Dynamic semiparametric models for expected shortfall (and Value-at-Risk)

Andrew J. Pattona,∗, Johanna F. Ziegelb, Rui Chena

aDuke University, United States
bUniversity of Bern, Switzerland

\textbf{A B S T R A C T}

Expected Shortfall (ES) is the average return on a risky asset conditional on the return being below some quantile of its distribution, namely its Value-at-Risk (VaR). The Basel III Accord, which will be implemented in the years leading up to 2019, places new attention on ES, but unlike VaR, there is little existing work on modeling ES. We use recent results from statistical decision theory to overcome the problem of “elicitability” for ES by jointly modeling ES and VaR, and propose new dynamic models for these risk measures. We provide estimation and inference methods for the proposed models, and confirm via simulation studies that the methods have good finite-sample properties. We apply these models to daily returns on four international equity indices, and find the proposed new ES–VaR models outperform forecasts based on GARCH or rolling window models.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The financial crisis of 2007–08 and its aftermath led to numerous changes in financial market regulation and banking supervision. One important change appears in the Third Basel Accord (Basel Committee, 2010), where new emphasis is placed on “Expected Shortfall” (ES) as a measure of risk, complementing, and in parts substituting, the more-familiar Value-at-Risk (VaR) measure. Expected Shortfall is the expected return on an asset conditional on the return being below a given quantile of its distribution, namely its VaR. That is, if \(Y_t \) is the return on some asset over some horizon (e.g., one day or one week) with conditional (on information set \(\mathcal{F}_{t-1} \)) distribution \(F_t \), which we assume to be strictly increasing with finite mean, the \(\alpha \)-level VaR and ES are:

\[
ES_t = \mathbb{E}[Y_t | Y_t \leq \text{VaR}_t, \mathcal{F}_{t-1}]
\]

For helpful comments we thank Tim Bollerslev, Timo Dimitriadis, Rob Engle, Tobias Fissler, Jia Li, Nour Meddahi, and seminar participants at the Bank of Japan, Cambridge University, Deutsche Bundesbank, Duke University, EPFL, Federal Reserve Bank of New York, Hitotsubashi University, New York University, Toulouse School of Economics, University of Illinois-Urbana Champaign, University of Southern California, University of Tennessee, University of Western Ontario, the 2017 EC2 conference in Amsterdam, and the 2015 Oberwolfach Workshop on Quantitative Risk Management where this project started. The first author would particularly like to thank the finance department at NYU Stern, where much of his work on this paper was completed. A MATLAB toolbox for this article is available at www.econ.duke.edu/~ap172/research.html.

∗ Correspondence to: Department of Economics, Duke University, 213 Social Sciences Building, Box 90097, Durham, NC 27708-0097, United States.

E-mail address: andrew.patton@duke.edu (A.J. Patton).

https://doi.org/10.1016/j.jeconom.2018.10.008
0304-4076/© 2019 Elsevier B.V. All rights reserved.
where $\text{VaR}_t = F^{-1}_t(\alpha)$, for $\alpha \in (0, 1)$ (2)

and $Y_t | F_{t-1} \sim F_t$ (3)

As Basel III is implemented worldwide (implementation is expected to occur in the period leading up to January 1st, 2019), ES will inevitably gain, and require, increasing attention from risk managers and banking supervisors and regulators. The new “market discipline” aspects of Basel III mean that ES and VaR will be regularly disclosed by banks, and so a knowledge of these measures will also likely be of interest to these banks’ investors and counter-parties.

There is, however, a paucity of empirical models for expected shortfall. The large literature on volatility models (see Andersen et al. (2006) for a review) and VaR models (see Komunjer (2013) and McNeil et al. (2015)), have provided many useful models for these measures of risk. However, while ES has long been known to be a “coherent” measure of risk (Artzner et al., 1999), in contrast with VaR, the literature contains relatively few models for ES; some exceptions are discussed below. This dearth is perhaps in part because regulatory interest in this risk measure is only recent, and may also be due to the fact that this measure is not “elicitable.” A risk measure (or statistical functional more generally) is said to be “elicitable” if there exists a loss function such that the risk measure is the solution to minimizing the expected loss. For example, the mean is elicitable using the quadratic loss function, and VaR is elicitable using the piecewise-linear or “tick” loss function. Having such a loss function is a stepping stone to building dynamic models for these quantities. We use recent results from Fissler and Ziegel (2016), who show that ES is jointly elicitable with VaR, to build new dynamic models for ES and VaR.

This paper makes three main contributions. Firstly, we present some novel dynamic models for ES and VaR, drawing on the GAS framework of Creal et al. (2013), as well as successful models from the volatility literature, see Andersen et al. (2006). The models we propose are semiparametric in that they impose parametric structures for the dynamics of ES and VaR, but are completely agnostic about the conditional distribution of returns (aside from regularity conditions required for estimation and inference). The models proposed in this paper are related to the class of “CAViaR” models proposed by Engle and Manganelli (2004a), in that we directly parameterize the measure(s) of risk that are of interest, and avoid the need to specify a conditional distribution for returns. The models we consider make estimation and prediction fast and simple to implement. Our semiparametric approach eliminates the need to specify and estimate a conditional density, thereby removing the possibility that such a model is misspecified, though at a cost of a loss of efficiency compared with a correctly specified density model.

Our second contribution is asymptotic theory for a general class of dynamic semiparametric models for ES and VaR. This theory is an extension of results for VaR presented in Weiss (1991) and Engle and Manganelli (2004a), and draws on identification results in Fissler and Ziegel (2016) and results for M-estimators in Newey and McFadden (1994). We present conditions under which the estimated parameters of the VaR and ES models are consistent and asymptotically normal, and we present a consistent estimator of the asymptotic covariance matrix. We show via an extensive Monte Carlo study that the asymptotic results provide reasonable approximations in realistic simulation designs. In addition to being useful for the new models we propose, the asymptotic theory we present provides a general framework for other researchers to develop, estimate, and evaluate new models for VaR and ES.

Our third contribution is an extensive application of our new models and estimation methods in an out-of-sample analysis of forecasts of ES and VaR for four international equity indices over the period January 1990 to December 2016. We compare these new models with existing methods from the literature across a range of tail probability values (α) used in risk management. We use Diebold and Mariano (1995) tests to identify the best-performing models for ES and VaR, and we present simple regression-based methods, related to those of Engle and Manganelli (2004a) and Nolde and Ziegel (2017), to “backtest” the ES forecasts.

Some work on expected shortfall estimation and prediction has appeared in the literature, overcoming the problem of elicitation in different ways: Engle and Manganelli (2004b) discuss using extreme value theory, combined with GARCH or CAViaR dynamics, to obtain forecasts of ES. Cai and Wang (2008) propose estimating VaR and ES based on nonparametric conditional distributions, while Taylor (2008) and Gschlöpf et al. (2015) estimate models for “expectiles” (Newey and Powell, 1987) and map these to ES. Zhu and Galbraith (2011) propose using flexible parametric distributions for the standardized residuals from models for the conditional mean and variance. Drawing on Fissler and Ziegel (2016), we overcome the problem of elicibility more directly, and open up new directions for ES modeling and prediction.

In recent independent work, Taylor (2019) proposes using the asymmetric Laplace distribution to jointly estimate dynamic models for VaR and ES. He shows the intriguing result that the negative log-likelihood of this distribution corresponds to one of the loss functions presented in Fissler and Ziegel (2016), and thus can be used to estimate and evaluate such models. Unlike our paper, Taylor (2019) provides no asymptotic theory for his proposed estimation method, nor any simulation studies of its reliability. However, given the link he presents, the theoretical results we present below can be used to justify ex post the methods of his paper.

The remainder of the paper is structured as follows. In Section 2 we present new dynamic semiparametric models for ES and VaR and compare them with the main existing models for ES and VaR. In Section 3 we present asymptotic distribution theory for a generic dynamic semiparametric model for ES and VaR, and in Section 4 we study the finite-sample properties of the estimators in some realistic Monte Carlo designs. In Section 5 we apply the new models to daily data on four international equity indices, and compare these models both in-sample and out-of-sample with existing models. Section 6 concludes. Proofs and additional technical details are presented in the appendix, and a supplemental web appendix contains detailed proofs and additional analyses.
2. Dynamic models for ES and VaR

In this section we propose some new dynamic models for expected shortfall (ES) and Value-at-Risk (VaR). We do so by exploiting recent work in Fissler and Ziegel (2016) which shows that these variables are elicitable jointly, despite the fact that ES was known to be not elicitable on its own, see Gneiting (2011). The models we propose are based on the GAS framework of Creal et al. (2013) and Harvey (2013), which we briefly review in Section 2.2.

2.1. A consistent scoring rule for ES and VaR

Fissler and Ziegel (2016) show that the following class of loss functions (or “scoring rules”), indexed by the functions \(G_1 \) and \(G_2 \), is consistent for VaR and ES. That is, minimizing the expected loss using any of these loss functions returns the true VaR and ES. In the functions below, we use the notation \(v \) and \(e \) for VaR and ES.

\[
L_{IZ}(Y, v; \alpha, G_1, G_2) = (1[Y \leq v] - \alpha) \left(G_1(v) - G_1(Y) + \frac{1}{\alpha} G_2(e) \right) - G_2(e) \left(\frac{1}{\alpha} [Y \leq v] Y - e \right) - G_2(e) \tag{4}
\]

where \(G_1 \) is weakly increasing, \(G_2 \) is strictly increasing and strictly positive, and \(G_2' = G_2 \). We will refer to the above class as “FZ loss functions”.\(^1\) Minimizing any member of this class yields VaR and ES:

\[
(V\text{aR}_t, E\text{S}_t) = \arg \min_{(v,e)} \mathbb{E}_{t-1} [L_{IZ}(Y_t, v; \alpha, G_1, G_2)] \tag{5}
\]

Using the FZ loss function for estimation and forecast evaluation requires choosing \(G_1 \) and \(G_2 \). To do so, first define \(\Delta L(Y_t, v_{1t}, e_{1t}, v_{2t}, e_{2t}) \equiv L(Y_t, v_{1t}, e_{1t}) - L(Y_t, v_{2t}, e_{2t}) \) as the loss difference for two forecasts \((v_{1t}, e_{1t}), (v_{2t}, e_{2t}) \). We choose \(G_1 \) and \(G_2 \) so that the loss function generates \(\Delta L \) that is homogeneous of degree zero, a property that has been shown in volatility forecasting applications to lead to higher power in Diebold and Mariano (1995) tests, see Patton and Sheppard (2009). Nolde and Ziegel (2017) show that there does not generally exist an FZ loss function that generates loss differences that are homogeneous of degree zero, however, we show in Proposition 1 that zero-degree homogeneity may be attained by exploiting the fact that, for the values of \(\alpha \) that are of interest in risk management applications (namely, values ranging from around 0.01 to 0.10), we may assume that \(E\text{S}_t < 0 \) a.s. \(\forall t \). Proposition 1 shows that if we further impose that \(\text{VaR}_t < 0 \) a.s. \(\forall t \), then, up to irrelevant location and scale factors, there is only one FZ loss function that generates loss differences that are homogeneous of degree zero.\(^2\) The uniqueness of the loss function defined in Proposition 1 means, of course, that it also has the added benefit of there being no remaining shape or tuning parameters to be specified.

Proposition 1. Define the FZ loss difference for two forecasts \((v_{1t}, e_{1t}) \) and \((v_{2t}, e_{2t}) \) as \(L_{IZ}(Y_t, v_{1t}, e_{1t}; \alpha, G_1, G_2) - L_{IZ}(Y_t, v_{2t}, e_{2t}; \alpha, G_1, G_2) \). Under the assumption that VaR and ES are both strictly negative, the loss differences generated by a FZ loss function are homogeneous of degree zero iff \(G_1(x) = 0 \) and \(G_2(x) = -1/x \). The resulting “FZO” loss function is:

\[
L_{IFZ}(Y, v; \alpha) = -\frac{1}{\alpha e} [Y \leq v] (v - Y) + \frac{v}{e} + \log (-e) - 1 \tag{6}
\]

All proofs are presented in Appendix A. In Fig. 1 we plot \(L_{IFZ} \) when \(Y = -1 \). In the left panel we fix \(e = -2.06 \) and vary \(v \), and in the right panel we fix \(v = -1.64 \) and vary \(e \). (These values for \((v, e) \) are the \(\alpha = 0.05 \) VaR and ES from a standard Normal distribution.) The left panel shows that the implied VaR loss function resembles the “tick” loss function from quantile estimation, see Komunjer (2005) for example. In the right panel we see that the implied ES loss function resembles the “QLIKE” loss function from volatility forecasting, see Patton (2011) for example. In both panels, values of \((v, e) \) where \(v < e \) are presented with a dashed line, as by definition \(E\text{S}_t \) is below \(\text{VaR}_t \), and so such values that would never be considered in practice. In Fig. 2 we plot the contours of expected FZO loss for a standard Normal random variable. The minimum value, which is attained when \((v, e) = (-1.64, -2.06) \) is marked with a star, and we see that the “iso-expected loss” contours (that is, the level sets) of the expected loss function are boundaries of convex sets. Fissler (2017) shows that convexity of sublevel sets holds more generally for the FZO loss function under any distribution with finite first moments, unique \(\alpha \) quantiles, continuous densities, and negative ES.

With the FZO loss function in hand, it is then possible to consider semiparametric dynamic models for ES and VaR:

\[
(V\text{aR}_t, E\text{S}_t) = (v(Z_{t-1}; \theta), e(Z_{t-1}; \theta)) \tag{7}
\]

\(^1\) Consistency of the FZ loss function for VaR and ES also requires imposing that \(e \leq v \), which follows naturally from the definitions of ES and VaR in Eqs. (1) and (2). We discuss how we impose this restriction empirically in Sections 4 and 5.

