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Abstract

Is there a gap between the profitability of a trading strategy “on paper” and that
which can be achieved in practice? We answer this question by developing two new tech-
niques to measure the real-world implementation costs of financial market anomalies.
The first method extends Fama-MacBeth regressions to compare the on-paper returns
to factor exposures with those achieved by mutual funds. The second method estimates
average return differences between stocks and mutual funds matched on risk character-
istics. Unlike existing approaches, these techniques deliver estimates of implementation
costs without estimating parametric microstructure models from trading data or ex-
plicitly specifying factor trading strategies. After accounting for implementation costs,

typical mutual funds earn low returns to value and no returns to momentum.
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I. Introduction

Empirical asset pricing overflows with explanations for differences in average returns across
securities. The proliferation of predictors distracts from bona fide market anomalies from which we
might draw lessons about risks, preferences, and beliefs. Increasing computing power accelerates
the rate of factor discovery and the urgency of separating empirical regularities from journal-
friendly fictions. Recent calls to action by Harvey, Liu, and Zhu (2016), Harvey (2017), and Hou,
Xue, and Zhang (2017) have focused on high false discovery rates and scurrilous academic practices.
Fundamentally they question whether candidate factors are real, statistical accidents, or intentional
deceptions.

We give on-paper trading strategies the benefit of the doubt and instead question whether these
are actionable in practice, thereby representing true expected return factors or market anomalies.
This line of inquiry originates with Fama (1970), who considers the role of transactions costs in
defining market efficiency and departures therefrom. Despite nearly fifty years of subsequent re-
search, accurately measuring real-world transactions costs for academic factors remains a formidable
challenge. Existing approaches generally fall into two categories. The first category entails using
proprietary trading data to analyze the transactions costs for a single firm (e.g., Keim and Mad-
havan (1997), Engle, Ferstenberg, and Russell (2012), and Frazzini, Israel, and Moskowitz (2015)).
Although selected firms are almost by definition not representative of asset managers as a whole,
such analyses provide an informative lower bound on the transactions costs of factor strategies. The
second approach uses market-wide trading data such as NYSE Trade and Quote (TAQ) to estimate
price impact functions for individual securities. These papers then accumulate simulated costs of
trades implied by dynamic factor strategies (e.g., Lesmond, Schill, and Zhou (2004), Korajczyk and
Sadka (2004), and Novy-Marx and Velikov (2016)). Papers in this camp either establish a lower
bound on trading costs by dispensing with non-proportional costs of trade or estimate parametric
price impact models and extrapolate trading costs beyond small portfolio sizes.

We introduce two new methodologies for measuring real-world implementation costs for fac-
tor trading strategies. Our approaches differ from existing methods in that they do not utilize
specialized trading data or parameteric transaction cost models, nor do they require the user to
take a stand on the exact form of factor trading strategies. This latter feature is particularly im-
portant because high-turnover academic factors like momentum may have industry variants with
significantly lower implementation costs. Together these features facilitate the estimation of the
all-in implementation costs for several academic factors and a representative population of asset
managers.

Our first approach is an extension of the familiar Fama and MacBeth (1973) procedure. Fama-
MacBeth regressions estimate factor loadings (;; with time-series regressions for each test asset
1 and each factor k, and then estimate the compensation per unit of factor exposure Ag; using

cross-sectional regressions at each date t. Standard test assets are based on stock portfolios, and



the resulting estimates of of factor exposure compensation, denoted )\ft, represent the “on-paper”
profitability of a given factor strategy. We augment the set of test assets to include all the set of all
7,320 U.S. domestic mutual funds, and we allow the compensation earned by mutual funds for the
same exposure to a given factor )\% F to differ from that which is available on paper. Unlike stock
portfolio returns, (gross) mutual fund returns reflect the real-world implementation costs of factor
strategies, thus the difference between mutual fund and stock portfolio compensation delivers an
estimate of implementation costs for factor k.1'? Because costs per unit of exposure are likely to
be negatively correlated with factor exposures—funds that earn greater net returns to a factor are
more likely to take greater exposures to it—our estimate of implementation costs represents a lower
bound on the costs faced by a representative mutual fund.

The Fama-MacBeth approach described above compares slopes or incremental compensation for
risk for stocks and mutual funds. Our second approach directly compares levels of compensation
for stocks and mutual funds with similar risk characteristics. To make this comparison, we sort
stocks into quintile portfolios based on characteristics, as in portfolio sorts or “high minus low”
factor construction. Then, for each stock in quintile ¢ at date ¢, we construct a matched sample
of mutual funds consisting of the three nearest mutual funds as assessed by Mahalanobis distance
on factor betas.?> The difference in returns between stocks and matched mutual funds Al is our
matched pairs estimate of implementation costs associated with real-world trading in beta-quintile
q of factor k at date t. Because implementation costs are likely to be significantly higher on the
short side of factor strategies, the difference in long-only returns Ait delivers a lower bound on the
implementation costs of a 51 long-short strategy for factor k.

Our empirical analysis focuses on the implementation costs of mutual funds for the market
(MKT),* value (HML), size (SM B), and momentum (UM D). We choose these factors because
they comprise the dominant empirical models in academic finance (e.g., Fama and French (1992)
and Carhart (1997)), and they serve as the basis for hundreds of billions of dollars in quantitatively
managed assets. We study mutual funds as our set of asset managers because they collectively
manage more than $16 trillion of capital in the United States,” and the mutual fund industry
has been better populated for a longer period of time than alternative asset managers such as
hedge funds. Our approaches are readily extended to other factors and other market participants,

however.

1We use gross returns to focus on the efficiency of mutual funds’ investing technology rather than on the distribution
of rents between managers and investors embedded in net returns.

20ur more sophisticated approaches account for time- and cross-sectional variation in implementation costs, which
we discuss further below.

3Betas for stocks and matched mutual funds do not perfectly coincide. We follow Abadie and Imbens (2006, 2011)
to shift mutual fund returns by the compensation for a “local” difference in betas. Because this return-adjustment
takes the form of a cross-sectional regression of returns on betas, our approach marries matched pairs techniques with
traditional factor models.

4We use the CRSP value-weighted market portfolio net of the one-month Treasury bill rate as our zero-cost market
factor proxy.

®Source: the 2017 Investment Company Fact Book, available at http://www.icifactbook.org/.


http://www.icifactbook.org/deployedfiles/FactBook/Site%20Properties/pdf/2017/2017_factbook.pdf

Our analysis delivers three new empirical facts on the implementation costs of anomalies for
typical mutual funds. First, momentum strategies suffer extreme underperformance in practice:
our estimates of annual implementation costs are in the range of 2.2%-8.5%, which eliminates
most profits accruing to momentum during the 1970-2016 period. We conclude—as Lesmond,
Schill, and Zhou (2004) do—that transactions costs make momentum strategies inaccessible to
typical asset managers. Second, mutual fund implementation costs sharply reduce returns to the
value factor, although our approaches differ on the extent of underperformance; the corresponding
average annual differences between on-paper and mutual fund performance for value are 2.6%-5.0%.
By contrast, mutual funds implement market and size factor exposure relatively well compared to
the academic benchmark, although they still underperform in capturing outsize returns to the small-
size characteristic. Third, average implementation costs are stationary despite secular declines in
bid-ask spreads and commissions since 1970. Industry inflows increase transactions costs, which
neutralize reductions in costs to the first dollar traded in factor strategies. This channel provides
a non-proportional costs of trading rationale for Pastor and Stambaugh (2012)’s industry-level
diseconomies of scale in asset management.

As a second empirical contribution, we focus on cross-sectional heterogeneity in implementa-
tion costs and demonstrate the importance of benchmarking performance and considering market
efficiency as a function of investors’ trading technology. While the typical firm’s compensation for
momentum is indistinguishable from zero, subsets of the mutual fund universe may achieve positive
returns to momentum net of costs. A focused analysis on smaller market segments is important
from an aggregate market efficiency perspective because a violation exists if the marginal investor
sees anomalous profits, even if a typical investor does not. For this purpose we segment the mutual-
fund universe by (lagged) total net assets. Size is a natural sorting dimension because Berk and
Green (2004), Pastor, Stambaugh, and Taylor (2015), Berk and van Binsbergen (2015), and others
link scale to gross-of-fees performance. We rerun our cross-sectional analysis using each mutual
fund size category separately, and we confirm that small and large mutual funds achieve differ-
ent returns to momentum from “typical” mutual funds. Using this insight we reconcile conflicting
evidence on the transactions-cost rationale for the continued existence of the momentum anomaly.

While our new approaches deliver simple, nonparametric, estimates of the implementation costs
for factor trading strategies, they do face some limitations. Firstly, as mentioned above, both
approaches deliver lower bounds on implementation costs. In our empirical analysis these bounds
do not greatly limit the conclusions we can draw: the estimated costs are already so high as to
eliminate or severely attenuate the on-paper profitability of strategies like value and momentum for
typical mutual funds. For other strategies, estimates that indicate positive returns net of costs do
not necessarily imply that an anomaly can be implemented by typical investors. In this sense our
measures can diagnose an implementation problem with a factor, but they cannot deliver a clean
bill of health.



Secondly, our techniques rely on real-world asset managers to reveal implementation costs
through realized returns to their chosen factor exposures. We require a subset of asset managers
to invest in the factor of interest over an extended period of time. This requirement is not likely to
be satisfied when studying a factor that is new to the academic literature and fund managers have
not had an opportunity to trade on this factor.

Finally, like much of the literature on performance evaluation, our methods are susceptible to
criticism of the choice of factors included in the analysis. A manager who is following a strategy
that does not correspond to an approximate linear combination of those included in the model may
appear to have high implementation costs for the included strategies, even though she has low costs
for the strategy actually being implemented. Our methods speak only to implementation costs of
the projection of traded strategies on the included factors.

Confronted with hundreds of cross-sectional return predictors, recent papers have proposed
techniques to help focus attention on the most robust anomalies.® Notwithstanding the limitations
of our approach mentioned above, we recommend our methodologies as complements to these
suggestions for three reasons. First, our methodologies provide an easy test of the real-world
applicability of a conjectured factor. If mutual funds are not compensated for factor exposure,
a factor is less likely to be real or implementable. We anticipate that our implementability test
generalizes Hou, Xue, and Zhang (2017)’s suggestion to exclude microcap stocks in that strategies
relying on the smallest stocks would see large real-world performance attrition relative to paper
portfolios. Second, our approaches provide orthogonal information to existing asset pricing tests.
While it might be possible to reconfigure empirical choices to elevate a t-statistic from 2 to 3,
we view it as less likely that an entirely new hurdle can be cleared for spurious factors. Third,
the computational burden of our technique is low, and mutual fund performance data is readily
available to empirical researchers. With our techniques the barriers to entry for cross-sectional

asset pricing work are not appreciably raised.

