; �2�

�
where rt is the open-to-close return on day t. Following Aït-Sahalia, et al. (2005) and Huang and

Tauchen (2005), I set �2� to be such that the proportion of the variance of the 5-minute return

(5/390 of a trade day) that is attributable to microstructure noise is 20%:

2�2�

V [rt]
5
390 + 2�

2
�

= 0:20 (18)

The expression above is from Aït-Sahalia, et al. (2005), while the proportion of 20% is around the

middle value considered in the simulation study of Huang and Tauchen (2005).
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The process to be simulated above exhibits a leverage e¤ect and is contaminated with noise,

and so existing results on the ARMA processes for QV implied by various continuous-time stochas-

tic volatility models, see Barndor¤-Nielsen and Shephard (2002) and Meddahi (2003), cannot be

directly applied. This allows us to study how the proposed tests perform in the realistic case that

both the random walk and AR(p) models are merely approximations to the true process for daily

QV; neither is correctly speci�ed.

The �nite-sample size and power properties of the proposed methods is investigated via the

following experiment. For simplicity I focus on pair-wise comparisons of RV estimators, each

implemented using the 1000 draws from the stationary bootstrap of Politis and Romano (1994),

thus making this a �reality check�-type test from White (2000). I set the each RV estimator equal

to the true QV plus some noise:

Xit = QVt + �it, i = 1; 2 (19)

�1t = !�30mint + (1� !)�uU1t (20)

�2t = !�30mint + (1� !)�uU2t +
q
�2�2 � �2�1U3t (21)

[U1t; U2t; U3t]
0 s iid N (0; I)

where �30mint � RV 30mint � IVt

The above structure allows the measurement error on each of the RV estimators to be correlated

with the proxy measurement error, consistent with what is faced in practice. As a benchmark, I

use the measurement errors on RV 30min to generate this correlation, and I set the correlation to

be � = Corr
�
�30mint ; �1t

�
= 0:5; by setting the parameters

�
!; �2u

�
using equations (22) and (23)

below. The equations below also allow me to vary the variance of the errors associated with the RV

estimators, �2�1 and �
2
�2: In the study of the size of the tests I set �

2
�1=V [IVt] = �

2
�2=V [QVt] = 0:1

(and so the variable U3t drops out of equation 21) which is approximately equal to V
�
�30mint

�
=

V [QVt] in this simulation. To study the power, I �x �2�1=V [QVt] = 0:1; and let �2�2=V [QVt] =

0:15; 0:2; 0:5; 1:

! =
���1
��

(22)

�2u =
�2��

2
�1

�
1� �2

�
(�� � ���1)2

(23)

where V
�
�30mint

�
� �2�
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I consider seven unconditional comparison tests in total. The �rst test is the infeasible test that

would be conducted if the true QV were observable. The power of this test represents an upper

bound on what one can expect from the feasible tests. I consider feasible tests under both the

random walk approximation (using Proposition 2) and an AR(1) approximation (using Proposition

3). I also consider three di¤erent volatility proxies: daily squared returns, 30-minute RV and the

true QV. The latter case is considered to examine the limiting case of a proxy with no error being

put through these tests. The rejection frequencies under each scenario are presented in Table 1,

using the MSE and QLIKE pseudo-distance measures from equations (3) and (4).

The �rst row of each panel of Table 1 corresponds to the case when the null hypothesis is

satis�ed, and thus we expect these �gures to be close to 0.05, the nominal size of the tests. For both

MSE and QLIKE and for T = 500 and T = 2500 we see that the �nite-sample size is reasonable,

with rejection frequencies reasonably close to 0.05. Most tests appear to be under-sized, meaning

that they are conservative tests of the null. The results for the power of the tests are as expected:

the power of the new tests are worse than would be obtained if the true QV were observable; power

is greater when using a longer time series of data; power is worse when a noisier instrument is used

(true QV vs. 30-minute RV vs. daily squared returns); and the power of the test based on the

AR(1) approximation is worse than that based on the random walk approximation. The AR(1)

approximation has little power when the volatility proxy is very noisy and T is small: in that

case it appears that the estimation of the AR parameters overwhelms any information about the

relative accuracy of the two RV estimators. In this particular design, the power of the tests based

on the MSE loss function is greater than those based on QLIKE loss, though this is likely due to

the additive nature of the noise in the design of the RV estimators being compared.

[ INSERT TABLE 1 ABOUT HERE ]

Next I consider a simulation study of the Giacomini and White (2006)-style conditional com-

parisons of RV estimators. I use the following design:

X1t = QVt + �1t (24)

X2t = QVt � �QVt�1 + �2t (25)

�it = !�30mint + (1� !)�uUit, i = 1; 2

[U1t; U2t]
0 s iid N (0; I)
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As in the simulation for tests of unconditional accuracy, I choose ! and �2u such that �
2
�1=V [QVt] =

�2�2=V [QVt] = 0:1 and Corr
�
�30mint ; �1t

�
= Corr

�
�30mint ; �2t

�
= 0:5: In the study of �nite-sample

size, I set � = 0: To study power, I consider introducing some time-varying bias to the second RV

estimator, by letting the parameter � = 0:1; 0:2; 0:4; 0:8; and then estimate regressions of the form:

L
�
~�t+1; X1t

�
� L

�
~�t+1; X2t

�
= �u0 + e

u
t , or (26)

L
�
~�t+1; X1t

�
� L

�
~�t+1; X2t

�
= �0 + �1 log

1

10

10X
j=1

~�t�j + et (27)

where ~�t is the volatility proxy: daily squared returns, 30-minute RV or the true QV. I use Proposi-

tions 4 and 5 to consider three tests based on the above regressions: an unconditional test (�u0 = 0) ;

a test that the slope coe¢ cient in the second regression is zero (�1 = 0) ; or a joint conditional test

(�0 = �1 = 1) : Under the random walk approximation, I can estimate these regressions by simple

OLS, and I use Newey and West (1987) to obtain the covariance matrix of the estimated parameters.

Under the AR(1) approximation I use 1000 draws from the stationary bootstrap. In the interests

of space I present these simulation results only for the QLIKE distance measure, see Tables 2 and

3; results under the MSE distance measure are available on request7.

The �rst row of each panel in Tables 2 and 3 corresponds to the case where the null hypothesis

is true. The tests using the random walk approximation are generally close to the nominal size

of 0.05, while the tests using the AR(1) approximation appear to be somewhat under-sized, again

implying a conservative test of the null. As expected, the power of the tests to detect violations

of the null is lower when a less accurate volatility proxy is employed, higher when a long time

series of data is available, and higher using the random walk approximation than using the AR(1)

approximation.

