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Actuals and forecasts for an AR(1) example
The �hedgehog� plot
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Actuals and forecasts for an AR(1) example
The �hedgehog� plot, without data on the target variable
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Background and motivation

Under squared error loss, the optimal forecast is the conditional mean of the
target variable (eg, Granger (1969)):

Ŷ �t jt�h = E [Yt jFt�h ]

The associated forecast error, e�t jt�h � Yt � Ŷ
�
t jt�h , should be mean-zero

and orthogonal to any Zt�h 2 Ft�h .

Another implication of forecast optimality is that the MSE should be
increasing in the horizon:

E
h
e2t jt�1

i
� E

h
e2t jt�2

i
� � � � � E

h
e2t jt�H

i

Testing this property is complicated by the fact that it involves (potentially
many) inequality constraints.



New tests of forecast rationality

The availability of multi-horizon forecasts has created a need for tests of
rationality that exploit information in the complete term structure of
forecasts.

Surveys: SPF, ECB�s SPF, Consensus Economics

Forecasts: OECD, IMF, Bank of England, Fed

Econometric models: Clements (1997), Marcellino, Stock and Watson (2006),
Faust and Wright (2009)

Multi-horizon forecasts allow us to draw more powerful conclusions about
joint rationality, across all horizons.

Joint rationality across all horizons requires the internal consistency of the set
of forecasts, which can be tested without data on the target variable.



Contributions

We propose several new tests of forecast rationality, exploiting information
from multi-horizon forecasts

new monotonicity properties and second moment bounds that must hold
across forecast horizons

generalized e¢ ciency regressions that test the full sequence of forecast
revisions

proposed tests are robust to certain forms of non-stationarity

We present tests of rationality that may be used when the target variable is
either not observable, or observable only with substantial measurement error.

We study the size and power of these tests via simulations.

We apply the tests to the Federal Reserve�s �Greenbook� forecasts of
in�ation and GDP growth.
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Optimal forecasts under MSE (eg Granger, 1969)

Theorem 1: The optimal forecast under MSE loss

L
�
Y , Ŷ

�
=
�
Y � Ŷ

�2
is the conditional mean:

Ŷ �t jt�h � argmin
Ŷ 2Y

E
h�
Yt � Ŷ

�2 jFt�hi = E [Yt jFt�h ] .
Our paper explores additional implications of this well-known result and
proposes empirical tests of these implications.

Some of the results derived below make use of a standard covariance
stationarity assumtion:

Assumption S1: The target variable, Yt , is generated by a covariance stationary
process.



1a) Weakly increasing mean squared errors

Forecast optimality under squared-error loss implies:

Et�h

��
Yt � Ŷ �t jt�h

�2�
� Et�h

��
Yt � Ỹt jt�h

�2�
for any Ỹt jt�h 2 Ft�h

In particular, a short-horizon forecast must be at least as good as a
long-horizon forecast of the same variable:

Et�hS

��
Yt � Ŷ �t jt�hS

�2�
� Et�hS

��
Yt � Ŷ �t jt�hL

�2�
for hS < hL, so

MSE (hS ) � E
��
Yt � Ŷ �t jt�hS

�2�
� E

��
Yt � Ŷ �t jt�hL

�2�
� MSE (hL)

by the law of iterated expectations.



1b) Weakly increasing mean squared forecast revisions

De�ne a forecast revision as (hS < hL)

d�t jhS ,hL � Ŷ �t jt�hS � Ŷ
�
t jt�hL

E
h
d�t jhS ,hL

i
= Cov

h
d�t jhS ,hL ,Zt�hL

i
= 0

Mean squared forecast revisions are weakly increasing in h :

Note that dt jh1,hH � Ŷt jt�h1 � Ŷt jt�hH =
H�1
∑
j=1

dt jhj ,hj+1

so V
h
d�t jh1,hH

i
= V

"
H�1
∑
j=1

d�t jhj ,hj+1

#
=
H�1
∑
j=1

V
h
d�t jhj ,hj+1

i
And thus V

h
d�t jh1,h2

i
� V

h
d�t jh1,h3

i
� � � � � V

h
d�t jh1,hH

i



Weakly increasing MSE and MSR values (summary)

Corollary (1)
Under the assumptions of Theorem 1 and S1, it follows that, for any
hS < hM < hL,

MSE (hS ) � E
��
Yt � Ŷ �t jt�hS

�2�
� E

��
Yt � Ŷ �t jt�hL

�2�
� MSE (hL),

and
V
h
dt jhS ,hM

i
� V

h
dt jhS ,hL

i
.