I1. Related Literature

The Fama and French three-factor model has been the benchmark for empirical asset pricing
since its introduction in 1992. This empirical model supplanted the CAPM, but its new value
and size factors had little theoretical motivation.” As factors continued to emerge over the next
quarter century—most notably, the momentum anomaly of Jegadeesh and Titman (1993)—several
strands of literature emerged in an attempt to tame the “factor zoo” (Cochrane (2011)). One

active strand investigates the implementation costs of anomalies with a particular focus on size,

SHarvey, Liu, and Zhu (2016) advocate raising statistical significance thresholds. Harvey (2017) endorses mixing
standard thresholds with Bayesian priors on the plausibility of a factor. Giglio and Xiu (2017) suggest “cleaning”
factors of noise using variation in test asset returns.

"Banz (1981) and Basu (1977) document price-earnings ratios and market capitalization as characteristics associ-
ated with deviations from the CAPM.



value, and momentum anomalies. While transactions costs cannot explain why expected return
discrepancies come to be in the first place, this literature (reviewed below) seeks to rationalize the
continued existence of market anomalies as their byproduct. Our paper advances this line of inquiry
by introducing a new and readily generalizable approach for measuring the real-world transactions
costs of return factors and anomalies.

Existing methods for measuring implementation costs take two approaches. The first approach
uses specialized trading data to evaluate the costs of trade for large investment managers with the
implicit assumption that these managers are representative of sophisticated investment managers.
These papers typically assess trading costs using Perold (1988)’s implementation shortfall measure,
which captures the difference between realized profits and on-paper profits using a preset decision
price. This approach dates back at least to Keim and Madhavan (1997), who analyze the transac-
tions costs of a variety of investment styles for $83 billion of trades. A key challenge to this method
is that institutional trading is endogenous; traders are particularly aggressive in their trading tar-
gets when liquidity is readily available, which in turn imparts a downward bias to estimated cost
functions. Frazzini, Israel, and Moskowitz (2015) overcome this challenge by using data from an
investment manager whose trading targets are model-generated and selected irrespective of market
conditions. Armed with more than $1 trillion of trades, they analyze value, size, and momentum
anomalies and find that all of them are implementable and scalable to tens or hundreds of billions
of dollars of invested capital. By their reckoning, major anomalies continue to be anomalous if
their asset manager’s costs are representative of typical investment managers’ costs.

The second approach trades off accuracy for representativeness in estimating transactions costs.
Rather than using proprietary trading data for a single asset manager to estimate costs directly,
other studies derive transactions costs using aggregate price and transaction records and extrapolate
estimated price impact functions to factor trading strategies.® Much of this literature focuses on
the momentum anomaly because of its high turnover, and even the originating article establishing
the momentum anomaly considers a trading-costs explanation (Jegadeesh and Titman (1993) and
later Jegadeesh and Titman (2001)). Notably none of these papers use precise “all in” trading
cost measures like implementation shortfall because theoretical or “decision-date” prices are not
obtainable outside of specialized trading data.

Chen, Stanzl, and Watanabe (2002) estimate separate price impact functions for 5,173 individual
stocks and calculate the trading costs accruing to size, value, and momentum strategies. The
authors suggest that all factors have break-even carrying capacities on the order of millions of dollars
(HML) to hundreds of millions of dollars (SM B). By their calculations, factor strategies are not
investable. Lesmond, Schill, and Zhou (2004) suggest that momentum trades in “disproportionately
high cost securities” rather than the typical-transactions cost securities Jegadeesh and Titman

(1993) use for approximating the costs of trading momentum. Using effective spreads from TAQ),

8Grundy and Martin (2001) and Barroso and Santa-Clara (2015) invert this logic and calculate the transactions
costs that would be required to wipe out the momentum anomaly.



commission schedules from a discount brokerage, and “all-in” frictions implied by zero-trading days
(Lesmond, Ogden, and Trzcinka (1999)), Lesmond, Schill, and Zhou (2004) argue that trading costs
erase the returns to the momentum anomaly.

Korajczyk and Sadka (2004) present more optimistic results on the investability of factor strate-
gies. Korajczyk and Sadka (2004) estimate effective and quoted spreads and non-proportional
trading costs functions of Glosten and Harris (1988) and Breen, Hodrick, and Korajczyk (2002)
using TAQ data. In utilizing different non-proportional cost functions from Lesmond, Schill, and
Zhou (2004), Korajczyk and Sadka (2004) extrapolate trade-level costs to find positive net-of-
cost returns to the momentum anomaly. They invert their cost function estimates to obtain a
break-even momentum strategy carrying capacity of $5 billion. While much smaller than Frazz-
ini, Israel, and Moskowitz (2015)’s estimates, these carrying capacities are also measured based
on older data for which transactions costs are significantly higher (Lou and Sadka (2016)). Novy-
Marx and Velikov (2016) follows a similar approach, but they focus only on proportional costs to
establish a lower bound. The authors measure trading costs using effective spreads recovered from
Hasbrouck (2009)’s Bayesian Gibbs sampler and tally costs of trading size, value, and momentum
strategies, among others. Although the paper focuses on performance evaluation, Novy-Marx and
Velikov (2016) find a momentum strategy carrying capacity of $5 billion (as in Korajczyk and Sadka
(2004)), and they find size and value carrying capacities of $170 billion and $50 billion respectively
(which are comparable to Frazzini, Israel, and Moskowitz (2015)’s estimates).

Our work complements the two existing approaches to measuring implementation costs with
new cross-sectional techniques that combine the best elements of both. Like papers that utilize
proprietary trading data, our estimates reflect the all-in costs of implementing factor strategies,
and they apply equally well for past and modern market environments (for which Lesmond, Og-
den, and Trzcinka (1999)’s zero-trading day measure fails). Like papers that estimate transaction
cost functions using market data, our methodology captures representative practitioners of factor
investing rather than single special investment managers. In contrast with both approaches, our
methodologies facilitate the evaluation of implementation costs (1) without specifying the precise
trades used to implement factor strategies and (2) for arbitrary subsets of the asset management
universe trading universe. This latter feature allows us to examine asset manager size strata sepa-
rately in Section VI. In so doing we reconcile the contrasting findings of Lesmond, Schill, and Zhou
(2004) and Frazzini, Israel, and Moskowitz (2015) by finding no net-of-costs return to momentum
for typical mutual funds, but positive net-of-costs returns to the marginal mutual fund investor.

In concurrent work, Arnott, Kalesnik, and Wu (2017) propose a method similar to our Fama-
MacBeth two-stage regressions. They argue, as we do, that mutual funds deliver much lower
returns on value and momentum anomalies than on-paper factor counterparts might indicate. Our
paper differs from theirs in four key respects. First, in our Fama-MacBeth approach we compare

cross-sectional slopes of mutual fund and stock portfolio returns with respect to factor exposures,



whereas Arnott, Kalesnik, and Wu (2017) compare mutual fund return slopes and on-paper time-
series return realizations. The latter comparison sheds little light on implementation costs because
realized factor slopes and factor returns may have very different means, as they do for the market
factor. Second, our procedures address the omitted variable bias resulting from comovement in
factor realizations and liquidity costs. In particular, the mismatch between first- and second-stage
Fama-MacBeth regressions and the adaptive Lasso approach to accommodating heterogeneity in
firm-relevant liquidity proxies are new to the implementation cost conversation. Third, we develop
an entirely new approach to measuring implementation costs based on matching stocks and mutual
funds with similar attributes to mimic the performance of characteristic-based portfolios in practice,
and this approach reveals important differences between the size factor and characteristic. Finally,
we slice the cross section of mutual funds to reconcile previous work on implementation costs,
and we connect our stationary implementation costs empirically to recent work on industry-level

diseconomies of scale in institutional investing.

III. Data

Our data primarily come from the CRSP mutual fund and stock databases. Our mutual fund
sample consists of 7,320 United States domestic equity mutual funds with at least 24 non-missing
monthly gross returns during the period January 1970 to December 2016. Our stock sample, also
monthly to match the mutual fund sample, consists of all CRSP stocks (share codes 10 or 11) for
the corresponding period and subject to the same non-missing requirement, which gives a total of
22,121 unique PERMNOs.

Appendix A details our mutual fund filtering methodology. Therein we describe a number of
data cleaning and filtering steps based on the recommendations of Berk and van Binsbergen (2015),
Pastor, Stambaugh, and Taylor (2015), and others. One data processing step bears special mention
here: we map funds delineated by share class into fund groups. Share classes for funds with identical
investments differ in fees charged to investors, but they are not otherwise economically distinct.
To aggregate returns within a fund group, we take total-net asset weighted gross-of-fee returns.
CRSP provides returns net of management and 12b fees, and we convert these into gross returns
by adding expense ratios divided by 12, following Fama and French (2010).

Significant changes in the count of active mutual funds reflect both a secular growth in the
mutual fund industry and continual improvements in data quality.? Figure I highlights these
changes by plotting the number of non-missing returns for domestic equity mutual funds by month.
The number of funds increases from 292 in January 1970 to 1,135 in July 1993 to 3,893 in December

2016. Because the number and composition of funds varies widely over time, we conduct our analysis

9Pages 1-2 of the CRSP mutual fund database guide details the amalgamation of data sources used to construct
returns from December 1961 through the present. Page 16 discusses the merge of classifications into CRSP objective
or style codes that we use to restrict the set of funds to United States domestic equity funds.



Figure I: Count of Active Domestic Equity Mutual Funds by Month

Figure plots the count of non-missing returns by month for United States domestic equity mutual
funds. The dashed line at January 1970 marks the starting point of our 1970-2016 sample. The
dashed line at July 1993 marks the midpoint of the post-1970 sample as well as the start date for
our post-Jegadeesh and Titman (1993) sample.
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both on an extended sample and on a more recent subsample. Our long sample runs from January
1970 to December 2016. We discard the 1962-1969 window during which monthly returns are less
consistently provided and during which several of our liquidity proxies are not available. Our recent
subsample consists of the latter half of the long sample and runs from July 1993 to December 2016.
This start date postdates Jegadeesh and Titman (1993)’s documenting of the momentum anomaly,
the most recently discovered factor we consider. Table I reports summary statistics for the set of
mutual funds used in our analysis. All told the 1970-2016 sample consists of 1,068,106 fund-month
observations and the 1993-2016 sample consists of 926,824 fund-month observations.

