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Abstract

This paper considers the evaluation of forecasts of a given statistical functional, such as a

mean, quantile, or distribution. Recent work has emphasized the importance of evaluating such

forecasts using a loss function that is consistent for the functional of interest, of which there are an

in�nite number. If the information sets of the competing forecasters are nested and all forecasters

produce forecasts that are optimal given their information sets, then the ranking induced by a

single consistent loss function is su¢ cient for ranking by any consistent loss function. However,

in the presence of nonnested information sets, parameter estimation error, or misspeci�ed models,

the ranking of forecasts may be sensitive to the choice of (consistent) loss function. Moreover, the

performance of misspeci�ed forecasting models can di¤er according to the choice of (consistent) loss

function used for parameter estimation. Thus, rather than merely specifying the target functional,

which narrows the set of relevant loss functions only to the class of loss functions consistent for

that functional, this paper proposes that forecast consumers or survey designers should specify

the single speci�c loss function that will be used to evaluate forecasts. An application to survey

forecasts of US in�ation illustrates the results.
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1 Introduction

Recent work in the theory of prediction has (re-)emphasized the importance of the choice of loss

function used to evaluate the performance of a forecaster. In particular, there is a growing recog-

nition that the loss function used must �match� the quantity that the forecaster was asked to

predict, whether it is the mean, the median, the probability of a particular outcome (e.g., rain,

negative economic growth), etc. For example, in the widely-cited �Survey of Professional Forecast-

ers,�conducted by the Federal Reserve Bank of Philadelphia, experts are asked to predict a variety

of economic variables, with questions such as �What do you expect to be the annual average CPI

in�ation rate over the next 5 years?�(Section 7 of the survey). In the Thomson Reuters/University

of Michigan Survey of Consumers, respondents are asked �By about what percent do you expect

prices to go (up/down) on the average, during the next 12 months?�(Question A12b of the survey).

The presence of the word �expect�in these questions is an indication (at least to statisticians) that

the respondents are being asked for their mathematical expectation of future in�ation. The oldest

continuous survey of economists�expectations, the Livingston survey, on the other hand, simply

asks �What is your forecast of the average annual rate of change in the CPI?,�leaving the speci�c

type of forecast unstated.

In point forecasting, a loss function is said to be �consistent�for a given statistical functional

(e.g., the mean, median, etc.), if the expected loss is minimized when the given functional is used as

the forecast, see Gneiting (2011a) and discussion therein. For example, a loss function is consistent

for the mean if no other quantity (median, mode, etc.) leads to a lower expected loss than the

mean. The class of loss functions that is consistent for the mean is known as the Bregman class

of loss functions, see Savage (1971), Banerjee, et al. (2005) and Bregman (1967), and includes the

squared-error loss function as a special case. In density or distribution forecasting the analogous

idea is that of a �proper� scoring rule, see Gneiting and Raftery (2007): a scoring rule is proper

if the expected loss under distribution P is minimized when using P as the distribution forecast.

Evaluating forecasts of a given functional using consistent loss functions or proper scoring rules is

a minimal requirement for sensible rankings of the competing forecasts.
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Gneiting (2011a, p757) summarizes the implications of the above work as follows: �If point

forecasts are to be issued and evaluated, it is essential that either the scoring function be speci�ed

ex ante, or an elicitable target functional be named, such as the mean or a quantile of the predictive

distribution, and scoring functions be used that are consistent for the target functional.� This

paper contributes to this literature by re�ning this recommendation to re�ect some real-word

deviations from the ideal predictive environment, and suggests that only the �rst part of Gneiting�s

recommendation should stand; specifying the target functional is not generally su¢ cient to elicit a

forecaster�s best (according to a given, consistent, loss function) prediction.

Firstly, I show that when two competing forecasts are generated using correctly speci�ed models

and the information sets of one of the forecasters nests the other, then the ranking of these forecasts

based on a single consistent loss function is su¢ cient for their ranking using any consistent loss

function (subject of course to integrability conditions). This is established for the problem of mean

forecasting, quantile forecasting (nesting the median as a special case), and distribution forecasting.

Secondly, and with more practical importance, I show that when competing forecasts are based

on nonnested information sets, misspeci�ed models, or models using estimated parameters, the

ranking of the forecasts is, in general, sensitive to the choice of consistent loss function. Thus,

in practice, it is not su¢ cient to merely specify the statistical functional of interest; rather, the

speci�c loss function that will be used to evaluate the forecasts should be given. This result has

large potential implications for survey forecast design and for forecast evaluation more generally.

This result also has implications for the use of multiple loss functions to evaluate forecasts. If the

loss functions used are not all consistent for the same statistical functional, then existing arguments

from Engelberg, et al. (2007), Gneiting (2011a) and Patton (2011) apply, and it is not surprising

that the rankings may di¤er across loss functions. If the loss functions are all consistent for the

same functional, then in the absence of misspeci�ed models and nonnested information sets, using

multiple measures of accuracy adds no information beyond using just one measure. (Note, however,

that these loss functions may have di¤erent sampling properties, and so careful choice of the loss

function to use may lead to improved e¢ ciency.) In the presence of these real-world forecasting

complications, using multiple measures of forecast accuracy can lead to clouded results: a forecaster
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could be best under one loss function and worst under another; averaging the performance across

multiple measures could mask true out-performance under one speci�c loss function.

This paper also shows that if the target variable has a parametric conditional mean function,

and the forecaster�s model for this is correctly speci�ed, then minimizing the expected loss under

any Bregman loss function yields a consistent estimator of the model�s parameters. However, under

misspeci�cation the choice of (Bregman) loss function used in estimation will in general lead to

estimators that converge to di¤erent probability limits.

The focus in this paper is on applications where the target functional (mean, quantile, etc.)

is known, and the task is to �nd the �best� forecast of this functional. In contrast, in some

economic applications, the target functional is not known or stated explicitly, and instead the

decision in which the forecast will be used is speci�ed, which �traces out� a particular economic

loss function (and in turn implies a particular statistical functional as the target). See Leitch

and Tanner (1991), West, et al. (1993) and Skouras (2007) for examples. While distinct, the

recommendation from this paper is related: in the presence of potential model misspeci�cation or

nonnested information sets, forecast producers should be told the speci�c loss function that will

be used to evaluate their predictions. When the target functional is known, the given loss function

should of course be consistent for that functional, but in the presence of model misspeci�cation or

nonnested information, merely specifying the target functional is not su¢ cient.

I illustrate these ideas in this paper with a study of the in�ation forecasting performance of

respondents to the Survey of Professional Forecasters (SPF) and the Michigan Survey of Consumers.

Under squared-error loss, I �nd that the SPF consensus forecast and the Michigan consensus forecast

are very similar in accuracy, with slight preference to the SPF, but when a Bregman loss function is

used that penalizes over- or under-predictions more heavily, the ranking of these forecasts switches.

I also consider comparisons of individual respondents to the SPF, and �nd cases where the ranking

of two forecasters is very sensitive to the particular choice of Bregman loss function, and where the

ranking is robust across a range of Bregman loss functions.

This paper is related to several recent papers on related topics. Elliott, et al. (2014) study the

problem of forecasting binary variables with binary forecasts, and the evaluation and estimation
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of models based on consistent loss functions. They obtain several useful, closed-form, results

for this case. Merkle and Steyvers (2013) also consider forecasting binary variables, and provide

an example where the ranking of forecasts is sensitive to the choice of consistent loss function.

Holzmann and Eulert (2014) show in a very general framework that forecasts based on larger

information sets lead to lower expected loss, and apply their results to Value-at-Risk forecasting.

