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Abstract

Standard realized volatility (RV) measures estimate the latent volatility of an asset price

using high frequency data with no reference to how or where the estimate will subse-

quently be used. This paper presents methods for “tailoring” the estimate of volatility

to the application in which it will be used. For example, if the volatility measure will

be used in a specific parametric forecasting model, it may be possible to exploit that

information and construct a better measure of volatility. We use methods from machine

learning to estimate optimal “bespoke” RVs for heterogeneous autoregressive (HAR) and

GARCH-X forecasting applications. We apply the methods to 886 U.S. stock returns and

find that bespoke RVs significantly improve out-of-sample forecast performance. We find

that the bespoke RV places more weight on data from the end of the trade day, and that

the resulting volatility forecasts are more responsive to news than benchmark forecasts.
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1. Introduction

Discussing the empirical success of models based on high-frequency measures of volatil-

ity, Andersen, Bollerslev, Diebold and Labys (2003) make the point that “[t]he essence

of forecasting is quantification of the mapping from the past and present into the future.

Hence, quite generally, superior estimates of present conditions translate into superior

forecasts of the future.” In the subsequent two decades a large literature on high frequency

financial econometrics has emerged, containing many studies confirming that using more

accurate measures of volatility in a forecasting model indeed leads to better predictions.

Advances in the financial econometrics literature in the last two decades have produced

to measures of volatility that are more efficient (e.g. Ait-Sahalia, Mykland and Zhang,

2005; Bandi and Russell, 2008), robust to micro-structure noise (e.g. Zhang, Mykland

and Aı̈t-Sahalia, 2005; Barndorff-Nielsen, Hansen, Lunde and Shephard, 2008; Jacod, Li,

Mykland, Podolskij and Vetter, 2009), and robust to jumps in the price process (e.g.

Barndorff-Nielsen and Shephard, 2004; Mancini, 2009; Andersen, Dobrev and Schaum-

burg, 2012). These advances share the feature that they seek an improved measure of

volatility for later use in a variety of unknown applications. We consider the construction

of a volatility measure from a different perspective: Can a volatility measure be improved

by tailoring it for its eventual use in a volatility forecasting model?

The distinction between an “all purpose” estimator of volatility and one that is tailored

to a specific application mimics the distinction between supervised and unsupervised

machine learning algorithms. In unsupervised learning, data are analyzed without the

use of an outcome measure. This is analogous to the above-mentioned volatility measures,

where we seek a good (somehow defined) measure of volatility that works in a variety

of unknown future applications. In supervised learning the algorithm is tailored to the

problem at hand. This paper focuses on the case that we know that the resulting measure

will be used in a specific forecasting model, to predict a specific asset’s volatility. We

exploit that information to obtain a “bespoke” measure of volatility for that application.

In so doing, we may obtain a worse general-purpose estimator of volatility, but it is hoped

that it is a better measure of volatility for the specific purpose of volatility prediction.
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To make this idea concrete, consider the widely-used heterogeneous autoregressive

(HAR) model of Corsi (2009):

RVt = β0 + βdRVt−1 + βw
1

4

5∑
j=2

RVt−j + βm
1

16

21∑
j=6

RVt−j + et (1)

where RVt−j ≡
M∑
i=1

r2i,t−j (2)

and ri,t−j is the ith high frequency return on day t − j. In standard applications, RVt

is constructed as the sum of squared five-minute returns over day t, as in equation (2),

which for stocks on the New York Stock Exchange means the sum ofM = 78 such returns.

Realized volatility can be shown to be consistent as the sampling interval shrinks to zero

(Jacod, 2018), it is fully efficient under some regularity conditions (Jacod and Protter,

1998; Jacod, 2008), and works well in a variety of empirical applications (Liu, Patton

and Sheppard, 2015). We study whether we can obtain better forecasts by altering the

construction of realized volatility from that in equation (2) to exploit the knowledge that

it will subsequently be used in the model in equation (1).1

We exploit recent advances in the estimation of deep neural networks (DNNs) to

flexibly construct “bespoke” measures of volatility for use in a forecasting model. We

find that being completely flexible in the construction leads to poor out-of-sample forecast

performance, even when the tuning parameters of the estimation algorithm are carefully

selected. However after imposing some economically motivated structure on the tailoring

we obtain forecasts that significantly outperform benchmark forecasts.

Our empirical analysis uses high frequency data on all stocks that were ever a con-

stituent of the S&P 500 index over the period January 1995 to December 2019, a total

of 886 securities. In our main analysis we take the HAR model of Corsi (2009) as the

predictive model, and in Section 4 we further consider the GARCH-X model (Engle,

2002) and refinements of the HAR model, such as the “continuous HAR” of Andersen,

Bollerslev and Diebold (2007) and the “semi HAR” of Patton and Sheppard (2015). In

1Importantly, we only consider tailoring the terms on the right-hand-side of equations like (1); we
leave the target variable as standard RV, with the motivation that it is a good measure of the unknown
true volatility.
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all cases we find significant improvements in out-of-sample forecast performance when

using RVs tailored to the application.

We investigate the sources of the predictive gains from using bespoke RVs and find

two primary channels. First, we find that models using bespoke RVs place greater weight

on more recent lags than those using standard RVs. As more recent data tends to be

more useful for prediction, this makes models using bespoke RVs more responsive to news.

Second, we find that the weights attached to intra-daily returns in the bespoke RV are

different from flat (as they are for standard RV) and also different from a “time-of-day”

pattern motivated by measurement error considerations. Instead, the weights are low

at the start of the trade day, consistent with measurement error considerations, increase

slowly until the middle of the day, and then sharply increase over the last two hours of

the trade day. This pattern is consistent with an information channel: returns from the

latter part of the day is closest to the returns that forms part of the target variable,

and thus are particularly valuable for forecasting. We find evidence in support of this

explanation via multi-step-ahead forecasts.