[ INSERT TABLES 2 AND 3 ABOUT HERE ]

4 Estimating the volatility of IBM stock returns

In this section I apply the methods of Section 2 to the problem of estimating the quadratic variation

of the open-to-close (9:45am to 4pm) continuously-compounded return on IBM. I use data on NYSE
7Like those using QLIKE, the tests using MSE distance are slightly under-sized, though less so than using QLIKE.

Related to this, the power of tests using MSE in this simulation are slightly higher than those using QLIKE. I focus

on QLIKE in this section as this is the distance measure used in the empirical work presented in Section 4.
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trade and quote prices from the TAQ database over the period from January 1996 to June 2007,

yielding a total of 2893 daily observations. This sample period covers several distinct periods: the

minimum tick size moved from one-eighth of a dollar to one-sixteenth of a dollar on June 24, 1997,

and to pennies on January 29, 20018. Further, volatility for this stock (and for the market generally)

was high over the early and middle parts of the sample, and very low, by historical standards, in

the later years of the sample, see Figure 1. These changes motivate the use of sub-samples in the

empirical analyses below: I break the sample into three periods (1996-1999, 2000-2003 and 2004-

2007) to determine whether these changes impact the ranking of the competing realised volatility

estimators.

I consider standard realised variance, as presented in equation (2), using trade prices and

mid-quote prices, and using calendar-time sampling and tick-time sampling, for thirteen di¤erent

sampling frequencies: 1, 2, 5, 15, 30 seconds, 1, 2, 5, 15, 30 minutes, 1, 2 hours9 and the open-

close return. For tick-time sampling, the sampling frequencies here are average times between

observations on each day, and the actual sampling frequency of course varies according to the

arrival rate of observations. The combination of two price series (trades and mid-quotes), two

sampling schemes (calendar-time and tick-time), and 13 sampling frequencies yields 52 possible

RV estimators. However, calendar-time and tick-time sampling are equivalent for the two extreme

sampling frequencies (1-second sampling and 1-day sampling) which brings the number of RV

estimators to 48 in total. In Figure 2 I present the volatility signature plot for these estimators

for the full sample, and for three sub-samples. These plots generally take a common shape: RV

computed on trade prices tends to be upward biased for very high sampling frequencies, while RV

computed on quote prices tends to be downward biased for very high sampling frequencies, see

Hansen and Lunde (2006a) for example. This pattern does not appear in the last sub-sample for

this stock.

[ INSERT FIGURES 1 AND 2 ABOUT HERE ]

In Figures 3 and 4 I present the �rst empirical contribution of this paper. These �gures present

estimates of the average distance between each of the 48 RV estimators and the latent quadratic

8Source: New York Stock Exchange web site, http://www.nyse.com/about/history/timeline_chronology_index.html.
9 I use 62.5 and 125 minute sampling rather than 60 and 120 minute sampling so that there are an integer number

of such periods per trade day. I call these 1-hour and 2-hour sampling frequencies for simplicity.
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variation of the IBM price process, relative to the corresponding distance using 5-minute calendar-

time RV on trade prices10, using the QLIKE distance measure presented in equations (4). The

�rst �gure uses the random walk (RW) approximation for the dynamics in QV, the second uses a

�rst-order AR approximation. I use a one-period lead of 5-minute calendar-time RV on trade prices

as the volatility proxy to compute the di¤erences in average distances11. I present these results for

the full sample and for three sub-samples (1996-1999, 2000-2003, 2004-2007).

The conclusion from these pictures is that there are clear gains to using intra-daily data to

compute RV, consistent with the voluminous literature to date: the estimated average distances to

the true QV for estimators based on returns sampled at 30-minute or lower frequencies are clearly

greater than those using higher-frequency data (formal tests of this result are presented below).

Using the RW approximation, the optimal sampling frequency is either 30 seconds or 1 minute, and

the best-performing estimator over the full sample is RV based on trade prices sampled in tick time

at 1-minute average intervals. The AR approximation gives the same result for the full sample and

similar results in the sub-samples.

[ INSERT FIGURES 3 AND 4 ABOUT HERE ]

4.1 Comparing many RV estimators

To formally compare the 48 competing RV estimators, I use the stepwise multiple testing method

of Romano and Wolf (2005). This method identi�es the estimators that are signi�cantly better, or

signi�cantly worse, than a given benchmark estimator, while controlling the family-wise error rate

of the complete set of hypothesis tests. That is, for a given benchmark estimator, Xt;0; it tests:

H
(i)
0 : E [L (�t; Xt;0)] = E [L (�t; Xt;s)] , for i = 1; 2; :::; 47

vs. H(i)
1 : E [L (�t; Xt;0)] > E [L (�t; Xt;s)]

or H(i)
2 : E [L (�t; Xt;0)] < E [L (�t; Xt;s)]

10The choice of RV estimator to use as the �benchmark� in these plots is purely a normalisation: it has no e¤ect

on the ranks of the di¤erent estimators.
11Using the assumption that the squared open-to-close return is unbiased for the true quadratic variation, I tested

whether 5-minute calendar-time RV is also unbiased, and found no evidence against this assumption at the 0.05 level.

Using the squared open-to-close return as the volatility proxy did not qualitatively change these results, though as

expected the power of the tests was reduced.
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and identi�es which individual null hypotheses, H(i)
0 ; can be rejected. I use 1000 draws from the

stationary bootstrap of Politis and Romano (1994), with an average block size of 20, for each test.

I consider two choices of �benchmark�RV estimators: the squared open-to-close return, which

is the most commonly-used volatility estimator in the absence of higher frequency data, and a RV

estimator based on 5-minute calendar-time trade prices, which is based on a rule-of-thumb from

early papers in the RV literature (see Andersen, et al. (2001b) and Barndor¤-Nielsen and Shephard

(2002) for example), which suggests sampling �often but not too often�, so as to avoid the adverse

impact of microstructure e¤ects.

Table 4 reveals that every estimator, except for the squared open-to-close quote-price return,

is signi�cantly better than squared open-to-close trade-price return, at the 0.05 level. This is true

in the full sample and in all three sub-samples, using both the RW approximation and the AR

approximation. This is very strong support for using high frequency data to estimate volatility.