Much of our analysis compares mutual funds with similar stocks as measured by loadings on
equity risk factors. Our Fama-MacBeth tests of Section IV combine mutual fund data with common
test portfolios. Because our factor set includes value (HML), size (SMB), and momentum (UMD),
our baseline analysis uses the Fama-French 25 size-value double-sorted portfolios plus 25 size-
beta portfolios, 25 size-prior return portfolios, and 25 size-Amihud illiquidity portfolios to ensure
adequate dispersion in loadings to identify risk premia in the cross section. We supplement this
set of test assets with an expanded cross section following the recommendation of Lewellen, Nagel,
and Shanken (2010). In our larger portfolio set, we also include 49 industry portfolios, 25 size-
operating profitability portfolios, 25 size-investment portfolios, 10 beta-sorted portfolios, 10 market
capitalization-sorted portfolios, 10 book equity to market equity ratio sorted portfolios, 10 Amihud
illiquidity-sorted portfolios, 10 operating profitability-sorted portfolios, and 10 investment-sorted
portfolios for a total of 269 portfolios. With the exception of the illiquidity-sorted portfolios, all



Table I: Domestic Equity Mutual Fund Sample Summary Statistics

Table presents summary statistics for the 1970-2016 sample of 7,320 United States domestic equity
mutual funds. The top subtable provides information on the time series of the number of active
funds for each date as well as cross-sectional information on fund lifetimes and total net assets
(TNA) at sample start, middle, and end. The bottom subtable reports distributional information
on fund excess returns. p is the average pairwise correlation with other mutual funds’ returns, and
Ps&Psoo 18 the correlation with the S&P 500.

Funds Lifetime TNA, Jan. 1970 TNA, July 1993 TNA, Dec. 2016
Unit +# Years Million USD Million USD Million USD
Mean 1894 12.16 176.77 1653.6 1551.1
Std. Dev. 1552 9.00 781.22 25905 6858.5
25% 355 5.33 7.17 31.6 49.4
50% 1197 9.92 26.73 88.73 201.85
75% 3712 16.63 94.37 282.46 859.8
Mean Return  Return Vol. Sharpe Ratio OPMF PS& P500
Unit % / Month % / Month Annualized % %o
Mean 0.48 4.96 0.42 76.74 86.55
Std. Dev. 0.62 1.88 0.42 16.32 18.19
25% 0.32 3.98 0.24 74.64 84.21
50% 0.59 4.71 0.44 80.37 91.13
75% 0.80 5.61 0.61 84.49 95.26

portfolio data are downloaded from Ken French’s website. Decile illiquidity portfolios sort by
monthly averages of non-missing daily absolute returns over dollar volume, and stocks are assigned
for the following year using deciles the end of June, by parallel with the timing convention of the
other portfolio data. The 25 size-illiquidity portfolios sort on both lagged market capitalization
and Amihud illiquidity quintile. Our analysis uses both equal- and value-weighted stock portfolios.

We include several market and funding liquidity variables to proxy for time-varying cost fac-
tors that may affect the performance of mutual funds relative to stocks. Our market liquidity
variables are Amihud illiquidity (Amihud (2002)), Pastor-Stambaugh liquidity levels (Pastor and
Stambaugh (2003)), Corwin and Schultz (2012) NYSE-average bid-ask spreads, and the CBOE S&P
500 Volatility Index (VIX), as motivated by Nagel (2012). We use Corwin and Schultz (2012)’s
methodology to estimate bid-ask spreads because it enables measurement of market liquidity be-
fore TAQ becomes available in 1993 and because it captures average effective spread levels and
innovations better than other pre-TAQ methodologies (see Corwin and Schultz (2012) Table IV).10

Y Corwin and Schultz make their code available at https://www3.nd.edu/~scorwin/HILOW _Estimator _Sample 002.sas.
As in their paper, we compute cross-sectional averages using only NYSE-listed stocks, and we use their variant of


https://www3.nd.edu/~scorwin/HILOW_Estimator_Sample_002.sas

We use the CBOE S&P 100 Volatility Index (VXO) in place of the VIX in the pre-1990 period for
which the VIX is not available. We compute Amihud illiquidity using CRSP daily data with values
averaged within a month as in Amihud (2002), and we obtain the Pastor-Stambaugh series and
CBOE VXO/VIX series from Robert Stambaugh’s website and the Federal Reserve of St. Louis’s
FRED database, respectively.

Our funding liquidity variables are Frazzini and Pedersen (2014)’s “betting against beta” (BAB)
factor, He, Kelly, and Manela (2017)’s intermediary capital ratio, the 10-year BAA minus 10-year
Treasury spread, and the 3-month LIBOR minus 3-month Treasury yield or “TED” spread. The
first two series are expressly designed to capture institutions’ funding liquidity constraints, and the
latter two series are common proxies in the funding liquidity literature (e.g., Brunnermeier (2009)).
We obtain BAB from AQR’s website, intermediary capital ratios from Asaf Manela’s website, and
credit and TED spreads from FRED.

IV. Fama-MacBeth Estimates of Implementation Costs

We measure the returns to factor investing using two approaches. In this section we consider
the compensation per unit of risk exposure and investigate whether mutual funds obtain the same
risk premium that academics achieve on paper. In the next section we evaluate the gross-of-fee

returns to investing in factor portfolios of stocks and mutual funds with similar risk attributes.

A. Baseline Estimates

In our baseline estimation, we assume that mutual funds have a constant per-unit cost for imple-
menting academic anomalies. Investing in a market index with Sk = 1 results in a performance
gap of n relative to the on-paper performance of a market index, and investing in a levered version
of the market more generally results in a performance gap of 7By k. In this setting, we would
expect performance differences between stock and mutual fund portfolios to be linear in factor
exposure.

We estimate the “implementation gap” using augmented Fama and MacBeth (1973) two-stage
regressions for the Carhart four-factor model (Carhart (1997)). The time-series regression step is
standard except for the choice of test assets. As discussed in the preceding section, our sorting
characteristics pertain to each factor in fi;, and we have Ng = 100 and Ng = 269 stock portfolios
depending on regression specification. In addition to stock portfolios, we also include as test
assets Nyrp = 7,320 mutual funds, of which several thousand are active in the typical period. As
diversified entities spanning a wide range of multifactor risk exposures, mutual funds unlike stocks
need not be grouped into portfolios via a characteristic-sorting procedure.

The Ng + Ny time-series regressions are

estimated spreads in which negative values are set to 0.

10
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k

where 7;; is the month ¢ gross return on stock portfolio or mutual fund i net of the contemporaneous
risk-free rate and fi; (for kK = 1,..., K) is the return on factor k at date ¢. The usual second-stage
cross-sectional regressions are extended to accommodate the possibility of differences in risk pricing

for stocks and mutual funds,

rie =) NitBiLies + > M Buliemr + e, t=1,....,T. (2)
k k

)\ft is the realized price of risk for factor k£ and date ¢ based on stock returns, and )\% Fis the
corresponding estimate based on mutual fund returns.!! The difference 5\,@ = S\Et — X%F is our
estimate of the implementation costs for strategy k: it is the difference between the on-paper
profitability of a given strategy (“what you see”) and the actual returns achieved by an asset
manager facing real-world implementation costs (“what you get”). Conceptually this difference
captures both direct costs such as spreads and price impact from factor trading as well as indirect
costs such as investing in liquid versions of factors to robustify strategies against outflows.'? Our
point estimates are the average of the monthly differences in factor compensation 5\?, and we
construct standard errors for this difference using Newey and West (1987) with three monthly lags
to account for serial correlation and heteroskedasticity in the A-difference series.

Throughout our analysis, we estimate cross-sectional slopes of returns on risk exposures as-
suming that risk exposures are constant. In making this assumption we prioritize minimizing the
errors-in-variables problem arising from using noisy betas as inputs in the second-stage Fama-
MacBeth regression. This problem is vitally important because we do not want to find differences
in As simply as a byproduct of higher measurement error in mutual fund betas. However, in using
long estimation windows to estimate s, we nonetheless take on potential measurement error arising
from time-variation in stock portfolio or mutual fund risk exposures.

Following Lettau, Maggiori, and Weber (2014) and others, we omit the constant term to force
cross-sectional average alphas to zero. Economically this omission forces the typical zero-risk se-
curity or mutual fund to have zero excess (gross) return at each point in time. We impose this
restriction because the slope on BT is not otherwise well identified in our stock portfolio sample,
namely the time series of the intercept a; and the estimated market risk premium Ay x7: are
strongly negatively correlated and of similar magnitudes. By contrast in the mutual fund sample,

B has a large and positive risk price regardless of whether a constant is included. None of the

" Because the indicators partition the set of observations, Regression (2) is equivalent to two separate cross-sectional
regressions run on stocks and mutual funds.

12 Julian Robertson’s Tiger Management, one of the world’s largest hedge funds in the late 1990s, collapsed precisely
because it could not continue to service outflows associated with its value investment strategy. Shleifer and Vishny
(1997) formalize the role of agency frictions in perpetuating anomalies.
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other factor risk premia are meaningfully affected.

Table II presents estimates of Equation (2). The A\* value in the upper-left corner indicates
that the difference in compensation per unit of market exposure is 0.22% per year greater for
risk exposures taken in practice via mutual funds than on paper in (100 equal-weighted) stock
portfolios. This difference changes sign to favor on-paper portfolios by 0.38% per year when assessed
against the full set of 269 portfolios because the average compensation for market beta is higher
in the larger sample. Neither effect is statistically or economically significant, and the absence of
a performance gap is robust to using value-weighted portfolios (bottom panel) rather than equal-
weighted portfolios. This result is unsurprising as mutual funds are expected to be relatively good
at implementing the market factor.

Broadening our focus to columns 1-4, we see that mutual funds underperform stocks in isolating
factor exposures for two of the other Carhart factors. The average implementation gaps for value
(HML) and momentum (UM D) range from of 54%-96% of the total on-paper return to each
factor in stock portfolios. The remaining compensation to mutual funds for HM L and UMD are
positive (AMF > 0), but they are only 1%-3% per year and marginally statistically significant for
value and not statistically distinguishable from zero for momentum. Conversely, HM L and UM D
factors are both highly compensated and statistically robust in equal-weighted paper portfolios in
this period. Compensation for size factor (SM B) exposure has a small positive point estimate for
mutual funds, but these values are not reliably different from zero or from on-paper compensation
for size.

Notably the point estimates for the differences A\ for HML and UMD are typically more
statistically significant than either of the components of the difference A* or AM¥. This feature
reflects the netting out of common variation in factor realizations within each cross section. Ideally
the residual variation in A® captures only random variation in trading costs. In practice this
residual variation also captures idiosyncratic differences in estimated risk prices associated with
using different sets of test assets; the difference between A\ estimated from the set of 100 stock
portfolios and the set of 269 stock portfolios suggests that the implementation gap depends in part
on the stock benchmarks employed.