This paper builds on these works, and the important work of Gneiting (2011a), to show the strong

conditions under which the ranking of a forecast of a given statistical functional is insensitive to

the choice of loss function, even when that choice is constrained to the set of loss functions that are

consistent for the given functional. Examples and illustrations designed to resemble those faced in

economic forecasting applications highlight the relevance of the problem, and provide support for

the key recommendation of this paper: when conducting surveys or forecast competitions, forecast

producers should be told not only the statistical functional of interest, but rather the speci�c loss

function that will be used to evaluate their predictions.

The remainder of the paper is structured as follows. Section 2 presents positive and negative

results in the absence and presence of real-world complications like nonnested information sets and

misspeci�ed models, and Section 3 presents some extensions. Section 4 considers realistic simulation

designs that illustrate the main ideas, and Section 5 presents an analysis of US in�ation forecasts.

The appendix presents proofs, and a web appendix contains additional details.

2 Comparing and constructing forecasts using consistent loss

functions

2.1 Mean forecasts and Bregman loss functions

The most well-known loss function is the quadratic or squared-error loss function:

L (y; ŷ) = (y � ŷ)2 (1)

Under quadratic loss, the optimal forecast of a variable is well-known to be the (conditional) mean:
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Ŷ �t � argmin
ŷ2Y

E [L (Yt; ŷ) jFt] (2)

= E [YtjFt] , if L (y; ŷ) = (y � ŷ)2 (3)

where Ft is the forecaster�s information set. More generally, the conditional mean is the optimal

forecast under any loss function belonging to a general class of loss functions known as Bregman

loss functions (see Banerjee, et al., 2005 and Gneiting, 2011a). The class of Bregman loss functions

is then said to be �consistent� for the (conditional) mean functional. Elements of the Bregman

class of loss functions, denoted LBregman, take the form:

L (y; ŷ) = � (y)� � (ŷ)� �0 (ŷ) (y � ŷ) (4)

where � : Y ! R is any strictly convex function, and Y is the support of Yt. Moreover, this class

of loss functions is also necessary for conditional mean forecasts, in the sense that if the optimal

forecast is known to be the conditional mean, then it must be that the forecast was generated by

minimizing the expected loss of some Bregman loss function. Two prominent examples of Bregman

loss functions are quadratic loss (equation (1)) and QLIKE loss, which is applicable for strictly

positive random variables:

L (y; ŷ) =
y

ŷ
� log y

ŷ
� 1 (5)

The quadratic and QLIKE loss functions are particularly special, in that they are the only two

Bregman loss functions that only depend on the di¤erence (Savage, 1971) or the ratio (Patton,

2011) of the target variable and the forecast.

To illustrate the variety of shapes that Bregman loss functions can take, two parametric families

of Bregman loss for variables with support on the real line are presented below. The �rst was

proposed in Gneiting (2011a), and is a family of homogeneous loss functions, where the �shape�

parameter determines the degree of homogeneity. It is generated by using � (x; k) = jxjk for k > 1 :

L (y; ŷ; k) = jyjk � jŷjk � k sgn (ŷ) jŷjk�1 (y � ŷ) , k > 1 (6)

This family nests the squared-error loss function at k = 2: (The non-di¤erentiability of � can

be ignored if Yt is continuously distributed, and the absolute value components can be dropped
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altogether if the target variable is strictly positive, see Patton, 2011). A second, non-homogeneous,

family of Bregman loss can be obtained using � (x; a) = 2a�2 exp faxg for a 6= 0 :

L (y; ŷ; a) =
2

a2
(exp fayg � exp faŷg)� 2

a
exp faŷg (y � ŷ) , a 6= 0 (7)

This family nests the squared-error loss function as a! 0. This loss function has some similarities

to the �Linex� loss function, see Varian (1974) and Zellner (1986), in that it involves both linear

and exponential terms, however a key di¤erence is that the above family implies that the optimal

forecast is the conditional mean, not a function of the conditional mean and higher-order moments.

Figure 1 illustrates the variety of shapes that Bregman loss functions can take and reveals

that although all of these loss functions yield the mean as the optimum forecast, their shapes

can vary widely: these loss functions can be asymmetric, with either under-predictions or over-

predictions being more heavily penalized, and they can be strictly convex or have concave segments.

Thus restricting attention to loss functions that generate the mean as the optimum forecast does

not require imposing symmetry or other such assumptions on the loss function. Similarly, in

the literature on economic forecasting under asymmetric loss (see Granger, 1969, Christo¤ersen

and Diebold, 1997, and Patton and Timmermann, 2007, for example), it generally thought that

asymmetric loss functions necessarily lead to optimal forecasts that di¤er from the conditional mean

(they contain an �optimal bias�term). Figure 1 reveals that asymmetric loss functions can indeed

still imply the conditional mean as the optimal forecast. (In fact, Savage (1971) shows that of the

in�nite number of Bregman loss functions, only one is symmetric: the quadratic loss function.)

[ INSERT FIGURE 1 ABOUT HERE ]

2.2 Correctly speci�ed models and nested information sets

While forecasts are of course based on conditioning information, I will consider ranking forecasts by

their unconditional average loss, a quantity that is estimable, under standard regularity conditions,

given a sample of data. For notational simplicity, I assume strict stationarity of the data, but

certain forms of heterogeneity can be accommodated by using results for heterogeneous processes,

see White (2001) for example. I use t to denote an observation, for example a time period, however
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the results in this paper are applicable wherever one has repeated observations, for example election

forecasting across states, sales forecasting across individual stores, etc.

Firstly, consider a case where forecasters A and B are ranked by mean squared error (MSE)

MSEi � E
��
Yt � Ŷ it

�2�
, i 2 fA;Bg (8)

and we then seek to determine whether

MSEA QMSEB ) E
h
L
�
Yt; Ŷ

A
t

�i
Q E

h
L
�
Yt; Ŷ

B
t

�i
8L 2 LBregman (9)

subject to these expectations existing. The following proposition provides conditions under which

the above implication holds. (Holzmann and Eulert (2014) show in a very general framework that

forecasts based on larger information sets lead to lower expected loss, including the mean case

below as well as other point forecasting applications. Their method of proof is quite di¤erent, and

their interpretation di¤ers from here.)

Proposition 1 Assume that (i) The information sets of the two forecasters are nested, so

FBt � FAt 8t or FAt � FBt 8t; and (ii) Forecasts A and B are optimal under some Bregman

loss function. Then the ranking of these forecasts by MSE is su¢ cient for their ranking by any

Bregman loss function.

Proof of Proposition 1. We will show that under assumptions (i) and (ii), MSEB �

MSEA ) FBt � FAt 8t) E
h
L
�
Yt; Ŷ

B
t

�i
� E

h
L
�
Yt; Ŷ

A
t

�i
8L 2 LBregman:

For the �rst implication: We are given that MSEB � MSEA; and assume that FAt � FBt 8t:

This means that minŷ E
h
(Yt � ŷ)2 jFAt

i
� minŷ E

h
(Yt � ŷ)2 jFBt

i
a:s: 8t; and so

E

��
Yt � Ŷ At

�2
jFAt

�
� E

��
Yt � Ŷ Bt

�2
jFBt

�
a:s: 8t by assumption (ii), and E

��
Yt � Ŷ At

�2�
�

E

��
Yt � Ŷ Bt

�2�
by the law of iterated expectations, which is a contradiction. Thus MSEB �

MSEA ) FBt � FAt 8t:

Now consider the second implication: Let

Yt = Ŷ
A
t + �t = Ŷ

B
t + �t + "t (10)
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Then

E
h
L
�
Yt; Ŷ

A
t

�
� L

�
Yt; Ŷ

B
t

�i
= E

h
��

�
Ŷ At

�
� �0

�
Ŷ At

�
�t + �

�
Ŷ Bt

�
+ �0

�
Ŷ Bt

�
(�t + "t)

i
= E

h
�
�
Ŷ Bt

�
� �

�
Ŷ At

�i
(11)

since E
h
�0
�
Ŷ At

�
�t

i
= E

h
�0
�
Ŷ At

�
E
�
�tjFAt

�i
by the law of iterated expectations and E

�
�tjFAt

�
=

0; and similarly for E
h
�0
�
Ŷ Bt

�
(�t + "t)

i
: Next, consider the second-order mean-value expansion:

�
�
Ŷ At

�
= �

�
Ŷ Bt

�
� �0

�
Ŷ Bt

�
"t + �

00
�
�Y At

�
"2t (12)

where �Y At = �tŶ
A
t + (1� �t) Ŷ Bt , for �t 2 [0; 1] : Thus

E
h
L
�
Yt; Ŷ

A
t

�
� L

�
Yt; Ŷ

B
t

�i
= E

h
�0
�
Ŷ Bt

�
"t

i
� E

h
�00
�
�Y At

�
"2t

i
� 0 (13)

since E
h
�0
�
Ŷ Bt

�
"t

i
= 0 and � is convex.