Testing weakly increasing MSE

Denote the MSE di¤erentials (across horizons) as:

∆ej � µhj � µhj�1 = E
h
e2t jt�hj

i
� E

h
e2t jt�hj�1

i
, for j = 2, ...,H

Then rationality implies that:

∆e � [∆e2 , ...,∆eH ]
0 � 0.

This can be tested via methods for handling multivariate inequality tests:



Multivariate inequality tests

Early work: Bartholomew (1961), Kudo (1963), Perlman (1969), Gourieroux,
et al. (1982) and Wolak (1987, 1989).

Wolak test entertains (weak) monotonicity under the null hypothesis:

H0 : ∆e � 0
vs. H1 : ∆e � 0

These test statistics have a distribution under the null that is a weighted sum
of chi-squared variables, ∑H�1i=0 ω(H � 1, i)χ2(i), where ω(H � 1, i) are
weights and χ2(i) is a chi-squared variable with i degrees of freedom.

Critical values are generally not known in closed form, but a set of
approximate values can be calculated through Monte Carlo simulation
(data-dependent weighted sum of chi-squared variables).



Multivariate inequality tests: bootstrap approaches

Can convert the null and alternative

H0 : ∆e � 0
vs. H1 : ∆e � 0

into:

H0 : min
j

∆ej � 0

vs. H1 : min
j

∆ej < 0

This can be tested using the bootstrap �reality check�of White (2000) and
its extension by Hansen (2005).

May be particularly useful when the number of horizons (inequalities) is large.



2) Weakly decreasing mean squared forecasts

Forecast rationality implies that the variance of the forecasts should be
decreasing in the forecast horizon. Recall

Cov
h
e�t jt�h ,Zt�h

i
= 0) Cov

h
Ŷ �t jt�h , e

�
t jt�h

i
= 0

thus V [Yt ] = V
h
Ŷ �t jt�h

i
+ V

h
e�t jt�h

i
and so V

h
Ŷ �t jt�h

i
= V [Yt ]� V

h
e�t jt�h

i
Weakly increasing MSE implies a weakly decreasing variance of the forecast:

Corollary (2)
Under the assumptions of Theorem 1 and S1, we have

V
h
Ŷ �t jt�hS

i
� V

h
Ŷ �t jt�hL

i
for any hS < hL.



Weakly increasing MSE and weakly decreasing MSF
AR(1) example
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Testing weakly decreasing MSF

Denote the mean-squared forecast di¤erentials (across horizons) as:

∆fh � E
h
Ŷ �2t jt�hj

i
� E

h
Ŷ �2t jt�hj�1

i
, for j = 2, ...,H

Then rationality implies that:

∆f �
h
∆f2 , ...,∆

f
H

i0
� 0

We can again test rationality through Wolak�s (1989) test of the null and
alternative hypotheses:

H0 : ∆f � 0
vs. H1 : ∆f � 0



MSF test: no need for data on the target variable

This implication of multi-horizon forecast rationality can be tested without
data on the target variable.

Useful when the target variable is not observable (e.g., volatility) or subject
to substantial measurement errors (some measures of economic growth - see,
e.g., �real time�macro literature, Croushore, 2006

In this case the rationality test is a test of the internal consistency of the set of
multi-horizon forecasts

This test has zero power to detect an internally-consistent set of forecasts that
are totally independent of the stated target variable.



3) Weakly decreasing covariance btw forecast and target

A further implication of decreasing forecast variances is that the covariance
of the forecasts with the actuals should be decreasing in the forecast horizon:

Cov
h
Ŷ �t jt�h ,Yt

i
= Cov

h
Ŷ �t jt�h , Ŷ

�
t jt�h + e

�
t jt�h

i
= V

h
Ŷ �t jt�h

i

Corollary (3)
Under the assumptions of Theorem 1 and S1, we obtain

Cov
h
Ŷ �t jt�hS ,Yt

i
� Cov

h
Ŷ �t jt�hL ,Yt

i
for any hS < hL.