Columns 5-8 reproduce these tests for the July 1993 to December 2016 sample. Mutual funds
achieve lower returns to HML and UMD and higher returns to SM B than in the full sample,
but these returns are now universally statistically indistinguishable from zero (in part because the
sample length is cut in half). For stock portfolios, the compensation for HM L and UMD (SM B)
exposures also decrease (increase) relative to the full sample. The net effect of these changes is
a small decrease in the typical implementation gap for HM L and a moderate decrease in the
implementation gap for UM D. The implementation gap is roughly unchanged for market exposure
(effectively zero) and SM B exposure (positive but insignificant). In sum, focusing on the latter

sample with a more broadly representative set of mutual funds does not change our conclusions
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Table II: Implementation Cost Estimates in Fama-MacBeth Regressions — Baseline Specification

Table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfo-
lios (second panel), domestic equity mutual funds (third panel), and their difference (top panel).

Coefficients are the average cross-sectional slopes A; across monthly regressions of excess returns

r;t on time-series betas (1,

rie = NuBinlics + Y A" Binliemr + e, t=1,..., T,
ks ks

where k indexes the four Carhart (1997) factors and A2 is defined as A5 — AMF . Stock portfolio
sets are described in Section III. All coefficients are annualized and reported in percent. Standard

errors are Newey-West with three lags. t statistics are reported in parentheses.

(a) Equal-Weighted Stock Portfolios

1970 — 2016 1993 — 2016
Ns MKT HML SMB UMD MKT HML SMB UMD
A 100 -0.22  4.92" 152 7.625%* -0.10  4.34** 193  4.68**
t-stat (-0.44)  (5.54)  (1.50)  (5.17) (-0.15)  (4.41)  (1.40)  (3.00)
A 269  0.38  3.33%* 166  8.93* 0.89 247 2,04  6.71%
t-stat (0.76)  (3.46)  (1.52)  (6.11) (1.35)  (2.37)  (1.37)  (3.83)
S 100 6.72* 776" 299  9.48** 770 657 4.12 6.18
t-stat (2.77)  (4.25)  (1.53)  (3.95) (2.32)  (2.42) (1.48)  (1.63)
A\ 269  7.31%**  6.17*  3.13  10.80*** 8.69**  4.69 4.23 8.21
t-stat (3.04)  (3.15)  (1.52)  (4.41) (2.65)  (1.61) (1.45) (2.10)
AMF —  6.93%*%  2.84* 1.47 1.86 7.80** 2.22 2.19 1.50
t-stat (2.85)  (1.66)  (0.83)  (0.75) (2.39)  (0.81)  (0.92)  (0.40)
T 564 564 564 564 282 282 282 282
Nur 1894 1894 1894 1894 3290 3290 3290 3290
*p < .10, ** p < .05, ** p < .01
(b) Value-Weighted Stock Portfolios
1970 — 2016 1993 — 2016
Ns MKT HML SMB UMD MKT HML SMB UMD
A 100 -0.31  4.22%*  -0.53  7.36™* -0.36  3.96*  -0.30  4.46™*
t-stat (-0.97)  (5.09) (-0.71)  (5.16) (-0.91)  (4.61)  (-0.32)  (2.95)
A 269  -0.15  2.62"*  -0.70  7.27** 0.19 239  -1.02 517
t-stat (-0.61)  (3.72)  (-1.11)  (5.31) (0.83)  (3.65) (-1.31)  (3.21)
25 100 6.62*  7.06*  0.94  9.23"** 743 6.18** 1.89 5.96
t-stat (2.75)  (3.81)  (0.55)  (3.90) (2.27)  (2.20)  (0.77)  (1.58)
A 269  6.78*%* 546 0.77  9.14%* 7.99** 4.61 1.18 6.67*
t-stat (2.83)  (2.98)  (0.45)  (3.91) (2.46)  (1.62)  (0.49)  (1.80)
AME —  6.93"*  2.84* 1.47 1.86 7.80** 2.22 2.19 1.50
t-stat (2.85)  (1.66)  (0.83)  (0.75) (2.39)  (0.81)  (0.92)  (0.40)
T 564 564 564 564 282 282 282 282
Nur 1894 1894 1894 1894 3290 3290 3290 3290

*p < .10, " p < .05, *** p < .01
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on the high real-world efficacy of implementing market exposure and size and the low real-world

efficacy of implementing value and momentum.

B. Time- and Mutual-Fund Varying Per-Unit Cost Estimates

Time-varying implementation costs complicate the comparison of compensation per unit of
factor risk. To see why, consider the following augmented model of mutual fund costs. As before,
let there be a set of academic factors f, where f; is a 1 x K vector. Each mutual fund ¢ implements

its favored version of academic factors and earns a return of

hit = fr — nit, (3)

where n;; reflects tilts away from the academic factor on account of trading costs or factor opti-
mization. This section differs from the previous one in that we no longer assume that 7 is constant

across funds and time. The 7;; term in turn has components

Nit = Ni + MYi + Nit- (4)

The first component is the fixed, firm-specific cost of trading a factor. The second component is
the set of L time-varying liquidity costs n; multiplied by the L x K loadings of all factors on these
liquidity costs ~;. Finally, 7;; is a 1 x K set of idiosyncratic costs, e.g., a surprise liquidity demand
shock that thwarts or facilitates firm 4’s trading strategy for factor k.

Funds trade and earn returns
rit = o + hiBi + € = (o — mifi) + (fe — mevi) Bi + (€t — T Bi) - (5)

An ideal test compares the average compensation f; for factor exposure for on-paper investment in
stocks against the compensation h;; for factor exposure for real-world investment through invest-
ment managers. In the constant-cost setting of Section IV.A, we achieve this ideal: n;; simplifies
to n, and Fama-MacBeth regressions with a K-factor model recovers consistent estimates of f — h
as in Equation (2).

By contrast, in this general setting we face two key challenges that complicate the straightfor-
ward comparison of f; and h;. First, trading costs vary over time, and these costs may covary
with factor realizations. For example, several measures of funding and market liquidity deteriorate
significantly during the 2007-2008 Financial Crisis, and the aggregate market return likewise is
consistently negative at that time. Omitting relevant liquidity factors thus contributes to an omit-
ted variable bias in time-series estimates of 3; for investment managers, which in turn potentially
invalidates simple comparisons of second-stage slope estimates. Second, investment managers select

their risk exposures endogenously. An investor who has discovered improvements upon academic
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factors or is particularly skilled at trading a given factor cost-effectively is more likely to select a
larger factor exposure, all else equal. For this reason we would expect mutual fund-specific trading
gains 7; to be increasing in 3;, and the cross-sectional slopes of returns with respect to §; are biased
upward (AMF > \MF),

We now address these two sources of bias. To address the omission of trading cost factors, we
assume that trading costs or optimization gains for mutual funds are spanned by liquidity proxies
considered in the literature and discussed in Section III. Throughout we use liquidity levels rather
than innovations because high illiquidity rather than increases in illiquidity relative to the previ-
ous month likely contribute to high factor implementation costs.'> We then run Fama-MacBeth
regressions as before, but we extend the factor model to include liquidity proxies in the time-series

regressions,
rit = Q; + katﬁik + Zﬁzﬁm +é€it, i=1,...,Ng,Ng41,...,Ns + Ny, (6)
k l

where 7;; are the liquidity factor proxies at time ¢. To avoid overfitting in the first stage by
including too many correlated liquidity proxies, we start with two: the first principal component
of four market liquidity variables (Amihud illiquidity, Pastor-Stambaugh liquidity, Corwin-Schultz
bid-ask spreads and the CBOE VIX/VXO) and the first principal component of four funding
liquidity variables (Frazzini and Pedersen (2014)’s “betting against beta” factor, He, Kelly, and
Manela (2017)’s intermediary capital risk factor, 10-year BAA minus 10-year Treasury spreads,
and 3-month LIBOR minus 3-month Treasury yield or “TED” spreads). We normalize all liquidity
variables to have unit standard deviation before taking principal components because liquidity
proxies vary widely in their scales.!*

The second-stage cross-sectional regressions are exactly as in Equation (2). The mismatch in
model specification for the time-series and cross-sectional regressions is intentional. In the time-
series regressions, we recover fund exposures to the academic factors, and we need the additional
liquidity proxy variables to cleanse the estimated mutual fund factor loadings of omitted illiquidity
components. By contrast, in the second stage, we recover the cost per unit exposure to the academic

factors and do not want to include the liquidity proxy exposures. Excluding the liquidity factors

13By contrast, if we sought to explain returns, innovations to liquidity expectations would be the correct variable
to use (as emphasized by Pastor and Stambaugh (2003) and He, Kelly, and Manela (2017), among others).

14The CBOE VXO and the TED spread series start in January 1986. Our principal components procedure accom-
modates the missing liquidity proxy data using MATLAB’s alternating least squares (ALS) algorithm. ALS extracts
factors and completes missing data by conjecturing principal components and iteratively estimating principal com-
ponent loadings ¢ and factor values g until the distance between known and fitted values achieves a local minimum.
We run PCA-ALS from 1,000 starting points and select the global distance-minimizing factors and loadings. By con-
struction illiquidity principal components have unit standard deviation, and we assign these components an illiquidity
interpretation by normalizing them to be positively correlated with the VIX/VXO.
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only in the second stage delivers 5\155 = )\ and

cov (rif ", B;) _ cov(ei —miuBi, Bi) _ _ cov((mie — 1) Bi. )
var (8;) var (3;) i var (5;)

AD =P — - (7)
The final equality makes the standard assumption that alphas and betas are cross-sectionally un-
correlated. 7; represents the cross-sectional average per-unit liquidity costs to implementing the
factor. The second term is the covariance between deviations from the average costs and 8s. Funds
with a particular skill in investing in a factor likely have higher exposures to it—0; are endoge-
nous—so 7;; — 7; will be low when f; is high, and the covariance will be negative.'> Consequently
/\% I is an upper bound on the realizable gains to factor investing per unit risk exposure, and )\kAt
is a lower bound on the costs of implementing a factor strategy.

Table III reports results using the liquidity-extended first-stage regression. Results are virtually
the same as those of the baseline specification in Table IT with one exception. Mutual funds’ (already
low) compensation for UMD exposure decreases from 1.80 to 1.47 in the long sample and from
1.50 to 0.43 in the recent sample, suggesting that liquidity risk exposure at least partly explains
mutual funds’ compensation for momentum. This finding extends one result of Asness, Moskowitz,
and Pedersen (2013) to the universe of mutual funds. Asness, Moskowitz, and Pedersen (2013)
find that momentum loads positively on liquidity risk, and we find that the same holds for mutual
funds’ implementation of momentum. We examine this feature in detail in Section VI.B.