Thus under the strong assumptions of comparing only forecasters with nested information sets,

and who use only correctly speci�ed models with no estimation error, the ranking obtained by MSE

is su¢ cient the ranking by any Bregman loss function. This of course also implies that ranking

forecasts by a variety of di¤erent Bregman loss functions adds no information beyond ranking by

any single Bregman loss function.

2.3 Misspeci�ed models or non-nested information sets

Next we consider deviations from the two assumptions underlying the above result. In part (a) of the

following proposition we consider the case that both forecasters are able to construct fully accurate

estimates of the conditional mean, but their information sets are non-nested. This is a plausible

scenario in practice, if we consider a variety of experts trying to predict a complicated variable, all

working to gather new and useful information to construct their forecasts. It is particularly relevant

if we compare two �types�of forecasters, such as professional forecasters and consumers, as in the

empirical application in Section 5, whose access to di¤erent types of data di¤ers. In part (b) we

consider the case that the forecasters may be using misspeci�ed models, which we take here to also

include correctly-speci�ed models that are subject to estimation error. Like the case of non-nested

information sets, and perhaps even more so, this is a very plausible scenario in practice.
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Proposition 2 Assume that (a) the information sets of the two forecasters are non-nested, so

FBt * FAt and FAt * FBt for some t; but Forecasts A and B are optimal under some Bregman loss

function, or (b) at least one of the forecasts is based on a misspeci�ed model. Then the ranking of

these forecasts is, in general, sensitive to the choice of Bregman loss function.

The web appendix contains a simple example supporting the above proposition, based on two-

point and three-point random variables, and Merkle and Styvers (2013) present an example for

forecasts of binary variables. An example more closely related to economic applications is presented

in Section 4 below. In all cases, the key insight is that the relative weight given to large and small,

and positive and negative, forecast errors by di¤erent Bregman loss functions induces di¤erent

rankings of the competing forecasts, when they are based on nonnested information sets or on

misspeci�ed models.

It should be noted that it might be possible to partially relax assumptions (i) and (ii) in

Proposition 1, or to place other restrictions on the problem, and retain the robustness of the

ranking of forecasts to the choice of Bregman loss function. For example, if the form of the model

misspeci�cation was known, or if the target variable has a particularly simple structure (e.g., a

binary random variable). I do not pursue such special cases here.

The following corollary generalizes Propositions 1 and 2 to evaluating many forecasters.

Corollary 1 Consider evaluating N � 2 forecasters.

(a) Assume (i) there exists an ordering of the forecasters such that F (1)t � F (2)t � � � � � F (N)t 8 t;

and (ii) all forecasts are optimal under some Bregman loss function. Then the ranking of these

forecasts by MSE is su¢ cient for their ranking by any Bregman loss function.

(b) Assume (i) there exists a forecaster i� such that
[
i6=i�

F (i)t � F (i
�)

t 8 t, and (ii) forecast i�

is optimal under some Bregman loss function. Then forecaster i� will have the lowest average loss

using any Bregman loss function, including MSE. The ranking of the other (non i�) forecasters

will, in general, be sensitive to the choice of loss function.
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2.4 Optimal approximations

We now consider the problem of calibrating a parametric forecasting model to generate the best

(in some sense) prediction. First, we show that if the model is correctly speci�ed, then minimizing

the expected loss under any Bregman loss function will yield a consistent estimator of the model�s

parameters. However if the model is misspeci�ed, then di¤erent Bregman estimators will yield

di¤erent estimators, in the sense that they converge to di¤erent probability limits. Elliott, et al.

(2014) provide several useful related results on this problem when both the target variable and the

forecast are binary. They show that even in their relatively tractable case, the presence of model

misspeci�cation generally leads to sensitivity of estimated parameters to the choice of (consistent)

loss function.

Assumption (i) below simply states that the conditional mean has a parametric form, with true

parameter �0: Assumption (ii) is required for identi�cation, imposing that the conditional mean is

sensitive to changes in the parameter �:

Proposition 3 Assume that (i) E [YtjFt] = m (Zt; �0), for some �0 2 � � Rp, p < 1; and (ii)

@m (Zt; �) =@� 6= 0 a.s. 8� 2 �: De�ne

�̂
�
� � argmin

�2�
E [L (Yt;m (Zt; �) ;�)] (14)

where L is a Bregman loss function characterized by the convex function �: Then �̂
�
� = �0 8 �:

Next we consider an example where the model is misspeci�ed,and show that di¤erent Bregman

estimators can yield quite di¤erent approximations. Consider the following simple DGP:

Y = X2 + " (15)

[X; "] s iid N
�
[�; 0] ; diag

��
�2; 1

�	�
But the forecasters use only a linear model:

Y = �+ �X + e (16)

For this illustration, consider forecasters using the �Exponential Bregman�loss function de�ned in

equation (7). Using results for functions of Normal random variables (see the appendix for details)

11



we can analytically derive the optimal linear model parameters [�; �] as a function of a; the loss

function parameter, subject to the condition that a 6=
�
2�2

��1
:

�̂�a = �2 � �2

(1� 2a�2)2
(17)

�̂
�
a =

2�

1� 2a�2

This simple example reveals some important features of the problem of loss function-based parame-

ter estimation in the presence of model misspeci�cation. Firstly, the loss function shape parameter

does not always a¤ect the optimal model parameters. In this example, if X s N
�
0; �2

�
; then�

�̂�a; �̂
�
a

�
=
�
�2; 0

�
for all values of the loss function parameter a: Second, identi�cation issues can

arise even when the model appears to be prima facie well identi�ed. In this example, the estima-

tion problem is not identi�ed at a =
�
2�2

��1. Issues of identi�cation when estimating under the
�relevant�loss function have been previously documented, see Weiss (1996) and Skouras (2007).

Finally, we note that when � 6= 0, the optimal model parameters will vary with the loss function

parameter, and thus the choice of loss function to use in estimation will a¤ect the approximation

yielded by the misspeci�ed model. Figure 2 illustrates this point, presenting the optimal linear

approximations for three choices of exponential Bregman parameter, when � = �2 = 1. The

optimal parameters are presented in Table 1. The approximation yielded by OLS regression is

obtained when a = 0; and there we see the intercept is zero and the slope coe¢ cient is two. If we

consider a loss function that places greater weight on errors that occur for low values of the forecast

(a = �0:5) the line �attens and the upper panel of Figure 2 shows that this yields a better �t for

the left side of the distribution of the predictor variable. The opposite occurs if we consider a loss

function that places greater weight on errors that occur for high values of the forecast (a = 0:25).