\(^2\) If \(\text{VaR} \) can be positive, then there is one free shape parameter in the class of zero-homogeneous FZ loss functions \((\phi_1, \phi_2) \), in the notation of the proof of Proposition 1. In that case, our use of the loss function in Eq. (6) can be interpreted as setting that shape parameter to zero. This shape parameter does not affect the consistency of the loss function, as it is a member of the FZ class, but it may affect the ranking of misspecified models, see Patton (2018).
Fig. 1. This figure plots the FZ0 loss function when $Y = -1$ and $\alpha = 0.05$. In the left panel we fix $\epsilon = -2.06$ and vary ν, in the right panel we fix $\nu = -1.64$ and vary ϵ. Values where $\nu < \epsilon$ are indicated with a dashed line.

Fig. 2. Contours of expected FZ0 loss when the target variable is standard Normal. Only values where $\text{ES} < \text{VaR} < 0$ are considered. The optimal value is marked with a star.

that is, where the true VaR and ES are some specified parametric functions of elements of the information set, $Z_{t-1} \in \mathcal{F}_{t-1}$.

The parameters of this model are estimated via:

$$\hat{\theta}_T = \arg\min_{\theta} \frac{1}{T} \sum_{t=1}^{T} L_{FZ0}(Y_t, \nu(Z_{t-1}; \theta), \epsilon(Z_{t-1}; \theta); \alpha).$$

Such models impose a parametric structure on the dynamics of VaR and ES, through their relationship with lagged information, but require no assumptions, beyond regularity conditions, on the conditional distribution of returns. In this sense, these models are semiparametric. Using theory for M-estimators (see White (1994) and Newey and McFadden (1994) for example) we establish in Section 3 the asymptotic properties of such estimators. Before doing so, we first consider some new dynamic specifications for ES and VaR.
2.2. A GAS model for ES and VaR

One of the challenges in specifying a dynamic model for a risk measure, or any other quantity of interest, is the mapping from lagged information to the current value of the variable. Our first proposed specification for ES and VaR draws on the work of Creal et al. (2013) and Harvey (2013), who proposed a general class of models called “generalized autoregressive score” (GAS) models by the former authors, and “dynamic conditional score” models by the latter author. In both cases
the models start from an assumption that the target variable has some parametric conditional distribution, where the parameter (vector) of that distribution follows a GARCH-like equation. The forcing variable in the model is the lagged score of the log-likelihood, scaled by some positive definite matrix, a common choice for which is the inverse Hessian. This specification nests many well known models, including ARMA, GARCH (Bollerslev, 1986) and ACD (Engle and Russell, 1998) models. See Koopman et al. (2016) for an overview of GAS and related models.

We adopt this modeling approach and apply it to our M-estimation problem. In this application, the forcing variable is a function of the derivative and Hessian of the L_{FZ} loss function rather than a log-likelihood. We will consider the following GAS(1,1) model for ES and VaR:

$$
\begin{bmatrix}
 v_{t+1} \\
 e_{t+1}
\end{bmatrix}
= \mathbf{w} + \mathbf{B} \begin{bmatrix}
 v_t \\
 e_t
\end{bmatrix}
+ \mathbf{A} \mathbf{H}_t^{-1} \nabla_t
$$

(9)

where \mathbf{w} is a (2×1) vector and \mathbf{B} and \mathbf{A} are (2×2) matrices. The forcing variable in this specification is comprised of two components, \mathbf{H}_t and ∇_t. Using details provided in Appendix B.1, the latter can be shown to be:

$$
\nabla_t = \begin{bmatrix}
 \partial L_{FZ} (Y_t, v_t, e_t; \alpha) / \partial v_t \\
 \partial L_{FZ} (Y_t, v_t, e_t; \alpha) / \partial e_t
\end{bmatrix} = \begin{bmatrix}
 \frac{1}{\alpha} \lambda_{v,t} \\
 \lambda_{e,t}
\end{bmatrix}
$$

(10)

where

$$
\lambda_{v,t} = -v_t (1 \{Y_t \leq v_t\} - \alpha)
$$

(11)

$$
\lambda_{e,t} = \frac{1}{\alpha} 1 \{Y_t \leq v_t\} Y_t - e_t
$$

(12)

Note that the expression given for $\partial L_{FZ} / \partial v_t$ only holds for $Y_t \neq v_t$. As we assume that Y_t is continuously distributed, this holds with probability one. The scaling matrix, \mathbf{H}_t, is related to the Hessian:

$$
\mathbf{H}_t = \begin{bmatrix}
 \frac{\partial^2 E_{t-1} [L_{FZ} (Y_t, v_t, e_t; \alpha) \mid \mathcal{F}_{t-1}]}{\partial v_t^2} & \frac{\partial^2 E_{t-1} [L_{FZ} (Y_t, v_t, e_t; \alpha) \mid \mathcal{F}_{t-1}]}{\partial v_t \partial e_t} \\
 \frac{\partial^2 E_{t-1} [L_{FZ} (Y_t, v_t, e_t; \alpha) \mid \mathcal{F}_{t-1}]}{\partial v_t \partial e_t} & \frac{\partial^2 E_{t-1} [L_{FZ} (Y_t, v_t, e_t; \alpha) \mid \mathcal{F}_{t-1}]}{\partial e_t^2}
\end{bmatrix}
$$

(13)

The second equality above exploits the fact that $\partial^2 E_{t-1} [L_{FZ} (Y_t, v_t, e_t; \alpha) \mid \mathcal{F}_{t-1}] / \partial v_t \partial e_t = 0$ under the assumption that the dynamics for VaR and ES are correctly specified. The first element of the matrix \mathbf{I}_t depends on the unknown conditional density of Y_t. We would like to avoid estimating this density, and we approximate the term $f_t (v_t)$ as being proportional to v_t^{-1}. This approximation holds exactly if Y_t is a zero-mean location-scale random variable, $Y_t = \sigma_t \eta_t$, where $\eta_t \sim iid F_\eta (0, 1)$, as in that case we have:

$$
f_t (v_t) = f_t (\sigma_t \eta_t) = \frac{1}{\sigma_t} f_\eta (v_t) \equiv k_\sigma \frac{1}{v_t}
$$

(14)

where $k_\sigma \equiv v_0 f_\eta (v_0)$ is a constant with the same sign as v_t. We define \mathbf{H}_t to equal \mathbf{I}_t with the first element replaced using the approximation in the above equation. The forcing variable in our GAS model for VaR and ES then becomes:

$$
\mathbf{H}_t^{-1} \nabla_t = \begin{bmatrix}
 \frac{1}{\alpha} \lambda_{v,t} \\
 \lambda_{e,t}
\end{bmatrix}
$$

(15)

Notice that the second term in the model is a linear combination of the two elements of the forcing variable, and since the forcing variable is premultiplied by a coefficient matrix, say \mathbf{A}, we can equivalently use

$$
\mathbf{A} \mathbf{H}_t^{-1} \nabla_t = \mathbf{A} \lambda_t
$$

(16)

where $\lambda_t \equiv \left[\lambda_{v,t}, \lambda_{e,t} \right]'$

We choose to work with the $\mathbf{A} \lambda_t$ parameterization, as the two elements of this forcing variable $(\lambda_{v,t}, \lambda_{e,t})$ are not directly correlated, while the elements of $\mathbf{H}_t^{-1} \nabla_t$ are correlated due to the overlapping term $(\lambda_{e,t})$ appearing in both elements. This aids the interpretation of the results of the model without changing its fit.

To gain some intuition for how past returns affect current forecasts of ES and VaR in this model, consider the “news impact curve” of this model, which presents (v_{t+1}, e_{t+1}) as a function of Y_t through its impact on $\lambda_t \equiv \left[\lambda_{v,t}, \lambda_{e,t} \right]'$.

Note that we do not use the fact that the scaling matrix is exactly the inverse Hessian (e.g., by invoking the information matrix equality) in our empirical application or our theoretical analysis. Also, note that if we considered a value of α for which $v_t = 0$, then $v_{t+1} = 0$ and we cannot justify our approximation using this approach. However, we focus on cases where $\alpha \ll 1/2$, and so we are comfortable assuming $v_t \neq 0$, making k_σ invertible.
holding all other variables constant. Fig. 3 shows these two curves for $\alpha = 0.05$, using the estimated parameters for this model when applied to daily returns on the S&P 500 index (details are presented in Section 5). We consider two values for the “current” value of (v, e): 10% above and below the long-run average for these variables. We see that for values where $Y_t > v_t$, the news impact curves are flat, reflecting the fact that on those days the value of the realized return does not enter the forcing variable. When $Y_t \leq v_t$, we see that ES and VaR react linearly to Y and this reaction is through the λ_v, t forcing variable; the reaction through the λ_e, t forcing variable is a simple step (down) in both of these risk measures.

2.3. A one-factor GAS model for ES and VaR

The specification in Section 2.2 allows ES and VaR to evolve as two separate, correlated, processes. In many risk forecasting applications, a useful simpler model is one based on a structure with only one time-varying risk measure, e.g. volatility. We will consider a one-factor model in this section, and will name the model in Section 2.2 a “two-factor” GAS model.

Consider the following one-factor GAS model for ES and VaR, where both risk measures are driven by a single variable, κ_t.

\[
\begin{align*}
\nu_t &= a \exp \{ \kappa_t \} \\
e_t &= b \exp \{ \kappa_t \}, \quad \text{where } b < a < 0 \\
\text{and } \kappa_t &= \omega + \beta \kappa_{t-1} + \gamma H_{t-1} s_{t-1}
\end{align*}
\]

The forcing variable, $H_{t-1}^{-1}s_{t-1}$, in the evolution equation for κ_t is obtained from the FZ0 loss function, plugging in $(a \exp \{ \kappa_t \}, b \exp \{ \kappa_t \})$ for (ν_t, e_t). Using details provided in Appendix B.2, we find that the score and Hessian are:

\[
\begin{align*}
\gamma_t &\equiv \frac{\partial L_{FZ0}(Y_t, a \exp \{ \kappa_t \}, b \exp \{ \kappa_t \}; \alpha)}{\partial \kappa} = -\frac{1}{e_t} \left(\frac{1}{\alpha} \mathbb{1} \{ Y_t \leq v_t \} Y_t - e_t \right) \\
\text{and } l_t &\equiv \frac{\partial^2 L_{FZ0}(Y_t, a \exp \{ \kappa_t \}, b \exp \{ \kappa_t \}; \alpha)}{\partial \kappa^2} = \frac{\alpha - k_a a_d}{\alpha}
\end{align*}
\]

where k_a is a negative constant and a_d lies between zero and one. The Hessian, l_t, turns out to be a constant in this case, and since we estimate a free coefficient on our forcing variable, we can set the scaling matrix, H_t, to any positive constant; we set H_t to one. Note that the VaR score, $\lambda_v, t = \partial L / \partial \nu$, turns out to drop out from the forcing variable. Thus the one-factor GAS model for ES and VaR becomes:

\[
\kappa_t = \omega + \beta \kappa_{t-1} + \gamma \frac{1}{b \exp \{ \kappa_{t-1} \}} \left(\frac{1}{\alpha} \mathbb{1} \{ Y_{t-1} \leq a \exp \{ \kappa_{t-1} \} \} Y_{t-1} - b \exp \{ \kappa_{t-1} \} \right)
\]

We drop the negative sign in s_t so that its coefficient, γ, is positive rather than negative. This change, of course, does not affect the fit of the model. The FZ loss function only identifies (ν_t, e_t), and in the specification in Eq. (17) this implies that ω, a, and b are not separably identifiable: for any constant c, the parameter vectors $(\omega, a, b, \beta, \gamma)$

3. For the interpretation when linking these models to GARCH models in Section 2.5.1.
and \((w + c (1 - \beta) \cdot a \exp \{-c\}, b \exp \{-c\}, \beta, \gamma\) yield identical sequences of \((v_t, e_t)\), and thus identical values of the objective function. Fixing any one of \(\omega, a, or b\) resolves this problem; we set \(\omega = 0\) for simplicity.

Foreshadowing the empirical results in Section 5, we find that this one-factor GAS model outperforms the two-factor GAS model in out-of-sample forecasts for most of the asset return series that we study.

2.4. Existing dynamic models for ES and VaR

As noted in the introduction, there is a relative paucity of dynamic models for ES and VaR, but there is not a complete absence of such models. The simplest existing model is based on a rolling window estimate of these quantities:

\[
\hat{\text{VaR}}_t = \text{Quantile}\{Y_{t|m}^{t-1}\}
\]

\[
\hat{\text{ES}}_t = \frac{1}{m} \sum_{s=t-m}^{t-1} Y_s 1\{Y_s \leq \hat{\text{VaR}}_s\}
\]

where \(\text{Quantile}\{Y_{t|m}^{t-1}\}\) denotes the sample quantile of \(Y_s\) over the period \(s \in [t - m, t - 1]\). Common choices for the window size, \(m\), include 125, 250 and 500, corresponding to six months, one year and two years of daily return observations respectively.

More challenging competitor for the new ES and VaR models proposed in this paper are those based on ARMA–GARCH dynamics for the conditional mean and variance, accompanied by some assumption for the distribution of the standardized residuals. These models all take the form:

\[
Y_t = \mu_t + \sigma_t \eta_t
\]

\[
\eta_t \sim \text{iid } F_{\eta}(0, 1)
\]

where \(\mu_t\) and \(\sigma_t^2\) are specified to follow some ARMA and GARCH model, and \(F_{\eta}(0, 1)\) is some arbitrary, strictly increasing, distribution with mean zero and variance one. What remains is to specify a distribution for the standardized residual, \(\eta_t\). Given a choice for \(F_{\eta}\), VaR and ES forecasts are obtained as:

\[
\nu_t = \mu_t + a \sigma_t, \quad \text{where } a = F_{\eta}^{-1}(\alpha)
\]

\[
e_t = \mu_t + b \sigma_t, \quad \text{where } b = \mathbb{E}\{\eta_t | \eta_t \leq a\}
\]

Two parametric choices for \(F_{\eta}\) are common in the literature:

\[
\eta_t \sim \text{iid } N(0, 1)
\]

\[
\eta_t \sim \text{iid } Skew\ t(0, 1, v, \lambda)
\]

There are various skew \(t\) distributions used in the literature; in the empirical analysis below we use that of Hansen (1994). A nonparametric alternative is to estimate the distribution of \(\eta_t\) using the empirical distribution function (EDF), an approach that is also known as “filtered historical simulation” and one that is perhaps the best existing model for ES, see the survey by Engle and Manganelli (2004b). We consider all of these models in our empirical analysis in Section 5.