Our work is related to the enormous literature on using high frequency data for volatil-

ity forecasting, as reviewed in Bollerslev, Engle and Nelson (1994), Poon and Granger

(2003) and Andersen, Bollerslev, Christoffersen and Diebold (2006). It is also linked

to the growing literature in applying machine learning methods in econometrics (e.g.

Chernozhukov, Hansen and Spindler, 2015; Mullainathan and Spiess, 2017; Athey and

Imbens, 2019) and finance (Gu, Kelly and Xiu, 2020; Freyberger, Neuhierl and Weber,

2020; Bianchi, Büchner and Tamoni, 2021; Patton and Weller, 2022). Within this growing

machine learning in economics literature, our work is particularly related to applications

of these methods for volatility forecasting (e.g. Bucci, 2020; Filipović and Khalilzadeh,

2021; Li and Tang, 2021; Christensen, Siggaard and Veliyev, 2022; Patton and Zhang,

2022; Reisenhofer, Bayer and Hautsch, 2022). Our study of high-frequency returns for

predicting lower-frequency volatility also links our analysis to the “mixed data sampling”

(MIDAS) models introduced by Ghysels, Santa-Clara and Valkanov (2004), and used for

volatility forecasting by Ghysels, Santa-Clara and Valkanov (2006).

3



The rest of the paper is structured as follows: Section 2 introduces the bespoke RVs

models in detail and draws connections to standard RV estimation and the standard

HAR model. Section 3 presents the results on the out-of-sample forecasting performance

of the competing models when applied to 886 U.S. equities. Section 4 presents results

using alternative forecasting models, demonstrating the generalizability of bespoke RVs.

Section 5 concludes. A supplemental appendix contains some additional details and

results.

2. Constructing bespoke realized volatilities

The standard realized variance estimator, given in equation (2), can be shown (An-

dersen et al., 2003; Barndorff-Nielsen and Shephard, 2002; Andersen, Bollerslev, Diebold

and Labys, 2001) to be consistent for the true latent quadratic variation of an asset price

process.2 This measure has also been found to be useful for forecasting future volatility,

as it is a more accurate measure of current volatility than squared daily returns, as used

in ARCH/GARCH models (Engle, 1982; Bollerslev, 1986).

A key feature of the usual RV is that it is an equal-weighted sum of the high frequency

squared returns. In constructing our “bespoke RVs” we will relax this assumption and

estimate the optimal weight attached to each high frequency return. When using five-

minute returns on stocks traded on the New York Stock Exchange, we have 78 such

returns to consider.

2.1. Bespoke RVs for HAR models

The HAR model can be interpreted as a autoregression of order 21 with parameter

equality constraints to reduce the number of free parameters from 21 to three (plus the

intercept). In the most flexible bespoke RV forecast, we relax both the equal weights in

the construction of RV and the HAR parameter constraints on the AR(21) process to

2Extensions of standard RV that are robust to market microstructure effects and/or jumps are dis-
cussed in the introduction.
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obtain:

RVt = β0 +
21∑
j=1

R̃V t−j(γj) + et (3)

where R̃V t−j(γj) ≡ γi,jr
2
i,t−j (4)

This simple-looking model is very flexible, with a total of 1 + 21 × 78 = 1, 639 free

parameters. Being linear, it is possible to estimate this model via standard OLS, however

with the sample sizes available in practice OLS unsurprisingly performs very poorly.

Instead, we treat this model as a single-layer neural network model and estimate it using

methods from machine learning. We describe the estimation method in detail in the

Section 2.3.

We next consider a hybrid between the fully flexible model in equation (3) and the

restrictive standard HAR: we impose the constraint that the “daily,” “weekly,” and

“monthly” lags in the model satisfy the parameter equality constraints in the HAR

structure, but we allow each of these terms to be flexible functions of the underlying

high-frequency returns:

RVt = β0 + R̃V t−1(γd) +
1

4

5∑
j=2

R̃V t−j(γw) +
1

16

21∑
j=6

R̃V t−j(γm) + et (5)

This model has “only” 1+3× 78 = 235 parameters and is thus much more parsimonious

than the fully flexible specification.

The final bespoke RV we consider is one that imposes some smoothness on the weights

attached to the high frequency returns. Research on the empirical characteristics of intra-

daily asset returns (see, e.g., Wood, McInish and Ord, 1985; Harris, 1986; Andersen and

Bollerslev, 1998) shows that market conditions vary over the trade day, but generally

smoothly. We impose this smoothness by using a cubic spline (see Judd, 1998, for further

details on this interpolation method) for the intra-day weights:

RVt = β0 + R̃V t−1(f(cd)) +
1

4

5∑
j=2

R̃V t−j(f(cw)) +
1

16

21∑
j=6

R̃V t−j(f(cm)) + et (6)
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where f(c) returns a 78× 1 vector of weights based on a cubic spline. With nodes every

hour or half-hour, the parameter vector c is of length 7 or 13, leading to a total of either

22 or 40 free parameters.

2.2. A time-of-day adjusted RV

We consider one additional estimator, lying in between standard RV and bespoke RV,

motivated by two well-known features of volatility. Firstly, volatility has a prounounced

diurnal pattern, with volatility being highest at the open and close of the trade day,

and lowest around the middle, see Andersen and Bollerslev (1997) and Andersen and

Bollerslev (1998) for example. Figure 1 confirms this pattern for the SPY in our sample

period. Secondly, the estimation error in sample variance is increasing with the level

of the variance. For example, in a simple i.i.d. setting, the asymptotic variance of the

sample variance is proportional to the true variance squared:

√
T (σ̂2

T − σ2)
d−−→ N(0, 2σ4)

Combining the diurnal pattern in volatility with the fact that the accuracy of volatility

changes with its level suggests a simple alternative to standard RV: a “time-of-day”

adjusted RV, where we use the inverse of the average level of volatility as a weight

function:

RV TOD
t =

M∑
i=1

ωir
2
i,t (7)

where ω−1
i =

1

T

T∑
t=1

r2i,t (8)

To avoid contaminating our out-of-sample comparisons, we estimate the RV TOD
t weights,

ωi, using only the training sample.