The lower panel of Figure 2 presents a simple nonparametric estimate of the distance between the

realization and the forecast as a function of the predictor variable. For OLS (a = 0) ; the distance is

lowest for X approximately in the interval (0; 2) ; which covers most of the data, since X s N (1; 1)

in this example. For a = �0:5 the distance is lowest for X approximately in the interval (�1; 1:5),

while for a = 0:25 the distance is lowest for X approximately in the interval (1; 3) :

[ INSERT FIGURE TABLE 1 AND 2 ABOUT HERE ]
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The above results motivate declaring the speci�c loss function that will be used to evaluate

forecasts, so that survey respondents can optimize their (potentially misspeci�ed) models taking

the relevant loss function into account. However, it is important to note that it is not always

the case that optimizing the model using the relevant loss function is optimal in �nite samples:

there is a trade-o¤ between bias in the estimated parameters (computed relative to the probability

limits of the parameter estimates obtained using the relevant loss function) and variance (parameter

estimation error). It is possible that an e¢ cient (low variance) but biased estimation method could

out-perform a less e¢ cient but unbiased estimation method in �nite samples. See Elliott, et al.

(2014) for discussion and examples of this for the binary prediction problem. One interpretation

of the results in this section is that if all estimators converge to the same quantity then there is no

bias-variance trade-o¤, and one need only look for the most e¢ cient estimator, but a trade-o¤ exists

when the models are misspeci�ed and the estimators generally converge to di¤erent quantities.

3 Extensions

This section considers some extensions of the main results in the previous section. We �rst consider

the analogs of the above results for quantile forecasts and density forecasts, and then an additional

case for mean forecasting motivated by a symmetry assumption often made in empirical work.

3.1 Quantile forecasts

This section presents results for quantile forecasts that correspond to those above for mean forecasts.

The corresponding result for the necessity and su¢ ciency of Bregman loss for mean forecasts is

presented in Saerens (2000), see also Komunjer (2005), Gneiting (2011b) and Thomson (1979): the

loss function that is necessary and su¢ cient for quantile forecasts is called a �generalized piecewise

linear�(GPL) loss function, denoted L�GPL:

L (y; ŷ;�) = (1 fy � ŷg � �) (g (ŷ)� g (y)) (18)

where g is a nondecreasing function, and � 2 (0; 1) indicates the quantile of interest. A prominent

example of a GPL loss function is the �Lin-Lin�(or �tick�) loss function, which is obtained when
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g is the identity function:

L (y; ŷ;�) = (1 fy � ŷg � �) (ŷ � y) (19)

and which nests absolute error (up to scale) when � = 1=2: However, there are clearly an in�nite

number of loss functions that are consistent for the � quantile. The following is a homogeneous

parametric GPL family of loss functions (for variables with support on the real line) related to that

proposed by Gneiting (2011b):

L (y; ŷ;�; b) = (1 fy � ŷg � �)
�
sgn (ŷ) jŷjb � sgn (y) jyjb

�
=b; b > 0 (20)

Figure 3 below presents some elements of this family of loss functions for � = 0:5 and � = 0:25;

and reveals that although the optimal forecast is always the same under all of these loss functions

(with the same �), their individual shapes can vary substantially.

When the loss function belongs to the GPL family, the optimal forecast satis�es

� = E
h
1
n
Yt � Ŷ �t

o
jFt
i
� Ft

�
Ŷ �t

�
(21)

where YtjFt s Ft; and if the conditional distribution function is strictly increasing, then Ŷ �t =

F�1t (�jFt) : Now we seek to determine whether the ranking of two forecasts by Lin-Lin loss is

su¢ cient for their ranking by any GPL loss function (with the same � parameter). That is,

whether

LinLin�A Q LinLin�B ) E
h
L
�
Yt; Ŷ

A
t

�i
Q E

h
L
�
Yt; Ŷ

B
t

�i
8L 2 L�GPL (22)

subject to these expectations existing. Under the analogous conditions to those for the conditional

mean, a su¢ ciency result obtains. See Holzmann and Eulert (2014) for a related result.

Proposition 4 Assume that (i) The information sets of the two forecasters are nested, so FBt �

FAt 8t or FAt � FBt 8t; and (ii) Forecasts A and B are optimal under some L�GPL loss function.

Then the ranking of these forecasts by expected Lin-Lin loss is su¢ cient for their ranking by any

L�GPL loss function.

Next again consider deviations from the two assumptions underlying the above result, namely

allowing the information sets of the two forecasters to be nonnested, or allowing for model mis-

speci�cation. As in the conditional mean case, either of these complications is enough to induce
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sensitivity to the choice of loss function of the ranking of two quantile forecasts. A simple exam-

ple supporting this proposition is presented in the web appendix, and a more realistic example is

presented in Section 4 below.

Proposition 5 Assume that (a) The information sets of the two forecasters are non-nested, so

FBt * FAt and FAt * FBt for some t; but Forecasts A and B are optimal under some GPL loss

function, or (b) one or both of the �-quantile forecasts are based on misspeci�ed models. Then the

ranking of these forecasts is, in general, sensitive to the choice of GPL loss function.

3.2 Density forecasts

We now consider results corresponding to the mean and quantile cases above for density or distri-

bution forecasts. In this case the central idea is the use of a proper scoring rule. A �scoring rule,�

see Gneiting and Ranjan (2011) for example, is a loss function mapping the density or distribution

forecast and the realization to a measure of gain/loss. (In density forecasting this is often taken

as a gain, but for comparability with the above two sections I will treat it here as a loss, so that

lower values are preferred.) A �proper�scoring rule is any scoring rule such that it is minimized in

expectation when the distribution forecast is equal to the true distribution. That is, L is proper if

EF [L (F; Y )] �
Z
L (F; y) dF (y) � EF

h
L
�
~F ; Y

�i
(23)

for all distribution functions F; ~F 2 P, where P is the class of probability measures being con-

sidered. (I will use distributions rather than densities for the main results here, so that they are

applicable more generally.) Gneiting and Raftery (2007) show that if L is a proper scoring rule

then it must be of the form:

L (F; y) = 	 (F ) + 	� (F; y)�
Z
	� (F; y) dF (y) (24)

where 	 is a convex, real-valued function, and 	� is a subtangent of 	 at the point F 2 P. I

denote the set of proper scoring rules satisfying equation (24) as LProper: As an example of a proper

scoring rule, consider the �weighted continuous ranked probability score�from Gneiting and Ranjan

(2011):

wCRPS (F; y;!) =

Z 1

�1
! (z) (F (z)� 1 fy � zg)2 dz (25)
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where ! is a nonnegative weight function on R: If ! is constant then the above reduces to the

(unweighted) CRPS loss function.

Now we seek to determine whether the ranking of two forecasts by two distribution forecasts

by any single proper scoring rule is consistent for their ranking by any proper scoring rule.

E
�
Li
�
FAt ; Yt

��
Q E

�
Li
�
FBt ; Yt

��
) E

�
Lj
�
FAt ; Yt

��
Q E

�
Lj
�
FBt ; Yt

��
8Lj 2 LProper (26)

Under the analogous conditions to those for the conditional mean and conditional quantile, a

su¢ ciency result obtains.

Proposition 6 Assume that (i) the information sets of the two forecasters are nested, so FBt �

FAt 8t or FAt � FBt 8t; and (ii) FAt and FBt are the conditional distributions of YtjFAt and YtjFBt

respectively. Then the ranking of these forecasts by any given proper scoring rule is su¢ cient for

their ranking by any other proper scoring rule.

Now consider again deviations from the two assumptions underlying the above result, where

we allow the information sets of the two forecasters to be nonnested, or for model misspeci�cation.

As in the conditional mean and conditional quantile cases, either of these situations is enough to

induce sensitivity to the choice of loss function of the ranking of two distribution forecasts. A

simple example supporting this proposition is presented in the web appendix, and a more realistic

example is given in Section 4 below.

Proposition 7 Assume that (a) the information sets of the two forecasters are non-nested, so

FBt * FAt and FAt * FBt for some t; but FAt and FBt are the conditional distributions of YtjFAt and

YtjFBt respectively, or (b) one or both of the distribution forecasts are based on misspeci�ed models.