Moreover,

Cov
h
Ŷ �t jt�hM , Ŷ

�
t jt�hS

i
� Cov

h
Ŷ �t jt�hL , Ŷ

�
t jt�hS

i
, for any hS < hM < hL.



4) Bounded variance of forecast revisions

Forecast optimality implies:

V
h
et jt�hL

i
� V

h
et jt�hS

i
for hL > hS

so V
h
Yt � Ŷ �t jt�hL

i
� V

h
Yt � Ŷ �t jt�hS

i
Re-write short-horizon forecast as Ŷ �t jt�hS = Ŷ

�
t jt�hL + d

�
t jhS ,hL , so:

V
h
Ŷ �t jt�hL

i
� 2Cov

h
Yt , Ŷ �t jt�hL

i
� V

h
Ŷ �t jt�hL

i
� 2Cov

h
Yt , Ŷ �t jt�hL

i
+V

h
d�t jhS ,hL

i
� 2Cov

h
Yt , d�t jhS ,hL

i
that is V

h
d�t jhS ,hL

i
� 2Cov

h
Yt , d�t jhS ,hL

i



Bounded variance of forecast revisions (cont)

Corollary (4)
Denote the forecast revision between two dates as
d�t jhS ,hL � Ŷ

�
t jt�hS � Ŷ

�
t jt�hL for any hS < hL. Then under the assumptions of

Theorem 1 and S1, we have

V
h
d�t jhS ,hL

i
� 2Cov

h
Yt , d�t jhS ,hL

i
for any hS < hL.

Moreover,

V
h
d�t jhM ,hL

i
� 2Cov

h
Ŷ �t jt�hS , d

�
t jhM ,hL

i
for any hS < hM < hL.



Bounded forecast revision variance: tests

Bound on forecast revision:

V
h
d�t jhS ,hL

i
� 2Cov

h
Yt , d�t jhS ,hL

i
and so

0 � E
h
2Ytd�t jhS ,hL � d

�2
t jhS ,hL

i
This limits the amount of variability in the forecast revisions, as a function of
their covariance with the target variable.

As above, this can be tested through

∆bh � E
h
2Ytdt jh�1,h � d2t jh�1,h

i
, for h = 2, ...,H

H0 : ∆b � 0
vs. H1 : ∆b � 0



Summary of tests based on multi-horizon bounds

The table below summarizes the relationships across horizons established in
this paper, as h " :

Yt e�t jt�h Ŷ �t jt�h d�t jhS ,hL
Yt σ2y Cov " Cov # Cov bound
e�t jt�h MSE " Cov=0 Cov "
Ŷ �t jt�h MSF # Cov "
dt jhS ,hL MSFR "

Almost all existing optimality tests focus on cell (2,3), i.e., that forecast
errors are uncorrelated with the forecast

Our analysis covers the remaining elements, with particular attention to cells
(3,3) (3,4) and (4,4), which do not require data on the target variable.



Multi-horizon bounds and model misspeci�cation

If a forecaster uses an internally-consistent but misspeci�ed model to predict
some target variable, will any of the above tests be able to detect it?

We study this problem in two cases:

1 Multi-step forecasts are obtained from a suite of horizon-speci�c models
(�direct�multi-step forecasts)

2 Forecasts for all horizons are obtained from a single model (and multi-step
forecasts are obtained by �iterating�on the one-step model).

We show via a simple example that the consistent use of a misspeci�ed
model may be detected using one of the mulit-horizon bounds presented in
this paper.



Multi-horizon bounds - Direct forecasting

Consider a target variable that evolves according to a stationary AR(2):

Yt = φ1Yt�1 + φ2Yt�2 + εt , εt s iid N
�
0, σ2

�
but the forecaster uses a direct projection of Yt onto Yt�h to obtain an

h-step forecast:
Yt = ρhYt�h + vt , for h = 1, 2, ...