Table 5 provides some evidence that the 5-minute RV estimator is signi�cantly beaten by higher-

frequency RV estimators. Under the RW approximation, the Romano-Wolf method indicates that

RV estimators based on 15-second to 2-minute sampling frequencies are signi�cantly better than

5-minute RV. Estimators with even higher sampling frequencies are not signi�cantly di¤erent, while

estimators based on 15-minute or lower sampling are found to be signi�cantly worse. The results

also indicate that trade prices are preferred to quote prices for most of this sample period. Only

in the last sub-sample are quote prices at 15-second to 2-minute sampling frequencies found to

out-perform 5-minute RV using trade prices. In the earlier sub-samples quote prices were almost

always worse than trade prices. This result will be explored further in the analysis below. Under the

AR approximation very few RV estimators could be distinguished from the 5-minute RV estimator

using the Romano-Wolf method, suggesting that the gains from moving beyond 5-minute sampling

are hard to identify in the presence of additional estimation error from the AR model, consistent

with the simulation results in Section 3.

[ INSERT TABLES 4 AND 5 ABOUT HERE ]

4.2 Conditional comparisons of RV estimators

To investigate the possible sources of the under- or out-performance of certain RV estimators,

I next undertake Giacomini and White (2006)-style tests of conditional estimator accuracy. As
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discussed in Section 2.3.2, the null hypothesis of interest in a Giacomini-White (GW) test is that

two competing RV estimators have equal average accuracy conditional on some information set

Gt�1; that is:

H�
0 : E [L (�t; Xt;0) jGt�1]� E [L (�t; Xt;s) jGt�1] = 0 a.s. t = 1; 2; :::

One way to implement a test of this null is via a simple regression:

L (�t; Xt;0)� L (�t; Xt;s) = �0 + �1Zt�1 + et (28)

where Zt�1 2 Gt�1, and then test the necessary conditions:

H0 : �0 = �1 = 0 (29)

vs. Ha : �i 6= 0 for some i = 0; 1

4.2.1 High-frequency vs. low-frequency RV estimators

I �rst use the GW test to examine the states where the gains from using high-frequency data are

greatest. One obvious conditioning variable is recent volatility: distribution theory for standard RV

estimators, see Andersen, et al. (2003) and Barndor¤-Nielsen and Shephard (2004) for example,

suggests that RV estimators are less accurate during periods of high volatility, and one might expect

that the accuracy gains from using high-frequency data are greatest during volatile periods. Using

the RW approximation, I estimated the following regression, and obtained the results below, with

robust t-statistics presented in parentheses below the parameter estimates:

L
�
Yt; RV

(daily)
t

�
� L

�
Yt; RV

(5min)
t

�
= 33:67

(8:42)
+ et (30)

L
�
Yt; RV

(daily)
t

�
� L

�
Yt; RV

(5min)
t

�
= 24:94

(11:10)
+ 17:85

(2:55)
Zt�1 + et (31)

where Zt�1 = log
1

10

10X
j=1

Yt�j

The �rst of the above regression results show that daily squared returns, RV (daily)t ; are less

accurate on average than RV based on 5-minute sampling. The positive and signi�cant coe¢ cient

on lagged volatility in the second regression is consistent with RV distribution theory, and indicates

that the accuracy of daily squared returns deteriorates precisely when accurate volatility estimation

is most important �during high volatility periods. The p-value from a test that both parameters
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in the second regression are zero is less than 0.001, indicating a strong rejection of the null of equal

conditional accuracy.

Using an AR approximation and the bootstrap methods presented in Proposition 5, very similar

results are obtained:

L
�
Yt; RV

(daily)
t

�
� L

�
Yt; RV

(5min)
t

�
= 33:54

(6:69)
+ et (32)

L
�
Yt; RV

(daily)
t

�
� L

�
Yt; RV

(5min)
t

�
= 19:93

(5:75)
+ 27:76

(3:45)
Zt�1 + et (33)

with bootstrap p-values from tests that the parameters in both models are zero less than 0.001 in

both cases.

4.2.2 Tick-time vs. calendar-time sampling

I next use the GW test of conditional accuracy to compare calendar-time sampling with tick-time

sampling. Theoretical comparisons of tick-time and calendar-time sampling requires assumptions

on the arrival rate of trades, while the methods presented in this paper allow us to avoid making

any speci�c assumptions about the trade arrival process. For example, in a parametric �pure jump�

model of high frequency asset prices, Oomen (2006) �nds that tick-time sampling leads to more

accurate RV estimators than calendar-time sampling when trades arrive at irregular intervals. In

general, if the trade arrival rate is correlated with the level of volatility, consistent with the work

of Easley and O�Hara (1992), Engle (2000) and Manganelli (2005), then using tick-time sampling

serves to make the sampled high-frequency returns closer to homoskedastic, which theoretically

should improve the accuracy of RV estimation, see Hansen and Lunde (2006a) and Oomen (2006).

I use the log volatility of trade durations to measure how irregularly-spaced trade observations are:

this volatility will be zero if trades arrive at evenly-spaced intervals, and increases as trades arrive

more irregularly.

I estimate a regression of the di¤erence in the accuracy of a calendar-time RV estimator and

a tick-time estimator with the same average sampling frequency, on a constant and the lagged log

volatility of trade durations, for each of the frequencies considered in the earlier sections12, and

present the results in Table 6. The �rst column of Table 6 reports a Diebold and Mariano (1995)-

type test of the di¤erence in unconditional average accuracy, across the sampling frequencies, using
12Calendar-time sampling and tick-time sampling are equivalent for the 1-second and 1-day frequencies, and so

these are not reported.
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the RW approximation. This di¤erence is positive and signi�cant for the highest three frequencies

(2, 5 and 15 seconds) and negative and signi�cant for all but one of other frequencies, indicating

that tick-time sampling is better than calendar-time sampling (has smaller average distance from

the true QV) for all but the very highest frequencies. Further, Table 6 reveals that for all but

one frequency the slope coe¢ cient is negative, and 6 out of 11 are signi�cantly negative, indicating

that the accuracy of tick-time RV is even better relative to calendar-time RV when trades arrive

more irregularly. The results under the AR approximation are very similar to those under the RW

approximation, though with slightly reduced signi�cance.

[ INSERT TABLE 6 ABOUT HERE ]

4.2.3 Quote prices vs. trade prices

Finally, I examine the di¤erence in accuracy of RV estimators based on trade prices versus quote

prices. Theoretical comparisons of RV estimators using quote prices versus trade prices require

assumptions about the behaviour of market participants: the arrival rate of trades, the placing and

removing of limit and market orders, etc., and theoretical comparisons may be sensitive to these

assumptions. The data-based methods of this paper allow us to avoid such assumptions.