Then the ranking of these forecasts is, in general, sensitive to the choice of proper scoring rule.

3.3 Mean forecasts of symmetric random variables

In many economic applications the target variable is assumed to be symmetrically distributed. In

the following proposition we show if this assumption is made, then the class of loss functions that

leads to the forecasters revealing their conditional mean is larger than in the general case in Section
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2.1. In the �rst part of the following proposition we establish the relevant class of loss functions in

this case. The second and third parts present results on ranking forecasters when the assumptions

of correctly-speci�ed models and nested information sets hold, or fail to hold.

Proposition 8 Assume that (i) forecaster j optimizes his/her forecast with respect to a symmetric

continuous distribution F (j)t , for all j: Then, (a) any convex combination of a Bregman and a

GPL1=2 loss function, LBreg�GPL � �LBregman + (1� �)L1=2GPL, � 2 [0; 1] ; yields the mean of F
(j)
t

as the optimal forecast.

(b) Assume that (ii) The information sets of the two forecasters are nested, so

FBt � FAt 8t or FAt � FBt 8t; and (iii) Forecasts A and B are optimal under some loss func-

tion in LBreg�GPL. Then the ranking of these forecasts by MSE or MAE is su¢ cient for their

ranking by any loss function in LBreg�GPL:

(c) Assume that (ii�) the information sets of the two forecasters are non-nested, so FBt * FAt and

FAt * FBt for some t; but Forecasts A and B are optimal under some loss function in LBreg�GPL,

or (iii�) at least one of the forecasts is based on a misspeci�ed model. Then the ranking of these

forecasts is, in general, sensitive to the choice of loss function in LBreg�GPL.

Thus if forecasters are known to be using a symmetric model for the target variable, regardless

of whether that assumption is correct, then the class of loss functions that is consistent for the

mean is now even larger than the Bregman class: it is the convex combination of the Bregman

and the GPL1=2 class of loss functions. This suggests that it is even more important to declare

which speci�c loss function will be used to rank the forecasts, as the set of loss functions that might

be being used by survey respondents is even larger than in either the mean (Bregman) or median

(GPL1=2) forecasting cases.

4 Simulation-based results for realistic scenarios

In this section I present four scenarios to provide a more realistic description of the real-world com-

plications involved with forecast construction, and show that these complications lead to sensitivity

in the ranking of competing forecasts to the choice of consistent or proper loss functions.
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For the �rst example, consider a point forecast based on a Bregman loss function, and so the

target functional is the conditional mean. Assume that the data generating process is a stationary

AR(5), with a strong degree of persistence:

Yt = Yt�1 � 0:02Yt�2 � 0:02Yt�3 � 0:01Yt�4 � 0:01Yt�5 + "t, "t s iid N (0; 1) (27)

As forecasts, consider the comparison of a misspeci�ed (but parsimonious) model with a correctly-

speci�ed model that is subject to estimation error. The �rst forecast is based on a random walk

assumption:

Ŷ At = Yt�1 (28)

and the second forecast is based on a (correctly-speci�ed) AR(5) model with parameters estimated

using OLS on a rolling window of 100 observations:

Ŷ Bt = �̂0;t + �̂1;tYt�1 + �̂2;tYt�2 + �̂3;tYt�3 + �̂4;tYt�4 + �̂5;tYt�5 (29)

where �̂j;t is the estimate of �j based on data from t � 100 to t � 1: I simulate this design for

10,000 observations, and report the di¤erences in average losses for a variety of homogeneous and

exponential Bregman loss functions in Figure 4. From this �gure we see that the ranking of these

two forecasts is indeed sensitive to the choice of Bregman loss function. Under squared-error loss

(corresponding to parameters 2 and 0 respectively for the homogeneous and exponential Bregman

loss functions) the average loss di¤erence is negative, indicating that the AR(5) model has larger

average loss than the random walk model, and thus the use of a parsimonious but misspeci�ed

model is preferred to the use of a correctly speci�ed model that is subject to estimation error.

However, the ranking is reversed for homogeneous Bregman loss functions with parameter above

about 3.5, and for exponential Bregman loss functions with parameter greater than about 0.5 in

absolute value.

[ INSERT FIGURE 4 ABOUT HERE ]

For our second example consider quantile forecasts for a heteroskedastic time series process.

Consider a target variable governed by an AR-GARCH model, with parameters representative of
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those found for daily stock returns:

Yt = �t + �t"t, "t s N (0; 1)

where �t = 0:03 + 0:05Yt�1 (30)

�2t = 0:05 + 0:9�2t�1 + 0:05�
2
t�1"

2
t�1

I compare two forecasts based on non-nested information sets. The �rst forecast exploits knowledge

of the conditional mean, but assumes a constant conditional variance, while the second is the reverse:

Ŷ At = �t + ���
�1 (�) (31)

Ŷ Bt = ��+ �t�
�1 (�)

where �� = E [Yt] and ��2 = V [Yt] : I consider these forecasts for two quantiles, a tail quantile

(� = 0:05) and a quantile somewhere between the tail and the center of the distribution (� = 0:25) :

I compare these forecasts using the homogeneous GPL loss function in equation (20), and report

the results based on a simulation of 10,000 observations.

In the right panel of Figure 5, where � = 0:05; we see that the forecaster who has access to

volatility information (Forecaster B) has lower average loss, across all values of the loss function

parameter, than the forecaster who has access only to mean information. This is consistent with

previous empirical research on the importance of volatility on estimates of tails. However, when

looking at a quantile somewhere between the tails and the center, � = 0:25; we see that the ranking

of these forecasts switches: for loss function parameter values less than about one, the forecaster

with access to mean information has lower average loss, while for loss function parameter values

above one we see the opposite.

[ INSERT FIGURE 5 ABOUT HERE ]

In a third example, consider the problem of forecasting the distribution of the target variable.

I use a GARCH(1,1) speci�cation (Bollerslev, 1986) for the conditional variance, and a left-skewed
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t distribution (Hansen, 1994) for the standardized residuals:

Yt = �t"t

�2t = 0:05 + 0:9�2t�1 + 0:05�
2
t�1"

2
t�1 (32)

"t s iid Skew t (0; 1; 6;�0:25)

I take the �rst distribution forecast to be based on the Normal distribution, with mean zero and

variance estimated using the past 100 observations:

F̂A;t (x) = �

�
x

�̂t

�
, where �̂2t =

1

100

X100

j=1
Y 2t�j (33)

This is a parsimonious speci�cation, but it imposes an incorrect model for the predictive distribu-

tion. The second forecast is based on the empirical distribution function (EDF) of the data over

the past 100 observations:

F̂B;t (x) =
1

100

100X
j=1

1 fYt�j � xg (34)

This nonparametric speci�cation is more �exible than the �rst, but will inevitably contain more

estimation error. I consider the weighted CRPS scoring rule from equation (25) where the weights

are based on the standard Normal CDF:

! (z;�) � �� (z) + (1� �) (1� � (z)) , � 2 [0; 1] (35)

When � = 0; the weight function is based on 1 � �; and thus places more weight on the left tail

than the right tail. When � = 0:5 the weighting scheme is �at and weights both tails equally.

When � = 1 the weight function places more weight on the right tail than the left tail.