Using RV TOD
t in the familiar HAR specification yields:

RVt = β0 + βdRV TOD
t−1 + βw

1

4

5∑
j=2

RV TOD
t−j + βm

1

16

21∑
j=6

RV TOD
t−j + et (9)
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Figure 1: Time of Day Effect on SPY

Note: This figure illustrates the time of day pattern for the SPY ETF from 1995 to 2019. The
black dots are the average 5-min sample intra-day volatility (annualized) and the dashed red
line is the best fitting line. We can see the clear U-shape and Diurnality pattern.

Note that RV TOD
t is not a bespoke RV; it is not customized for a specific forecasting

model, rather it is a simple alternative to equal-weighting intra-daily returns, motivated

by measurement error considerations. We consider this volatility measure as another

benchmark that our proposed bespoke RVs must beat in order to be considered a success.

Figure 2 summarizes the models that will be considered in our out-of-sample analysis

in the next section. These range from the benchmark HAR model using standard RV

as a predictor variable as the simplest specification, to the “fully flexible” model that

imposes the fewest constraints.

Figure 2: Main Models Relationship

Note: This figure illustrates the relationship among the five models considered in the out-of-
sample analysis.

7



2.3. Estimation of Bespoke RVs

The specifications in equations (3) and (5) are both linear and could easily be esti-

mated via OLS, but this is unlikely to good out of sample performance (and we demon-

strate this empirically below) as the model is severely over-parameterized. The specifi-

cation in equation (6) is nonlinear, and requires a numerical optimization method. We

estimate all of these models using the gradient descent approach, described below, de-

signed for training deep neural networks. Such models are very flexible and users of

these models are aware of the need for methods to tame the over-fitting problem. As is

common in hte machine learning literature, we split our sample period into “training,”

“validation,” and “testing” samples to estimate the models, select the hyperparameters,

and compute out-of-sample forecasts.

2.3.1. Stochastic gradient descent methods

We adopt the mini-Batch stochastic gradient descent algorithm (Robbins and Monro,

1951; Bilmes, Asanovic, Chin and Demmel, 1997) with a gradually decreasing of learning

rate. We estimate the parameters using the following algorithm:

1. Initialize the model with HAR model coefficients estimated on the training sample.3

2. For each combination of hyperparameters, described below, estimate the model in

the training sample.

3. Evaluate predictive performance on validation sample, and select the hyperparam-

eters that lead to the best forecasting performance.

4. Fix the hyperparameters at their optimal values, and estimate the model parameters

on the entire in-sample data (training and validation samples combined).

5. Evaluate the predictions on the testing sample (the out-of-sample period).

There are a total of five hyperparameters in the optimization algorithm for the “fully

flexible” and “flexible HAR” methods, and six for the “cubic HAR” method:

3We also considered using many random starting and then ensembling the resulting estimates, as is
common in the machine learning literature, and the results are qualitatively the same.
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� LearningRate ∈ {0.1, 0.01}. The learning rate controls the step size of each mini-

Batch gradient update in the optimization algorithm.

� BatchSize ∈ {512, 2048}. The batch size controls how many observations we use

to compute the gradient direction for each update in the optimization algorithm.

� NumberofEpochs ∈ {50, 100, 250}. This controls the number of times that the

algorithm works through the training data set to compute the gradients for the

update.

� StepSize ∈ {0.1, 0.5}. The step size controls how frequently we reduce the learning

rate (if at all). The numbers are as a fraction of the number of epochs. For

example, if the step size is 0.1 and the the number of epochs is 100, then we reduce

the learning rate by gamma (described below) after every 0.1× 100 = 10 epochs.

� Gamma ∈ {0.1, 0.25, 1}. Gamma controls how much to reduce the learning rate.

For example, if the learning rate is 0.1 and gamma is 0.25, then when it is time to

reduce learning rate, the updated learning rate will be 0.1× 0.25 = 0.025.

� NumNodes ∈ {7, 13}. This parameter controls how flexible the spline function is.

We tune the hyperparameters separately for each stock in our analysis. Section S.7

in the supplemental appendix reports summary statistics on how the optimal hyperpa-

rameters vary across stocks.

In estimating the cubic spline model, we need to implement a cubic spline layer, similar

to the linear and convolution layers in PyTorch, the Python package we use for estimation,

where the layer can initialize values for the base points (K) and generate cubic spline

interpolations for the final desired number of points (M). Note that the parameters for

this cubic spline layer is the K initialized base points.and then we use the standard back-

propagation and mini-Batch stochastic gradient descent framework, where we gradually

find the optimal parameter values by iterating through all the batches and epochs. As an

illustration, Figure 3 demonstrates how the cubic spline layer may gradually recover its

optimal parameters as the mini-Batch stochastic gradient descent optimization algorithm

9



evolves. The cubic spline layer starts out with a random initialization for the values of

the interpolating nodes and then gradually converges to the optimal interpolating nodes

for the training sample.

Figure 3: Illustration of Cubic Spline Layer

Note: This figure illustrates how the cubic spline layer can recover y = x5 on [−2, 2], with 13
base points and then interpolate to 78 points. Here the cubic spline layer parameters are the
red stars and the black line represents the interpolated output. The leftmost picture represents
the initialization of the layer parameters, and the middle figure represents the process of finding
the optimal parameters through miniBatch gradient descent. Finally, the right most picture
representing the final optimal parameter values and its interpolation output.

In Figure 4 we present the model architecture for the cubic spline model. (The archi-

tecture for the other two models is simliar, but without the second and third layers.) We

initialize cubic spline interpolating nodes for daily, weekly and monthly lags separately,

and then use the cubic spline layer to generate the initial bespoke weights. Then we

combine the initial bespoke weights with the lagged high frequency returns squares and

use a linear layer with a constant to construct the forecast. After this, we optimize the

interpolating nodes and the constant term through the miniBatch gradient descent and

reach the optimal bespoke weights for the cubic HAR model.