By the properties of an AR(2) we have

ρ1 =
φ1

1� φ2
, ρ2 =

φ21 � φ22 + φ2
1� φ2

Eg, for (φ1, φ2) = (0.1, 0.8) we �nd ρ1 = 0.5 and ρ2 = 0.85.



Multi-horizon bounds - Direct forecasting (cont�d)

If (φ1, φ2) = (0.1, 0.8) we �nd ρ1 = 0.5 and ρ2 = 0.85.

1 This directly leads to a violation of the bound that the variance of the optimal
forecast is decreasing in the horizon

V
h
Ŷt jt�1

i
= ρ21σ2y = 0.25σ2y < V

h
Ŷt jt�2

i
= ρ22σ2y = 0.72σ2y

2 Further, it also violates the bound that the MSE from the optimal forecast is
increasing in the horizon:

MSE1 � E
��
Yt � Ŷt jt�1

�2�
= σ2y

�
1� ρ21

�
= 0.75σ2y ,

MSE2 � E
��
Yt � Ŷt jt�2

�2�
= σ2y

�
1� ρ22

�
= 0.28σ2y .

The forecaster should recognize that the 2-step forecast is better than the
1-step forecast, and so simply use the 2-step forecast again for the 1-step
forecast.

Or better yet, improve the forecasting models being used..



Multi-horizon bounds - Iterated forecasting
Consider again a target variable that evolves according to a stationary AR(2)
as above, but the forecaster uses an AR(1) model:

Yt = ρ1Yt�1 + vt ,

so Ŷt jt�h = ρh1Yt�h , for h = 1, 2, ...

where ρ1 = φ1/ (1� φ2) is the population value of the AR(1) parameter
when the DGP is an AR(2).

The MSEs for the h = 1 and h = 2 forecasts are:

MSE1 � E
��
Yt � Ŷt jt�1

�2�
= σ2y

�
1� ρ21

�
,

MSE2 � E
��
Yt � Ŷt jt�2

�2�
= σ2y

�
1� ρ41 � 2ρ21

�
1� ρ21

�
φ2

�
.

If (φ1, φ2) = (0.1, 0.8) , then

MSE1 = 0.75σ2y > MSE2 = 0.6375σ2y .

Thus the MSE bound is violated, and a test based on this bound would
detect the use of a misspeci�ed model.



Multi-horizon bounds - Iterated forecasting (cont�d)

In fact, a bound based solely on the forecasts may also detect this model
misspeci�cation. Consider the MSFR for this example:

MSFR1,2 � E
��
Ŷt jt�1 � Ŷt jt�2

�2�
= ρ21σ2y

�
1� ρ21

�
MSFR1,3 � E

��
Ŷt jt�1 � Ŷt jt�3

�2�
= ρ21σ2y

�
1+ ρ21 � 2ρ21ρ2

�
If (φ1, φ2) = (0.1, 0.8) , then ρ1 = 0.5 and ρ2 = 0.85 and

MSFR1,2 = 0.19σ2y > MSFR1,3 = 0.16σ2y .

This is further evidence of model misspeci�cation in this example.
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Regression-based tests of forecast rationality
We also consider Mincer-Zarnowitz forecast rationality regressions:

Yt = αh + βhŶt jt�h + vt jt�h . (1)

Corollary (5)
Under the assumptions of Theorem 1 and S1, the population values of the
parameters in the Mincer-Zarnowitz regression in equation (1) satisfy

Hh0 : αh = 0\ βh = 1, for each horizon h.

One approach, adopted in Capistrán (2007) is to run MZ regressions for each
horizon, and then use Bonferroni bounds to obtain a joint test:

1 Obtain the p-values from a chi-squared test (with 2 degrees of freedom) of the
above null for each horizon

2 Reject rationality if the minimum p-value across all H tests is less than the
desired size divided by H , α/H .

This approach is often quite conservative.



Vector MZ tests

Stack the individual MZ regressions into a system and estimate them jointly:264 Yt+1
...

Yt+H

375 =

264 α1
...

αH

375+
264 β1 � � � 0

...
. . .