This design is simulated for 10,000 observations, and the di¤erences in average losses across

weighting schemes (�) are shown in Figure 6. We see that the ranking of these two distribution

forecasts is sensitive to the choice of (proper) scoring rule: for weights below about 0.25 (i.e., those

with a focus on the left tail), we �nd the EDF is preferred to the Normal distribution, while for

weights above 0.25, including the equal-weighted case at 0.5, the Normal distribution is preferred

to the EDF. Thus, the additional estimation error in the EDF generally leads to it being beaten

by the parsimonious, misspeci�ed, Normal distribution, unless the scoring rule places high weight

on the left tail, which is long given the left-skew in the true distribution.
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[ INSERT FIGURE 6 ABOUT HERE ]

Finally, related to the optimal approximation problem described in Section 2.4, consider the

problem of approximating the true process for the conditional variance of an asset return with some

misspeci�ed model. We take the DGP to be a GARCH(1,1):

yt = �t"t, "t s iid F" (0; 1; �) (36)

�2t = ��2 (1� �� �) + ��2t�1 + �y2t�1

We use a scaled and re-centered �2� distribution for F", which generates (positive) skewness in the

standardized residuals. (This is done so that optimization under the �QLIKE�loss function does

not correspond to maximum likelihood, which has optimality properties that are not common for

loss function-based estimators.) We consider approximating this variable using an ARCH(1) model:

~�2t = 0 + 1y
2
t�1 (37)

We consider two methods for estimating the coe¢ cients of the approximating model: the �rst

is Gaussian quasi-maximum likelihood, which corresponds to minimizing the expected loss of a

homogeneous Bregman loss function with shape parameter k = 0: The second is using standard

OLS, which corresponds to minimizing the expected loss of a homogeneous Bregman loss function

with shape parameter k = 2: The parameters of the approximating model are estimated using a

sample of T observations, and the loss from the resulting forecast is computed in an out-of-sample

period containing P observations. In the simulation results below we set T 2 f100; 500; 1000g ;

P = 100; and
�
��2; �; �; �

�
= (1; 0:8; 0:1; 3) : We repeat this simulation 10,000 times to obtain

average out-of-sample losses. We also present the results for the infeasible case that T ! 1

(obtained by using a sample of size 1,000,000) to see the results when estimation error is removed,

highlighting the bias-variance trade-o¤ that takes place in the presence of estimation error. (The

limiting parameters for this case are presented in the bottom two rows of the table. They are the

same regardless of the evaluation loss function.)

The table below reveals that for all sample sizes, including the limit, average out-of-sample

loss is smaller when the parameters of the approximating model are estimated using the same loss
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function as the one used for evaluation. This is consistent with the theory in the previous section,

and with the binary prediction problem considered in Elliott, et al. (2014), but need not always

be the case, in particular for smaller sample sizes. The key conclusion is that it is indeed possible,

thus highlighting the potential importance of matching the loss functions used for estimation and

evaluation when estimating a misspeci�ed model.

[ INSERT TABLE 2 ABOUT HERE ]

5 Empirical illustration: Evaluating professional forecasters

In this section I illustrate the above ideas using survey forecasts of U.S. in�ation. In�ation forecasts

are central to many important economic decisions, perhaps most notably those of the Federal Open

Markets Committee in their setting of the Federal Funds rate, but also pension funds, insurance

companies, and asset markets more broadly. In�ation is also notoriously hard to predict, with

many methods failing to beat a simple random walk model, see Faust and Wright (2013) for a

recent comprehensive survey.

Firstly, I consider a comparison of the consensus forecast (de�ned as the cross-respondent me-

dian) of CPI in�ation from the Survey of Professional Forecasters (available from

http://goo.gl/L4A897), and from the Thomson Reuters/University of Michigan Survey of Con-

sumers (available from http://goo.gl/s8dCEz). The SPF gathers forecasts quarterly for a range

of horizons from one quarter to ten years, whereas the Michigan survey gathers forecasts monthly,

but only for one- and �ve-year horizons. For this illustration I examine only the one-year forecast.

The sample period is 1982Q3 to 2014Q1, a total of 127 observations. As the �actual� series I

use the 2014Q2 vintage of the �real time�CPI data (available at http://goo.gl/AH6gAO). A plot

of the forecasts and realized in�ation series is presented in Figure 7, and summary statistics are

presented in Table 3.

[ INSERT FIGURE 7 AND TABLE 3 ABOUT HERE ]
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I also consider a comparison of individual respondents to the Survey of Professional Forecasters.

These respondents are identi�ed in the database only by a numerical identi�er, and I select Fore-

casters 20, 506 and 528, as they all have relatively long histories of responses. For the individual

comparisons I focus on the one-quarter-ahead forecast, as these have the most non-empty cells.

Given the di¢ culty in capturing the dynamics of in�ation, it is reasonable to expect that all

forecasters are subject to model misspeci�cation. Moreover, these forecasts are quite possibly based

on nonnested information sets, particularly in the comparison of professional forecasters with the

Michigan survey of consumers. Thus the practical issues highlighted in Section 2 are relevant here.

Figure 8 presents the results of comparisons of these forecasts, for a range of Bregman loss

functions. In the left panel I consider homogeneous Bregman loss functions (equation 6) with

parameter ranging from 1.1 to 4 (nesting squared-error loss at 2) and in the right panel I consider

exponential Bregman loss functions (equation 7) with parameter ranging from -1 to 1 (nesting

squared-error loss at 0). In the top panel we see that the sign of the di¤erence in average losses

varies with the parameter of the loss function: the SPF forecast had (slightly) lower average loss

for values of the Bregman parameter less than 2 and 0 in the homogeneous and exponential cases

respectively, while the reverse holds true for parameters above these values. (The di¤erence in

average loss is very near zero for the squared-error loss case.) This indicates that the ranking of

professional vs. consumer forecasts of in�ation depends on whether over-predictions are more or

less costly than under-predictions, see Figure 1.

In the middle panel I compare SPF forecaster 20 to forecaster 506, and we again see strong

sensitivity to the choice of loss function: for loss functions that penalize under-prediction more than

over-prediction (homogeneous Bregman with parameter less than two, and exponential Bregman

with parameter less than zero) forecaster 20 is preferred, while when the loss functions penalize

over-prediction more than under-prediction the ranking is reversed. In the lower panel we see

an example of a robust ranking: Forecaster 506 has larger average loss than Forecaster 528 for

all homogeneous and exponential Bregman loss functions considered; in no case does the ranking

reverse.

[ INSERT FIGURE 8 ABOUT HERE ]
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6 Conclusion

A key recommendation from Gneiting�s (2011a) wide-ranging and important article is: �If point

forecasts are to be issued and evaluated, it is essential that either the scoring function be speci�ed

ex ante, or an elicitable target functional be named, such as the mean or a quantile of the predictive

distribution, and scoring functions be used that are consistent for the target functional.�This paper

shows that in the presence of realistic complexities such as nonnested forecaster information sets,

misspeci�ed predictive models, and predictive models subject to estimation error, only the �rst

part of this recommendation stands; declaring the target functional is not generally su¢ cient to

elicit a forecaster�s best (according to a given, consistent, loss function) forecast. In light of this

paper, best practice for point forecasting is to declare the speci�c loss function that will be used

to evaluate forecasts, and to make that loss function consistent for the target functional of interest

to the forecast consumer. Reacting to this, forecasters may then wish to estimate their predictive

models, if a model is being used, based on the loss function that will evaluate their forecast. This

will ensure that the estimated parameter converges to the parameter that minimizes expected loss

under that loss function (the �pseudo-true� parameter), though a trade-o¤ may exist between

the variance of an estimator and the distance between its probability limit and the pseudo-true

parameter. This is related to work on estimation under the �relevant cost function,� see Weiss

(1996), Christo¤ersen and Jacobs (2004), Skouras (2007) and Elliott, et al. (2014) for applications

in economics and �nance.
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Appendix

Proof of Corollary 1. (a) The proof follows by noting that the ranking of any pair (i; j) of

forecasters satis�es the conditions of Proposition 1, and by ranking all possible pairs we obtain a

complete ranking of all N forecasters.