2.3.2. Regularized Regression Models

In addition to the stochastic gradient descent methods described above, we also con-

sider more familiar regularization methods, applied to the “flexible HAR” model in equa-

tion (5). Denoting the usual, non-penalized, objective function as LT (β) we consider the

penalized loss:

L̄T (β;α, λ) = LT (β) + α(λ∥β∥1 + (1− λ)∥β∥2)

10



Figure 4: Cubic HAR Model Architecture

Note: This figure illustrates the cubic HAR model architecture. In particular, it shows how we
use miniBatch gradient descent to iteratively solve the optimal parameters (3×K+1) and then
use them to get the cubic spline interpolated weights for constructing final RV forecast. Here
K represents the number of basis points for cubic spline interpolation or the true number of
parameters, and M represents the desired number of points as cubic spline interpolation output.
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This formulation allows us to nest four standard shrinkage methods: No penalty

(α = 0), ridge regression (λ = 0, α ≥ 0), LASSO (λ = 1, α ≥ 0), and elastic net

(λ ∈ [0, 1], α ≥ 0). We consider the following values for these hyperparameters:

α ∈ 0, 0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 10, 50, 100, 1000

λ ∈ 0, 0.25, 0.5, 0.75, 1

3. Out-of-sample forecast performance of bespoke realized volatilities

3.1. Data description

Our empirical analysis is based on high frequency stock prices from the Trades and

Quotes (TAQ) database, spanning the period from January 1995 to December 2019, a

total of 6,293 days. We include every stock that was ever a constituent of the S&P 500

index during this period, and we follow Barndorff-Nielsen, Hansen, Lunde and Shephard

(2009) for the data cleaning process, retaining only stocks with at least 2,000 observations

in the sample period. This yields a total of 886 different stocks for our analysis. Following

Liu, Patton and Sheppard (2015), we use five-minute sampling for our high frequency

returns throughout.

We follow common practice in the machine learning literature (see, e.g., Christensen,

Siggaard and Veliyev, 2022) and split the available sample period for a given stock into

a training sample (first 60% of data), a validation sample for choosing hyperparameters

(next 20%), and a test sample for out-of-sample comparisons (final 20%). The first 80%

of the sample is the full in-sample period. For models that do not involve any hyper-

parameters search we simply estimate the models on the in-sample period and evaluate

on the test sample. For models that involve hyperparameters, we estimate the models

on the training sample, and select the hyperparameters based on the validation sample

performance. We then we re-estimate the models using the optimal hyperparameters on

the full in-sample period, and evaluate on the out-of-sample period.
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3.2. Optimal weights for bespoke RVs

This section presents the optimal bespoke RV weights across the three degrees of

tailoring that we consider (fully flexible, flexible HAR, and cubic HAR). In Figure 5 we

present the bespoke weights implied by the “fully flexible” model, averaged across all

886 stocks in our sample, and for comparison we also present the weights implied by the

standard HAR (which appear as a step function) and the TOD-HAR (which appear as

an inverse-U layered on a step function).

The weights for the fully-flexible bespoke RV are similar to the weights for standard

RV for daily lags 7 to 21, while they are lower for the first daily lag, and slightly above

for lags 2 through 6. For all lags, the estimated weights appear to have non-negligible

estimation error, which is unsurprising given that each of these 1,638 weights are freely

estimated. Foreshadowing our forecast comparison results, the estimation error in these

weights make the fully flexible model perform significantly worse than the benchmark

HAR forecasts out of sample.

Figure 5: Cross Sectional Average Optimal Fully Flexible Weights: S&P500

Note: This figure depicts the cross-sectional average optimal weights implied by the “fully
flexible” model, along with the equal-weighting scheme and the time-of-day weighting scheme.
The x-axis runs from the most-recent high-frequency return to least recent, and each of the 21
days is marked by a gray or white region.

Figure 6 presents the optimal bespoke weights for the “flexible HAR” model, which

imposes that RVs lagged 2 through 5 periods share the same “weekly” weight function,

and the RVs lagged 6 through 21 share the same “monthly” weight function, while the

first lag gets its own “daily” weight function. We find that the daily lag weights, despite
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Figure 6: Cross Sectional Average Optimal Flexible HAR Weights: S&P500

Note: This figure depicts the cross sectional average optimal weights implied by Flexible HAR
model, along with its comparisons with the equal-weighting scheme and the time-of-day weight-
ing scheme in the S&P500 cross section. The upper left corner depicts the daily lag weights,
upper right is the weekly lag weights, the lower left is the monthly lag weights, and the lower
right presents all three for ease of comparison.

still being somewhat noisy, clearly display an up-weighting the end of day information.

For the weekly and monthly lags weights, we find them again being somewhat noisy, but

roughly showing a flat shape with slight down-weighting at the beginning of the trade

day.

Finally, we present the bespoke RV weights when we impose smoothness across the

trade day using a cubic spline. Figure 7 presents the optimal bespoke weights for the daily,

weekly and monthly weights in the cross section of S&P500. The most prominent feature

14



Figure 7: Cross Sectional Average Optimal Cubic HAR Weights: S&P500

Note: This figure depicts the cross sectional average optimal weights implied by the Cubic HAR
regressions, along with its comparisons with the equal-weighting scheme and the time-of-day
weighting scheme in the S&P500 cross section. The upper left corner depicts the daily lag
weights, upper right is the weekly lag weights, the lower left is the monthly lag weights, and
the lower right presents all three for ease of comparison.

of the optimal weights is the strong increase in weights in the daily lag towards the end

of the trade day. We investigate the source of this feature in Section 3.4 below. It is also

noteworthy that the cubic HAR daily lag weights roughly track the TOD weights until

lunch time, but are much higher at the end of day. The weekly and monthly weights are

broadly similar to each other, and hard to distinguish from either flat or TOD weights.