2.5. GARCH and ES/VaR estimation

In this section we consider two extensions of the models presented above, in an attempt to combine the success and parsimony of GARCH models with this paper’s focus on ES and VaR forecasting.

2.5.1. Estimating a GARCH model via FZ minimization

If an ARMA–GARCH model, including the specification for the distribution of standardized residuals, is correctly specified for the conditional distribution of an asset return, then maximum likelihood is the most efficient estimation method, and should naturally be adopted. If, on the other hand, we consider an ARMA–GARCH model only as a useful approximation to the true conditional distribution, then it is no longer clear that MLE is optimal. In particular, if the application of the model is to ES and VaR forecasting, then we might be able to improve the fitted ARMA–GARCH model by estimating the parameters of that model via FZ loss minimization, as discussed in Section 2.1. This estimation method is related to one discussed in Remark 1 of Francq and Zakoian (2015).

Consider the following model for asset returns:

\[
Y_t = \sigma_t \eta_t, \quad \eta_t \sim \text{iid } F_{\eta}(0, 1)
\]

\[
\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \gamma Y_{t-1}^2
\]

\footnote{Some authors have also considered modeling the tail of \(F_{\eta}\) using extreme value theory, however for the relatively non-extreme values of \(\alpha\) we consider here, past work (e.g., Engle and Manganelli (2004b), Nolde and Ziegel (2017) and Taylor (2019) has found EVT to perform no better than the EDF, and so we do not include it in our analysis.}
The variable σ_t^2 is the conditional variance and is assumed to follow a GARCH(1,1) process. This model implies a structure analogous to the one-factor GAS model presented in Section 2.3, as we find:

$$
\begin{align*}
 v_t &= a \cdot \sigma_t, \quad \text{where } a = F_{\eta}^{-1}(\alpha) \\
 e_t &= b \cdot \sigma_t, \quad \text{where } b = \mathbb{E}[\eta | \eta] \leq a
\end{align*}
$$

(26)

Some further results on VaR and ES in dynamic location-scale models are presented in Appendix B.3. To apply this model to VaR and ES forecasting, we also have to estimate the VaR and ES of the standardized residual, denoted (a, b). Rather than estimating the parameters of this model using (Q)MLE, we consider here estimating via FZ loss minimization. As in the one-factor GAS model, ω is unidentified and we set it to one, so the parameter vector to be estimated is $(\beta, \gamma, \delta, a, b)$. This estimation approach leads to a fitted GARCH model that is tailored to provide the best-fitting ES and VaR forecasts, rather than the best-fitting volatility forecasts.

2.5.2. A hybrid GAS/GARCH model

Finally, we consider a direct combination of the forcing variable suggested by a GAS structure for a one-factor model of returns, described in Eq. (20), with the successful GARCH model for volatility. We specify:

$$
Y_t = \exp \{ \kappa_t \} \eta_t, \quad \eta_t \sim iid F_{\eta}(0, 1)
$$

(27)

$$
\kappa_t = \omega + \beta \kappa_{t-1} + \gamma \frac{1}{\varepsilon_{t-1}} \left(\frac{1}{\alpha} \mathbb{1}[v_{t-1} \leq v_{t-1}] - v_{t-1} - e_{t-1} - \delta \log |Y_{t-1}| \right)
$$

The variable κ_t is the log-volatility, identified up to scale. As the latent variable in this model is log-volatility, we use the lagged log absolute return rather than the lagged squared return, so that the units remain in line for the evolution equation for κ_t. There are five parameters in this model $(\beta, \gamma, \delta, a, b)$, and we estimate them using FZ loss minimization.

3. Estimation of dynamic models for ES and VaR

This section presents asymptotic theory for the estimation of dynamic ES and VaR models by minimizing FZ loss. Given a sample of observations (Y_1, \ldots, Y_T) and a constant $\alpha \in (0, 0.5)$, we are interested in estimating and forecasting the conditional α quantile (VaR) and corresponding expected shortfall (ES) of Y_t. Suppose Y_t is a real-valued random variable that has, conditional on information set \mathcal{F}_{t-1}, distribution function $F_t(\cdot | \mathcal{F}_{t-1})$ and corresponding density function $f_t(\cdot | \mathcal{F}_{t-1})$. Let $v_t(\theta^0)$ and $e_t(\theta^0)$ be some initial conditions for VaR and ES and let $\mathcal{F}_{t-1} = \sigma(Y_{t-1}, X_{t-1}, \ldots, Y_1, X_1)$, where X_i is a vector of exogenous variables or predetermined variables, be the information set available for forecasting Y_t. The vector of unknown parameters to be estimated is $\theta^0 \in \Theta \subset \mathbb{R}^p$.

The conditional VaR and ES of Y_t at probability level α, that is $\text{VaR}_{\alpha}(Y_t | \mathcal{F}_{t-1})$ and $\text{ES}_{\alpha}(Y_t | \mathcal{F}_{t-1})$, are assumed to follow some dynamic model:

$$
\begin{bmatrix}
 \text{VaR}_{\alpha}(Y_t | \mathcal{F}_{t-1}) \\
 \text{ES}_{\alpha}(Y_t | \mathcal{F}_{t-1})
\end{bmatrix}
= \begin{bmatrix}
 v(Y_{t-1}, X_{t-1}, \ldots, Y_1, X_1; \theta^0) \\
 e(Y_{t-1}, X_{t-1}, \ldots, Y_1, X_1; \theta^0)
\end{bmatrix}, \quad t = 1, \ldots, T.
$$

(28)

The unknown parameters are estimated as:

$$
\hat{\theta}_T = \text{arg min }_{\theta \in \Theta} L_T(\theta)
$$

(29)

where $L_T(\theta) = \frac{1}{T} \sum_{t=1}^{T} L_{\text{FZ0}}(Y_t, v_t(\theta), e_t(\theta); \alpha)$

and the FZ loss function L_{FZ0} is defined in Eq. (6). Below we provide conditions under which estimation of these parameters via FZ loss minimization leads to a consistent and asymptotically normal estimator, with standard errors that can be consistently estimated. In Supplemental Appendix SA.2 we show that all of these conditions are satisfied for the widely-used GARCH(1,1) model, drawing on Lumsdaine (1996) and Carrasco and Chen (2002) among others. See Francq and Zakoïan (2010) for a review of asymptotic theory for GARCH processes.

Assumption 1. (A) $L(Y_t, v_t(\theta), e_t(\theta); \alpha)$ obeys the uniform law of large numbers.

(B) (i) Θ is a compact subset of \mathbb{R}^p for $p < \infty$. (ii) Y_t is a strictly stationary process. Conditional on all the past information \mathcal{F}_{t-1}, the distribution of Y_t is $F_t(\cdot | \mathcal{F}_{t-1})$ which, for all t, belongs to a class of distribution functions on \mathbb{R} with finite first moments and unique α-quantiles. (iii) $\forall t$, both $v_t(\theta)$ and $e_t(\theta)$ are \mathcal{F}_{t-1}-measurable and a.s. continuous in θ. (iv) If $\text{Pr}[v_t(\theta) = v_t(\theta^0) \land e_t(\theta) = e_t(\theta^0)] = 1 \forall t$, then $\theta = \hat{\theta}^0$.

6 Similar to the one-factor GAS model, in this case we find that for any strictly positive constant c, the parameter vectors $(\omega, a, b, \beta, \gamma)$ and $(c, a/c^2, b/c^2, \beta, c\gamma)$ yield identical sequences of (v_t, κ_t), and thus identical values of the objective function. Fixing any one of ω, a, b or β resolves this problem. As ω must be strictly positive in a GARCH model, we cannot set it to zero as we did for the one-factor GAS model; instead we set it to one.
Theorem 1 (Consistency). Under Assumption 1, $\hat{\theta}_T \xrightarrow{p} \theta^0$ as $T \to \infty$.

The proof of Theorem 1, provided in Appendix A, is straightforward given Theorem 2.1 of Newey and McFadden (1994) and Corollary 5.5 of Fissler and Ziegel (2016). Assumption 1(A) can be satisfied by one of a variety of uniform laws of large numbers for the time series applications we consider here, see Andrews (1987) and Pötscher and Prucha (1989) for example. Assumption 1(B) is standard for parameter time series inference.

We next turn to the asymptotic distribution of our parameter estimator. In the assumptions below, K denotes a finite constant that can change from line to line, and we use $\|x\|$ to denote the Euclidean norm of x as a vector, and the Frobenius norm if x is a matrix.

Assumption 2. (A) For all t, we have (i) $v_t(\theta)$ and $e_t(\theta)$ are a.s. twice continuously differentiable in θ, (ii) $e_t(\theta^0) < v_t(\theta^0) \leq 0$.

(B) For all t, we have (i) conditional on all the past information F_{t-1}, Y_t has a continuous density $f_t(\cdot | F_{t-1})$ that satisfies $f_t(Y_t | F_{t-1}) \leq K < \infty$ and $\int f_t(Y_t | F_{t-1}) - f_t(Y_t' | F_{t-1}) \leq K |Y_t - Y_t'|$, (ii) $E[|Y_t|^{4+\delta}] \leq K < \infty$, for some $0 < \delta < 1$.

(C) There exists a neighborhood of θ^0, $N(\theta^0)$, such that for all t we have (i) $|1/e_t(\theta)| \leq K < \infty$, $\forall \theta \in N(\theta^0)$, (ii) there exist some (possibly stochastic) F_{t-1}-measurable functions $V(F_{t-1})$, $V_t(F_{t-1})$, $H_t(F_{t-1})$, $H_2(F_{t-1})$ that satisfy $\forall \theta \in N(\theta^0)$: $|v_t(\theta)| \leq V(F_{t-1})$, $\|v_t(\theta)\| \leq V_t(F_{t-1})$, $\|v_t(\theta)\| \leq H_t(F_{t-1})$, $\|v_t(\theta)\|^2 \leq V_2(F_{t-1})$, and $\|v_t(\theta)\|^2 \leq H_2(F_{t-1})$.

(D) For some $0 < \delta < 1$ and for all t we have (i) $E[V(F_{t-1})^{3+\delta}]$, $E[H_t(F_{t-1})^{1+\delta}]$, $E[V_2(F_{t-1})^{3+\delta}]$, $E[H_2(F_{t-1})^{1+\delta}] \leq K$, (ii) $E[V(F_{t-1})^{3+\delta}V_t(F_{t-1})H_t(F_{t-1})^{2+\delta}]$ $\leq K$, (iii) $E[H_t(F_{t-1})^{1+\delta}H_2(F_{t-1})^{1+\delta}V_t(F_{t-1})^{2+\delta}]$, $E[H_t(F_{t-1})^{3+\delta}V_t(F_{t-1})^{2+\delta}] \leq K$.

(E) The matrix D_0 defined in Theorem 2 is (strictly) positive definite for T sufficiently large.

(F) $\{Y_t, v_t(\theta), e_t(\theta), \nabla v_t(\theta), \nabla^2 v_t(\theta), \nabla e_t(\theta), \nabla^2 e_t(\theta)\}$ is α-mixing with $\sum_{m=1}^{\alpha} (m^{2-2\beta}) < \infty$ for some $q > 2$.

(G) For any T, $\sup_{\theta \in \Theta} \sum_{t=1}^{T} |Y_t - v_t(\theta)| \leq K$ a.s.

Most of the above assumptions are standard. Assumption 2(A)(ii) imposes that the VaR is negative, but given our focus on the left-tail ($\alpha < 0.5$) of asset returns, this is not likely a binding constraint. Assumptions 2(B)–(E) are similar to those in Engle and Manganelli (2004a). Zwingmann and Holzmann (2016) show that if the density is not continuous (violating part of our Assumption 2(B)(i)), then the asymptotic distribution of (\hat{v}_T, \hat{e}_T) is non-standard, even in a setting with iid data. Assumption 2(B)(ii) requires at least $4 + \delta$ moments of returns to exist, however 2(D) may actually increase the number of required moments, depending on the VaR–ES model employed. Our requirement of at least $4 + \delta$ moments of returns allows returns to be fat tailed, but not without limit: it rules out applications where kurtosis is not defined, for example Student’s t distributions with degrees of freedom of four or less. (In our simulation study below, we show that the theory here has good finite sample properties when using a Skew t with five degrees of freedom.) Assumptions 2(C)–(D) are conditions on the magnitude of the VaR and ES paths, as well as first and second derivatives of these, making them somewhat hard to interpret. In the Supplemental Appendix we show that for a GARCH process these reduce to moment conditions on the observed returns. Assumption 2(F) is a standard condition on the amount of time series dependence, and allows us to invoke a CLT of Hall and Heyde (1980). Assumption 2(G) limits the number of exact equalities of realized returns and fitted VaR values; given Assumption 2(B), in linear models $K = \dim(\theta)$, while in nonlinear models it may be that $K < \dim(\theta)$.