Ideally we would use all liquidity variables rather than their principle components because we
want to time-varying determinants of n;; to lie in the span of the liquidity-augmented factor model.
Including more covariates increases the likelihood that we span 7;; by including all salient liquidity
proxies. At the same time, including additional highly correlated cost proxies may overfit the
first-stage regression and deliver nonsensical cross-sectional slopes in Equation (2).

Sparse regression techniques offer a solution to this challenge. We supplement the standard
first-stage regression with a Lasso or /;-penalized regression (Tibshirani (1994)). The least-squares

minimization problem of Equation (6) adds an additional term penalizing the liquidity coefficients,

2
Igi%l % > (Tit = frBir — Zﬁlt%l) +r (Z wi |Bikl + Y wi %z|> : (8)
Tt k ! k l

where k represents a penalty term for coeflicients different from zero, and w; and w; represent
additional relative penalties explained below. The problem reduces to least squares when x = 0;
otherwise, liquidity coefficients are compressed toward zero. Note that we do not require a penal-
ization in the cross-sectional step because the second-stage regression omits liquidity proxies. As

before, we normalize all liquidity proxies to give them similar scales and an equal chance of entering

Tncluding liquidity proxies in the second-stage introduces a more opaque omitted variable bias, as we discuss in
Appendix B.
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Table III: Implementation Cost Estimates in Fama-MacBeth Regressions — Liquidity PCs

Table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfo-
lios (second panel), domestic equity mutual funds (third panel), and their difference (top panel).

Coefficients are the average cross-sectional slopes A; across monthly regressions of excess returns
r;t on time-series betas (1,

rie = NuBinlics + Y A" Binliemr + e, t=1,..., T,
ks ks

where k indexes the four Carhart (1997) factors and A\? is defined as A5 — AMF_ First-stage
regression estimates include these factors, the first principal component of market liquidity proxies,
and the first principal component of funding liquidity proxies. Liquidity proxies and stock portfolio
sets are described in Section III. All coefficients are annualized and reported in percent. Standard
errors are Newey-West with three lags. t statistics are reported in parentheses.

(a) Equal-Weighted Stock Portfolios

1970 — 2016 1993 — 2016
Ng¢ MKT HML SMB UMD MKT HML SMB UMD
\A 100 -0.38  5.26"*  1.80*  8.01** -0.04  4.06"*  1.98  5.41%**
t-stat (-0.79)  (5.89)  (1.76)  (5.38) (-0.06)  (3.93)  (1.47)  (3.15)
A 269  0.20  3.84%*  2.03*  9.24*** 0.80 2.51* 222  6.84***
t-stat (0.40)  (3.89) (1.85)  (6.16) (1.19)  (2.33)  (1.55)  (3.61)
S 100 6.55"*  8.06™*  3.22F  9.49%* TAT 597 4.22 5.84
t-stat (2.71)  (4.34)  (1.67)  (3.97) (2.35)  (2.20)  (1.54)  (1.54)
A\ 269  7.13%*  6.64™*  3.45*  10.71** 8.61%** 4.42 4.46 7.26*
t-stat (2.99)  (3.31)  (1.69)  (4.38) (2.65)  (1.50)  (1.57)  (1.85)
\MFE —  6.93%* 2.80 1.42 1.47 7.82%* 1.91 2.24 0.43
t-stat (2.86)  (1.63)  (0.79)  (0.60) (2.41)  (0.69)  (0.93)  (0.11)
T 564 564 564 564 282 282 282 282
Nur 1894 1894 1894 1894 3290 3290 3290 3290

*p < .10, ** p < .05, *** p < .01

(b) Value-Weighted Stock Portfolios

1970 — 2016 1993 — 2016
Ng¢ MKT HML SMB UMD MKT HML SMB UMD
A 100  -0.38  4.69"*  -0.50  7.80™** -0.36  4.31%*  -0.33  5.53***
t-stat (-1.20)  (5.61)  (-0.65)  (5.46) (-0.91)  (4.93) (-0.34)  (3.35)
A 269  -0.15 298 071  7.65"* 0.20 273  -1.00  6.09***
t-stat (-0.62)  (4.09)  (-1.09)  (5.57) (0.84)  (4.01)  (-1.29)  (3.60)
25 100 6.56™*  7.49**  0.92  0.28%** 745  6.21** 1.91 5.96
t-stat (2.73)  (3.99)  (0.54)  (3.93) (2.29)  (2.19)  (0.78)  (1.58)
A\ 269  6.78%F 578 071 9.13%* 8.01** 4.63 1.24 6.52*
t-stat (2.83)  (3.11)  (0.42)  (3.90) (2.48)  (1.60)  (0.51)  (1.76)
AMFE —  6.93 2.80 1.42 1.47 7.82%* 1.91 2.24 0.43
t-stat (2.86)  (1.63)  (0.79)  (0.60) (2.41)  (0.69)  (0.93)  (0.11)
T 564 564 564 564 282 282 282 282
Nur 1894 1894 1894 1894 3290 3290 3290 3290

*p < .10, ** p < .05, *** p < .01 17



the Lasso regression. We interpolate missing elements of the VXO/TED innovation series using
their matrix-completed values ¢}, yvogrmr and ¢7ppgrr from the PCA-ALS procedure previously
described.

Lasso simultaneously prevents overfitting in the time-series regressions by shrinking coefficients
and selects covariates by zeroing out coefficients that would otherwise be close to zero. Both
features facilitate the use of many liquidity proxies even when a mutual fund is relatively short-
lived. Moreover, we no longer need to choose which measure(s) best approximate the costs faced
by each fund, and indeed, different liquidity measures may be more salient for different mutual
funds. First-stage penalization also knocks out spurious strategy loadings for funds that take on
risk exposures unintentionally—a small non-zero loading taken en route to implementing a different
strategy will be zeroed out.

The original Lasso implementation sets wy = w; = 1 for all k and [. Unfortunately Lasso is not
guaranteed to deliver consistent estimates of § and ~y, and it does not have the “oracle property”
by which the variable selection step identifies the correct model and estimates converge at the
optimal rate. By contrast, Zou (2006)’s adaptive Lasso has these desirable features, which enables
us to construct confidence intervals for cross-sectional slopes as though the first-stage regression
were OLS. Adaptive Lasso differs from Lasso in placing higher penalties on parameters with little
explanatory power by setting w = ‘3’77' Our penalization weights are OLS s (as in Zou (2006)),
and our penalty exponent is v = 1.

The obvious concern when using Lasso or adaptive Lasso is the selection of the penalization
parameter k. Following standard practice (e.g., Biihlmann and van de Geer (2011), Hastie, Tibshi-
rani, and Wainwright (2015)), we use k-fold cross-validation to select . Cross-validation works as
follows. First, select a candidate value of k,, and partition the sample into k& equal “folds”; in our
case, we choose the MATLAB default of £ = 10. Next, for each fold, estimate the model on the
set difference of the full sample and the partition. Then calculate the mean-squared error of the
estimated model on the fold that was set aside. This procedure provides k pseudo-out-of-sample
(POOS) R?s as a function of k,,. Finally, repeat this procedure for a range of x,,, and select x as
the value k,, that maximizes the average POOS R2. Intuitively this process tames overfitting by
selecting the model with the best out-of-sample predictive properties.!©

Table IV presents results using the adaptive Lasso first stage described by Equation (8). Most
importantly, the coefficients on A\® are of similar size and statistical significance as they are in the
preceding two tables. Using the adaptive Lasso results in one key change from the prior table,

however: the point estimate for UM D compensation for mutual funds becomes negligible in the

'6Remarkably, Chetverikov, Liao, and Chernozhukov (2017) demonstrate that time-series betas estimated using
the cross-validated Lasso converge to the true betas at rate /n, up to a negligible log term. Because the convergence
rate is comparable to that of OLS, using (adaptive) Lasso in the first stage does not exacerbate the errors-in-variables
problem endemic to Fama-MacBeth regression. We therefore follow standard practice in taking betas as “known”
inputs into the Fama-MacBeth cross-sectional regressions and adjust standard errors for heteroskedasticity and serial
correlation.
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Table IV: Implementation Cost Estimates in Fama-MacBeth Regressions — Liquidity Lasso

Table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfo-
lios (second panel), domestic equity mutual funds (third panel), and their difference (top panel).

Coefficients are the average cross-sectional slopes A; across monthly regressions of excess returns
r;t on time-series betas (1,

rie = NuBinlics + Y A" Binliemr + e, t=1,..., T,
ks ks

where k indexes the four Carhart (1997) factors and A\? is defined as A5 — AMF_ First-stage
regression estimates include these factors and all market and funding liquidity proxies in an adaptive
Lasso regression with portfolio-specific penalty parameters x; chosen by 10-fold cross validation.
Liquidity proxies and stock portfolio sets are described in Section III. All coefficients are annualized
and reported in percent. Standard errors are Newey-West with three lags. ¢ statistics are reported
in parentheses.

(a) Equal-Weighted Stock Portfolios

1970 — 2016 1993 — 2016
N¢ MKT HML SMB UMD MKT HML SMB UMD
A 100 -0.04  5.38*  2.03*  9.14** 0.28  3.64**  2.03  6.77
t-stat (-0.08)  (5.99) (1.94)  (5.68) (0.39)  (3.08)  (1.44) (3.19)
A 269  0.33  4.787*F  2.31**  10.09*** 1.09 2.23* 212 7.97
t-stat (0.65)  (4.75)  (2.06)  (6.25) (1.59)  (1.86)  (1.44)  (3.70)
S 100 6.88%*  7.89** 322 9.80*** 8.08™* 5.29* 4.33 6.48*
t-stat (2.84)  (4.10)  (1.64)  (4.01) (2.46)  (1.87)  (1.54)  (1.66)
S 269  7.25%*  7.20"*  351*  10.76** 8.89*** 3.88 4.42 7.68*
t-stat (3.03)  (3.44) (1.70)  (4.37) (2.75)  (1.23)  (1.54)  (1.94)
AME 6.92%* 2.51 1.20 0.67 7.80** 1.65 2.30 -0.29
t-stat (2.84)  (1.28) (0.65)  (0.25) (2.40)  (0.54)  (0.92) (-0.07)
T 564 564 564 564 282 282 282 282
Nuyr 1894 1894 1894 1894 3290 3290 3290 3290
*p < .10, ** p < .05, " p < .01
(b) Value-Weighted Stock Portfolios
1970 — 2016 1993 — 2016
N¢ MKT HML SMB UMD MKT HML SMB UMD
A 100 -0.09  5.00*  -0.53  8.49*** -0.25 456" 044  5.80"*
t-stat (-0.25)  (6.16)  (-0.69)  (5.62) (-0.60)  (4.84)  (-0.44)  (3.17)
A& 269  -0.02  3.43™*  -0.60  8.04** 0.21  3.16"*  -1.14  6.39"*
t-stat (-0.05)  (4.62)  (-1.06)  (5.63) (0.81)  (4.22) (-1.39)  (3.52)
A5 100  6.83"*  T7.51"**  0.67  9.15"** 7.54%  6.21% 1.86 5.51
t-stat (2.84)  (3.92) (0.38)  (3.83) (2.32)  (2.08)  (0.73)  (1.44)
S 269  6.90%*  5.94™* (051 = 8.71** 8.01** 4.81 1.16 6.11
t-stat (2.88)  (3.12)  (0.30)  (3.68) (2.47)  (1.55)  (0.47)  (1.62)
AMF 6.92"** 2.51 1.20 0.67 7.80** 1.65 2.30 -0.29
t-stat (2.84)  (1.28)  (0.65)  (0.25) (2.40)  (0.54)  (0.92)  (-0.07)
T 564 564 564 564 282 282 282 282
Nuyr 1894 1894 1894 19894 3290 3290 3290 3290

*p < .10, ¥ p < .05, *** p < .01



full sample and negative in the recent sample. This feature is consistent with mutual funds earning
compensation for momentum exposure only to the extent that momentum also embeds liquidity risk.
By including a rich set of liquidity and liquidity risk proxies rather than two principal components,
we allow this source of compensation to be spanned in the first stage, thereby effectively kicking out
UMD as a priced factor on the set of mutual fund test assets. Because )\%f/; p is an upper bound
on mutual fund compensation for UM D exposure, Table (IV) implies that momentum strategies

are not implementable for the typical mutual fund.