In Section 3.4 we use out-of-sample forecast performance to determine whether these

weights are indeed different from either of these benchmarks.
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3.3. Comparing out-of-sample forecast performance

We now present results comparing the forecast performance of the models using be-

spoke RVs with the benchmark HAR model using standard RV, as well as the HAR model

using the time-of-day weighted RV. For our main analysis we measure forecast accuracy

using the QLIKE loss function:

LQLIKE(RV, R̂V ) = RV/R̂V − logRV/R̂V − 1

We report corresponding results using the quadratic loss function, LMSE(RV, R̂V ) =

(RV − R̂V )2, in the supplemental appendix.4 We compare the predictive accuracy of

competing models using Diebold-Mariano (DM) tests for each individual asset in our

sample, and a panel DM test for all stocks jointly.5

Table 1 presents forecast comparison results comparing the baseline HAR model with

various competing methods. The first four rows present comparisons with the methods

presented in Figure 2, namely the TOD-HAR and three bespoke HAR models, while

the bottom four rows present comparisons with different, more familiar, methods for

estimating the “flexible HAR” model.

The first row of Table 1 compares the baseline HAR model with a fully flexible bespoke

HAR models. We see that the baseline model outperforms the fully flexible model in 714

out of 886 individual comparisons, losing in only 172, and of those 714 “wins” 321 are

statistically significant at the 5% level. Pooling the individual stocks and conducting

the comparison jointly, the last column reports a panel Diebold-Mariano t-statistic of

-9.3, which is strong evidence that the baseline HAR model outperforms the fully flexible

model overall. These comparisons lead to the conclusion that fully flexible model is worse

than the simple, familiar, and parsimonious HAR model.

The second row of Table 1 compares the baseline HAR with the “flexible HAR,” which

imposes the HAR structure on the lag parameters, but allows bespoke weights on each

4Consistent with the power analyses in Patton and Sheppard (2009), the rankings using quadratic
loss are similar to those using QLIKE but the significance of the loss differences is generally weaker.

5For the individual DM tests we use Newey and West (1987) standard errors allowing for autocorre-
lation up to 10 lags. For the panel DM tests we additionally cluster by stock.
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Table 1: Forecast performance of HAR vs other models for 886 S&P 500 stocks

DM Losses DM Wins DM t-stat
HAR vs: Total Signif Total Signif Panel

Fully Flexible 172 53 714 321 -9.3
Flexible HAR 677 430 209 38 4.5
Cubic HAR 731 470 155 41 21.7
TOD HAR 680 458 206 63 18.6

Ridge 445 185 441 175 -2.3
LASSO 222 42 664 299 -6.1
Elastic net 454 182 432 174 -7.2
OLS 245 46 641 272 -5.7

Note: This table reports individual and panel Diebold-Mariano tests comparing the baseline
HAR model against competing models across 886 S&P 500 stocks. A positive panel DM t-
statistic indicates that the competing model out-performs the HAR model, while a negative
t-statstic indicates the opposite.

of the daily, weekly, and monthly lags. We see that this model performs much better

than the fully flexible model: it out-performs the baseline HAR for 677 out of 886 stocks,

and has a panel DM statistic of 4.5, indicating strongly significant out-performance. The

third row of Table 1 imposes more structure on the bespoke RV, using a cubic spline

to ensure that the bespoke weights are smooth through the trade day. We see that this

improves forecast performance even further, with a panel DM statistic of 21.7. Thus

imposing some economically-motivated structure on the bespoke RV leads us to a model

that out-performs the baseline model by an even greater margin than that by which the

fully flexible model under-performs.

Finally, the fourth row of Table 1 considers the non-bespoke, but computationally

simple, TOD-HAR, where the realized variances are computing using time-of-day weights.

We see that this model also significantly out-performs the baseline HAR, with a panel

DM statistic of 18.6, and almost the same number of “wins” as the flexible (bespoke)

HAR. These results suggest that this simple “off-the-rack” alternative RV is a significant

improvement over standard equal-weighted RV for volatility forecasting.

The bottom four rows of Table 1 present alternative methods for regularizing the
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Table 2: Forecast performance of Cubic HAR vs other models for 886 S&P 500 stocks

DM Losses DM Wins DM t-stat
Cubic HAR vs: Total Signif Total Signif Panel

Fully Flexible 106 39 780 571 -10.8
Flexible HAR 277 72 609 204 -12.8
TOD HAR 358 95 528 205 -2.9
HAR 155 41 731 470 -21.7

Ridge 114 32 772 434 -3.3
LASSO 48 15 838 595 -6.9
Elastic net 118 26 768 433 -10.2
OLS 54 17 832 564 -6.4

Note: This table reports individual and panel Diebold-Mariano tests comparing the cubic HAR
model against competing models across 886 S&P 500 stocks. A positive panel DM t-statistic
indicates that the competing model out-performs the cubic HAR model, while a negative t-
statstic indicates the opposite.

flexible HAR model parameters. Recall that the flexible HAR model has a total of

235 parameters, and all of them appear linearly, meaning that familiar methods like

OLS and ridge regression can be employed in place of our preferred stochastic gradient

descent (SGD) optimization method. We see, however, that all of these methods lead to

significantly worse performance than the baseline HAR: the panel DM t-statistics are all

less than -2, while the flexible HAR model estimated using SGD significantly out-performs

the baseline model.6

From the comparisons with the baseline model in Table 1, it appears that the cubic

HAR is the best-performing model, but strictly those comparisons do not guarantee

this interpretation is correct. Table 2 changes the reference model to the cubic HAR and

compares all of the other methods to it. We see that the panel DM t-statistic is uniformly

below -2, and indeed in several comparisons it is much smaller than that, confirming that

the cubic HAR model is indeed the best-performing model on average.

6In Section S.3 of the supplemental appendix we consider shrinking the estimated OLS parameters
towards the benchmark HAR parameters rather than towards zero, as is done here. We find that the
optimal degree of shrinkage for this design is large, and the estimated parameters are shrunk almost
all the way towards the original HAR parameters. The cubic HAR model is shown to significantly
out-perform these alternative shrinkage estimators as well.
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We next consider the gains from bespoke RV for multi-step ahead volatility forecast-

ing. Table 3 presents results for forecast horizons ranging from one day to 60 days. In

Panel A we see that using bespoke RV significantly improves forecast accuracy for all

horizons, with the panel DM t-statistic less than -5 in all cases. The improvement is gen-

erally declining with the horizon, with the t-statistics decreasing in magnitude, and the

proportion of “wins” in individual comparisons decreasing as well. Nevertheless, these re-

sults represent strong evidence that “bespoke” RVs are preferred to standard RVs, when

employed in the HAR model, even for relatively long forecast horizons.