Theorem 2 (Asymptotic Normality). Under Assumptions 1 and 2, we have

$$\sqrt{T}A_0^{-1/2}D_0(\hat{\theta}_T - \theta^0) \xrightarrow{d} N(0, I) \text{ as } T \to \infty$$

where

$$D_0 = \mathbb{E} \left[\frac{f_t(v_t(\theta^0)|F_{t-1})}{-e_t(\theta^0)\alpha} \nabla^2 v_t(\theta^0)\nabla^2 v_t(\theta^0) + \frac{1}{e_t(\theta^0)^2} \nabla^2 e_t(\theta^0)\nabla^2 e_t(\theta^0) \right]$$

$$A_0 = \mathbb{E} \left[g_t(\theta)g_t(\theta)^T \right]$$

$$g_t(\theta) = \frac{\partial L(Y_t, v_t(\theta), e_t(\theta) : \alpha)}{\partial \theta} = \nabla v_t(\theta)\frac{1}{-e_t(\theta)} \left[\frac{1}{\alpha} 1 \{Y_t \leq v_t(\theta)\} - 1 \right] + \nabla e_t(\theta)\frac{1}{e_t(\theta)^2} \left(\frac{1}{\alpha} 1 \{Y_t \leq v_t(\theta)\} (v_t(\theta) - Y_t) - v_t(\theta) + e_t(\theta) \right)$$

An outline of the proof of this theorem is given in Appendix A, and the detailed lemmas underlying it are provided in the supplemental appendix. The proof of Theorem 2 builds on Huber (1967), Weiss (1991) and Engle and Manganelli (2004a), who focused on the estimation of quantiles.

Finally, we present a result for estimating the asymptotic covariance matrix of $\hat{\theta}_T$, thereby enabling the reporting of standard errors and confidence intervals.
Assumption 3. (A) The deterministic positive sequence c_T satisfies $c_T = o(1)$ and $c_T^{-1} = o(T^{1/2})$.

(B) (i) $T^{-1} \sum_{t=1}^{T} g_t(\theta^0) g_t(\theta^0)' - A_0 \xrightarrow{p} 0$, where A_0 is defined in Theorem 2.

(ii) $T^{-1} \sum_{t=1}^{T} \left[\frac{1}{\sigma_t^2} \nabla' e_t(\theta^0) \nabla e_t(\theta^0) - E \left[\frac{1}{\sigma_t^2} \nabla' e_t(\theta^0) \nabla e_t(\theta^0) \right] \right] \xrightarrow{p} 0$.

(iii) $T^{-1} \sum_{t=1}^{T} \left[\nabla' v_t(\theta^0) \nabla v_t(\theta^0) - E \left[\nabla' v_t(\theta^0) \nabla v_t(\theta^0) \right] \right] \xrightarrow{p} 0$.

Theorem 3. Under Assumptions 1–3, $\hat{A}_T - A_0 \xrightarrow{p} 0$ and $\hat{D}_T - D_0 \xrightarrow{p} 0$, where

$$\hat{A}_T = T^{-1} \sum_{t=1}^{T} g_t(\hat{\theta}_T) g_t(\hat{\theta}_T)'$$

$$\hat{D}_T = T^{-1} \sum_{t=1}^{T} \left\{ \frac{1}{2\sigma_T^2} \left| Y_t - v_t(\hat{\theta}_T) \right| \right\}$$

This result extends Theorem 3 in Engle and Manganelli (2004a) from dynamic VaR models to dynamic joint models for VaR and ES. The key choice in estimating the asymptotic covariance matrix is the bandwidth parameter in Assumption 3(A). In our simulation study below we set this to $T^{-1/3}$ and we find that this leads to satisfactory finite-sample properties.

The results here extend some very recent work in the literature: Dimitriadis and Bayer (2017) consider VaR–ES regression, but focus on iid data and linear specifications. These authors also consider a variety of FZ loss functions, in contrast with our focus on the FZO loss function, and they consider both M- and GMM-estimation, while we focus only on M-estimation. Barendse (2017) considers “interquantile expectation regression” which nests VaR–ES regression as a special case. He allows for time series data, but imposes that the models are linear. Our framework allows for time series data and nonlinear models.

4. Simulation study

In this section we investigate the finite-sample accuracy of the asymptotic theory for dynamic ES and VaR models presented in the previous section. For ease of comparison with existing studies of related models, such as volatility and VaR models, we consider a GARCH(1,1) for the DGP, and estimate the parameters by FZ loss minimization. Specifically, the DGP is

$$Y_t = \sigma_t \eta_t$$

$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \gamma Y_{t-1}^2$$

$$\eta_t \sim iid \ F_0(0, 1)$$

We set the parameters of this DGP to $(\omega, \beta, \gamma) = (0.05, 0.9, 0.05)$. We consider two choices for the distribution of η_t: a standard Normal, and the standardized skew t distribution of Hansen (1994), with degrees of freedom (ν) and skewness (λ) parameters in the latter set to $(5, -0.5)$. Under this DGP, the ES and VaR are proportional to σ_t, with

$$\begin{align*}
\text{(VaR)}_T & = (a_\alpha, b_\alpha) \sigma_t \\
\text{(ES)}_T & = (a_\alpha, b_\alpha) \sigma_t
\end{align*}$$

We make the dependence of the coefficients of proportionality (a_α, b_α) on α explicit here, as we consider a variety of values of α in this simulation study: $\alpha \in \{0.01, 0.025, 0.05, 0.10, 0.20\}$. Interest in VaR and ES from regulators focuses on the smaller of these values of α, but we also consider the larger values to better understand the properties of the asymptotic approximations at various points in the tail of the distribution.

For a standard Normal distribution, with CDF and PDF denoted Φ and ϕ, we have:

$$a_\alpha = \Phi^{-1}(\alpha)$$

$$b_\alpha = -\phi(\Phi^{-1}(\alpha))/\alpha$$

For Hansen’s skew t distribution we can obtain VaR (a_α) from the inverse CDF, which is available in closed form. We obtain a closed-form expression for ES (b_α) by extending results in Dobrev et al. (2017) which provides analytical expressions for ES for (symmetric) Student’s t random variables. Details are presented in Appendix B.4. As noted in Section 2.5, FZ loss minimization does not allow us to identify ω in the GARCH model, and in our empirical work we set this parameter to one, however to facilitate comparisons of the accuracy of estimates of (a_α, b_α) in our simulation study we instead set ω at its true value. This is done without loss of generality and merely eases the presentation of the results. To match our empirical application, we replace the parameter a_α with $c_\alpha = a_\alpha/b_\alpha$, and so our parameter vector becomes $(\beta, \gamma, c_\alpha)$.

We consider two sample sizes, $T \in \{2500, 5000\}$ corresponding to 10 and 20 years of daily returns respectively. These large sample sizes enable us to consider estimating models for quantiles as low as 1%, which are often used in risk management. We repeat all simulations 1000 times. To mitigate sensitivity to starting values, we initially estimate
Table 1 presents results for the estimation of this model on standard Normal innovations, and Table 2 presents corresponding results for skew t innovations. The top row of each panel presents the true parameter values, with the latter two parameters changing across α. The second row presents the median estimated parameter across simulations, and the third row presents the average bias in the estimated parameter. Both of these measures indicate that the parameter estimates are nicely centered on the true parameter values. The penultimate row presents the cross-simulation standard deviations of the estimated parameters, and we observe that these decrease with the sample size and increase as we move further into the tails (i.e., as α decreases), both as expected. Comparing the standard deviations across Tables 1 and 2, we also note that they are higher for skew t innovations than Normal innovations, again as expected.

The last row in each panel presents the coverage probabilities for 95% confidence intervals for each parameter, constructed using the estimated standard errors, with bandwidth parameter $c_T = \lfloor T^{-1/3} \rfloor$. For $\alpha \geq 0.05$ we see that the coverage is reasonable, ranging from around 0.88 to 0.96. For $\alpha = 0.025$ or $\alpha = 0.01$ the coverage tends to be too low, particularly for the smaller sample size. Thus some caution is required when interpreting the standard errors for the models with the smallest values of α. In Table S1 of the Supplemental Appendix we present results for (Q)MLE for the GARCH model corresponding to the results in Tables 1 and 2, using the theory of Bollerslev and Wooldridge (1992), and in Tables S2 and S3 we present results for CAViaR estimation of this model, using the “tick” loss function and the

<table>
<thead>
<tr>
<th>$\alpha = 0.01$</th>
<th>$\alpha = 0.025$</th>
<th>$\alpha = 0.05$</th>
<th>$\alpha = 0.10$</th>
<th>$\alpha = 0.20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
</tr>
<tr>
<td>γ</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
</tr>
<tr>
<td>b_a</td>
<td>-2.665</td>
<td>-2.338</td>
<td>-1.755</td>
<td>-1.400</td>
</tr>
<tr>
<td>c_a</td>
<td>0.873</td>
<td>0.838</td>
<td>0.730</td>
<td>0.601</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.901</td>
<td>0.901</td>
<td>0.900</td>
<td>0.900</td>
</tr>
<tr>
<td>γ</td>
<td>0.049</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>b_a</td>
<td>-2.615</td>
<td>-2.051</td>
<td>-1.769</td>
<td>-1.391</td>
</tr>
<tr>
<td>c_a</td>
<td>0.882</td>
<td>0.800</td>
<td>0.730</td>
<td>0.602</td>
</tr>
<tr>
<td>Avg bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>-0.017</td>
<td>-0.013</td>
<td>-0.015</td>
<td>-0.017</td>
</tr>
<tr>
<td>γ</td>
<td>0.015</td>
<td>0.005</td>
<td>0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>b_a</td>
<td>-0.108</td>
<td>-0.097</td>
<td>-0.103</td>
<td>-0.091</td>
</tr>
<tr>
<td>c_a</td>
<td>0.008</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>St dev</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.077</td>
<td>0.062</td>
<td>0.065</td>
<td>0.078</td>
</tr>
<tr>
<td>γ</td>
<td>0.076</td>
<td>0.046</td>
<td>0.052</td>
<td>0.072</td>
</tr>
<tr>
<td>b_a</td>
<td>1.095</td>
<td>0.707</td>
<td>0.623</td>
<td>0.547</td>
</tr>
<tr>
<td>c_a</td>
<td>0.022</td>
<td>0.015</td>
<td>0.013</td>
<td>0.014</td>
</tr>
<tr>
<td>Coverage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.977</td>
<td>0.951</td>
<td>0.972</td>
<td>0.977</td>
</tr>
<tr>
<td>γ</td>
<td>0.933</td>
<td>0.916</td>
<td>0.928</td>
<td>0.916</td>
</tr>
<tr>
<td>b_a</td>
<td>0.949</td>
<td>0.916</td>
<td>0.933</td>
<td>0.928</td>
</tr>
<tr>
<td>c_a</td>
<td>0.944</td>
<td>0.916</td>
<td>0.933</td>
<td>0.928</td>
</tr>
</tbody>
</table>

Notes: This table presents results from 1000 replications of the estimation of VaR and ES from a GARCH(1,1) DGP with standard Normal innovations. Details are described in Section 4. The top row of each panel presents the true values of the parameters. The second, third, and fourth rows present the median estimated parameters, the average bias, and the standard deviation (across simulations) of the estimated parameters. The last row of each panel presents the coverage rates for 95% confidence intervals constructed using estimated standard errors.
In the CAViaR approach we find that (Q)MLE has better finite sample properties than FZ minimization, but CAViaR estimation has slightly worse properties than FZ minimization.

Table 3 presents results for $T = 500$, which is relatively short given our interest in tail events, but may be of interest when only limited data are available or when structural breaks are suspected. We see here that the estimator remains approximately unbiased, however inference (e.g., through confidence intervals) is less reliable with this short sample.

In Table 4 we compare the efficiency of FZ estimation relative to (Q)MLE and to CAViaR estimation, for the parameters that all three estimation methods have in common, namely (β, γ). As expected, when the innovations are standard Normal, FZ estimation is substantially less efficient than MLE, however when the innovations are skew t the loss in efficiency drops and for some values of α FZ estimation is actually more efficient than QMLE. This switch in the ranking of the competing estimators is qualitatively in line with results in Francq and Zakoian (2015). In Panel B of Table 4, we see that FZ estimation is generally, though not uniformly, more efficient than CAViaR estimation.

In many applications, interest is focused on the forecasted values of VaR and ES rather than the estimated parameters of the models generating these forecasts. To study this, Table 5 presents results on the accuracy of the fitted VaR and ES estimates for the three estimation methods: QMLE, CAViaR and FZ estimation. We consider the same two DGPs as above, and two others that represent more challenging environments for QMLE. In the two additional DGPs, we assume...
the same mean and volatility dynamics as before, and we additionally allow the degrees of freedom (θ) and skewness (λ) parameters in the skew t distribution to vary in such a way as to either "offset" or "amplify" the dynamics in volatility, resulting in VaR and ES series that are either approximately constant, or proportional to the conditional variance rather than the conditional standard deviation. These two simulation designs represent simple ways to obtain dynamics in VaR and ES that are "far" from the dynamics in volatility, and is an environment where QMLE would be expected to perform poorly. Details are provided in Appendix D.

To obtain estimates of VaR and ES from the (Q)ML estimates, we follow common empirical practice and compute the sample VaR and ES of the estimated standardized residuals. The columns labeled MAE present the mean absolute error from (Q)MLE, and in the next two columns of each panel we present the relative MAE of CAViaR and FZ to (Q)MLE.

For Normal innovations, reported in Panel A, MLE is the most accurate estimation method, as expected. Averaging across values of α, CAViaR is about 40% worse, while FZ is about 30% worse. For skew t innovations, reported in Panel B, the gap in performance closes somewhat, with CAViaR and FZ performing about 24% and 16% worse than QMLE. In Panels C and D we consider challenging environments for QMLE, where the dynamics in volatility, which is the focus in QMLE, are very different from those in VaR and ES, which are the focus in FZ estimation. Unsurprisingly, QMLE does poorly in this case compared with FZ estimation, with MAE ratios (averaging across α) of 0.41 and 0.61 in these two panels, indicating that FZ does between 1.5 and 2.5 times better than QMLE in these simulation designs. CAViaR also outperforms QMLE in these designs, with average MAE ratios of 0.50 and 0.65.