As a simple measure of the potential informativeness of quotes versus trades, I consider using

the ratio of the number of quotes per day to the number of trades per day. I regress the di¤erence

in the accuracy of a quote-price RV and trade-price RV, with the same calendar-time sampling

frequency, on a constant and the lagged ratio of the number of quotes to the number of trades.

I do this for each of the frequencies considered in the earlier sections, and present the results in

Table 7. The �rst column of Table 7 reveals that quote-price RV had larger average distance to

the true QV than trade-price RV for all but two sampling frequencies, and for 10 out of 13 this

di¤erence is signi�cant at the 0.05 level. However, the results of the test of conditional estimator

accuracy reveal that quote-price RV improves relative to trade-price RV as the number of quote

observations increases relative to the number of trades: 11 out of 13 slope coe¢ cients are negative,

and 10 of these are statistically signi�cant. Results are very similar under the AR approximation,

though with slightly reduced t-statistics. The ratio of quotes per day to trades per day for IBM

has increased from around 0.5 in 1996 to around 2.5 in 2007, and may explain the sub-sample

results in Table 5: as the relative number of quotes per day has increased, its relative accuracy has
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also increased. In the early part of the sample, quote-price RV was signi�cantly less accurate than

trade-price RV, however that di¤erence vanishes in the last sub-sample, where quote and trade

prices, of the same frequency, yield approximately equally accurate RV estimators13.

[ INSERT TABLE 7 ABOUT HERE ]

5 Conclusion

This paper considers the problem of ranking competing realised volatility (RV) estimators, mo-

tivated by the growing literature on nonparametric estimation of price variability using high-

frequency data, see Andersen, et al. (2006) and Barndor¤-Nielsen and Shephard (2007) for recent

surveys. I provide conditions under which the relative average accuracy of competing estimators

for the latent target variable can be consistently estimated from available data, using �large T �

asymptotics, and show that existing tests from the forecast evaluation literature, such as Diebold-

Mariano (1995), West (1996), White (2000), Hansen, et al. (2005), Romano and Wolf (2005) and

Giacomini and White (2006), may then be applied to the problem of ranking these estimators. The

methods proposed in this paper eliminate the need for speci�c assumptions about the properties of

the microstructure noise, and facilitate comparisons of RV estimators that would be di¢ cult using

methods from the extant literature.

I apply the proposed methods to high frequency IBM stock price data between 1996 and 2007

in a detailed empirical study. I consider simple RV estimators based on either quote or trade

prices, sampled in either calendar time or in tick time, for several di¤erent sampling frequencies.

Romano-Wolf (2005) tests reject the squared daily return and the 5-minute calendar-time RV in

favour of an RV estimator using data sampled at between 15 seconds and 5 minutes. In general, I

found that using tick-time sampling leads to more accurate RV estimation than using calendar-time

sampling, particularly when trades arrivals are very irregularly-spaced, and RV estimators based

on quote prices are signi�cantly less accurate than those based on trade prices in the early part of

the sample, but this di¤erence disappears in the most recent sub-sample of the data.

13Using data from the �rst half of 2007, corresponding to the end of the last sub-sample in this paper, Barndor¤-

Nielsen, et al. (2008b) also �nd that estimators based on quote prices are very similar to those based on trade

prices, when kernel-based estimators of the type in Barndor¤-Nielsen, et al. (2008a) are used, or when standard RV

estimators are used on slightly-lower frequency data (1- to 5-minute sampling rather than 1-second sampling).
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This paper leaves open several extensions. The �rst is to consider a wider collection of classes

of estimators of quadratic variation, in addition to considering di¤erent sampling frequencies and

sampling schemes. Such a �horse race�may provide guidance on the type estimator that tends

to work best for particular assets. A step in this direction is considered in Patton and Sheppard

(2008), who look at combinations of realised volatility estimators. A second extension of the results

in this paper is to comparisons of estimators of the entire covariance matrix. Such comparisons are

perhaps more relevant than comparisons of individual variances and covariances, given that these

components are usually used together as a covariance matrix (and thus must satisfy conditions to

ensure that the matrix is positive semi-de�nite). For this application, the covariance matrix pseudo-

distance measures proposed in Patton and Sheppard (2006) may prove useful, when combined with

a random walk or a vector AR approximation for the latent integrated covariance matrix.

6 Appendix: Proofs

Additional assumptions used in parts of the proofs below:

Let At �
�
�L (�t;Xt)

0 ;�C (Xt)
0 (Yt � �t)

�0
; let �AT denote the sample mean of At; and let Ai;t

denote the ith element of At:

Assumption A1: E
h
jAi;1j6+"

i
<1 for some " > 0 and for all i.

Assumption A2: fAtg is �-mixing of size �3 (6 + ") =":

Assumption A3: E [Zt�1et] = 0 for all t:

Assumption A4(a):
��
Z0t�1; ~et

�	
is �-mixing of size � (2 + ") =" for some " > 0:

Assumption A4(b): E
h
jZt�1;i~etj2+"

i
<1 for i = 1; 2; :::; q and all t:

Assumption A4(c): VT � V
�
T�1=2

XT

t=1
Zt�1~et

�
is uniformly positive de�nite.

Assumption A4(d): E
h
jZt�1;ij2+"+2�

i
<1 for some � > 0 and all i = 1; 2; :::; q and all t:

Assumption A4(e): MT � E
�
T�1

XT

t=1
Zt�1Z0t�1

�
is uniformly positive de�nite.

