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The proof below uses the following results on uniform random variable, and a “triangular”

random variable with a mode at L and a PDF that declines linearly to zero at U > L.
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The results in part (ii) below use the distribution of Y = X + Z, where X ~ Unif (L,0) and
Z ~Unif (0,U), where L < 0 < |L| < U. This variable has the following properties:
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Analogous to the mean case, define an “a-quantile unbiased” forecast as one which satisfies:
E [1 {Y < Y} |Y} =a (23)

Note that for an a-quantile unbiased forecast we have:
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Proof of Proposition 4(b). (i) We first consider the case of non-nested information sets

(violating Assumption 1). Consider the following simple example:

Y = X+7Z (25)

where X ~ Unif(0,10), Z ~Tri(0,12), X127

Let a = %, and assume that forecast A conditions on X and forecast B conditions on Z. Then:

Y = X+ Median[Z] = X +0.45, since Median [Z] = 12 — 6v/2 ~ 3.51 (26)

Y® = Z+ Median[X] = Z +2.5, since Median [X] =5 (27)

Next consider the GPL loss functions generated by g1 (y) = y and g2 () = 3. Notice that both ye

and Y? are median-unbiased forecasts, which simplifies the calculation of their expected loss.

Lalg1) = E[(l{Yg?“}—l/Q) (W-Y)} (28)
_ %E[Y]—E[l{YﬁY“}Y]
where E[Y] = E[X]+E[Z] (29)
and E[l{YgY“}Y] - E{X+Z<X+M}X+2) (30)

= E[1{Z<MME[X]+E[1{Z < M,}Z], since X1.Z

_ %E[X]JrE[l{ZSMZ}Z], since B[1{Z < M.}] = 1/2

We find an analogous expression for the other forecaster:

Lp(g) = %E Y] - E [1 {Y < Y"} Y} (31)
- %E v] - (;E Z]+ B[1{X < Mx}X]>

Next consider the loss GPL function obtained when gs (y) = 3.

it = B|(1{r =7} -12) ((70) - v*), (32)
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E [1 {Y < Ya} Yﬂ = E[1{Z<M}E[X® +3E[1{Z < M.} Z|E [X?] (34)

+3E[1{Z < M.} Z?|E[X]+E [1{Z < M.} Z°]

3



Pulling these terms together and using the expressions for these moments given above, we find:

La(g1) = 1.17<1.25=Lg(q1) (35)

La(g2) = 350.45 > 349.38 = L (g2) (36)

Thus the ranking is reversed depending on the choice of function g. Note that while the differences
in these values may appear small, these are analytical population values, and so there is no sampling
or simulation variability.

(ii) Next we consider the case that both forecasters use correctly specified models, given their
(nested) information sets, but they are subject to estimation error. Let us simplify the DGP and

assume that

= X+7Z (37)

Y
X ~ Unif(-10,0), Z ~Unif (0,12), X1 Z

Assume that forecaster A uses no conditioning information, and so reports her optimal forecast as:

Y% = Median[Y] = 1 (38)

Forecaster B uses information on Z, but to exploit it must estimate Median [X]. He treats that as

an unknown parameter and assume that he estimates it using n = 1 observation of X. Forecaster
B’s prediction will then be

Y=X+2Z7 (39)

where X is a realization from a Unif (L, 0) distribution, independent of (X, Z) . This design allows

for a signal/noise trade-off. In this design we find that:

La(g1) E[(l {YgY“}—l/Q) (Y“—Yﬂ (40)
= B < My} - 1/2) (M, — V)]

= M,B[L{Y < M,}] - B[1{Y < M,} Y] - 1/2(M, — B[Y))



For forecaster B we find:
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And for the second loss function we obtain:

and
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And so

Lp(g2) = 2E[F,(X)X?] —E[X?] (46)
+3E (2] (2B [F, (X) X?] ~ B [x?])

+3E [Z2?] (2E [F, (X) X] — E[X])

For X ~ Unif (L,U) we have:

E[F, (X)X] = L +62U (47)
E[F, (X)X = L2+2L1g+3U2 (48)
E[F, (X)X?] = L3 +2L%U ;03LU2 +4U3 (49)
Pulling these terms together, we find that
La(g1) = 1.85>1.67=Lg(q) (50)
La(g2) = T2.65<90=Lp(g2) (51)

Thus the ranking is reversed depending on the choice of function g.
(iii) Finally, we consider a violation assumption 3, and consider models that are misspecified.

We will simplify the DGP, and assume that
Y =X ~Unif(0,10) (52)

We will assume that the two forecasters use misspecified models, in that they use a linear model

with parameters that differ from (0, 1):

Y = B+ 51X (53)

= 7 +tm1X (54)

Of course here we cannot use the simplifcation that holds when the forecasts are median unbiased.
In this example, if we set (5, 5;) = (0.33,0.67) and (v4,7;) = (—0.25, 1.25) then both forecasts use

the same information set, neither has estimation error, but both are based on misspecified models.



In this case we find:
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The same expressions can be used for Lp (g1) plugging in (vg,7;) for (8g, 31). We use p = 1 for

the first GPL loss function above, and p = 1,2, 3 for the second, below.