In Panel B of Table 3 we compare the bespoke RV to the simple TOD-RV. Table 1

revealed that TOD-RV is significantly better, on average, than standard RV and so this

is a much tougher competitor. We find statistically significant gains from using bespoke

RV in around half of the horizons considered, and in only one horizon is the ranking

reversed, though in that case the difference in forecast performance is not significant.

This panel thus also confirms that bespoke RVs provide important improvements in

forecast performance across a range of forecast horizons.

3.4. Understanding the Optimal Bespoke Weights

In this section we seek to understand the sources of the out-performance of models

using bespoke RV relative to the benchmark methods. We first investigate whether by

tailoring the measure of risk to the forecasting problem at hand the model can place

greater weight on the risk measure and thus react to news more quickly. To measure

this, we compute the average effective regression coefficients for the daily, weekly, and

monthly lagged RVs.7 Table 4 presents the results, and shows that the bespoke RVs are

more responsive than the standard RVs. The standard HAR has an average coefficient

on daily lagged RV of 0.438, while the bespoke cubic HAR has an average coefficient of

0.466. In the other direction, we see that the poor-performing fully flexible HAR has

an average daily coefficient of only 0.312. When the sum of the coefficients is less than

one, we can interpret that sum as the weight on lagged information, and the difference

7We adjust the regression weights to ensure that the bespoke RVs and the standard RVs have the
same unconditional mean during the in-sample period. This makes comparing coefficient magnitudes
meaningful.
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Table 3: Multi-day ahead volatility forecasting

DM Losses DM Wins DM t-stat
Horizon (days) Total Signif Total Signif Panel

Panel A: Cubic vs HAR
1 155 41 731 470 -21.7
2 194 31 692 366 -11.6
3 222 38 664 325 -10.5
4 247 41 639 285 -8.8
5 250 36 636 265 -18.6
20 348 81 538 248 -8.6
60 413 154 473 223 -5.4

Panel B: Cubic vs TOD HAR
1 358 95 528 205 -2.9
2 449 120 437 146 -1.2
3 487 120 399 136 -2.6
4 496 129 390 133 1.0
5 500 131 386 124 -4.6
20 484 160 402 143 -0.3
60 458 175 428 189 -4.9

Note: This table reports individual and panel Diebold-Mariano tests comparing the cubic HAR
model against the HAR (Panel A) and TOD-HAR (Panel B) models for 886 S&P 500 stocks, for
various forecast horizons. A positive panel DM t-statistic indicates that the competing model
out-performs the cubic HAR model, while a negative t-statstic indicates the opposite.

from one as the effective weight on the unconditional average (the intercept). This too

lines up with the relative forecast performances documented in the previous subsection,

and is consistent with bespoke RVs (appropriately disciplined) providing more responsive

forecasts.

We next seek to understand the reason cubic HAR weights take the shape that they

do. These weights were presented above in Figure 7 and present two key questions.

Firstly, why do the weights on the daily lag rise in the afternoon? Secondly, are the

weights on the weekly and monthly lags significantly different from either the flat weights

from the standard RV or the time-of-day (TOD) weights?

We conjecture that the rising weights in the daily lagged RV come from the proximity

of the afternoon to the target day. That is, returns realized in the afternoon are the
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Table 4: Average regression coefficients for different models

Daily Weekly Monthly Sum

HAR 0.438 0.298 0.225 0.960
TOD HAR 0.465 0.295 0.204 0.964
Cubic HAR 0.466 0.294 0.217 0.978
Flexible HAR 0.442 0.298 0.224 0.963
Fully Flexible 0.312 0.384 0.346 1.041

Note: This table presents the average, across 886 S&P 500 stocks, coefficients on daily, weekly
and monthly lagged RVs.

closest to, and presumably the most informative for, the returns that arise during the

following day. We test this conjecture by examining the weights on the daily lag returns

for longer forecast horizons. If the conjecture is correct, then the weights on the daily

lagged RV should rise by less in the afternoon for longer forecast horizons. Figure 8

presents the estimated weights for forecast horizons ranging from one to five days, and

we see that the weights on afternoon returns are monotonically declining as the horizon

increases, consistent with this being an information effect. The weights on weekly and

monthly lagged RVs increase slightly with the forecast horizon, offsetting the declining

weight given to the daily lagged RVs.

Next we seek to determine whether the weights on the weekly and monthly lags

significantly different from either the flat weights from the standard RV or the time-of-

day (TOD) weights. We do this via an out-of-sample forecast comparison of the cubic

HAR with a hybrid model that estimates the weights on the lagged daily data but imposes

either equal weights or TOD weights on the lagged weekly and monthly data. We estimate

these hybrid “cubic-EW” and “cubic-TOD” models using the same SGD algorithm as the

original cubic HAR model.

Table 5 shows that the hybrid cubic-TOD model significantly out-performs all com-

peting models, according to the panel DM t-statistics, aside from the cubic-EW model.