...
0 � � � βH

375
264 Ŷt+1jt

...
Ŷt+H jt

375+
264 u1t+1

...
uHt+H

375
H0 : α1 = ... = αH = 0\ β1 = ... = βH = 1

H1 : α1 6= 0[ ...[ αH 6= 0[ β1 6= 1[ ...[ βH 6= 1

The vector residual of this regression will, even under the null of rationality,
exhibit some autocorrelation (and possibly heteroskedasticity) and so robust
standard errors must be obtained.



A univariate optimal revision test

Combining the MZ regression approach with the representation of a
short-horizon forecast as a function of a long-horizon forecast and the
intervening forecast revisions suggests a test of forecast rationality:

Yt = α+ βH Ŷt jt�hH +
H�1
∑
j=1

βjdt jhj ,hj+1 + ut . (2)

Corollary
Under the assumptions of Theorem 1 and S1, the population values of the
parameters in the optimal revision regression in equation (2) satisfy

H0 : α = 0\ β1 = ... = βH = 1.



Regression-based tests w/o the target variable

Ŷt jt�1 = α̃h + β̃hŶt jt�h + ũt jt�h (3)

Ŷt jt�h1 = α̃+ β̃H Ŷt jt�hH +
H�1
∑
j=2

β̃jdt jhj ,hj+1 + vt , (4)

Corollary
Under the assumptions of Theorem 1 and S1, the population values of the
parameters in (a) Mincer-Zarnowitz regression by proxy in equation (3) satisfy

Hh0 : α̃h = 0\ β̃h = 1, for each horizon h > h1,

and (b) the population values of the parameters in the optimal revision regression
by proxy, in equation (4) satisfy

H0 : α̃ = 0\ β̃2 = ... = β̃H = 1.



Extensions of the main results

We now present two extensions of the main results:

1 Heterogeneity in the data

2 Heterogeneity in the forecast horizons

The �rst of these extensions is motivated by empirical evidence of structural
breaks in the variance of some macroeconomic series (eg, the Great
Moderation)

The second is more practical: sometimes we need to aggregate forecasts into
�buckets�of short and long horizons rather than treat all unique horizons
separately.



Allowing for heterogeneity in the data

By optimality, we have

Et

��
Yt+h � Ŷ �t+hjt

�2�
� Et

��
Yt+h � Ŷ �t+hjt�j

�2�
for j > 0

so E
��
Yt+h � Ŷ �t+hjt

�2�
� E

��
Yt+h � Ŷ �t+hjt�j

�2�
by the LIE

Under stationarity this implies

E
��
Yt+h � Ŷ �t+hjt

�2�
� E

��
Yt+h+j � Ŷ �t+h+j jt

�2�
But if we use a �xed event framework we do not need stationarity, and we
focus on the second line above

That is, keep the target variable (Yt+h) �xed, and vary the horizon of the
forecast (from t � j to t).



Allowing for heterogeneity in the data, cont�d

De�ne the following variables

MSET (h) � 1
T

T

∑
t=1

MSEt (h) , where MSEt (h) � E
��
Yt � Ŷ �t jt�h

�2�

MSFT (h) � 1
T

T

∑
t=1

MSFt (h) , where MSFt (h) � E
h
Ŷ �2t jt�h

i
,

CT (h) � 1
T

T

∑
t=1

Ct (h) , where Ct (h) � E
h
Ŷ �t jt�hYt

i
MSFRT (hS , hL) � 1

T

T

∑
t=1

MSFRt (hS , hL) , MSFRt (hS , hL) � E
h
d2t jhS ,hL

i
BT (h) � 1

T

T

∑
t=1

Bt (h) , where Bt (hS , hL) � E
h
Ytdt jhS ,hL

i



Allowing for heterogeneity in the data

Proposition
Under the assumptions of Theorem 1, the following bounds hold for any
hS < hM < hL :

(a) MSET (hS ) � MSET (hL)

(b) MSFT (hS ) � MSFT (hL)

(c) CT (hS ) � CT (hL)

(d) MSFRT (hS , hM ) � MSFRT (hS , hL)

(e) MSFRT (hS , hL) � 2BT (hS , hL)



Allowing for heterogeneity in the data: discussion

Allowing for heterogeneity in the data need not a¤ect the bounds obtained
under the assumption of stationarity:

Rather than holding for the (unique) unconditional expectation, under data
heterogeneity they hold for the unconditional expectation at each point in
time,

And for the average of these across the sample.