V. Matched Pairs Estimates of Implementation Costs

The cross-sectional approach of the previous section compares the return compensation for an
incremental unit of risk exposure taken in on-paper portfolios versus in mutual funds. Such an
approach does not address the question of whether large investments by mutual funds achieve more
favorable risk-reward trade-offs than marginal factor investments. For example, mutual funds may
excel at taking on moderate risk exposures to a factor, but their performance may deteriorate
for extreme exposures for which taking on additional leverage is needed (Frazzini and Pedersen
(2014)). To answer this question, we consider the building blocks for many tradeable return factors
in academia—Tlong-short portfolios implied by characteristic sorts—and conduct a matched pairs

analysis of characteristic-sorted stocks and matched mutual funds.

A. Matched Pairs Methodology

We begin by constructing characteristics for each stock and sorting stocks into quintile portfolios.
Our characteristics are 60-month rolling market beta (requiring at least 24 observations), book-to-
market ratio,!” market capitalization (with scale reversed to place small stocks in the top quintile),
and prior return over the previous year, skipping the latest month (the “2-12” return). We follow
the methodology of Ken French’s website in constructing these characteristics, and we use the
provided breakpoints based on NYSE quintiles where available. In the case of rolling market betas
we construct our own quintile breakpoints. For the first three characteristics, we assign portfolios at
the end of June and retain assignments for July through the end of the following June. Momentum
is a higher-frequency anomaly, and we sort on prior returns and retain assignments for the next
month only. We then estimate two sets of betas on monthly return data for all common stocks in
the CRSP universe and all U.S. domestic equity mutual funds: univariate betas with respect to a
single factor fi and multivariate betas with respect to all four Carhart factors.

For each stock in quintile ¢ for factor k£ in month ¢, we find the three closest mutual funds active

in that month. We assess proximity using the Mahalanobis distance on betas with covariances

1"We source our book-to-market ratios from the WRDS Financial Ratios Suite. We make small modifications to
the provided code to extend the ratios to all stocks through the end of 2016.
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estimated using the full sample,'® where 3), determines distance in our univariate analysis, all four
Bs determine distance in our multivariate analysis. Implicitly we select stocks as our matched
pairs “treatment group” because we want to mimic on-paper factor portfolios as best as possible
using mutual funds. Each stock is matched to three mutual funds rather than one to improve
precision of the average return for mutual funds with the same risk characteristics. To ensure high
match quality, we impose a maximum distance or caliper of 0.25 standard deviations for univariate
matches (following Rosenbaum and Rubin (1984)’s rule-of-thumb in the context of propensity score
matching) and 0.25 x 4 = 1 standard deviation for four-factor matching. Stocks with fewer than
three matched mutual funds within these radii are dropped.

We follow Abadie and Imbens (2006, 2011) to establish a bias-adjusted matched pairs estimator
for each month’s implementation gap by calculating the average difference between next-month
returns for stocks and mutual funds. Armed with monthly implementation gap estimates, we
take the average value as our full-sample estimate. We also consider differences in value-weighted
returns within each month using the lagged market capitalization of the matched stocks. Appendix
C provides a detailed description of the matched pairs methodology and evaluation of match quality.

Our analysis includes univariate and multivariate matches because each mimics a different
standard asset pricing approach and because each method entails making a particular set of trade-
offs. Intuitively, matching on univariate betas answers the question of whether mutual funds are
comparably good as stocks at isolating a particular characteristic; for example, do mutual funds
with high (low) “value” betas achieve the same excess returns as high (low) value beta stocks? This
analysis parallels a comparison between QQ5—Q1 returns from two standard portfolio sorts, where one
set of test assets (mutual funds) is transformed to have as similar risk attributes as possible to the
other set of test assets (stocks). In favor of univariate matching is its high match rate and accurate
matches along the dimension of interest, and this approach dominates when one matching feature is
more important than others in determining stock and mutual fund returns. Matching on all betas
answers the same question when excess returns are assessed with respect to a richer, nonparametric
model that controls for possible variation in other risk factors. This multivariate-beta matching
approach parallels multifactor tests such as Fama-MacBeth cross-sectional regressions in which
we assess the returns to a single factor holding all other factors fixed. In favor of multivariate
matching is its ability to simultaneously control for several determinants of returns to conduct a
true “all else equal” analysis for stocks and mutual funds. This approach—which we favor in our
application—trades off match quality in the dimension of interest with an elimination of systematic
biases in the other dimensions. We discuss trade-offs of each approach in more detail in Appendix
C.B.

For each matched pairs analysis, we compare the performance of stocks in high-characteristic

18The Mahalanobis distance is v/(z — y)’ £ (z — ) for two vectors  and y and covariance matrix 3. When ¥ is
diagonal, it normalizes each dimension to have a unit standard deviation, and we adopt this terminology in the main
text. It reduces to the Euclidean distance when ¥ = I.
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portfolios and matched mutual funds. These differences in high-characteristic quintile returns rep-
resent a lower bound on the underperformance of mutual fund implementations of factor investing.

To see why, consider the difference in factor returns for stocks and mutual funds,

rs —TryME = (ngong — rg’w”) — (ré\oj}? — rf\’j%”t) > (rg’"g — r%h"”) — (ré&’}? — rfgh"”) = plong _ plong,

(9)
The inequality in Equation (9) holds if mutual funds are weakly less able to implement the short
side of strategies than paper shorting returns would indicate. We expect underperformance on
selling the low-beta quintiles because shorting entails relatively high transaction costs. Short-side
underperformance is especially plausible if we find that mutual funds also underperform on the
long side. In addition, some firms implement positive-cost versions of anomalies such as long-only
momentum, in which only the extreme “buy” portfolio is traded.

Note that we do not directly compare the performance of long-short strategies for stocks and
mutual funds. We cannot short mutual funds, and underperformance on both ends of a long-short
strategy, for example, because of transactions costs, would be incorrectly obscured by differencing,
as such costs are additive. Instead, we settle for comparing performance on the long portfolios to

establish a lower bound on the implementation costs of asset pricing factors.

B. Results

Table V reports the results of our matched pairs analysis. The ALMS

value in the upper-left
corner indicates that mutual funds underperform stocks with the same market beta exposure by
2.60% per year when stocks are in the 60-80th percentile of the distribution of rolling market betas.
We designate “LLMS” as long high-market beta stocks and short low-market beta stocks to distinguish
long-short market beta portfolios from the equity premium R,, — Ry. This implementation gap
is larger than the on-paper return to an equal-weighted long-short strategy based on market beta
quintiles, and roughly 40% of the annual equity premium over this period (6.35% per year, not
tabulated). Moving to the next column on the right, mutual funds continue to underperform stocks
by a much-smaller 0.83% per year, and this value is no longer statistically significant. Moving down
the upper-left panel we see that the implementation gap is positive and statistically significant for
all factors considered. Costs are particularly high for momentum strategies, as prior literature
suggests, and they are similarly high for value strategies.

The smaller point estimates in quintile four relative to quintile five is a common feature through-
out the panels, and it reflects the balance of two competing forces. On one side, if per-unit costs
are fixed across firms (as in Section IV.A), higher betas translate into higher total implementation
gaps [ (h — f). On the other side, mutual funds select into the highest 8 group, so high-g group
membership likely reflects lower per-unit underperformance h — f. For these reasons the product

of B(h — f) could increase or decrease as we move to more extreme [ quintiles, and empirically,
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the scale effect tends to dominate the selection effect.

The upper-left panel reflects performance differences between stocks and mutual funds matched
on betas from a one-factor model of returns. This matching is akin to a portfolio sort in which
a single characteristic is used. Other return-relevant variables are not held fixed as we vary one
characteristic, so it may be that stocks and matched mutual funds vary substantially on other
dimensions. For example, mutual funds trading continuation strategies like momentum are slightly

less likely to trade contrarian strategies like value ( = —3.8%), whereas momentum

PBaML.BuMD
and value betas are positively correlated among stocks (pg, 1,1 80mp = +14.3%). The bottom-left
panel addresses this concern by reporting return differences in high-characteristic portfolios between
stocks and mutual funds matched on the four Carhart (1997) factors. In this analysis we estimate
multifactor betas using four-factor time-series regressions as in Equation (1).

Controlling for the three non-sorting variables has a large effect on the statistical reliability of
the market and size factor implementation costs, which suggests that funds with high-beta strategies
likely differ from high-beta stocks on other dimensions. In the equal-weighted specification we see
that the implementation gap is large and statistically significant for quintiles four and five for all
anomalies. The implementation gaps are so large, in fact, that they swamp or severely attenuate
factor returns for all four factors considered, regardless of whether we include all stocks or focus
only on the investable set of matched stocks. In short, at least from an equal-weighted perspective,
no factors earn returns after real-world costs during the 1970-2016 period. This finding also holds
in the right panel for the 1993-2016 period, in which the four academic factors are known and the
mutual fund universe is far more developed (see Figure I).