The t-statistic for that comparison is 1.1, indicating no significant difference in perfor-

mance on average.8 While this analysis does not allow us to determine whether the

8We informally break this statistical tie by considering the number of significant differences for indi-
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Figure 8: Multi-day ahead cubic HAR weights

Note: This figure depicts the cross sectional average optimal weights implied by the cubic HAR
regressions for multi-days ahead forecasts in the S&P 500 cross section. Note that the upper
left is the daily lag, upper right is the weekly lag, and the lower left is the monthly lag. Also
the colored lines are representing weights for one day ahead forecasting.
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Table 5: Forecast performance of Cubic-TOD vs other models on 886 S&P 500 stocks

DM Losses DM Wins DM t-stat
Cubic-TOD vs: Total Signif Total Signif Panel

Fully Flexible 100 35 786 567 -10.9
Flexible HAR 281 69 605 228 -14.2
Cubic 402 130 484 150 -3.7
Cubic-EW 417 123 469 136 1.1
TOD HAR 318 74 568 219 -8.1
HAR 159 37 727 471 -21.0

Note: This table reports individual and panel Diebold-Mariano tests comparing the cubic-TOD
model against competing models across 886 S&P 500 stocks. A positive panel DM t-statistic
indicates that the competing model out-performs the cubic-TOD model, while a negative t-
statstic indicates the opposite.

optimal weights for weekly and monthly lagged information are equal or TOD shaped,

Table 5 does show that it is preferable to impose either of those shapes than to try to

estimate them from data.

4. Bespoke RV for alternative forecasting models

The analysis in the previous section focused on tailoring realized variance (RV) mea-

sures for application in the heterogeneous autoregressive (HAR) model of Corsi (2009).

This section shows that out-of-sample forecast performance can similarly be improved

when tailoring RV measures for use in alternative forecasting models. We firstly consider

two refinements of the original HAR model, the “continuous” HAR (CHAR) model of An-

dersen, Bollerslev and Diebold (2007), which decomposes volatility into continuous and

jump components, and the “semi” HAR (SHAR) model of Patton and Sheppard (2015),

which decomposes volatility into upside and downside movements. We then consider a

model outside the HAR family, the GARCH-X model of Engle (2002).

The CHAR model of Andersen, Bollerslev and Diebold (2007) forecasts future realized

volatility using only the continuous component of volatility, discarding the component

vidual stocks: we observe that cubic-TOD significantly out-performs cubic-EW for 136 stocks, compared
with 123 for cubic-EW.
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coming from jumps, as that component is found to be nearly unpredictable. This model

uses bi-power variation (BPV) (Barndorff-Nielsen and Shephard, 2004) to estimate the

continuous component of volatility:

RVt = β0 + βdBPVt−1 + βw
1

4

5∑
j=2

BPVt−j + βm
1

16

21∑
j=6

BPVt−j + et (10)

where BPVt = µ−2
1

M−1∑
i=1

|rt,i||rt,i+1|

µ1 ≡
√
2/π

We tailor the measure of continuous volatility to the CHAR model by flexibly estimating

the weights attached to each product |rt,i||rt,i+1|. Motivated by the results in Tables 2

and 5, we impose that the daily weights are smooth by using a cubic spline, and that the

weekly and monthly weights use time-of-day (TOD) weights:

RVt = β0 + B̃PV t−1(γ) + βw
1

4

5∑
j=2

BPV TOD
t−j + βm

1

16

21∑
j=6

BPV TOD
t−j + et (11)

where B̃PV t(γ) =
∑M−1

i=1 γi|rt,i||rt,i+1|, and γi comes from a cubic spline with hourly or

half-hourly nodes. BPV TOD
t is defined analogously to RV TOD

t in equation (7).

Next we turn to the SHAR of Patton and Sheppard (2015), which decomposes realized

variance into positive and negative realized semivariances (Barndorff-Nielsen, Kinnebrock

and Shephard, 2010):

RVt = β0 + βd,pRV +
t−1 + βd,nRV −

t−1 + βw
1

4

5∑
j=2

RVt−j + βm
1

16

21∑
j=6

RVt−j + et (12)

where RV +
t =

∑M
i=1 max(0, ri,t)

2 and RV −
t =

∑M
i=1min(0, ri,t)

2 are the positive and

negative realized semivariances. We tailor the measures of semivariance by using a cubic

spline to aggregate the high-frequency positive and negative returns. As for the bespoke

CHAR model, we again only estimate the weights for the daily lag, and impose TOD

24



Table 6: Bespoke RV for CHAR and SHAR models

DM Losses DM Wins DM t-stat
Model Total Signif Total Signif Panel

CHAR: Basic vs Bespoke 120 38 766 606 -19.2
SHAR: Basic vs Bespoke 164 40 722 492 -11.1

Note: This table reports individual and panel Diebold-Mariano tests comparing the CHAR
and SHAR models with their bespoke counterparts, across 886 S&P 500 stocks. A positive
panel DM t-statistic indicates that the original model out-performs the bespoke version, while
a negative t-statstic indicates the opposite.

weights for the weekly and monthly lags:

RVt = β0 + R̃V
+

t−1(γp) + R̃V
−
t−1(γn) + βm

1

4

5∑
j=2

RV TOD
t−j + βw

1

16

21∑
j=6

RV TOD
t−j + et (13)

where R̃V
+

t (γp) =
∑M

i=1 γi,p max(rt,i, 0)
2, R̃V

−
t (γn) =

∑M
i=1 γi,n min(rt,i, 0)

2, and (γi,p, γi,n)

come from cubic splines with hourly or half-hourly nodes. RV TOD
t is from equation (7).

We estimate the bespoke CHAR and SHAR models using the same methods as the

models in Section 3. Table 6 presents out-of-sample forecast comparisons of the original

models with their bespoke counterparts. We see that forecasts based on bespoke volatil-

ity measures significantly out-perform their benchmark alternatives. The panel DM t-

statistics are less than -10 in both comparisons, and the bespoke models out-perform for

over 700 of the 866 individual comparisons. These results are qualitatively as strong as

the out-performance of cubic HAR over standard HAR reported in Table 1, and provide

evidence that the idea of tailoring the risk measure to the forecasting model is not specific

to the HAR model of Corsi (2009).

After seeing this strong forecasting performance, we are again interested in the optimal

weights that lead to the improved forecasting performance. To this end, we visualize the

average optimal weights from bespoke CHAR and SHAR models, and compare them with

the weights from original SHAR and CHAR models, which are flat. Figure 9 shows that

the optimal weights for these models both display the rise in weights in the afternoon

that was observed for bespoke RV for the HAR model in Figure 7. Also, consistent with
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Figure 9: Bespoke CHAR and SHAR weights

Note: This figure depicts the cross sectional average optimal weights implied by the CHAR and
SHAR models along with their bespoke versions.