Assumption B1: If pT is the inverse of the average block length in Politis and Romano�s

(1994) stationary bootstrap, then pT ! 0 and T � pT !1:

Proof of Proposition 1. The proof of part (a) is given in Hansen and Lunde (2006b). I

repeat part of it here to show where that proof breaks down in part (b). Consider a second-order
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mean-value expansion of the pseudo-distance measure L
�
~�t; Xit

�
around (�t; Xit):

L
�
~�t; Xit

�
= L (�t; Xit) +

@L (�t; Xit)

@�

�
~�t � �t

�
+
1

2

@2L
�
��t; Xit

�
@�2

�
~�t � �t

�2
= L (�t; Xit) + (C (Xit)� C (�t))

�
~�t � �t

�
� 1
2
C 0
�
��t

��
~�t � �t

�2
where ��t = �t�t + (1� �t) ~�t for some �t 2 [0; 1] ; and using the functional form of L in equation

(5). The third term in the above equation does not depend on Xit; and so will not a¤ect the ranking

of (X1t; X2t) : In volatility forecasting applications, �t is the conditional variance and so �t 2 Ft�1;

and Xit is a volatility forecast, and so Xit 2 ~Ft�1: In that case, this allows

E
h
(C (Xit)� C (�t)) �

�
~�t � �t

�
jFt�1

i
= (C (Xit)� C (�t)) �

�
E
h
~�tjFt�1

i
� �t

�
= 0

by the unbiasedness of ~�t for �t conditional on Ft�1. Using the law of iterated expectations we

obtain E
h
(C (Xit)� C (�t)) �

�
~�t � �t

�i
= 0, and thus E

h
�L

�
~�t;Xt

�i
= E [�L (�t;Xt)] :

(b): When Xit is a realised volatility estimator and �t is the integrated variance or quadratic

variation we have �t 2 Ft and
�
Xit; ~�t

�
2 ~Ft, which means we cannot employ the above reasoning

directly. If we could assume that Corr
h
C (Xit)� C (�t) ; ~�t � �tjFt�1

i
= 0 8 i, in addition to

E
h
~�tjFt

i
= �t; then we would have

E
h
(C (Xit)� C (�t))

�
~�t � �t

�
jFt�1

i
= E [C (Xit)� C (�t) jFt�1]E

h
~�t � �tjFt�1

i
= E [C (Xit)� C (�t) jFt�1]E

h
E
h
~�tjFt

i
� �tjFt�1

i
= 0:

However it is not true that Corr
h
C (Xit)� C (�t) ; ~�t � �tjFt�1

i
= 0 for all empirically rele-

vant combinations of RV estimators and volatility proxies. In fact, if Xit = ~�t and L = MSE,

a very natural case to consider, then C (z) = �z and Corr
h
C (Xit)� C (�t) ; ~�t � �tjFt�1

i
=

Corr
h
�t � ~�t; ~�t � �tjFt�1

i
= �1: In general, we should expect Corr

h
C (Xit)� C (�t) ; ~�t � �tjFt�1

i
6=

0 : This is the correlation between the error in ~�t and something similar to the �generalised forecast

error�, see Granger (1999) or Patton and Timmermann (2008), of Xit: If the proxy, ~�t; and the

RV estimators, Xit; use the same or similar data then their errors will generally be correlated and

this zero correlation restriction will not hold, and thus E
h
(C (Xit)� C (�t))

�
~�t � �t

�i
6= 0; which

breaks the asymptotic equivalence of the ranking obtained using ~�t with that using �t:
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Proof of Proposition 2. (a): See the proof of part (a) Proposition 4 and set Gt�1 to be the

trivial information set.

(b): Note that

1

T

TX
t=1

�L (Yt;Xt)� E [�L (�t;Xt)]

=
1

T

TX
t=1

�L (�t;Xt)� E [�L (�t;Xt)] +
1

T

TX
t=1

f�L (Yt;Xt)��L (�t;Xt)g

=
1

T

TX
t=1

�L (�t;Xt)� E [�L (�t;Xt)] +
1

T

TX
t=1

�C (Xt) (Yt � �t)

� �AT � E [At]

where At �
�
�L (�t;Xt)

0 ;�C (Xt)
0 (Yt � �t)

�0
since E [�C (Xt) (Yt � �t)] = 0 from part (a). Under assumptions A1 and A2, Theorem 3 of Politis

and Romano (1994) provides:

p
T
�
�AT � E [At]

�
!d N (0; VA)

where VA is the long-run covariance matrix of At: Let � denote a vector of ones, and note that

p
T

 
1

T

TX
t=1

�L (Yt;Xt)� E [�L (�t;Xt)]
!
= �0

p
T
�
�AT � E [At]

�
!d N (0;
1)

where 
1 � �0VA�: It should be noted that assumptions A1 and A2 can hold despite the random

walk assumption (T1), if �t and Xit obey a some form of cointegration, linked to the distance

measure employed. If MSE is employed, T1, A1 and A2 require that these variables obey standard

linear cointegration, with cointegrating vector [1;�1] : For other distance measures a form of non-

linear cointegration must hold.

(c): Follows directly from Theorem 3 of Politis and Romano (1994), under the additional

assumption B1.

Proof of Proposition 3. (a): Using the second-order mean-value expansion of the loss func-

tion from the proof of Proposition 4, we obtain E [�L (Yt;Xt)] = E [�L (�t;Xt)] + �, where � �

E [�C (Xt) (Yt � �t)] =
PJ
j=1 !jE

h
�C (Xt)

�
~�t+j � �t

�i
=
PJ
j=1 !jE [�C (Xt) (�t+j � �t)] =PJ

j=1 !jE [�C (Xt) (Et [�t+j ]� �t)] under P1 and P2. Allowing for J > 1 requires computing
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j (> 1)-step ahead forecasts from an AR(p) process, Et [�t+j ] : This is simpli�ed by using the com-

panion form for the AR(p) process governing �t:26666664
1 ��1 � � � ��p
0 1 � � � 0
...

...
. . .

...

0 0 � � � 1

37777775

26666664
�t

�t�1
...

�t�p

37777775 =

26666664
�0

0
...

0

37777775+
26666664
0 0 � � � 0

1 0 � � � 0
...
...
. . .

...

0 0 � � � 1

37777775

26666664
�t�1

�t�2
...

�t�p�1

37777775+
26666664
�t

0
...

0

37777775
rede�ne as PZt = Q0 +Q1Zt�1 +Vt

so Zt = P�1Q0 + P
�1Q1Zt�1 + P

�1Vt

with E [Zt] =
�
I � P�1Q1

��1
P�1Q0

and so Et [Zt+j ] =
�
I � P�1Q1

��1
P�1Q0 +

�
P�1Q1

�j �
Zt �

�
I � P�1Q1

��1
P�1Q0

�
=

n�
I �

�
P�1Q1

�j� �
I � P�1Q1

��1
P�1Q0

o
+
�
P�1Q1

�j
Zt

and so Et [�t+j ] = g
(j)
0 +

pX
i=1

g
(j)
i �t+1�i

where g(j)0 is the �rst element of
�
I �

�
P�1Q1

�j� �
I � P�1Q1

��1
P�1Q0, and g

(j)
i is the (1; i)

element of
�
P�1Q1

�j
: Next I use this result to obtain:

E [�C (Xt)Et [�t+j ]] = g
(j)
0 E [�C (Xt)] + g

(j)
1 E [�C (Xt) �t] +

pX
i=2

g
(j)
i E [�C (Xt) �t+1�i]

so E [�C (Xt) �t] =
1

g
(j)
1

E
h
�C (Xt) ~�t+j

i
� g

(j)
0

g
(j)
1

E [�C (Xt)]�
pX
i=2

g
(j)
i

g
(j)
1

E [�C (Xt) �t+1�i]

which yields

E
h
�C (Xt)

�
~�t+j � �t

�i
=

 
1� 1

g
(j)
1

!
E
h
�C (Xt) ~�t+j

i
+
g
(j)
0

g
(j)
1

E [�C (Xt)]

+

pX
i=2

g
(j)
i

g
(j)
1

E
h
�C (Xt) ~�t+1�i

i
since E [�C (Xt) �t+1�i] = E

h
�C (Xt) ~�t+1�i

i
for i � 2 under assumption R1. With this result

we can now compute � :

� =
JX
j=1

!jE [�C (Xt) (Et [�t+j ]� �t)]

=

JX
j=1

!j

 
1� 1

g
(j)
1

!
E
h
�C (Xt) ~�t+j

i
+

JX
j=1

!j
g
(j)
0

g
(j)
1

E [�C (Xt) �t] +

JX
j=1

!j

pX
i=2

g
(j)
i

g
(j)
1

E
h
�C (Xt) ~�t+1�i

i
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Substituting in, we thus have

E [�L (�t;Xt)] = E [�L (Yt;Xt)]�
JX
j=1

!j

 
1� 1

g
(j)
1

!
E
h
�C (Xt) ~�t+j

i

�
JX
j=1

!j
g
(j)
0

g
(j)
1

E [�C (Xt)]�
JX
j=1

!j

pX
i=2

g
(j)
i

g
(j)
1

E
h
�C (Xt) ~�t+1�i

i
(b): This is proved by invoking a multivariate CLT for the sample mean of the loss di¤erentials

using the true volatility and all of the elements that enter into the estimated bias term, �̂T : This

collection of elements is de�ned as:

Bt �
h
�L (�t;Xt)

0 ;�C (Xt)
0 ;�C (Xt)

0 ~�t+1; :::�C (Xt)
0 ~�t+J ;�C (Xt)

0 ~�t�1; ::: (34)

�C (Xt)
0 ~�t�p+1; ~�t; ~�t~�t+1; :::; ~�t~�t+2p

i0
:

and with assumptions A1 and A2 applied to Bt we have
p
T
�
�BT � E [Bt]

�
!d N (0; VB) using

Theorem 3 of Politis and Romano (1994).

Note that the last 2p + 1 elements of �BT are su¢ cient to obtain estimates of the mean and

the �rst 2p autocovariances of �t; since E
h
~�t

i
= E [�t] by assumption P1, and E

h
~�t~�t+j

i
=

E [(�t + �t) (�t+j + �t+j)] = E [�t�t+j ] by assumptions P1 and T2. Let j � Cov [�t; �t�j ] ; then by

the properties of an AR(p) process we have:

	� =  

where 	 �

26666664
p p�1 � � � 1

p+1 p � � � 2
...

...
. . .

...

2p�1 2p�2 � � � p

37777775 ,  =
�
p+1; p+2; :::; 2p

�0
; � =

�
�1; :::; �p

�0 (35)

and by assumption T2 we can obtain �̂ = 	̂�1 ̂; where 	̂ and  ̂ are the equivalents of 	 and

 using sample autocovariances rather than population autocovariances. From �̂ we can obtain

estimates of P; Q0; and Q1 and thus estimates of the parameters g
(j)
i ; for i = 0; 1; :::; p and j =

1; 2; :::; J; from these we can compute the estimated bias term �̂T : Given asymptotic normality of

�BT and the fact that 1
T

XT

t=1
�L (Yt;Xt)� �̂T is a smooth function of the elements of �BT ; we can

then apply the delta method, see Lemma 2.5 of Hayashi (2000) for example, to obtain asymptotic

normality of 1T
XT

t=1
�L (Yt;Xt)� �̂T and obtain its covariance matrix.
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(c): Follows directly from Theorem 4 of Politis and Romano (1994), under the additional

assumption B1.

Proof of Proposition 4. (a): Consider again a second-order mean-value expansion of the

pseudo-distance measure L (Yt; Xit) given in equation (5) around (�t; Xit) :

L (Yt; Xit) = L (�t; Xit) +
@L (�t; Xit)

@�
(Yt � �t) +

1

2

@2L
�
��t; Xit

�
@�2

(Yt � �t)2

= L (�t; Xit) + (C (Xit)� C (�t)) (Yt � �t)�
1

2
C 0
�
��t

�
(Yt � �t)2 ;

where ��t = �t�t + (1� �t)Yt for some �t 2 [0; 1] ; and using the functional form of L in equation

(5). Thus

�L (Yt;Xt) = �L (�t;Xt) + �C (Xt) (Yt � �t)

where �C (Xt) �

26664
C (X1t)� C (X2t)

...

C (X1t)� C (Xkt)

37775
Next, note:

E [�C (Xt) (Yt � �t) jGt�1] = E

"
�C (Xt)

 
JX
i=1

!i~�t+i � �t

!�����Gt�1
#

= E

24�C (Xt)
0@ JX
i=1

!i

iX
j=1

�t+j +

JX
i=1

!i�t+i

1A������Gt�1
35

= E

24�C (Xt)
0@ JX
i=1

!i

iX
j=1

E
�
�t+j jFt

�
+

JX
i=1

!iE [�t+ijFt]

1A������Gt�1
35 = 0

by the law of iterated expectations, since Gt�1 � Ft: This thus yields E [�L (�t;Xt) jGt�1] =

E [�L (Yt;Xt) jGt�1] as claimed.

(b): Using Exercise 5.21 of White (2001) for example, we have D̂�1=2T

p
T (�̂T � ~�)!d N (0; I),

where D̂T is given in the statement of the proposition.