Overall, these simulation results show that the asymptotic results of the previous section provide reasonable approximations in finite samples, with the approximations improving for larger sample sizes and less extreme values of α. Compared with MLE, estimation by FZ loss minimization is less accurate when the innovations are Normal or skew t, but
Table 4
Sampling variation of FZ estimation relative to (Q)MLE and CAViaR.

<table>
<thead>
<tr>
<th>Normal innovations</th>
<th>Skew t innovations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 2500$</td>
<td>$T = 5000$</td>
</tr>
<tr>
<td>$T = 5000$</td>
<td>$T = 2500$</td>
</tr>
<tr>
<td>$T = 2500$</td>
<td>$T = 5000$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>β</th>
<th>γ</th>
<th>β</th>
<th>γ</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1.209</td>
<td>5.940</td>
<td>1.701</td>
<td>3.731</td>
<td>1.577</td>
<td>4.830</td>
<td>2.533</td>
<td>3.723</td>
</tr>
<tr>
<td>0.025</td>
<td>1.034</td>
<td>3.394</td>
<td>1.764</td>
<td>2.694</td>
<td>1.055</td>
<td>2.485</td>
<td>1.853</td>
<td>1.905</td>
</tr>
<tr>
<td>0.05</td>
<td>0.980</td>
<td>3.576</td>
<td>1.431</td>
<td>2.777</td>
<td>0.850</td>
<td>1.784</td>
<td>1.426</td>
<td>1.458</td>
</tr>
<tr>
<td>0.10</td>
<td>1.021</td>
<td>4.074</td>
<td>1.406</td>
<td>2.302</td>
<td>0.698</td>
<td>1.627</td>
<td>1.095</td>
<td>1.250</td>
</tr>
<tr>
<td>0.20</td>
<td>1.224</td>
<td>5.558</td>
<td>1.543</td>
<td>2.497</td>
<td>0.939</td>
<td>1.710</td>
<td>1.145</td>
<td>1.242</td>
</tr>
</tbody>
</table>

Panel A: FZ/(Q)MLE

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>β</th>
<th>γ</th>
<th>β</th>
<th>γ</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.982</td>
<td>1.162</td>
<td>0.951</td>
<td>0.975</td>
<td>1.062</td>
<td>1.384</td>
<td>0.912</td>
<td>1.465</td>
</tr>
<tr>
<td>0.025</td>
<td>0.965</td>
<td>1.139</td>
<td>0.971</td>
<td>1.042</td>
<td>0.976</td>
<td>1.030</td>
<td>0.974</td>
<td>0.997</td>
</tr>
<tr>
<td>0.05</td>
<td>0.925</td>
<td>1.238</td>
<td>0.910</td>
<td>0.930</td>
<td>0.885</td>
<td>0.819</td>
<td>0.920</td>
<td>0.903</td>
</tr>
<tr>
<td>0.10</td>
<td>0.940</td>
<td>1.283</td>
<td>0.847</td>
<td>0.827</td>
<td>0.831</td>
<td>0.903</td>
<td>0.816</td>
<td>0.819</td>
</tr>
<tr>
<td>0.20</td>
<td>0.855</td>
<td>0.671</td>
<td>0.703</td>
<td>0.510</td>
<td>0.736</td>
<td>0.437</td>
<td>0.503</td>
<td>0.515</td>
</tr>
</tbody>
</table>

Panel B: FZ/CAViaR

Notes: This table presents the ratio of cross-simulation standard deviations of parameter estimates obtained by FZ loss minimization and (Q)MLE (Panel A), and CAViaR (Panel B). We consider only the parameters that are common to these three estimation methods, namely the GARCH(1,1) parameters β and γ. Ratios greater than one indicate the FZ estimator is more variable than the alternative estimation method; ratios less than one indicate the opposite.

Table 5
Mean absolute errors for VaR and ES estimates.

<table>
<thead>
<tr>
<th>$T = 2500$</th>
<th>$T = 5000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>VaR</td>
<td>ES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>MAE</th>
<th>MAE ratio</th>
<th>MAE</th>
<th>MAE ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>QML</td>
<td>CAViaR</td>
<td>FZ</td>
<td>QML</td>
<td>CAViaR</td>
</tr>
<tr>
<td>0.01</td>
<td>0.069</td>
<td>1.368</td>
<td>0.084</td>
<td>1.487</td>
</tr>
<tr>
<td>0.025</td>
<td>0.055</td>
<td>1.305</td>
<td>0.064</td>
<td>1.341</td>
</tr>
<tr>
<td>0.05</td>
<td>0.043</td>
<td>1.327</td>
<td>0.051</td>
<td>1.332</td>
</tr>
<tr>
<td>0.10</td>
<td>0.034</td>
<td>1.322</td>
<td>0.042</td>
<td>1.394</td>
</tr>
<tr>
<td>0.20</td>
<td>0.026</td>
<td>1.443</td>
<td>0.033</td>
<td>1.652</td>
</tr>
</tbody>
</table>

Panel A: Normal innovations

<table>
<thead>
<tr>
<th>α</th>
<th>MAE</th>
<th>MAE ratio</th>
<th>MAE</th>
<th>MAE ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>QML</td>
<td>CAViaR</td>
<td>FZ</td>
<td>QML</td>
<td>CAViaR</td>
</tr>
<tr>
<td>0.01</td>
<td>0.196</td>
<td>1.327</td>
<td>0.342</td>
<td>1.249</td>
</tr>
<tr>
<td>0.025</td>
<td>0.120</td>
<td>1.228</td>
<td>0.205</td>
<td>1.166</td>
</tr>
<tr>
<td>0.05</td>
<td>0.084</td>
<td>1.193</td>
<td>0.141</td>
<td>1.154</td>
</tr>
<tr>
<td>0.10</td>
<td>0.056</td>
<td>1.168</td>
<td>0.098</td>
<td>1.160</td>
</tr>
<tr>
<td>0.20</td>
<td>0.034</td>
<td>1.301</td>
<td>0.066</td>
<td>1.404</td>
</tr>
</tbody>
</table>

Panel B: Skew t innovations

<table>
<thead>
<tr>
<th>α</th>
<th>MAE</th>
<th>MAE ratio</th>
<th>MAE</th>
<th>MAE ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>QML</td>
<td>CAViaR</td>
<td>FZ</td>
<td>QML</td>
<td>CAViaR</td>
</tr>
<tr>
<td>0.01</td>
<td>0.111</td>
<td>0.395</td>
<td>0.264</td>
<td>1.048</td>
</tr>
<tr>
<td>0.025</td>
<td>0.074</td>
<td>0.339</td>
<td>0.222</td>
<td>0.679</td>
</tr>
<tr>
<td>0.05</td>
<td>0.058</td>
<td>0.369</td>
<td>0.196</td>
<td>0.522</td>
</tr>
<tr>
<td>0.10</td>
<td>0.058</td>
<td>0.476</td>
<td>0.166</td>
<td>0.436</td>
</tr>
<tr>
<td>0.20</td>
<td>0.054</td>
<td>0.977</td>
<td>0.106</td>
<td>0.778</td>
</tr>
</tbody>
</table>

Panel C: Offsetting dynamics in VaR and ES

<table>
<thead>
<tr>
<th>α</th>
<th>MAE</th>
<th>MAE ratio</th>
<th>MAE</th>
<th>MAE ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>QML</td>
<td>CAViaR</td>
<td>FZ</td>
<td>QML</td>
<td>CAViaR</td>
</tr>
<tr>
<td>0.01</td>
<td>0.141</td>
<td>0.533</td>
<td>0.340</td>
<td>0.700</td>
</tr>
<tr>
<td>0.025</td>
<td>0.144</td>
<td>0.650</td>
<td>0.288</td>
<td>0.705</td>
</tr>
<tr>
<td>0.05</td>
<td>0.127</td>
<td>0.698</td>
<td>0.191</td>
<td>0.737</td>
</tr>
<tr>
<td>0.10</td>
<td>0.084</td>
<td>0.581</td>
<td>0.112</td>
<td>0.781</td>
</tr>
<tr>
<td>0.20</td>
<td>0.047</td>
<td>0.518</td>
<td>0.066</td>
<td>0.844</td>
</tr>
</tbody>
</table>

Panel D: Amplifying dynamics in VaR and ES

Note: This table presents results on the accuracy of the fitted VaR and ES estimates for the three estimation methods: QML, CAViaR and FZ estimation. In the first column of each panel we present the mean absolute error (MAE) from QML, computed across all dates in a given sample and all 1000 simulation replications. The next two columns present the relative MAE of CAViaR and FZ to QML. Values greater than one indicate QML is more accurate (has lower MAE); values less than one indicate the opposite.
5. Forecasting equity index ES and VaR

We now apply the models discussed in Section 2 to the forecasting of ES and VaR for daily returns on four international equity indices. We consider the S&P 500 index, the Dow Jones Industrial Average, the NIKKEI 225 index of Japanese stocks, and the FTSE 100 index of UK stocks. Our sample period is 1 January 1990 to 31 December 2016, yielding between 6630 and 6805 observations per series (the exact numbers vary due to differences in holidays and market closures). In our out-of-sample analysis, we use the first ten years for estimation, and reserve the remaining 17 years for evaluation and model comparison.

Table 6 presents full-sample summary statistics on these four return series. Average annualized returns range from -2.7% for the NIKKEI to 7.2% for the DJIA, and annualized standard deviations range from 17.0% to 24.7%. All return series exhibit mild negative skewness (around -0.15) and substantial kurtosis (around 10). The lower two panels of Table 6 present the sample VaR and ES for four choices of α.

Table 7 presents results from standard time series models estimated on these return series over the in-sample period (Jan 1990 to Dec 1999). In the first panel we present the estimated parameters of the optimal ARMA(p, q) models, where the choice of (p, q) is made using the BIC. We note that for three of the four series the optimal model includes just a constant, consistent with the well-known lack of predictability of daily equity returns. The second panel presents the parameters of the GARCH(1,1) model for conditional variance, and the lower panel presents the estimated parameters the

when the dynamics in VaR and ES are different from those in volatility, the benefits of FZ estimation become apparent. Across all simulation designs, we find that FZ estimation is generally more accurate than estimation using the CAViaR approach of Engle and Manganelli (2004a), likely attributable to the fact that FZ estimation draws on information from two tail measures, VaR and ES, while CAViaR was designed to only model VaR.

Table 8
Estimated parameters of GAS models for VaR and ES.

<table>
<thead>
<tr>
<th></th>
<th>GAS-2F</th>
<th>GAS-1F</th>
<th>GARCH-FZ</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VaR</td>
<td>ES</td>
<td>VaR</td>
<td>ES</td>
</tr>
<tr>
<td>(\omega)</td>
<td>-0.009</td>
<td>-0.010</td>
<td>0.995</td>
<td>0.944</td>
</tr>
<tr>
<td>(s.e.)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.993</td>
<td>0.994</td>
<td>0.974</td>
<td>0.007</td>
</tr>
<tr>
<td>(s.e.)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>-0.358</td>
<td>-0.351</td>
<td>0.007</td>
<td>0.031</td>
</tr>
<tr>
<td>(s.e.)</td>
<td>(0.109)</td>
<td>(0.129)</td>
<td>(0.002)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>(\delta)</td>
<td>-1.164</td>
<td>-1.164</td>
<td>-1.757</td>
<td>-2.829</td>
</tr>
<tr>
<td>(s.e.)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.010)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Avg loss</td>
<td>0.592</td>
<td>0.603</td>
<td>0.637</td>
<td>0.590</td>
</tr>
<tr>
<td>Time (s)</td>
<td>44.773</td>
<td>0.594</td>
<td>0.767</td>
<td>1.343</td>
</tr>
</tbody>
</table>

Notes: This table presents parameter estimates and standard errors for four GAS models of VaR and ES for the S&P 500 index over the in-sample period from January 1990 to December 1999. The left panel presents the results for the two-factor GAS model in Section 2.2. The right panel presents the results for the three one-factor models: a one-factor GAS model (from Section 2.3), and a GARCH model estimated by FZ loss minimization, and “hybrid” one-factor GAS model that includes an additional GARCH-type forcing variable (both from Section 2.5). The penultimate row of this table presents the average (in-sample) losses from each of these four models, and the bottom row presents the estimation time for each model (using Matlab R2018b on a 3.4 GHz machine).

5.1. In-sample estimation

We now present estimates of the parameters of the models presented in Section 2, along with standard errors computed using the theory from Section 3. In the interests of space, we only report the parameter estimates for the S&P 500 index for \(\alpha = 0.05 \). The two-factor GAS model based on the FZ0 loss function is presented in the left panel of Table 8. This model allows for separate dynamics in VaR and ES, and we present the parameters for each of these risk measures in separate columns. We impose that the \(B \) matrix is diagonal for parsimony. We observe that the persistence of these processes is high, with the estimated \(\beta \) parameters equal to 0.993 and 0.994, similar to the persistence found in GARCH models (e.g., see Table 7). The model-implied average values of VaR and ES are \(-1.589\) and \(-2.313\), similar to the sample values of these measures reported in Table 6. We observe that the coefficients on \(\lambda_\alpha \) for both VaR and ES are small in magnitude and far from being statistically significant. The coefficients on \(\lambda_\beta \), are larger and more significant (the \(t \)-statistics are \(-2.95\) and \(-2.58\)). The overall impression from the coefficients on the four forcing variables suggests that this model is over-parameterized. For example, proportionality of \(v_t \) and \(e_t \) would suggest that a one-factor model is sufficient. We can formally test for this in the context of the two-factor model by testing that \(w \equiv w_v = a_v / a_v = a_v / a_v \cap b_v = b_v \). We obtain a \(p \)-value of 0.77 for this restriction, indicating no evidence against proportionality.