Patton and Sheppard (2015), we find that the weights on the negative semivariances are

greater than those on the positive semivariances, both for the benchmark SHAR model

and the bespoke SHAR model, indicating that negative high frequency returns are more

important for forecasting one-day-ahead volatility than positive high frequency returns.

Next we explore bespoke measures of volatility for a model outside of the HAR family

of models. We consider the GARCH-X model of Engle (2002), which replaces the lagged

squared return in the GARCH model (Bollerslev, 1986) with the lagged realized variance.9

Assuming a zero mean, the GARCH-X model is

rt =
√

htzt (14)

ht = ω + βht−1 + αRVt−1

where zt ∼ iid (0, 1).

We construct a bespoke RV for the GARCH-X model by flexibly estimating the

weights attached to the high frequency squared returns in RVt, again using a cubic spline

9When focusing on one-day-ahead volatility forecasting, the HEAVY (Shephard and Sheppard, 2010)
and realized GARCH (Hansen, Huang and Shek, 2012) models both reduce to a GARCH-X type model.
For multi-step forecasting one of these models, or some other extension of the GARCH-X model, is
required.
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Figure 10: Bespoke GARCH-X weights

Note: This figure depicts the cross sectional average optimal weights implied by the Bespoke
GARCH-X model weights.

to impose smoothness as a function of the time of day.

ht = ω + βht−1 + αR̃V t(γ) (15)

where R̃V t(γ) is constructed as in the cubic HAR model in equation (6). Given the

impressive performance of the simple time-of-day adjusted RV measure in the HAR anal-

ysis, we also consider a GARCH-X model with RV TOD on the right-hand side in place of

standard RV.

Figure 10 presents the bespoke GARCH-X model weights, as well as the bespoke HAR

weights and the TOD weights for comparison. We observe that the bespoke GARCH-X

weights are markedly different from both the equal weights of standard RV and the TOD

weights, and are quite similar to the optimal bespoke HAR weights, starting the day low

and close to the TOD weight, then rising to around the same level as the equal weighted

case, and then rising strongly in the afternoon. As discussed in Section 3.4, this increase

is likely driven by the additional information contained in that period for returns in the

subsequent day.
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Table 7: Bespoke RV for GARCH-X models

DM Losses DM Wins DM t-stat
Model Total Signif Total Signif Panel

GARCH-X: Basic vs Bespoke 336 68 550 186 -9.1
GARCH-X: TOD vs Bespoke 431 87 455 126 -4.3

Note: This table reports individual and panel Diebold-Mariano tests comparing the GARCH-X
model with a bespoke counterpart, and with a model using RV TOD, across 886 S&P 500 stocks.
A negative panel DM t-statistic indicates that the bespoke model out-performs the competitor,
while a positive t-statstic indicates the opposite.

Finally, we turn to forecast comparisons for this application. We evaluate the forecast

performance using the QLIKE loss function and using r2t as a proxy for true volatility,

following the spirit of the GARCH-type models. Table 7 reports the forecast comparison

results, and confirms that bespoke RVs outperform both the standard RV and RV-TOD

when used in GARCH-X models. The panel DM t-statistic comparing basic and bespoke

GARCH-X forecasts is -9.1, indicating very strong statistical significance of the forecast

improvement. Bespoke RV also significantly outperforms TOD-RV, with a DM t-statistic

of -4.3. These results confirm that tailoring the risk measure to the predictive model in

which it will be used, whatever form that model takes, leads to improved out-of-sample

volatility forecasts.

5. Conclusion

This paper proposes to tailor the measure of risk, such as realized variance (RV), to

the specific forecasting model and the specific asset of interest in order to improve the

model’s forecasting performance. The resulting “bespoke RV” will not necessarily be

a good “all purpose” measure of risk, but it will optimally draw on the available high

frequency information to improve, if possible, the forecasting performance of the model.

We use data on all 886 stocks that were ever a constituent of the S&P 500 index

over the period 1995 to 2019, and we exploit recent advances in the estimation of deep

neural networks (DNNs) to flexibly construct “bespoke” measures of volatility. We find

that being completely flexible in the construction of the bespoke measure leads to poor
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out-of-sample forecast performance, however after imposing some economically motivated

structure we obtain forecasts that significantly outperform the benchmark forecasts. Our

main analyses focus on bespoke RVs for the heterogeneous autoregressive (HAR) model

of Corsi (2009), and as extensions we consider the GARCH-X model (Engle, 2002), the

“continuous HAR” of Andersen et al. (2007), and the “semi HAR” of Patton and Shep-

pard (2015). In all four cases we find significant improvements in out-of-sample forecast

performance when using RVs tailored to the application.

Opening the black box to understand the sources of forecast improvements from using

bespoke RVs, we find two main channels. Firstly, we find that using a bespoke RV in place

of a standard RV leads the model to put more weight on the risk measure, increasing the

responsiveness of the forecast. Secondly, we find that the optimal bespoke RVs, across all

four models, place higher weight on returns from the afternoon, which is in contrast with

both the standard equal-weighted RV and an RV based on time-of-day information. We

find evidence that this increased afternoon weight comes from an information channel:

afternoon returns are closest to the target date, and thus more informative about the

future volatility.

This paper leaves open several avenues for future work. We focused exclusively on

univariate volatility models, and the important extension to multivariate models opens

up questions about the optimal degree of customization potentially differing between

variance and correlations, as well as the usual empirical challenges of moving to high

dimension models. We focused on linear bespoke RVs, and the extension to nonlinear

versions could yield further improvements, although our results suggest that imposing

some structure on the bespoke RV is important for achieving forecast gains. Finally, our

focus is on volatility models, but any forecasting model that uses a variable constructed

from other variables or data sources may benefit from tailoring that input. We look

forward to pursuing, or reading about, these ideas in the future.
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