The bounds for averages of unconditional moments presented above can be
tested by drawing on a central limit theorem for heterogeneous, serially
dependent processes, see, e.g., Wooldridge and White (1988) and White
(2001):



Tests under data heterogeneity (brief)

Proposition
De�ne

dMSEjt �
�
Yt � Ŷ �t jt�hj

�2
�
�
Yt � Ŷ �t jt�hj�1

�2
, for j = 2, ...,H

dMSFjt � Ŷ �2t jt�hj � Ŷ
�2
t jt�hj�1 , for j = 2, ...,H

...

dkt �
h
dkqt , ..., d

k
Ht

i0
, ∆̂kT �

1
T

T

∑
t=1

dk 0t , VT � V
"
1p
T

T

∑
t=1

dk 0t

#
,

where k 2 fMSE ,MSF ,C ,MSFR,B). Assume: (i) dkt = ∆k+εkt , for
t = 1, 2, ..., ∆ 2 RH�1; (ii) εkt is strong mixing of size �r/ (r � 2) , r > 2; (iii)
E
h
εkt

i
= 0 for t = 1, 2, ...T ; (iv) E

h���εkit ���r i < C < ∞ for i = 1, 2, ...,H � 1; (v)
V kT is uniformly positive de�nite. Then:�

V̂ kT
��1/2p

T
�

∆̂kT � ∆k
�
) N (0, I ) as T ! ∞.



Allowing for heterogeneous forecast horizons

Some economic data sets contain forecasts that have a wide variety of
horizons, which the researcher may prefer to aggregate into a smaller set of
forecasts.

Eg, the Greenbook forecasts we study in our empirical application are recorded
at irregular times within a given quarter, so that the forecast labeled as a
one-quarter horizon forecast, for example, may actually have a horizon of one,
two or three months.

Given limited time series observations it may not be desirable to attempt to
study all possible horizons, ranging from zero to 15 months.

Instead, we may wish to aggregate these into forecasts of hS 2 f1, 2, 3g ,
hL 2 f4, 5, 6g , etc.

The proposition below shows that the inequality results established in the
previous sections also apply to forecasts with hetergeneous horizons.

The key to this proposition is that any �short� horizon forecast must have a
corresponding �long� horizon forecast.



Allowing for heterogeneous forecast horizons

Proposition

Consider a data set of the form f(Yt , Ŷ �t jt�ht , Ŷ
�
t jt�ht�kt )g

T
t=1, where kt > 0 8 t.

Let the assumptions of Theorem 1 and S1 hold.
(a) If (ht , kt ) are realizations from some stationary random variable and e�t jt�hj
and e�t jt�hj�ki are independent of 1

�
ht = hj

	
and 1 fkt = kig, then:

MSES � E
��
Yt � Ŷ �t jt�ht

�2�
� E

��
Yt � Ŷ �t jt�ht�kt

�2�
� MSEL

(b) If fht , ktg is a sequence of pre-determined values, then:

MSES ,T � 1
T

T

∑
t=1

E
��
Yt � Ŷ �t jt�ht

�2�

� 1
T

T

∑
t=1

E
��
Yt � Ŷ �t jt�ht�kt

�2�
� MSEL,T
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Simulation design: DGP and Optimal forecasts

Simple AR(1) is the DGP:

Yt = µy + φ
�
Yt�1 � µy

�
+ εt , t = 1, 2, ...,T = 100

with εt s iid N
�
0, σ2ε

�
Calibrate the parameters to quarterly US CPI in�ation data:

φ = 0.5, σ2y = 0.5, µy = 0.75

Optimal forecasts are the conditional expectation:

Ŷ �t jt�h = Et�h [Yt ]

= µy + φh
�
Yt�h � µy

�
, for h = 1, 2, ...,H

H 2 f 4 , 8 g



Simulation design: Measurement error

The measured value of the target variable is assumed to be subject to error:

Ỹt = Yt + ηt

with ηt s iid N
�
0, σ2η

�

Magnitude of the measurement error:

1 zero (as for CPI)

2 medium (as for GDP growth �rst release)

3 high (twice the medium value):

σ2η/σ2y 2 f 0 , 0.70 , 1.40 g

The �medium�value is calibrated to match US GDP growth data, as
reported by Faust, Rogers and Wright (2005, JMCB).