Columns 7-12 of the top panel present value-weighted results. The contrast between equal- and
value-weighted results testifies to the importance of size in dictating the ability of mutual funds
to mimic return factors; differences in performance attenuate dramatically when small, harder-to-
access stocks are downweighted. Focusing first on the univariate matches, mutual fund underperfor-
mance on value, size, and momentum strategies falls by roughly half relative to the corresponding
equal-weighted results, and underperformance on the long-short market beta strategy reverts to
zero or even to a negative value. As we find in Section IV, mutual funds capture returns to market
beta quite well.

Turning to the multivariate matches in the value-weighted specification restores our finding that
mutual funds underperform matched stocks for the non-market factors. Implementation gaps are
again smaller than in the equal-weighted results, but the magnitudes are nonetheless economically
large for the three main anomalies: 0.1%-3.42% for value against a time-series average return
of 4.77% for value-weighted HML; 3.33%-3.98% for size against a time-series average return of
1.61% for SMB; and 1.91%2.23% against a time-series average return of 8.75% for UMD. These
differences carry over to the more recent 1993-2016 interval, as well. In sum, we replicate the high

implementation costs of these factors, and such performance attrition is a stark departure from the
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muted effects of trading costs often considered in the academic literature.

Taken together, these matched-pair results agree qualitatively with the cross-sectional results
for three of the four factors (M KT /LMS, HML, and UMD), but they disagree for size. This
disagreement is likely attributable to the fact that SM B beta is not associated with cross-sectional
differences in average returns—and the cross-sectional approach thus reveals no difference in com-
pensation to SM B exposure—whereas the small-size characteristic is associated with higher aver-
age returns. Consequently we observe high returns on small-stock portfolios in the matched pairs

approach, and mutual funds clearly cannot capture these returns well in practice.

VI. Cost Estimates Over Time and Across Funds

A. Comparison with Previous Implementation Cost Estimates

Our analysis thus far considers the implementation costs of factor strategies for representa-
tive mutual funds, with no attention paid to the size of the fund. Variation in investors’ trading
technologies may drive a wedge between a typical asset manager and the marginal investor in an
anomaly, and by dividing asset managers into groups we can learn whether factors are broadly
(in)accessible or whether they generate positive net-of-costs returns for a subset of managers. Our
results below suggest that the longstanding disagreement on the profitability of momentum strate-
gies follows because market-wide and single-firm analyses, e.g., Lesmond, Schill, and Zhou (2004)
and Frazzini, Israel, and Moskowitz (2015) respectively, focus on different sides of this wedge.

In this section, we briefly demonstrate the utility of our cross-sectional approach for examining
segments of asset managers. Motivated by extensive work relating fund size to gross-of-fees per-
formance (e.g., Berk and Green (2004), Pastor, Stambaugh, and Taylor (2015), and Berk and van
Binsbergen (2015)), we split fund groups into groups based on lagged total net assets (TNA). We
then run our second-stage cross-sectional regressions (2) separately for each asset manager TNA
group.'? In principle we could complement this analysis with a matched pairs approach, but divid-
ing the set of possible mutual funds into several groups significantly reduces match quality in the
tail portfolios. The cross-sectional regression approach does not have this problem because it uses
all information to estimate implementation gaps rather than “local” information only.

Table VI presents results from these segmented regressions. As in Tables II-IV, mutual funds
generally achieve returns to market factor exposure comparable to those of on-paper stock portfo-
lios. HML also earns positive compensation, and returns to HM L are collectively different from

zero in two of three specifications. Other point estimates are more variable across mutual fund size

19Groups are assigned separately for each date with cutoffs based on December 2016 USD. The micro-fund group
has TN A; < $10M and comprises 5.2% of the data. This group is selected in that it consists of past losers whose
assets had at one time exceeded $10M. The small-fund group has $10M < TN A; < $50M and comprises 22.8% of
the data. The medium-fund group has $50M < TN A; < $250M and comprises 31.8% of the data. The large-fund
group has $250M < TN A; < $1B. and comprises 22.5% of the data. The mega-fund group has TN A; > $1B and
comprises 17.7% of the data.
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categories. Focusing on momentum, the smallest mutual funds have the highest returns to mo-
mentum factor exposure, and momentum compensation is monotonically decreasing with mutual
fund size (with one exception in the baseline specification). The differences in compensation across
mutual fund size categories are also economically significant in all specifications despite individual
momentum coefficients typically not being different from zero. We can also reject non-monotonicity
of momentum compensation across size categories using the bootstrap test of Patton and Timmer-
mann (2010)—momentum strategy performance is decreasing in fund size. This feature makes
intuitive sense in that momentum is a high-turnover strategy, and larger funds suffer greater mar-
ket impact costs in implementing momentum than smaller funds. We conclude that variation across
mutual funds is important when considering the net-of-costs returns to the momentum factor.

Table VII compares these real-world factor return estimates with estimates from selected influ-
ential works in the literature. Novy-Marx and Velikov (2016) estimate trading costs by summing
effective bid-ask spreads of traded securities, and by their reckoning, momentum’s trading costs
reduce the gross strategy return from 16.0% per year to 8.16% per year (Table 3 of their paper).
These positive momentum returns net-of-costs likely significantly overstate achievable returns, how-
ever, because their calculation ignores the price impact of trading that is particularly relevant to
institutional investors and is considered by others in the literature.

Papers that consider a wider range of trading costs reach mixed conclusions on the imple-
mentability of momentum. Korajczyk and Sadka (2004) suggest that momentum profits exist only
at small scales (the table reflects only proportional costs, and by their reckoning, non-proportional
costs quickly overwhelm strategy returns), and Lesmond, Schill, and Zhou (2004) argue that high
transactions costs preclude profitable momentum strategies altogether. Because these studies es-
timate transactions costs functions using all TAQ transactions, their average implementation cost
estimates are smoothed over size quintiles and over trades unrelated to momentum strategies. As
a consequence these authors find a result like the AM¥" of Tables II-1V, whereby momentum has
an economically unimportant premium for real-world asset managers.

When we focus only on the smallest asset managers, the picture looks quite different. De-
pending on the specification considered, we find that the smallest firms earn 4.5%-8.3% per year
per unit of momentum exposure (Arya<sionr).- Combining these results we find that both sets of
authors are correct; which momentum premium is of greater interest hinges on whether the re-
searcher evaluates representative firms, as in benchmarking applications, or marginal investors, as
in discussions of market efficiency. Intriguingly we find that the largest mutual funds earn the most
negative compensation for momentum exposure, suggesting that the firm examined in Frazzini,
Israel, and Moskowitz (2015) is an outlier, or that non-mutual fund asset managers have different

compensation schedules for factor exposure.
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Table VII: Comparison with Selected Factor Profitability Estimates from Prior Work

Table presents estimates of factor strategy returns. The top panel reports cross-sectional slopes
from Fama-MacBeth regressions as in Table VI. For brevity we report only the estimates in which
liquidity proxy principal components appear in the time-series step, and we focus on the slopes for
the full sample of mutual funds and for the largest mutual funds as measured by lagged total net
assets. As before, standard errors are Newey-West with three lags. The second panel presents value-
weighted momentum strategy returns from Table IV of Korajczyk and Sadka (2004). Alphas are
constructed relative to the Fama-French three factors. a; ;" and '’} represent excess momentum
returns net of proportional costs as measured by effective spreads and quoted spreads, respectively.
The third panel reports equal-weighted strategy returns from Table 3 of Lesmond, Schill, and Zhou
(2004) (value-weighted returns are not reported). ri2V direct
Lesmond, Ogden, and Trzcinka (1999)-implied costs and “direct” costs (consisting of bid-ask spreads
and trading commissions), respectively. The fourth panel tabulates realized strategy returns from
Table IV of Frazzini, Israel, and Moskowitz (2015). The final panel reports value-weighted strategy
returns net of Hasbrouck (2009)-implied effective spreads from Table 3 of Novy-Marx and Velikov

(2016). Throughout returns are annualized and ¢ statistics are reported in parentheses.

and 7 are momentum returns net of

HML SMB UMD
AME 2.80 1.42 1.47
Cross-Sectional Slopes w/ PCA t-stat (1.63) (0.79) (0.60)
1970-2016 M 515 2.80 1.40 -4.01
t-stat (1.48) (0.76) (-1.27)
Ogross 6.84%
t-stat (4.54)
Korajczyk and Sadka (2004) ag B 5.40%**
1967-1999 t-stat (3.59)
ol 4.80***
t-stat (3.17)
Tgross 7.83%
t-stat (6.22)
Lesmond, Schill, and Zhou (2004) rkDv 0.13
19801998 t-stat (0.07)
pdinect 2.24
t-stat (1.22)
Tgross 4.86 7.98%** 2.26
Frazzini, Israel, and Moskowitz (2015) t-stat (1.12) (3.01) (0.40)
19862013 Thet 3.51 6.52** -0.77
t-stat (0.80) (2.48) (-0.14)
Tgross 5.64*** 3.96* 15.96***
Novy-Marx and Velikov (2016) t-stat (2.68) (1.66) (4.80)
1963-2013 Thnet 5.04** 3.36 8.16**
t-stat (2.39) (1.44) (2.45)

*p < .10, ** p < .05, *** p < .01
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Figure II: Rolling Performance Difference Between Mutual Funds and Stocks (8 = 1)

Figures plot the rolling difference between log Fama-MacBeth cross-sectional slopes for stock port-
folios (S) and mutual funds (M F'). Each series y () equals the centered rolling difference

t+6

e (1) = Z log (14 Aj,) — log (1 + MY,
s=t—6

where A\p; are cross-sectional slopes from monthly regressions of excess returns r; on time-series
betas sz Each figure plots differences in slopes for which the time-series regression includes no
liquidity proxies, the first principal component for market liquidity proxies and funding liquidity
proxies, and all liquidity proxies with adaptive Lasso penalization (r; chosen by 10-fold cross
validation). Stock portfolio slopes are estimated using all 269 portfolios described in Section III.
Solid lines depict averages of series means. NBER recessions are in gray.
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B. Implementation Costs Quer Time

Figure II adds a time-series dimension to the average risk price differences of Tables II-1V.2°
For each panel we plot the log return of the “on-paper” investments in each factor with a unit risk
loading minus the corresponding log return on mutual fund investments. To do this we invoke
the interpretation of Fama-MacBeth coeflicients Ay; as the date ¢ return on a portfolio with a unit
loading on factor k and zero loading on all other factors. Our series is the centered rolling difference

in performance,

t+6 t+6
yk (t) = Y log (L+A%) —log (1+ A7) = > Agi. (10)
s=t—6 s=t—6

This quantity has an equivalent interpretation as the relative cost associated with real-world rather
than on-paper investment in factor strategies.