To show that ~� = � note that �L (Yt;Xt) = �L (�t;Xt) + �C (Xt) (Yt � �t) = �0Zt�1 + et +

�C (Xt) (Yt � �t) � �0Zt�1 + ~et, with E [~etZt�1] = E [etZt�1] + E [�C (Xt) (Yt � �t)Zt�1] =

0, since E [�C (Xt) (Yt � �t)Zt�1] = E [E [�C (Xt) (Yt � �t) jGt�1]Zt�1] = 0 by part (a), and

E [etZt�1] = 0 under A3. Thus ~� = � as claimed.
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Proof of Proposition 5. (a) We �rst obtain E [�L (Yt;Xt)Zt�p] using calculations previously

presented in the proof of Proposition 3:

E [�L (Yt;Xt)Zt�p]� E [�L (�t;Xt)Zt�p] =
JX
j=1

!jE
h
�C (Xt)

�
~�t+j � �t

�
Zt�p

i
E
h
�C (Xt)

�
~�t+j � �t

�
Zt�p

i
= g

(j)
0 E [�C (Xt)Zt�p] +

pX
i=2

g
(j)
i E

h
�C (Xt) ~�t+1�iZt�p

i
+
�
g
(j)
1 � 1

�
E [�C (Xt) �tZt�p]

And E [�C (Xt) �tZt�p] =
1

�1
E
h
�C (Xt) ~�t+1Zt�p

i
� �0
�1
E [�C (Xt)Zt�p]

�
pX
i=2

�i
�1
E
h
�C (Xt) ~�t+1�iZt�p

i
Pulling these results together we obtain:

E [�L (Yt;Xt)Zt�p]� E [�L (�t;Xt)Zt�p]

=
JX
j=1

!jE
h
�C (Xt)

�
~�t+j � �t

�
Zt�p

i

=
JX
j=1

!jfg(j)0 E [�C (Xt)Zt�p] +
pX
i=2

g
(j)
i E

h
�C (Xt) ~�t+1�iZt�p

i
+
�
g
(j)
1 � 1

�
f 1
�1
E
h
�C (Xt) ~�t+1Zt�p

i
� �0
�1
E [�C (Xt)Zt�p]�

pX
i=2

�i
�1
E
h
�C (Xt) ~�t+1�iZt�p

i
gg

= E [�C (Xt)Zt�p]

8<:
JX
j=1

!j

�
g
(j)
0 � g(j)1

�0
�1

�
+
�0
�1

9=;+
pX
i=2

E
h
�C (Xt) ~�t+1�iZt�p

i
�

8<:
JX
j=1

!j

�
g
(j)
i � g(j)1

�i
�1

�
+
�i
�1

9=;+ E h�C (Xt) ~�t+1Zt�pi
8<:

JX
j=1

!j
g
(j)
1

�1
� 1

�1

9=;
� ��0E [�C (Xt)Zt�p]�

pX
i=2

�iE
h
�C (Xt) ~�t+1�iZt�p

i
� �1E

h
�C (Xt) ~�t+1Zt�p

i
Thus with ^�L (�t;Xt) de�ned as in the proposition, we obtain E

h
^�L (�t;Xt)Zt�p

i
= E [�L (�t;Xt)Zt�p].

(b) Similar to the proof of Proposition 3(b), this part is proved by invoking a multivariate CLT

for the sample mean of the loss di¤erentials using the true volatility and all of the elements that

enter into the estimated adjustment terms, �̂i;T , i = 0; 1; :::; p: This collection of elements is:

Dt �
h
�L (�t;Xt)Z

0
t�p;�C (Xt)Z

0
t�p;�C (Xt) ~�t+1Z

0
t�p; :::�C (Xt) ~�t+JZ

0
t�p; ::: (36)

�C (Xt) ~�t�1Z
0
t�p; :::;�C (Xt) ~�t�p+1Z

0
t�p;Z

0
t;
~�t; ~�t~�t+1; :::; ~�t~�

0
t+2p;

i0
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and with assumptions A1 and A2 applied to Dt we have
p
T
�
�DT � E [Dt]

�
!d N (0; VD) using

Theorem 3 of Politis and Romano (1994). As in the proof of Proposition 3, the last 2p+1 elements

of �DT are su¢ cient to obtain estimates of P; Q0; and Q1 and thus estimates of the parameters

g
(j)
i ; for i = 0; 1; :::; p and j = 1; 2; :::; J:With these we obtain the estimated adjustment terms �̂i;T ,

i = 0; 1; :::; p: Given asymptotic normality of �DT and the fact that �̂T is a smooth function of the

elements of �DT ; we can then apply the delta method, see Lemma 2.5 of Hayashi (2000) for exam-

ple, to show asymptotic normality of (�̂T � ~�) ; and obtain its covariance matrix. To show that

~� = � we use the result from part (a) which provides ~� �
�
E
�
Zt�pZ0t�p

���1
E
h
Zt�p ^�L (�t;Xt)

i
=�

E
�
Zt�pZ0t�p

���1
E [Zt�p�L (�t;Xt)] � �:

(c): Again follows directly from Theorem 4 of Politis and Romano (1994), under the additional

assumption B1.
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Figure 1: IBM volatility over the period January 1996 to June 2007 (computed using realised volatil-
ity based on 5-minute calendar-time trade prices), annualised using the formula �t =
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Figure 3: Di¤erences in average distance, estimated using a random walk approximation, for the
48 competing RV estimators, relative to 5-minute calendar-time RV on trade prices. A negative
(positive) value indicates that the RV estimator is better (worse) than 5-minute calendar-time RV
on trade prices. The estimator with the lowest average distance is marked with a vertical line down
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Table 6: Tests of equal unconditional and conditional RV accuracy:
Tick-time vs. calendar-time sampling

RW approximation AR approximation

Uncond Conditional Uncond Conditional
Sampling Joint Joint
frequency Avg

(t-stat)
Const
(t-stat)

Slope
(t-stat)

p-val Avg
(t-stat)

Const
(t-stat)

Slope
(t-stat)

p-val

2 sec 0:01
(13:92)

� 0:08
(3:52)

� �0:01
(�2:73)

� 0.00 0:03
(4:99)

� 0:27
(2:98)

� �0:04
(�2:81)

� 0.00

5 sec 0:02
(12:95)

� 0:07
(2:79)

� �0:01
(�2:01)

� 0.00 0:04
(4:73)

� 0:34
(2:67)

� �0:05
(�2:49)

� 0.00

15 sec 0:01�
(4:03)

�0:15
(�3:88)

0:03
(3:97)

0.00 0:01
(1:20)

�0:27�
(�2:83)

0:05�
(2:86)

0.00

30 sec �0:00
(�1:35)

�0:02
(�0:48)

0:00
(0:41)

0.08 �0:00
(�0:54)

�0:14
(�1:16)

0:02
(1:13)

0.06

1 min �0:00
(�2:80)

� 0:07�
(2:29)

�0:01
(�2:39)

� 0.01 0:01
(1:11)

0:16
(1:83)