Simulation design: Sub-optimal forecasts

1 Forecasts subject to equal noise at all horizons:

Ŷt jt�h = Ŷ �t jt�h + σξ,hZt ,t�h , where Zt ,t�h s iid N (0, 1)

σξ,h =
p
0.70σy 8 h

2 Forecasts subject to noise increasing in the horizon:

σξ,h =
2 (h� 1)
H � 1 �

p
0.70σy , for h = 1, 2, ...,H



Simulation results: Size of inequality-based tests
Finite-sample size is lower than nominal size of 10%

H = 4 H = 8
Meas. error variance: High Med Zero High Med Zero

Inc MSE 3.0 1.5 1.0 6.3 5.2 5.2
Dec COV 1.1 0.9 0.8 5.0 4.7 4.4
COV bound 1.8 1.4 1.2 0.0 0.0 0.0

Dec MSF 2.0 2.0 2.0 0.7 0.7 0.7
Inc MSFR 0.1 0.1 0.1 4.4 4.4 4.4
Dec COV, with proxy 1.2 1.2 1.2 6.0 6.0 6.0
COV bound, with proxy 3.8 3.8 3.8 0.0 0.0 0.0



Simulation results: Size of regression-based tests
MZ-Bonf is over-sized, Vector MZ does terribly, MZ-revisions do nicely.

H = 4 H = 8
Meas. error variance: High Med Zero High Med Zero

MZ on short horizon 10.8 11.9 13.6 10.8 11.9 13.6

Opt. rev reg. 10.2 9.7 9.8 11.5 10.2 9.4
Opt. rev reg., with proxy 10.8 10.8 10.8 9.5 9.5 9.5

Univar MZ, Bonf 12.5 12.9 18.2 18.4 19.1 22.4
Univar MZ, Bonf, with proxy 17.8 17.8 17.8 20.8 20.8 20.8
Vector MZ 33.2 31.5 28.9 92.2 89.9 83.5
Vector MZ, with proxy 20.7 20.7 20.7 68.6 68.6 68.6



Simulation results: Power against equal noise across h

H = 4 H = 8
Meas. error variance: High Med Zero High Med Zero

Inc MSE 7.1 6.5 5.0 15.8 14.4 13.2
Dec COV 6.0 5.1 4.9 14.9 13.8 13.0
COV bound 72.4 78.0 82.5 73.5 78.9 84.0
Dec MSF 6.0 6.0 6.0 18.2 18.2 18.2
Inc MSFR 8.1 8.1 8.1 16.7 16.7 16.7
Dec COV, with proxy 8.4 8.4 8.4 15.5 15.5 15.5
COV bound, with proxy 98.5 98.5 98.5 99.2 99.2 99.2
MZ on short horizon 92.6 98.0 100.0 92.6 98.0 100.0
Opt. revision regr. 84.4 94.0 99.6 73.9 88.0 99.0
Opt. revision regr., proxy 100.0 100.0 100.0 100.0 100.0 100.0
Bonf, using actuals 68.4 83.8 97.7 67.3 79.3 95.4
Bonf, using forecasts only 100.0 100.0 100.0 100.0 100.0 100.0
Bonf, all tests 100.0 100.0 100.0 100.0 100.0 100.0