The right panel of Table 8 shows three one-factor models for ES and VaR. The first is the one-factor GAS model, which is nested in the two-factor model presented in the left panel. We see a slight loss in fit (the average loss is slightly greater) but the parameters of this model are estimated with greater precision. The one-factor GAS model fits better than the GARCH model estimated via FZ loss minimization (reported in the penultimate column). The “hybrid” model, augmenting the one-factor GAS model with a GARCH-type forcing variable, fits better than the other one-factor models, and also slightly better than the larger two-factor GAS model, and we observe that the coefficient on the GARCH forcing variable (\(\delta \)) is significantly different from zero (with a \(t \)-statistic of 9.55). The computation time for these models is reported in the bottom row of Table 8; for comparison, the computation time for QML estimation of the GARCH model is 0.39 seconds.

Recall that in all of the one-factor models, the intercept (\(\omega \)) in the GAS equation is unidentified. We fix it at zero for the GAS-1F and Hybrid models, and at one for the GARCH-FZ model. This has no impact on the fit of these models for VaR and ES, but it means that we cannot interpret the estimated (\(a \), \(b \)) parameters as the VaR and ES of the standardized residuals, and we no longer expect the estimated values to match the sample estimates in Table 6.
5.2. Out-of-sample forecasting

We now turn to the out-of-sample (OOS) forecast performance of the models discussed above, as well as some competitor models from the existing literature. We will focus initially on the results for $\alpha = 0.05$, given the focus on that percentile in the extant VaR literature. (Results for other values of α are considered below, with details provided in the supplemental appendix.) We will consider a total of ten models for forecasting ES and VaR. Firstly, we consider three rolling window methods, using window lengths of 125, 250 and 500 days. We next consider ARMA–GARCH models, with the ARMA model orders selected using the BIC, and assuming that the distribution of the innovations is standard Normal or skew t, or estimating it nonparametrically using the sample ES and VaR of the estimated standardized residuals. Finally we consider four new semiparametric dynamic models for ES and VaR: the two-factor GAS model presented in Section 2.2, the one-factor GAS model presented in Section 2.3, a GARCH model estimated using FZ loss minimization, and the “hybrid” GAS/GARCH model presented in Section 2.5. We estimate these models using the first ten years as our in-sample period, and retain those parameter estimates throughout the OOS period.

In Fig. 4 we plot the fitted 5% ES and VaR for the S&P 500 return series, using three models: the rolling window model using a window of 125 days, the GARCH-EDF model, and the one-factor GAS model. This figure covers both the in-sample and out-of-sample periods. The figure shows that the average ES was estimated at around -2%, rising as high as around -1% in the mid 90s and mid 00s, and falling to its most extreme values of around -10% during the financial crisis in late 2008. Thus, like volatility, ES fluctuates substantially over time.

Fig. 5 zooms in on the last two years of our sample period, to better reveal the differences in the estimates from these models. We observe the usual step-like movements in the rolling window estimate of VaR and ES, as the more extreme observations enter and leave the estimation window. Comparing the GARCH and GAS estimates, we see how they differ in reacting to returns: the GARCH estimates are driven by lagged squared returns, and thus move stochastically each day. The GAS estimates, on the other hand, only use information from returns when the VaR is violated, and on other days the estimates revert deterministically to the long-run mean. This generates a smoother time series of VaR and ES estimates. We investigate below which of these estimates provides a better fit to the data.
Fig. 5. This figure plots the estimated 5% Value-at-Risk (VaR) and Expected Shortfall (ES) for daily returns on the S&P 500 index, over the period January 2015 to December 2016. The estimates are based on a one-factor GAS model, a GARCH model, and a rolling window using 125 observations.

The left panel of Table 9 presents the average OOS losses, using the FZ0 loss function from Eq. (6), for each of the ten models, for the four equity return series. The lowest values in each column are highlighted in bold, and the second-lowest are in italics. We observe that the one-factor GAS model, labeled FZ1F, is the preferred model for the two US equity indices, while the Hybrid model is the preferred model for the NIKKEI and FTSE indices. The worst model is the rolling window with a window length of 500 days.

While average losses are useful for an initial look at OOS forecast performance, they do not reveal whether the gains are statistically significant. Table 10 presents Diebold–Mariano t-statistics on the loss differences, for the S&P 500 index. Corresponding tables for the other three equity return series are presented in Table S4 of the supplemental appendix. The tests are conducted as "row model minus column model" and so a positive number indicates that the column model outperforms the row model. The column “FZ1F” corresponding to the one-factor GAS model contains all positive entries, revealing that this model outperformed all competing models. This outperformance is strongly significant for the comparisons to the rolling window forecasts, as well as the GARCH model with Normal innovations. The gains relative to the GARCH model with skew t or nonparametric innovations are not significant, with DM t-statistics of 1.79 and 1.53 respectively. Similar results are found for the best models for each of the other three equity return series. Thus the worst models are easily separated from the better models, but the best few models are generally not significantly different. The supplemental appendix presents results analogous to Table 9, but with $\alpha = 0.025$, which is the value for ES that is the focus of the Basel III accord. The rankings and results are qualitatively similar to those for $\alpha = 0.05$ discussed here.

To complement the study of the relative performance of these models for ES and VaR, we now consider goodness-of-fit tests for the OOS forecasts of VaR and ES. Under correct specification of the model for VaR and ES, we know that

$$E_{t-1} \left[\frac{\partial L_{FZ0}(Y_t, v_t, \xi_t; \alpha)}{\partial \xi_t} \right] = 0 \quad (38)$$

and we note that this implies that $E_{t-1} [\lambda_{v,t}] = E_{t-1} [\lambda_{\xi,t}] = 0$, where $(\lambda_{v,t}, \lambda_{\xi,t})$ are defined in Eqs. (11)–(12). Thus the variables $\lambda_{v,t}$ and $\lambda_{\xi,t}$ can be considered as a form of “generalized residual” for this model. To mitigate the impact of
where the elements of the information set available at the time the forecast was made. Consider, then, the following "DQ" and "DES" testing approach of Engle and Manganelli (2004a), which is based on simple regressions of the generalized residuals on the VaR literature, see Christoffersen (1998) and Engle and Manganelli (2004a). We adopt the "dynamic quantile (DQ)" serial correlation in these measures (which comes through the persistence of v_t and e_t) we use standardized versions of these residuals:

$$
\lambda^s_{t,t} = \frac{\lambda^s_{t,t}}{v_t} = 1 \{ Y_t \leq v_t \} - \alpha
$$

These standardized generalized residuals are also conditionally mean zero under correct specification, and we note that the standardized residual for VaR is simply the demeaned "hit" variable, which is the focus of well-known tests from the VaR literature, see Christoffersen (1998) and Engle and Manganelli (2004a). We adopt the "dynamic quantile (DQ)" testing approach of Engle and Manganelli (2004a), which is based on simple regressions of these generalized residuals on elements of the information set available at the time the forecast was made. Consider, then, the following "DQ" and "DES" regressions:

$$
\lambda^s_{t,t} = a_0 + a_1 \lambda^s_{t,t-1} + a_2 v_t + u_{v,t}
$$
$$
\lambda^s_{t,t} = b_0 + b_1 \lambda^s_{t,t-1} + b_2 e_t + u_{e,t}
$$

where $a = [a_0, a_1, a_2]'$ and $b = [b_0, b_1, b_2]'$ are the parameters of the regression and $u_{v,t}$ and $u_{e,t}$ are the regression residuals. We test forecast optimality by testing that all parameters in these regressions are zero, against the usual two-sided alternative. Similar "conditional calibration" tests are presented in Nolde and Ziegel (2017). One could also consider

Table 9	Out-of-sample average losses and goodness-of-fit tests (alpha = 0.05)											
Average loss	GoF p-values: VaR	GoF p-values: ES										
S&P	DJIA	NIK	FTSE	S&P	DJIA	NIK	FTSE					
RW-125	0.914	0.864	1.290	0.959	0.039	0.021	0.002	0.000	0.046	0.028	0.011	0.000
RW-250	0.959	0.909	1.294	1.002	0.003	0.002	0.026	0.000	0.062	0.020	0.034	0.002
RW-500	1.023	0.975	1.318	1.056	0.002	0.003	0.001	0.000	0.024	0.021	0.002	0.000
GCH-N	0.876	0.811	1.170	0.871	0.043	0.010	0.536	0.001	0.001	0.000	0.195	0.000
GCH-Skt	0.865	0.799	1.168	0.864	0.006	0.006	0.109	0.001	0.005	0.004	0.273	0.000
GCH-EDF	0.862	0.796	1.166	0.865	0.005	0.006	0.580	0.001	0.019	0.018	0.519	0.000
FZ-2F	0.859	0.799	1.206	0.874	0.004	0.001	0.279	0.001	0.170	0.319	0.313	0.004
FZ-1F	0.850	0.791	1.190	0.871	0.007	0.000	0.218	0.000	0.073	0.002	0.550	0.001
GCH-FZ	0.852	0.797	1.166	0.870	0.009	0.008	0.519	0.000	0.027	0.035	0.459	0.000
Hybrid	0.870	0.796	1.165	0.859	0.000	0.007	0.464	0.000	0.002	0.038	0.453	0.000

Notes: The left panel of this table presents the average losses, using the FZ0 loss function, for four daily equity return series, over the out-of-sample period from January 2000 to December 2016, for ten different forecasting models. The lowest average loss in each column is highlighted in bold, the second-lowest is highlighted in italics. The first three rows correspond to rolling window forecasts, the next three rows correspond to GARCH forecasts based on different models for the standardized residuals, and the last four rows correspond to models introduced in Section 2. The middle and right panels of this table present p-values from goodness-of-fit tests of the VaR and ES forecasts respectively. Values that are greater than 0.10 (indicating no evidence against optimality at the 0.10 level) are in bold, and values between 0.05 and 0.10 are in italics.

Table 10	Diebold–Mariano t-statistics on average out-of-sample loss differences alpha = 0.05, S&P 500 returns.								
RW125	RW250	RW500	G-N	G-Skt	G-EDF	FZ-2F	FZ-1F	G-FZ	Hybrid
Averageloss	GoF p-values: VaR	GoF p-values: ES							
S&P	DJIA	NIK	FTSE	S&P	DJIA	NIK	FTSE		
RW125	−2.257	−3.527	1.952	2.478	2.625	2.790	3.600	2.736	2.684
G-N	−1.952	−2.752	−3.706	3.526	2.965	1.418	2.483	2.847	0.634
G-Skt	−2.478	−3.129	−3.997	−3.526	1.954	0.626	1.791	1.179	−0.436
G-EDF	−2.252	−3.246	−4.087	−2.965	−1.954	0.335	1.529	−0.023	−0.726
FZ-2F	−2.790	−3.364	−4.334	−1.418	−0.626	−0.335	1.000	−0.329	−0.904
FZ-1F	−3.600	−4.039	−4.818	−2.483	−1.791	−1.529	−1.000	−1.624	−2.049
G-FZ	−2.736	−3.390	−4.223	−2.847	−1.179	0.023	0.329	1.624	−0.805
Hybrid	−2.684	−3.538	−4.454	−0.634	0.436	0.756	0.904	2.049	0.895

Notes: This table presents t-statistics from Diebold–Mariano tests comparing the average losses, using the FZ0 loss function, over the out-of-sample period from January 2000 to December 2016, for ten different forecasting models. A positive value indicates that the row model has higher average loss than the column model. Values greater than 1.96 in absolute value indicate that the average loss difference is significantly different from zero at the 95% confidence level. Values along the main diagonal are all identically zero and are omitted for interpretability. The first three rows correspond to rolling window forecasts, the next three rows correspond to GARCH forecasts based on different models for the standardized residuals, and the last four rows correspond to models introduced in Section 2.
Table 11
Out-of-sample performance rankings for various alpha.

<table>
<thead>
<tr>
<th></th>
<th>α = 0.01</th>
<th></th>
<th>α = 0.025</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S&P</td>
<td>DJIA</td>
<td>NIK</td>
<td>FTSE</td>
</tr>
<tr>
<td>RW-125</td>
<td>8 8</td>
<td>10 8</td>
<td>8.50</td>
<td>8 8 9</td>
</tr>
<tr>
<td>RW-250</td>
<td>9 9</td>
<td>9 9</td>
<td>8.75</td>
<td>9 9 8 8</td>
</tr>
<tr>
<td>RW-500</td>
<td>10 10</td>
<td>9 10</td>
<td>9.75</td>
<td>10 10 10</td>
</tr>
<tr>
<td>G-N</td>
<td>7 7</td>
<td>5 4</td>
<td>5.75</td>
<td>7 6 4 3</td>
</tr>
<tr>
<td>G-Skt</td>
<td>6 3</td>
<td>1 2</td>
<td>3.00</td>
<td>5 3 1 1</td>
</tr>
<tr>
<td>G-EDF</td>
<td>5 2</td>
<td>2 1</td>
<td>2.50</td>
<td>2 2 3 2</td>
</tr>
<tr>
<td>FZ-2F</td>
<td>4 4</td>
<td>6 7</td>
<td>5.25</td>
<td>4 5 7 9</td>
</tr>
<tr>
<td>FZ-1F</td>
<td>3 6</td>
<td>7 6</td>
<td>5.50</td>
<td>3 4 6 5</td>
</tr>
<tr>
<td>G-FZ</td>
<td>2 1</td>
<td>3 3</td>
<td>2.25</td>
<td>1 1 2 4</td>
</tr>
<tr>
<td>Hybrid</td>
<td>1 5</td>
<td>4 5</td>
<td>3.75</td>
<td>6 7 5 6</td>
</tr>
</tbody>
</table>

Notes: This table presents the rankings (with the best performing model ranked 1 and the worst ranked 10) based on average losses using the FZ loss function, for four daily equity return series, over the out-of-sample period from January 2000 to December 2016, for ten different forecasting models. The first three rows in each panel correspond to rolling window forecasts, the next three rows correspond to GARCH forecasts based on different models for the standardized residuals, and the last four rows correspond to models introduced in Section 2. The last column in each panel represents the average rank across the four equity return series.