Next consider

La(g) = E[(l{YSY“}—l/Q) <<W)3‘Y?’)]

= B[1{(1-8) X < Bo} (B + 5:X)° = X*)| = 1/2B | (8y + 51 X)° = X7|

= BEL{(1-81)X < B} + 388 E[L{(1-B;) X < By} X]

+3608TE [1{(1 = B1) X < B} X?] + (8] = 1) E[1{(1 = B1) X < Bo} X°]

—1/2 (83 + 38381 E [X] + 38,81 [X?] + (83 — 1) B [X?])

(58)

The same expressions can be used for Lp (go) plugging in (g, 7;) for (By, 8;) . Pulling these terms

together, we find that

La(g1)

L (g2)

0.68 > 0.51 = Lp (1)

79.44 < 100.19 = Lp (g2)

Thus the ranking is reversed depending on the choice of function g.

We have thus demonstrated analytically that the presence of any of non-nested information sets,

estimation error, or model misspecification can lead to sensitivity in the ranking of two quantile

forecasts to the choice of consistent (GPL) loss function. m



Proof of Proposition 5(b). (i) We first consider the case of non-nested information sets

(violating Assumption 1). Consider the following example:

= —ByA—B,(1—A)+B,B+By(1 - B) (61)
~ Bernoulli (p)

~ Bernoulli(q), B1A

By > B1>0

The indicator, A reveals whether the left “tail” will be long or short, and B reveals whether the
right tail will be long or short. Forecaster A observes the signal A and forecaster B observes signal

B, i.e., each forecaster only gets information about a single tail (left or right). Then we find:
0 B2—B1
BORPS (FaYow)] = p(i-0) [ w@dtai-p0-9 [ wEd ©)
1— B2 0

0 /32*51
E[wORPS (Fp,Y,w)] = pq(l—m/ﬁ W(Z)derp(l—p)(l—Q)/o w(2)dz

The two proper scoring rules we consider (equation 33) place different weights on the left vs. right

tails using the logistic function:

1
w(za) = T+ exp (—az] (63)

When a > 0 more weight is placed on the right tail, and when a < 0 more weight is placed on the

left tail. We then compute the integrals, setting wg (2) = w (2;+1) and wy, (2) = w (z; —1)
0 B2—B1
[ enGds = [ e (e = gt lom2 —log(exp (8 +om () (69)
17 ~2 0
Ba—51 0 1
/ wr(2)dz = / , wr, (z)dz = log <2 (1+exp{52—,6’1})>
0 1—F2
With these in hand, if we set (p, q, 51, 55) = (0.25,0.75,1,5) we find:

E[wCRPS (F4,Y;wg)] = 0.50 > 0.25 = E[wCRPS (F,Y;wg)] (65)

E[wCRPS (Fa,Y;w)] = 0.25<0.50=E[wCRPS (Fg,Y;wp)| (66)

And so the ranking of these two distribution forecasts can be reversed depending on the choice of
(proper) scoring rule.
(ii) Next, we consider a violation assumption 3, and consider models that are misspecified.

In this case, consider the case where forecaster A uses the unconditional distribution of the target



variable, while forecaster B continues to use her signal, but based on p # p. If we set (p, q, 81, B2, D) =

(0.25,0.75,1,5,0.5) we find

E[wCRPS (Fa,Yiwp)] = 0.61>033 =B |wCRPS (Fp,Y;wr)| (67)

E [wCRPS (Fy,Yiwp)] = 061<0.67=E [wCRPS (FB,Y;wL)] (68)

And so the ranking of these two distribution forecasts can be reversed depending on the choice
of (proper) scoring rule. (Note that E [wCRPS’ (FA,Y;wR)] =E [wCRPS (FA,Y;wL)] as the
distribution forecast (FA) is symmetric around zero, and the weighting functions satisfy wg (z) =
wr, (—2).)

(ii) Finally, we consider the case that both forecasters use correctly specified models, given their
(nested) information sets, but are subject to estimation error. Consider the case that forecaster A
again uses the unconditional distribution of the target variable, while forecaster B uses her signal,
but to do so must estimate the parameter p. Assume she does so based on n observations of the
signal A. (Note that since forecaster B observes the signal B, the value for A can be backed out,

ex post, from the realized value of the target variable.) Then

np = i A; ~ Binomial (n,p) (69)
i=1
In this case, we have:
E [wORPS (FB (B),Y; w)} -3 E [wCRPS (FB B),Y:; w)} Pr[p = ] (70)
P

and we can use the expressions from part (ii) to help solve this problem. Consider the case that

n =4, and so p can take one of five values {0,1/4,1/2,3/4,1} . In this case we find

E[wCRPS (Fa,Yiwg)] = 0.61>031 = |wCRPS (Fp(5),Yiwr)| (71)
E [wCRPS (Fa,Yiwp)] = 061<0.62=E [wCRPS (FB (5) ,Y;wL)} (72)

And so the ranking of these two distribution forecasts can be reversed depending on the choice of

(proper) scoring rule. m