Simulation results: Power against noise increasing in h

H = 4 H = 8
Meas. error variance: High Med Zero High Med Zero

Inc MSE 0.5 0.2 0.1 0.1 0.4 0.1
Dec COV 3.4 3.4 4.0 12.1 11.2 12.5
COV bound 13.3 14.6 16.0 89.1 91.6 96.0
Dec MSF 45.2 45.2 45.2 100.0 100.0 100.0
Inc MSFR 0.0 0.0 0.0 0.0 0.0 0.0
Dec COV, with proxy 5.0 5.0 5.0 13.9 13.9 13.9
COV bound, with proxy 72.7 72.7 72.7 100.0 100.0 100.0
MZ on short horizon 10.8 11.9 13.6 10.8 11.9 13.6
Opt. revision regr. 9.0 8.6 11.0 9.3 9.9 11.6
Opt. revision regr., proxy 66.1 66.1 66.1 53.9 53.9 53.9
Bonf, using actuals 12.7 12.2 12.8 99.4 99.4 99.5
Bonf, using forecasts only 63.9 63.9 63.9 100.0 100.0 100.0
Bonf, all tests 52.3 52.1 52.0 100.0 100.0 100.0
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Evaluating the rationality of the �Greenbook� forecasts

We study the Fed�s �Greenbook� forecasts of the GDP growth, GDP de�ator
and CPI in�ation.

Data are quarterly, over the period 1982Q1 to 2000Q4, approx. 80
observations

Data are from Faust and Wright (2009), who constructed the Greenbook
forecasts and actuals from real-time Fed publications. We have aligned these
in �event time� to �t the structure assumed by our theory.

We have 6 forecast horizons: h = 0, 1, 2, 3, 4, 5



Increasing MSE and decreasing MSF
Greenbook forecasts of GDP de�ator, 1982Q1-2000Q4

­5 ­4 ­3 ­2 ­1 0
0

0.5

1

1.5

2

2.5

3

3.5

4
Forecasts and forecast errors, GDP deflator

Forecast horizon

V
ar

ia
nc

e

MSE
V[forecast]
V[actual]



Increasing MSE and decreasing MSF
Greenbook forecasts of GDP growth, 1982Q1-2000Q4
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Increasing MSE and decreasing MSF
Greenbook forecasts of CPI in�ation, 1982Q1-2000Q4
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Increasing MSFR and decreasing Cov[yhat,y]
Greenbook forecasts, 1982Q1-2000Q4
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P-values from tests of multi-horizon forecast rationality

# Series: Growth De�ator CPI

1 Inc MSE 0.591 0.966 0.639
2 Dec COV 0.879 0.057� 0.991
3 COV bound 0.560 0.000� 0.009�

4 Dec MSF 0.916 0.026� 0.719
5 Inc MSFR 0.089� 0.938 0.620
6 Dec COV, with proxy 0.807 0.075� 0.772
7 COV bound, with proxy 0.206 0.010� 0.656
8 MZ on short horizon 0.245 0.313 0.699
9 Opt. rev regr. 0.709 0.000� 0.001�

10 Opt. rev regr., with proxy 0.000� 0.009� 0.022�

11 Bonf, using actuals 1.000 0.000� 0.004�

12 Bonf, using forecasts only 0.000� 0.047� 0.108
13 Bonf, all tests 0.000� 0.001� 0.010�



Interpretation of the test results

Growth: We �nd a strong rejection of internal consistency via the �Optimal
revision� test, and a mild violation of the increasing mean-squared forecast
revision test.

GDP de�ator: We �nd many violations, of decreasing covariance, the
covariance bound on forecast revisions, decreasing mean-squared forecast,
and through the optimal revision regressions.

CPI in�ation: We �nd a violation of the bound on the variance of the
revisions, and a rejection through the optimal revision regressions

Overall: In all cases the Bonferroni-based combination test rejects
multi-horizon forecast rationality at the 0.05 level. The sources of the
rejections give some clues as to possible sources of sub-optimality.



Summary and conclusions
We propose new tests of forecast rationality exploiting information from
multi-horizon forecasts

Forecast rationality implies bounds on second moments across forecast
horizons

Can be tested via tests of moment inequalities

Some of these bounds can be tested without data on the target variable

Bounds hold in the presence of heterogeneous data and heterogeneous horizons

Simulation results indicate that the new tests are somewhat conservative, but
retain power in scenarios where extant tests are weak

Applying the new tests to the Fed�s Greenbook forecasts, we �nd evidence
against rationality for all three variables

Forecasts of the GDP de�ator seem particularly bad

Forecasts of growth do not reject rationality when data on the �actual� is
used, but tests using only data on the forecasts do reject
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