With the implementation of the Third Basel Accord in the next few years, risk managers and regulators will place greater focus on expected shortfall (ES) as a measure of risk, complementing and partly substituting previous emphasis on Value-at-Risk (VaR). We draw on recent results from statistical decision theory (Fissler and Ziegel, 2016) to propose new dynamic models for ES and VaR. The models proposed are semiparametric, in that they impose parametric structures for the dynamics of ES and VaR but are agnostic about the conditional distribution of returns. We also present asymptotic...
distribution theory for the estimation of these models, and we verify that the theory provides a good approximation in finite samples. We apply the new models and methods to daily returns on four international equity indices, over the period 1990 to 2016, and find the proposed new ES–VaR models outperform forecasts based on GARCH or rolling window models.

The asymptotic theory presented in this paper facilitates considering a large number of extensions of the models presented here. Our models all focus on a single value for the tail probability (α), and extending these to consider multiple values simultaneously could prove fruitful. For example, one could consider the values 0.01, 0.025 and 0.05, to capture various points in the left tail, or one could consider 0.05 and 0.95 to capture both the left and right tails simultaneously. Another natural extension is to make use of exogenous information in the model; the models proposed here are all univariate, and one might expect that information from options markets, high frequency data, or news announcements to also help predict VaR and ES. We leave these interesting extensions to future research.

Appendix A. Proofs

Proof of Proposition 1. Theorem C.3 of Nolde and Ziegel (2017) shows that under the assumption that ES is strictly negative, the loss differences generated by a FZ loss function are homogeneous of degree zero iff \(G_1(x) = \phi_1 1 \{ x \geq 0 \} \) and \(G_2(x) = -\phi_2/x \) with \(\phi_1 \geq 0 \) and \(\phi_2 > 0 \). Denote the resulting loss function as \(L_{FZ0} (Y, v, e; \alpha, \phi_1, \phi_2) \), and notice that:

\[
L_{FZ0} (Y, v, e; \alpha, \phi_1, \phi_2) = \phi_1 (1 \{ Y \leq v \} - \alpha) (1 \{ v \geq 0 \} - 1 \{ Y \geq 0 \}) + \phi_2 \sum_{t=1}^{T} \frac{v_t}{\phi_2} 1 \{ Y_t < v \} - 1 \{ 0 \leq Y_t \leq v \}.
\]

Under the assumption that \(v < 0 \), the third term vanishes. The second term is purely a function of \(Y \) and so can be disregarded; we can set \(\phi_1 = 0 \) without loss of generality. The first term is affected by a scaling parameter \(\phi_2 > 0 \), and we can set \(\phi_2 = 1 \) without loss of generality. Thus we obtain the \(L_{FZ0} \) given in Eq. (6). If \(v \) can be positive, then setting \(\phi_1 = 0 \) is interpretable as fixing this shape parameter value at a particular value.

Proof of Theorem 1. The proof is based on Theorem 2.1 of Newey and McFadden (1994). We only need to show that \(E[L_T(\cdot)] \) is uniquely minimized at \(\theta^0 \), because the other assumptions of Newey and McFadden’s theorem are clearly satisfied. By Corollary (5.5) of Fissler and Ziegel (2016), given Assumption 1(B)(iii) and the fact that our choice of \(\phi_1 \) and \(\phi_2 \) disregarded; we can set \(\phi_2 = 1 \) without loss of generality. The first term is affected by a scaling parameter \(\phi_2 > 0 \), and we can set \(\phi_2 = 1 \) without loss of generality. Thus we obtain the \(L_{FZ0} \) given in Eq. (6). If \(v \) can be positive, then setting \(\phi_1 = 0 \) is interpretable as fixing this shape parameter value at a particular value.

Outline of Proof of Theorem 2. We consider the population function \(\lambda(\theta) = E[g_t(\theta)] \), and take a mean-value expansion of \(\lambda(\theta) \) around \(\theta^0 \). We show in Lemma 1 that:

\[
\sqrt{T}(\theta - \theta^0) = -A^{-1}(\theta^0) \frac{1}{\sqrt{T}} \sum_{t=1}^{T} g_t(\theta^0) + o_p(1) \tag{4}
\]

where

\[
A(\theta^0) = \frac{\partial E[g_t(\theta)]}{\partial \theta} \bigg|_{\theta = \theta^0}.
\]

In the supplemental appendix we prove Lemma 1 by building on and extending Weiss (1991), who extends Huber (1967) to non-iid data. We draw on Weiss’ Lemma A.1, and we verify that all five assumptions (N1–N5 in his notation) for that lemma are satisfied: N1, N2 and N5 are obviously satisfied given our Assumptions 1–2, and we show in Lemmas 3–6 that assumptions N3 and N4 are satisfied. Lemma 7 shows that a CLT applies for the sequence \(\left\{ T^{-1/2} \sum_{t=1}^{T} g_t(\theta^0) \right\} \), with asymptotic covariance matrix \(A_0 = E[g_t(\theta^0)g_t(\theta^0)'] \). We denote \(\lambda(\theta^0) \) as \(D_0 \), leading to the stated result.

Proof of Theorem 3. Given Assumption 3B(i) and the result in Theorem 1, the proof that \(\hat{A}_T - A_0 \overset{p}{\to} 0 \) is standard and omitted. Next, define

\[
D_T = T^{-1} \sum_{t=1}^{T} \left\{ (2c_T)^{-1} 1 \left\{ |Y_t - v_t(\theta^0)| < c_T \right\} \frac{1}{e_t(\theta^0)\alpha} \nabla v_t(\theta^0)' \nabla v_t(\theta^0) + \frac{1}{e_t(\theta^0)^2} \nabla e_t(\theta^0)' \nabla e_t(\theta^0) \right\}
\]
To prove the result we will show that $\hat{\mathbf{D}}_T - \tilde{\mathbf{D}}_T = o_p(1)$ and $\hat{\mathbf{D}}_T - \mathbf{D}_0 = o_p(1)$. Firstly, consider

$$
\left\| \hat{\mathbf{D}}_T - \tilde{\mathbf{D}}_T \right\| \leq \left\| (2Tc_T)^{-1} \right\|
$$

$$
\times \sum_{i=1}^{T} \left\{ \mathbf{1} \{ |Y_t - v_i(\hat{\theta}_T)| < c_T \} - \mathbf{1} \{ |Y_t - v_i(\theta^0)| < c_T \} \right\} \frac{1}{-e_i(\hat{\theta}_T)\alpha} \nabla v_i(\hat{\theta}_T)' \nabla v_i(\hat{\theta}_T)
$$

$$
+ \mathbf{1} \{ |Y_t - v_i(\theta^0)| < c_T \} \left(\frac{1}{-\alpha e_i(\hat{\theta}_T)} - \frac{1}{-\alpha e_i(\theta^0)} \right) \nabla v_i(\theta^0)' \nabla v_i(\hat{\theta}_T)
$$

$$
+ \mathbf{1} \{ |Y_t - v_i(\theta^0)| < c_T \} \left(\frac{1}{-\alpha e_i(\theta^0)} \nabla v_i(\theta^0)'(\nabla v_i(\hat{\theta}_T) - \nabla v_i(\theta^0)) \right)
$$

$$
+ T^{-1} \sum_{i=1}^{T} \left\| \frac{1}{e_i(\hat{\theta}_T)^2} \nabla e_i(\hat{\theta}_T)' \nabla e_i(\hat{\theta}_T) - \frac{1}{e_i(\theta^0)^2} \nabla e_i(\theta^0)' \nabla e_i(\theta^0) \right\|
$$

The last line above was shown to be $o_p(1)$ in the proof of Theorem 2. The difficult quantity in the first term (over the first six lines above) is the indicator, and following the same steps as in Engle and Manganelli (2004a), that term is also $o_p(1)$. Next, consider $\hat{\mathbf{D}}_T - \mathbf{D}_0$:

$$
\hat{\mathbf{D}}_T - \mathbf{D}_0 = \frac{1}{2Tc_T} \sum_{i=1}^{T} \left\{ \mathbf{1} \{ |Y_t - v_i(\theta^0)| < c_T \} - \mathbb{E} \left\{ \mathbf{1} \{ |Y_t - v_i(\theta^0)| < c_T \} | F_{t-1} \right\} \right\} \frac{\nabla v_i(\theta^0)' \nabla v_i(\theta^0)}{-e_i(\theta^0)\alpha}
$$

$$
+ \frac{1}{2T} \sum_{i=1}^{T} \left\{ \frac{1}{c_T} \mathbb{E} \left[|Y_t - v_i(\theta^0)| < c_T | F_{t-1} \right] \right\} \frac{\nabla v_i(\theta^0)' \nabla v_i(\theta^0)}{-e_i(\theta^0)\alpha}
$$

$$
- \mathbb{E} \left\{ \frac{f_i(v_i(\theta^0))}{-e_i(\theta^0)\alpha} \nabla v_i(\theta^0)' \nabla v_i(\theta^0) \right\} + o_p(1)
$$

Following Engle and Manganelli (2004a), Assumptions 1–3 are sufficient to show $\hat{\mathbf{D}}_T - \mathbf{D}_0 = o_p(1)$ and the result follows.

Appendix B. Derivations

B.1. Generic calculations for the FZ0 loss function

The FZ0 loss function is:

$$
L_{FZ0}(Y, v, e; \alpha) = -\frac{1}{\alpha e} \mathbf{1} \{ Y \leq v \} (v - Y) + \frac{v}{e} + \log (-e) - 1
$$

(41)

Note that this is not homogeneous, as for any $k > 0$, $L_{FZ0}(kY, kv, ke; \alpha) = L_{FZ0}(Y, v, e; \alpha) + \log(k)$, but this loss function generates loss differences that are homogeneous of degree zero, as the additive additional term above drops out.

We will frequently use the first derivatives of this loss function, and the second derivatives of the expected loss for an absolutely continuous random variable with density f and CDF F. These are (for $v \neq Y$):

$$
\nabla_v L_{FZ0}(Y, v, e; \alpha) = -\frac{1}{\alpha e} \mathbf{1} \{ Y \leq v \} - \alpha \equiv \frac{1}{\alpha ve} \lambda_v
$$

(42)

$$
\nabla_e L_{FZ0}(Y, v, e; \alpha) = \frac{\partial}{\partial e} L_{FZ0}(Y, v, e; \alpha)
$$

(43)

$$
= \frac{v}{\alpha e^2} \mathbf{1} \{ Y \leq v \} (v - Y) - \frac{v}{e^2} + \frac{1}{e}
$$

$$
= \frac{v}{\alpha e^2} \mathbf{1} \{ Y \leq v \} \alpha - \frac{1}{e^2} \left(\frac{1}{\alpha} \mathbf{1} \{ Y \leq v \} Y - e \right)
$$

$$
= -\frac{1}{\alpha e^2} (\lambda_v + \alpha \lambda_e)
$$

where

$$
\lambda_v \equiv -v \{ Y \leq v \} - \alpha
$$

(44)
\[\lambda_e \equiv \frac{1}{\alpha} \mathbf{1} \{ Y \leq v \} Y - e \]

(45)

and

\[
\frac{\partial^2 \mathbb{E}[L_{IZO} (Y, v, e; \alpha)]}{\partial v^2} = -\frac{1}{\alpha e f(v)} \\
\frac{\partial^2 \mathbb{E}[L_{IZO} (Y, v, e; \alpha)]}{\partial v \partial e} = \frac{1}{\alpha e^2} (f(v) - \alpha) \\
= 0, \text{ at the true value of } (v, e) \\
\frac{\partial^2 \mathbb{E}[L_{IZO} (Y, v, e; \alpha)]}{\partial e^2} = \frac{1}{\alpha^2 e^2} (f(v) - \alpha) v - (\mathbb{E}[\mathbf{1} \{ Y \leq v \} Y] - \alpha e) \\
= \frac{1}{\alpha^2 e^2}, \text{ at the true value of } (v, e) \\
\]

B.2. Derivations for the one-factor GAS model for ES and VaR

Here we present the calculations to compute \(s_t \) and \(l_t \) for this model. Below we use:

\[
\frac{\partial v}{\partial \kappa} = \frac{\partial^2 v}{\partial \kappa^2} = a \exp \{ \kappa \} = v \\
\frac{\partial e}{\partial \kappa} = \frac{\partial^2 e}{\partial \kappa^2} = b \exp \{ \kappa \} = e
\]

(49)

(50)

And so we find (for \(v_t \neq Y_t \))

\[
s_t \equiv \frac{\partial L_{IZO} (Y_t, v_t, e_t; \alpha)}{\partial \kappa_t} \\
= \frac{\partial L_{IZO} (Y_t, v_t, e_t; \alpha)}{\partial v_t} \frac{\partial v_t}{\partial \kappa_t} + \frac{\partial L_{IZO} (Y_t, v_t, e_t; \alpha)}{\partial e_t} \frac{\partial e_t}{\partial \kappa_t} \\
= \left\{ \frac{1 - 1}{\alpha e_t} \left(\mathbf{1} \{ Y_t \leq v_t \} - \alpha \right) \right\} v_t + \left\{ \frac{1}{\alpha^2 e_t^2} \mathbf{1} \{ Y_t \leq v_t \} Y_t - e_t \right\} e_t \\
= \frac{-1}{e_t} \left(\frac{1}{\alpha} \mathbf{1} \{ Y_t \leq v_t \} Y_t - e_t \right) \\
\equiv -\lambda_{et}/e_t
\]

(51)

(52)

(53)

Thus, the \(\lambda_{et} \) term drops out of \(s_t \) and we are left with \(-\lambda_{et}/e_t\).