(b) Consider ranking (i; i�) : This proof requires a slight generalization of Proposition 1, to

re�ect the fact that only the forecaster with the larger information set (i�; in this case) is required

to issue an optimal forecast. Under assumptions (b)(i) and (b)(ii), we will showMSEi �MSEi� )

F it � F i
�
t 8t) E

h
L
�
Yt; Ŷ

i
t

�i
� E

h
L
�
Yt; Ŷ

i�
t

�i
8L 2 LBregman:

For the �rst implication: We are given that MSEi � MSEi� ; and assume that F i
�
t � F it 8t:

Under assumption (b)(ii) this means that forecaster i is using an optimal forecast but forecaster i�

may not be. We then have E
��
Yt � Ŷ i

�
t

�2
jF i�t

�
� minŷ E

h
(Yt � ŷ)2 jF i

�
t

i
� E

��
Yt � Ŷ it

�2
jF it
�

a:s: 8t; and E
��
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�
t

�2�
� E

��
Yt � Ŷ it

�2
t

�
by the law of iterated expectations (LIE), which

is a contradiction. Thus MSEi �MSEi� ) F it � F i
�
t 8t:

The second implication: Let

�Lj � E
h
L
�
Yt; Ŷ

j
t ;�j

�i
, j 2 fi; i�g

where L
�
�; �;�j

�
is a Bregman loss function de�ned by �j ; a convex function. Under assumptions (i)

and (ii) we know that Ŷ i
�
t is the solution to minŷ E

�
Li

�
(Yt; ŷ;�i�) jF i

�
t

�
where Li

� 2 LBregman; �i�

is a convex function. Thus Ŷ i
�
t = E

�
YtjF i

�
t

�
for all possible distributions of Yt; and from Banerjee

et al. (2005) for example, we know that this implies that Ŷ i
�
t moreover satis�es:

Ŷ i
�
t = argmin

ŷ
E
h
� (Yt)� � (ŷ)� �0 (ŷ) (Yt � ŷ) jF i

�
t

i
for any convex function �: Given that F it � F i

�
t 8t, and acknowledging the possible suboptimality of

forecast i; we then have E
h
L
�
Yt; Ŷ

i
t ;�

�
jF it
i
� minŷ E

�
L (Yt; ŷ;�) jF it

�
� E

h
L
�
Yt; Ŷ

i�
t ;�

�
jF i�t

i
a:s: 8t for any convex function �; and by the LIE we obtain the second implication. The ranking

of (i; j) for i� =2 fi; jg involves comparing forecasters with potentially nonnested information sets

and potentially misspeci�ed models, and so thus the results of Proposition 2 apply.
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Proof of Proposition 3. The �rst derivative of interest is

@
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(38)
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@

@�
E [L (Yt;m (Zt; �) ;�)]

����
�=�̂

�
�

= E
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�
�

�
@�

35 , by the LIE
and note that this equality holds when �̂

�
� = �0 by assumption (i), and the solution is unique since

� is strictly convex and @m=@� 6= 0 a.s. by assumption (ii).

Holzmann and Eulert (2014) present a di¤erent proof of the two results below. We present the

following for comparability with the conditional mean case presented in Proposition 1 of the paper.

Proof of Proposition 4. We will show that under assumptions (i) and (ii), LinLin�B �

LinLin�A ) FBt � FAt 8t ) E
h
L
�
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B
t

�i
� E
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A
t
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�
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j
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for j 2 fA;Bg and LinLin is the �Lin-Lin�loss function in equation (19).

First: we are given that LinLin�B � LinLin�A; and assume that FAt � FBt 8t: This means that

minŷ E
�
LinLin (Yt; ŷ) jFAt

�
� minŷ E

�
LinLin (Yt; ŷ) jFBt

�
a:s: 8t; and so E

h
LinLin

�
Yt; Ŷ

A
t

�
jFAt

i
�

E
h
LinLin

�
Yt; Ŷ

B
t

�
jFBt

i
a:s: 8t by assumption (ii), and E

h
LinLin

�
Yt; Ŷ

A
t

�i
� E

h
LinLin

�
Yt; Ŷ

B
t

�i
by the LIE, which is a contradiction. Thus LinLin�B � LinLin�A ) FBt � FAt 8t: Next: Let

�Lj � E
h
L
�
Y; Ŷ j ;�; gj

�i
, j 2 fA;Bg

where L (�; �;�; gj) is a GPL loss function de�ned by gj ; a nondecreasing function. Under assumption

(ii) we know that Ŷ j is the solution to minŷ E
h
L
�
Y; Ŷ j ;�; gj

�
jF j
i
where L 2 L�GPL; gj is a

nondecreasing function, and and j 2 fA;Bg : It is straightforward to show that Ŷ j then satis�es
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� = E
h
1
n
Y � Ŷ j

o
jF j
i
: This holds for all possible (conditional) distributions of Y; and from

Saerens (2000) and Gneiting (2011b) we know that this implies (by the necessity of GPL loss for

optimal quantile forecasts) that Ŷ j then moreover satis�es

Ŷ j = argmin
ŷ

E
�
(1 fY � ŷg � �) (g (ŷ)� g (Y )) jF j

�
for any nondecreasing function g: If FB � FA then by the LIE we have �LB (g) � �LA (g) for any

nondecreasing function g:

Proof of Proposition 6. We again prove this result by showing that E
�
L
�
FAt ; Yt

��
�

E
�
L
�
FBt ; Yt

��
for some L 2 LProper ) FBt � FAt 8t ) E

�
L
�
FAt ; Yt

��
� E

�
L
�
FBt ; Yt

��
8 L 2

LProper: First: we are given that E
�
L
�
FAt ; Yt

��
� E

�
L
�
FBt ; Yt

��
; and assume that FAt � FBt 8t:

Under assumption (ii), this implies that we can take FBt as the data generating process for Yt: Then

E
�
L
�
FBt ; Yt

�
jFBt

�
= EFBt

�
L
�
FBt ; Yt

�
jFBt

�
� EFBt

�
L
�
FAt ; Yt

�
jFBt

�
8t by assumption (ii) and the

propriety of L: By the LIE this implies E
�
L
�
FBt ; Yt

��
� E

�
L
�
FAt ; Yt

��
which is a contradiction.

Thus E
�
L
�
FAt ; Yt

��
� E

�
L
�
FBt ; Yt

��
for some L 2 LProper ) FBt � FAt 8t: Next, using similar

logic to above, given FBt � FAt we have that E
�
L
�
FAt ; Yt

��
� E

�
L
�
FBt ; Yt

��
for any L 2 LProper;

completing the proof.

Proof of Proposition 8. (a) Recall the forms of these two loss functions from equations (4)

and (18). Then the expected loss w.r.t. distribution Ft from a convex combination of these loss

functions is

EFt [L (Yt; ŷ)] = �EFt [� (Yt)]� �� (ŷ)� ��0 (ŷ) (EFt [Yt]� ŷ)

+ (1� �) (EFt [1 fYt � ŷg]� 1=2) g (ŷ)

+ (1� �)EFt [(1 fYt � ŷg � 1=2) g (Yt)]

And the �rst derivative is

@

@ŷ
EFt [L (Y; ŷ)] = ���00 (ŷ) (EFt [Yt]� ŷ) + (1� �) (EFt [1 fYt � ŷg]� 1=2) g0 (ŷ)

using assumption (i) that Ft is continuous. Then note that EFt [1 fYt � ŷg] � Ft (ŷ) ; and recall

that Ft is symmetric) EFt [Yt] = MedianFt [Yt] ) Ft (E [YtjFt]) = 1=2: Thus Ŷ �t = EFt [Yt] is a
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solution to the optimization problem:

���00 (EFt [Yt]) (EFt [Yt]� EFt [Yt]) + (1� �) (EFt [1 fYt � EFt [Yt]g]� 1=2) g0 (EFt [Yt]) = 0

Note that this result holds whether or not the target variable is truly symmetrically distributed.