�0:03
(�1:78)

0.01

2 min �0:01
(�3:31)

� 0:02
(0:57)

�0:00
(�0:71)

0.00 0:01
(1:17)

0:22�
(2:02)

�0:04�
(�2:03)

0.02

5 min �0:02
(�6:28)

� �0:01
(�0:10)

�0:00
(�0:23)

0.00 0:02
(0:67)

0:49�
(2:09)

�0:09�
(�2:15)

0.02

15 min �0:06
(�6:93)

� 0:17
(1:03)

�0:04
(�1:35)

0.00 �0:02
(�0:78)

0:69
(2:09)

� �0:13
(�2:20)

0.03

30 min �0:06
(�4:02)

� 0:70
(2:22)

� �0:14
(�2:39)

� 0.00 �0:02
(�0:49)

1:29
(2:29)

� �0:24
(�2:40)

� 0.01

1 hr �0:25
(�3:59)

� 1:97
(1:63)

�0:40
(�1:78)

0.00 �0:14
(�1:52)

2:99
(1:92)

�0:56
(�2:00)

0.17

2 hr �1:00
(�2:75)

� 10:66
(1:94)

�2:10
(�2:10)

� 0.00 �0:86
(�1:79)

9:24
(1:15)

�1:82
(�1:25)

0.10

Notes: This table presents the estimated di¤erence in average distance of tick-time and calendar-

time RV estimators, L
�
Yt; RV

tick(h)
t

�
�L

�
Yt; RV

cal(h)
t

�
, either unconditionally, or via a regression

on a constant and one-period lag of the log variance of intra-day trade durations, which is a measure
of the irregularity of the arrivals of trade observations. A negative slope coe¢ cient indicates that
higher volatility of durations leads to an improvement in the accuracy of the tick-time RV estimator
relative to a calendar-time RV estimator using the same (average) frequency. Trade prices are used
for all RV estimators. The fourth and eighth columns present the p-values from a chi-squared test
that both coe¢ cients are equal to zero. Two approximations for the dynamics of QV are considered:
a random walk (RW) and a �rst-order autoregression (AR). Inference under the RW approximation
is based on Newey-West (1987) standard errors, while inference under the AR approximation is
based on 1000 samples from the stationary bootstrap. All parameter estimates that are signi�cantly
di¤erent from zero at the 0.05 level are marked with an asterisk.
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Table 7: Tests of equal unconditional conditional RV accuracy:
Quote prices vs. trade prices

RW approximation AR approximation

Uncond Conditional Uncond Conditional
Sampling Joint Joint
frequency Avg

(t-stat)
Const
(t-stat)

Slope
(t-stat)

p-val Avg
(t-stat)

Const
(t-stat)

Slope
(t-stat)

p-val

1 sec 0:11
(9:20)

� 0:33
(10:74)

� �0:14
(�8:66)

� 0.00 0:02
(0:34)

0:44
(5:48)

� �0:27
(�3:83)

� 0.00

2 sec 0:11
(9:29)

� 0:34
(11:22)

� �0:14
(�9:38)

� 0.00 0:02
(0:51)

0:43
(5:97)

� �0:26
(�4:37)

� 0.00

5 sec 0:11
(10:03)

� 0:34
(12:30)

� �0:14
(�10:59)

� 0.00 0:03
(0:97)

0:41
(6:16)

� �0:24
(�4:50)

� 0.00

15 sec 0:11
(11:99)

� 0:30
(13:75)

� �0:13
(�11:52)

� 0.00 0:05
(2:21)

� 0:34
(6:67)

� �0:18
(�5:06)

� 0.00

30 sec 0:08
(12:56)

� 0:24
(13:70)

� �0:10
(�11:43)

� 0.00 0:05
(2:66)

� 0:25
(6:52)

� �0:13
(�5:53)

� 0.00

1 min 0:06
(11:90)

� 0:16
(12:34)

� �0:07
(�10:21)

� 0.00 0:03
(2:28)

� 0:16
(5:97)

� �0:08
(�5:36)

� 0.00

2 min 0:04
(11:08)

� 0:11
(10:30)

� �0:05
(�8:63)

� 0.00 0:02
(2:11)

� 0:10
(4:40)

� �0:05
(�4:33)

� 0.00

5 min 0:03
(8:72)

� 0:10
(8:80)

� �0:05
(�7:85)

� 0.00 0:02
(3:25)

� 0:09
(4:39)

� �0:04
(�4:08)

� 0.00

15 min 0:03
(6:33)

� 0:07
(5:21)

� �0:03
(�4:07)

� 0.00 0:02
(2:28)

� 0:07
(3:63)

� �0:03
(�3:25)

� 0.00

30 min 0:03
(4:38)

� 0:07
(3:17)

� �0:03
(�2:36)

� 0.00 0:03
(4:38)

� 0:07
(3:17)

� �0:03
(�2:36)

� 0.00

1 hr �0:04
(�0:77)

�0:17
(�0:90)

0:08
(0:93)

0.63 �0:05
(�0:76)

�0:13
(�0:68)

0:05
(0:52)

0.67

2 hr �0:19
(�0:74)

�1:06
(�1:47)

0:55
(1:63)

0.25 �0:21
(�0:74)

�1:09
(�1:34)

0:56
(1:44)

0.37

1 day 1:98
(0:41)

10:70
(0:84)

�5:52
(�0:95)

0.62 1:51
(0:25)

10:76
(0:64)

�5:85
(�0:77)

0.66

Notes: This table presents the estimated di¤erence in average distance of quote-price and trade-

price RV estimators, L
�
Yt; RV

quote(h)
t

�
�L

�
Yt; RV

trade(h)
t

�
, either unconditionally, or via a regres-

sion on a constant and one-period lag of the ratio of the number of quote observations per day to
the number of trade observations per day. A negative slope coe¢ cient indicates that an increase
in the number of quote observations relative to trade observations leads to an improvement in the
accuracy of the quote-price RV estimator relative to a trade-price RV estimator with the same fre-
quency. Calendar time sampling is used for all estimators. The fourth and eighth columns present
the p-values from a chi-squared test that both coe¢ cients are equal to zero. Two approximations
for the dynamics of QV are considered: a random walk (RW) and a �rst-order autoregression (AR).
Inference under the RW approximation is based on Newey-West (1987) standard errors, while in-
ference under the AR approximation is based on 1000 samples from the stationary bootstrap. All
parameter estimates that are signi�cantly di¤erent from zero at the 0.05 level are marked with an
asterisk.
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