Next we calculate \(l_t \):

\[
l_t \equiv \frac{\partial^2 \mathbb{E}_{t-1} [L_{IZO} (Y_t, v_t, e_t; \alpha)]}{\partial \kappa_t^2} \\
= \frac{\partial^2 \mathbb{E}_{t-1} [L_{IZO} (Y_t, v_t, e_t; \alpha)]}{\partial v_t^2} \left(\frac{\partial v_t}{\partial \kappa_t} \right)^2 + \frac{\partial^2 \mathbb{E}_{t-1} [L_{IZO} (Y_t, v_t, e_t; \alpha)]}{\partial v_t \partial e_t} \frac{\partial v_t}{\partial \kappa_t} + \frac{\partial^2 \mathbb{E}_{t-1} [L_{IZO} (Y_t, v_t, e_t; \alpha)]}{\partial e_t^2} \frac{\partial e_t}{\partial \kappa_t} + \frac{\partial^2 \mathbb{E}_{t-1} [L_{IZO} (Y_t, v_t, e_t; \alpha)]}{\partial v_t \partial \kappa_t} \frac{\partial^2 v_t}{\partial \kappa_t^2} + \frac{\partial^2 \mathbb{E}_{t-1} [L_{IZO} (Y_t, v_t, e_t; \alpha)]}{\partial e_t \partial \kappa_t} \frac{\partial^2 e_t}{\partial \kappa_t^2}
\]

But note that under correct specification,

\[
\frac{\partial^2 \mathbb{E}_{t-1} [L (Y_t, v_t, e_t; \alpha)]}{\partial v_t \partial e_t} = \frac{\partial \mathbb{E}_{t-1} [L (Y_t, v_t, e_t; \alpha)]}{\partial v_t} = \frac{\partial \mathbb{E}_{t-1} [L (Y_t, v_t, e_t; \alpha)]}{\partial e_t} = 0
\]

(54)

(55)
and so the Hessian simplifies to:
\[
I_t = \frac{\partial^2 \mathbb{E}_{t-1} [\mathcal{L} \zeta_0 (Y_t, v_t, e_t; \alpha)]}{\partial v_t^2} \left(\frac{\partial v_t}{\partial \kappa_t} \right)^2 + \frac{\partial^2 \mathbb{E}_{t-1} [\mathcal{L} \zeta_0 (Y_t, v_t, e_t; \alpha)]}{\partial e_t^2} \left(\frac{\partial e_t}{\partial \kappa_t} \right)^2
\]
\[
= -\frac{1}{\alpha e_t^2} f_t (v_t) v_t^2 + 1
\]
\[
= 1 - \frac{k_a}{\alpha} \frac{a_a}{b_a}, \quad \text{since } f_t (v_t) = \frac{k_a}{v_t} \quad \text{and } \frac{v_t}{e_t} = \frac{a_a}{b_a}, \text{ for this DGP.}
\]

Thus although the Hessian could vary with time, as it is a derivative of the conditional expected loss, in this specification it simplifies to a (positive) constant.

B.3. ES and VaR in location-scale models

Dynamic location-scale models are widely used for asset returns and in this section we consider what such a specification implies for the dynamics of ES and VaR. Consider the following:
\[
Y_t = \mu_t + \sigma_t \eta_t, \quad \eta_t \sim \text{iid } F_{\eta} (0, 1)
\]
where, for example, \(\mu_t \) is some ARMA model and \(\sigma_t^2 \) is some GARCH model. For asset returns that follow Eq. \((59) \) we have:
\[
\begin{align*}
 v_t &= \mu_t + a \sigma_t, \quad \text{where } a = F_{\eta}^{-1} (\alpha) \\
e_t &= \mu_t + b \sigma_t, \quad \text{where } b = \mathbb{E} [\eta_t | \eta_t \leq a]
\end{align*}
\]
and we can recover \((\mu_t, \sigma_t)\) from \((v_t, e_t)\):
\[
\begin{bmatrix}
 \mu_t \\
 \sigma_t
\end{bmatrix} = \frac{1}{b - a} \begin{bmatrix}
 b & -a \\
 -1 & 1
\end{bmatrix} \begin{bmatrix}
 v_t \\
e_t
\end{bmatrix}
\]
Thus under the conditional location-scale assumption, we can back out the conditional mean and variance from the VaR and ES. Next note that if \(\mu_t = 0 \) \(\forall t \), then \(v_t = c \cdot e_t \), where \(c = a/b \in (0, 1) \). Daily asset returns often have means that are close to zero, and so this restriction is one that may be plausible in the data. A related, though less plausible, restriction is that \(\sigma_t = \bar{\sigma} \forall t \), and in that case we have the simplification that \(v_t = d + e_t \), where \(d = (a - b) \bar{\sigma} > 0 \).

B.4. VaR and ES for Hansen’s skew t random variables

The VaR for Hansen’s (1994) skew \(t \) variable can be obtained using an expression for the inverse CDF of the skew \(t \) distribution presented in Jondeau and Rockinger (2003). In a recent paper, Dobrev et al. (2017) present an analytical expression for the expected shortfall for a Student’s \(t \) random variable, \(X \), with degrees of freedom \(\nu > 1 \):
\[
ES_\alpha (\alpha; v) = \nu v/2 \frac{\Gamma \left(\frac{\nu-1}{2} \right)}{\Gamma \left(\frac{\nu}{2} \right)} \left((VaR_\alpha (\alpha; v))^2 + v \right)^{-\nu/2}
\]
where \(VaR_\alpha (\alpha; v) = F_x^{-1} (\alpha; v) \) is the \(\alpha \)-quantile of a Student’s \(t (v) \) variable. The VaR for a standardized (unit variance) Student’s \(t \) variable, \(Y \), is simply:
\[
ES_\alpha (\alpha; v) = \sqrt{\frac{v - 2}{v}} ES_\alpha (\alpha; v)
\]
We use the connection between the PDF of a standardized Student’s \(t \) random variable and Hansen’s (1994) skew \(t \) variable, \(Z \), to obtain an analogous expression for the expected shortfall of a skew \(t \) random variable. As in Hansen (1994), define
\[
a \equiv 4 \lambda c \left(\frac{v - 2}{v - 1} \right), \quad b \equiv \sqrt{1 + 3 \lambda^2 - a^2}, \quad c \equiv \frac{\Gamma \left(\frac{\nu+1}{2} \right)}{\Gamma \left(\frac{\nu}{2} \right) \sqrt{\pi} (v - 2)}
\]
Define
\[
ES_\alpha^* (\alpha; \nu, \lambda) = \frac{\tilde{\alpha}}{\alpha} (1 - \lambda) \left(-\frac{a}{b} + \frac{1 - \lambda}{b} ES_y (\alpha; v) \right)
\]
where \(\tilde{\alpha} \equiv F_x \left(\frac{b}{1 - \lambda} (VaR_\nu (\alpha; v) + \frac{a}{b}) ; v, 0 \right) \)
where $F_z (\cdot; v, \lambda)$ is the CDF of the skew t distribution with parameters (v, λ). Let VaR$_z (\alpha; v, \lambda) = F_z^{-1} (\alpha; v, \lambda)$. It can then be shown that

$$ES_z (\alpha; v, \lambda) = \begin{cases} \frac{\alpha}{\lambda} ES_z^v (\alpha; v, \lambda), & VaR_z (\alpha; v, \lambda) \leq -a/b \\ 1 - \frac{\alpha}{\lambda} ES_z^v (1 - \alpha; v, -\lambda), & VaR_z (\alpha; v, \lambda) > -a/b \end{cases} \tag{66}$$

Note that when $\lambda = 0$ this simplifies to a symmetric unit-variance Student’s t variable, and we recover the expression above, i.e., $ES_z (\alpha; v, 0) = ES_y (\alpha; v)$. A Matlab function for the VaR and ES of a skew t variable is available at the link given in the first footnote of this paper.

Appendix C. Estimation using the FZ0 loss function

The FZ0 loss function, Eq. (6), involves the indicator function $1 [Y_t \leq v_t]$ and so necessitates the use of a numerical search algorithm that does not rely on differentiability of the objective function; we use the function `fminsearch` in Matlab. However, in preliminary simulation analyses we found that this algorithm was sensitive to the starting values used in the search. To overcome this, we initially consider a “smoothed” version of the FZ0 loss function, where we replace the indicator variable with a Logistic function:

$$\hat{L}_{FZ0} (Y, v, e; \alpha, \tau) = -\frac{1}{\alpha e} \Gamma (Y_t, v_t; \tau) (v - Y) + \frac{v}{e} + \log (-e) - 1 \tag{67}$$

where $\Gamma (Y_t, v_t; \tau) \equiv \frac{1}{1 + \exp [\tau (Y_t - v_t)]}$, for $\tau > 0 \tag{68}$

where τ is the smoothing parameter, and the smoothing function Γ converges to the indicator function as $\tau \to \infty$. In GAS models that involve an indicator function in the forcing variable, we alter the forcing variable in the same way, to ensure that the objective function as a function of θ is differentiable. In these cases the loss function and the model itself are slightly altered through this smoothing.

In our empirical implementation, we obtain “smart” (or “warm”) starting values by first estimating the model using the “smoothed” FZO loss function with $\tau = 5$. This choice of τ gives some smoothing for values of Y_t that are roughly within ± 1 of v_t. Call the resulting parameter estimate $\hat{\theta}_{FZ0}^{(5)}$. Since this objective function is differentiable, we can use more familiar gradient-based numerical search algorithms, such as `fminunc` or `fmincon` in Matlab, which are often less sensitive to starting values. We then re-estimate the model, using $\hat{\theta}_{FZ0}^{(5)}$ as the starting value, setting $\tau = 20$ and obtain $\hat{\theta}_{FZ0}^{(20)}$. This value of τ smoothes values of Y_t within roughly ± 0.25 of v_t, and so this objective function is closer to the true objective function. Finally, we use $\hat{\theta}_{FZ0}^{(20)}$ as the starting value in the optimization of the actual FZO objective function, with no artificial smoothing, using the function `fminsearch`, and obtain $\hat{\theta}_F$. We found that this approach largely eliminated the sensitivity to starting values.

Appendix D. Dynamics in the skew t distribution

For each parameter vector (θ, λ) of the Skew t distribution, we define $h (\theta, \lambda) \equiv [h_v (\theta, \lambda), h_e (\theta, \lambda)] = (v, e)$ to be the VaR and ES at a given value of α. Given the functional form of the Skew t distribution, not all pairs of VaR and ES are attainable from a set of parameters (θ, λ) and so the function h is not invertible everywhere. We define a pseudo-inverse of this mapping as

$$h^{-1} (v, e) \equiv \arg \min_{(\theta, \lambda)} (h_v (\theta, \lambda) - v)^2 + (h_e (\theta, \lambda) - e)^2 \tag{69}$$

In words, the pseudo-inverse returns the Skew t parameters (θ, λ) that lead to VaR and ES that are as close as possible, in a squared-error distance metric, to the target values (v, e).

To obtain dynamics in (θ, λ) that “offset” those in the GARCH volatility process, we set $(\theta_t, \lambda_t) = h^{-1} (\bar{v} / \sigma_t, \bar{e} / \sigma_t)$, and we fix $(\bar{v}, \bar{e}) = (\Phi^{-1} (\alpha), -\Phi (\Phi^{-1} (\alpha) / \alpha))$. If the pseudo-inverse was actually the proper inverse, we would find:

$$(v_t, e_t) = \sigma_t h (\theta_t, \lambda_t) = \sigma_t h (h^{-1} (\bar{v} / \sigma_t, \bar{e} / \sigma_t)) = (\bar{v}, \bar{e}) \ \forall \ t \tag{70}$$

In our simulation study, the time series of (v_t, e_t) in the “offsetting” case were approximately but not perfectly flat, e.g., for $\alpha = 0.05$, the min–max spreads for v_t and e_t were around 0.05, when $(\bar{v}, \bar{e}) = (-1.65, -2.06)$. As the dynamics in volatility are not completely offset, this is helpful for QMLE and the ratios reported in Panel C of Table 5 are better than if the dynamics could be offset completely.

To obtain “amplifying” dynamics, we set $(\theta_t, \lambda_t) = h^{-1} (\tilde{\alpha} \sigma_t, \tilde{b} \sigma_t)$, and we fix $(\tilde{a}, \tilde{b}) = (\bar{v}, \bar{e}) / (2 \sigma)$. If h^{-1} were a proper inverse this would lead to:

$$(v_t, e_t) = \sigma_t h (\theta_t, \lambda_t) = \sigma_t h (h^{-1} (\tilde{\alpha} \sigma_t, \tilde{b} \sigma_t)) = (\tilde{a} \sigma_t, \tilde{b} \sigma_t) \sigma_t^2 = \left(\frac{\tilde{v} \sigma_t}{2 \sigma}, \frac{\tilde{e} \sigma_t}{2 \sigma} \right) \sigma_t \equiv (a_t, b_t) \sigma_t \tag{71}$$

and so the coefficients linking VaR and ES to conditional standard deviation are also increasing in the standard deviation, yielding the “amplifying” feature of this model. In our simulation study, the time series of (v_t, e_t) were almost perfectly linear in σ_t^2, with R^2 values from regressions of v_t and e_t on σ_t^2 of over 0.998 in all cases.
Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2018.10.008.

References

Lumsdaine, R., 1996. Consistency and asymptotic normality of the quasi-maximum likelihood estimator in IGARCH(1,1) and covariance stationary GARCH(1,1) models. Econometrica 64, 575–596.