(b) We will show that under assumptions (i)�(iii) ,MSEB �MSEA ) FBt � FAt 8t; MAEB �

MAEA ) FBt � FAt 8t; and FBt � FAt 8t) E
h
L
�
Yt; Ŷ

B
t

�i
� E

h
L
�
Yt; Ŷ

A
t

�i
8L 2 LBreg�GPL:

First implication: We are given that MSEB � MSEA; and assume that FAt � FBt 8t: This

means that minŷ E
h
(Yt � ŷ)2 jFAt

i
� minŷ E

h
(Yt � ŷ)2 jFBt

i
a:s: 8t: Since the quadratic loss

function is in LBreg�GPL; then by part (a) and assumption (iii) we have E
��
Yt � Ŷ At

�2
jFAt

�
�

E

��
Yt � Ŷ Bt

�2
jFBt

�
a:s: 8t, and E

��
Yt � Ŷ At

�2�
� E

��
Yt � Ŷ Bt

�2�
by the law of iterated ex-

pectations, which is a contradiction. Thus MSEB �MSEA ) FBt � FAt 8t: The same reasoning

applies for the implication MAEB � MAEA ) FBt � FAt 8t: Finally, consider the third implica-

tion. The expected loss di¤erence is

E
h
L
�
Yt; Ŷ

A
t

�
� L

�
Yt; Ŷ

B
t

�i
= �E

h
LBreg

�
Yt; Ŷ

A
t

�
� LBreg

�
Yt; Ŷ

B
t

�i
+(1� �)E

h
LGPL

�
Yt; Ŷ

A
t

�
� LGPL

�
Yt; Ŷ

B
t

�i
where LBreg 2 LBregman, LGPL 2 L1=2GPL; and � 2 [0; 1] : Noting that assumptions (i)�(iii) satisfy

those of Proposition 1, we then have FBt � FAt 8t ) E
h
LBreg

�
Yt; Ŷ

A
t

�
� LBreg

�
Yt; Ŷ

B
t

�i
�

0 8L 2 LBregman: Similarly, from the proof of Proposition 4 we also have FBt � FAt 8t )

E
h
LGPL

�
Yt; Ŷ

A
t

�
� LGPL

�
Yt; Ŷ

B
t

�i
� 0 8L 2 L1=2GPL: Since � 2 [0; 1] we then have

E
h
L
�
Yt; Ŷ

A
t

�
� L

�
Yt; Ŷ

B
t

�i
� 0 for any L 2 LBreg�GPL:

(c) The proof of this negative result requires only an example. This can be constructed using

methods similar to those for Propositions 2 and 5, and is omitted in the interest of brevity.
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Derivations for Example 1:

The �rst-order condition for the optimal parameter � is:

0 =
@

@�
E [L (Y;m (X; �) ;�)]

= E

�
�00 (m (X; �)) (E [Y jX]�m (X; �)) @m (X; �)

@�

�
(40)

= 2E
�
exp fa (�+ �X)g

�
X2 � �� �X

�
[1; X]0

�
So the two �rst-order conditions are:

0 = E
�
exp fa (�+ �X)gX2

�
� �E [exp fa (�+ �X)g]� �E [exp fa (�+ �X)gX] (41)

0 = E
�
exp fa (�+ �X)gX3

�
� �E [exp fa (�+ �X)gX]� �E

�
exp fa (�+ �X)gX2

�
Using properties of the Normal distribution we obtain the key moments from the above expressions:

E [exp fa (�+ �X)g] = exp

�
a (�+ ��) + a2

�2

2
�2
�

(42)

E [exp fa (�+ �X)gX] = exp

�
a (�+ ��) + a2

�2

2
�2
��
�+ a��2

�
E
�
exp fa (�+ �X)gX2

�
= exp

�
a (�+ ��) + a2

�2

2
�2
��

�2 +
�
�+ a��2

�2�
E
�
exp fa (�+ �X)gX3

�
= exp

�
a (�+ ��) + a2

�2

2
�2
��
�+ a��2

� �
3�2 +

�
�+ a��2

�2�
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Table 1: Optimal linear approximation example

Exponential Bregman parameter (a)

-0.5 0 0.25

�̂�a 0.75 0.00 -3.00
�̂
�
a 1.00 2.00 4.00

This table presents the optimal intercept (�̂�a) and slope (�̂
�
a) parameters from linear approx-

imations to a nonlinear conditional mean function, for three di¤erent values of the �exponential
Bregman�loss function parameter, a:

Table 2: Average MSE and QLIKE loss for di¤erent estimation methods

Evaluation loss function QLIKE MSE

Estimation loss function QLIKE MSE QLIKE MSE

100 1.505 1.509 4.535 4.326
500 1.428 1.435 4.277 4.239
1000 1.412 1.418 4.228 4.206
1 1.399 1.401 4.179 4.169

�0 0.912 0.938 0.912 0.938
�1 0.093 0.071 0.093 0.071

Notes: This table presents the average out-of-sample loss from a volatility forecast from an
ARCH(1) model (equation 37) estimated by minimizing either the QLIKE loss function or the
quadratic loss function (MSE) over a rolling window of T 2 f100; 500; 1000g observations. The
bottom row of the top panel presents the average loss when the parameters are set to the population
limits, these limiting parameters are presented in the bottom two rows of the table.
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Table 3: Summary Statistics

Panel A: Consensus forecasts

Actual SPF Michigan
Mean 2.633 3.246 3.196
Standard deviation 1.202 1.282 0.729
Minimum -1.930 1.565 0.900
Maximum 5.662 8.058 6.700

Panel B: Individual forecasts

Actual Forecaster 20 Forecaster 506 Forecaster 528
Mean 4.213 3.295 1.339 1.542
Standard deviation 3.458 1.369 1.243 1.243
Minimum -13.668 0.800 -2.600 -2.000
Maximum 16.645 11.400 3.829 3.600

Notes: This table presents summary statistics on realized in�ation and in�ation forecasts. Panel
A considers one-year consensus forecasts, in percent, of annual US CPI in�ation from the Survey
of Professional Forecasters and from the Thomson Reuters/University of Michigan Survey of Con-
sumers. Panel B considers one-quarter forecasts from individual respondents to the Survey of
Professional Forecasters, of US CPI in�ation, annualized, in percent.
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Figure 1: Various Bregman loss functions. The left column presents four elements of the �homoge-
neous Bregman�family, and the right column presents four elements of the �exponential Bregman�
family. The squared error loss function is also presented in each panel. In all cases the value for ŷ
ranges from -1 to 5, and the value of y is set at 2.
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Figure 2: The top panel presents the optimal linear approximations to a nonlinear DGP based
on the exponential Bregman loss function for three choices of �shape� parameter; the choice a=0
corresponds to quadratic loss, and the �t is then the same as that obtained by OLS. The lower panel
presents a simple nonparametric estimate of the distance between the realization and the (linear)
forecast as a function of the predictor variable (X), for the three loss function parameters.
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Figure 3: Various homogenous GPL loss functions, with � = 0:5 (left panel) and � = 0:25 (right
panel). The �Lin-Lin�(or �tick�) loss function is obtained when b = 1: In both cases the value for
ŷ ranges from 0 to 2, and the value of y is set at 1.
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Figure 4: Average loss from a random walk forecast minus that from an estimated AR(5) forecast,
for various homogeneous (left panel) and exponential (right panel) Bregman loss functions.
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The left panel is for the 0.25 quantile, and the right panel is for the 0.05 quantile.
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tail, with equal weight at 0.5, indicated with a vertical line.
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Figure 8: Di¤erences in average losses between two forecasts, for a range of loss function parameters.
The �homogeneous Bregman� loss function is in the left column, and the �exponential Bregman�
loss function is in the right column. The squared-error loss function is nested at 2 and 0 for these
loss functions, and is indicated by a vertical line. The top row compares the consensus forecast from
the Survey of Professional Forecasters and the Michigan survey of consumers; the lower two rows
compare individual forecasters from the Survey of Professional Forecasters.
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