The four panels of Figure II depict factor implementation costs for each set of liquidity proxies
using the 269 stock portfolios as the on-paper return benchmark. Although magnitudes vary
slightly across specifications, the three slope series are remarkably similar for each factor. The
implementation gap is clearly rank-ordered as UMD, HML, MKT, and SM B, with large and
positive implementation gaps for UM D and H M L, no implementation gap for M KT, and a small
negative implementation gap for SM B. The difference series are also affected by macroeconomic
events. All four implementation gaps fall before the end of the tech bubble of the late 1990s and rise
during the subsequent crash and/or the Great Recession of 2007-2009. One interpretation of this
feature is that factor returns are most accessible by investment managers when market liquidity is
abundant and funding constraints are unlikely to be binding.

Perhaps the most intriguing feature of Figure II is the absence of a trend in strategy implemen-
tation costs. This feature contrasts with well-documented secular declines in bid-ask spreads and
commiissions since 1970 (e.g., Jones (2002) and Corwin and Schultz (2012)). An equilibrium per-
spective on the size of the asset management sector reveals why we instead obtain a stationary time
series.?! As trading technology improves and equity intermediation becomes more competitive, the
cost of trading the first dollar of a factor strategy declines. Perceived sector-level alphas increase
for factor investors, and aggregate inflows attract new entrants (as in Figure I) or contribute to the
growth of existing fund managers (as in Berk and Green (2004)). These inflows increase the scale of
factor investing, which in turn increases non-proportional transactions costs such as price impact.
In equilibrium this process continues until factor alphas fall to zero for the marginal dollar. Con-
sequently the average dollar invested in factor strategies may see no reduction in implementation
costs despite improvements in trading technology.

The conjectured equilibrium adjustment mechanism hinges on non-proportional trading costs—

2Tn the interest of brevity we suppress the corresponding plots for the matched pairs analysis.
21 Augmented Dickey-Fuller tests reject the null of a unit root in implementation costs at the 0.1% significance level
in all series.
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omitted by studies such as Novy-Marx and Velikov (2016)—and it rationalizes industry-level de-
creasing returns to scale suggested by Pastor and Stambaugh (2012) and documented by Pastor,
Stambaugh, and Taylor (2015). It also generates a testable prediction that industry-level inflows
increase implementation costs of factor strategies.

We analyze this relationship between implementation costs, flows, and illiquidity more formally
by examining relating the cost time series with liquidity and fund flow proxies. We start by
constructing illiquidity proxies as the first principal components of market liquidity proxies and of
funding liquidity proxies, as described in Section IV.B. We also construct flow variables to capture
costs associated with fund inflows and outflows. Fund flows are the component of asset growth not

explained by returns,

TN A

TaAL (1R, (11)

flow; =

We summarize the distribution of flows with its first and second cross-sectional moments—the cross-
sectional average fund flow (M FLOW) and the cross-sectional dispersion in fund flows (DFLOW).
In addition to reflecting returns-to-scale, flow variables are a natural candidate for explaining
trading costs because large flows the mutual fund sector or reshuffling of assets among mutual
funds generates liquidity demands. To enhance interpretability, we normalize all right-hand-side
variables to have mean zero and standard deviation one.

Table VIII reports results from a regression of /\kAt on the liquidity and fund flow proxies,
Aot = a + Burrow MFLOW + Bprprow DELOW + By PCup + BriPCrr + €k (12)

We report only value-weighted results for the 269 stock portfolios because relations between costs
and liquidity proxies are quite similar for value-weighted and equal-weighted stock portfolios and
for 100 and 269 stock portfolios. Likewise to be succinct we report only implementation costs in the
baseline specification and with liquidity proxy principal components in Fama-MacBeth time-series
regression step.

We draw four lessons from Table VIII.2? First, the constant terms are large and positive for
HML and UMD, confirming that the time-invariant component of implementation costs from
Equation (4) is large and positive for these factors. Second, focusing on flows, average inflows are
associated with higher implementation costs for value and momentum factors, and cross-sectional
dispersion in flows is weakly associated with lower implementation costs for these factors. We find
no or unreliable relations for market and size factors, as is expected because these costs are small
in magnitude to begin with. We interpret these relations as suggestive evidence that (1) inflows are
expensive from a transactions-cost standpoint for funds trading value and momentum strategies,

thereby contributing to diseconomies of scale and stationary average implementation costs, and (2)

22Low R?s throughout are attributable in large part to the noisiness of differences in monthly factor realizations
for stocks and mutual funds.
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reallocation of funds within the mutual fund sector may increase other-funds’ liquidity trading (in
a Kyle (1985) sense), thereby reducing transactions costs for value and momentum traders. Third,
focusing on illiquidity principal components, market illiquidity typically increases implementation
costs. Intuitively trading becomes more expensive when market liquidity is low. Fourth, funding
illiquidity typically decreases implementation costs. We conjecture that mutual funds are insulated
from funding liquidity shocks that affect more highly levered institutional asset managers like
hedge funds (Sadka (2010) and Boyson, Stahel, and Stulz (2010), among others, discuss hedge
funds’ particular vulnerability to funding liquidity shocks), and hence mutual funds can acquire
the ingredients of factor strategies from distressed asset managers at a discount during times of

strained funding liquidity.

VII. Conclusion

Existing methods for assessing the implementation costs of financial market anomalies use
proprietary trading data for single firms or market-wide trading data combined with parametric
transactions cost models. We propose two new methods (an extension of the Fama-MacBeth
approach, and a matched pairs approach) to estimate implementation costs using only returns data
from stocks and mutual funds. Doing so frees us from the requirement of specifying factor trading
strategies and transaction costs models that may be incomplete or misspecified. Moreover, the ready
availability of returns data for a large number of investment managers enables the examination of
factor implementation costs for a large investment management universe.

Both of our proposed approaches demonstrate that mutual funds are generally poorly compen-
sated for exposure to common risk factors. Our estimates based on Fama-MacBeth regressions
imply that implementation costs erode almost the entirety of the return to value and momentum
strategies for typical mutual funds, but have little effect on market and size factor strategies. Our
estimates based on matched pairs suggest comparable performance attrition for value and momen-
tum strategies, and they differ in revealing high costs to investing in small-stock characteristic
portfolios.

Taken together, these results paint a sobering picture of the real-world implementability of the
most important financial market anomalies. We agree with Lesmond, Schill, and Zhou (2004)’s
analysis that momentum profits in particular may be out of reach for the typical asset manager.
In this respect markets may be efficient from the perspective of representative mutual funds, even
if outlier funds see a very different picture of risk and return net-of-costs (e.g., Frazzini, Israel, and
Moskowitz (2015)’s asset manager).

Our approaches are readily extended to a wide range of candidate return factors provided that
these are reflected in mutual fund exposures. Common anomalies like size, value, and momen-
tum clearly meet this requirement. In future research we will apply these tools more broadly to

investigate whether other residents of the factor zoo truly can survive in the wild.
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A. Mutual Fund Filters

We filter our CRSP mutual fund database sample as follows. We first fill missing fund names
using the nearest observation with a non-missing fund name within each CRSP fund number group.
Of the 1,859,702 observations in the fund summary file, we assign fund names for 19,460 observations
and remove 242 observations without recoverable names.

Share classes differ from one another in their fee structures, and we must account for this
variation before aggregating across share classes within a fund. We convert net returns to gross
returns by adding to net returns the annual expense ratio divided by 12, following Fama and French
(2010). The fund summary file has missing or non-positive expense ratios for 16.9% of observations,
however, and we take several steps to fill in the missing data. First, as before, we fill missing expense
ratios with the nearest observation with a non-missing value within each CRSP fund number group.
This operation reduces the number of missing expense ratios to 8.4% of the summary data. We then
merge the monthly return data with the summary data by fund number and calendar quarter. This
merge assigns expense ratios to 76.2% of fund-month observations. For unmerged observations,
we merge again on fund number and year, where we take the average expense ratio within the
fund number-year in the fund summary file. This operation boosts the number of fund-month
observations with an expense ratio to 88.5% of the data or 5,774,820 observations. We then drop
the 89 observations with expense ratios exceeding 50% as these are almost certainly data errors.

Having accounted for the salient variation across share classes, we identify share class names of
the same fund by extracting prefixes of CRSP fund names from the fund summary file. Suffixes
represent different share classes of the same fund, e.g., “investor” and “admiral” shares of a Vanguard
fund. We assign all funds with the same prefix to a unique fund group.

We take the following steps to obtain fund name prefixes. First, we cut off all fund names after
a semicolon. Names after the semicolon are exclusively class names. We add to this dictionary of
possible class names the Arabic and Roman numerals 1-10, letters A—Z, and a set of known share
class markers, inv, inst, investor, institutional, trust, corp, advisor, admin, part, restricted, retail,
shares, adv, common, series, prim, and primary. Although handling semicolons is straightforward,
forward slashes—the other class-name delimiter used in CRSP—require more care.?? For example,

fund names include “Franklin /Templeton” and “M /M” (money market), so “/” does not serve only as

23We deviate from Berk and van Binsbergen (2015)’s handling of fund subclasses because they do not properly
handle forward slashes. From their page 9:

In most cases, the only difference among subclasses is the amount of expenses charged to investors, so
simply including them as separate funds would artificially increase the statistical significance of any
identified effect. For funds that appear in the CRSP database, identifying subclasses is a relatively easy
process. CRSP provides a separator in the fund name in the form of either a colon (‘) or
a slash (“/”). Information after the separator denotes a subclass.

We attribute the difference between “colon” and “semicolon” to a minor database tweak or typographical error. The
claim about forward slashes is incorrect because forward slashes often serve as abbreviations or concatenations rather
than as delimiters, so we must devise new rules for separating out fund subclasses.
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a delimiter. As a preliminary step, we replace forward slashes in T/F, T/E, M/M, L /S, Long/Short,
S/T, and L/T with backslashes in fund names. Then we mark all fund names with a “/” for which
(1) we have not already eliminated share classes under the semicolon rule and (2) the post-slash
string is in the set of available suffixes. These are the set of funds with class information, and we
clip the post-slash string for these elements. Finally we take the unique prefixes as our set of fund
names sans class information. This mapping reduces the 61,734 surviving unique fund IDs in the
CRSP monthly returns file to 33,538 unique fund groups. Of the 6,522,095 observations in the
monthly return file, only 4,298 of these are not assigned a fund group, and these observations are
dropped.

We use fund names rather than CUSIP as our unique identifier to capture funds that have
identical or near-identical investments but different CUSIPs or CRSP portfolio numbers. Fund
names also have fewer missing values than either CUSIP (11.1% missing) or portfolio number
(27.8% missing) identifiers. This matching on name prefix also mimics the behavior of CRSP’s
Class Group code designed for this purpose, but which only becomes available in August 1998. For
the observations for which class groups are defined, matching on name prefix gives 44,218 unique
codes, whereas matching on both name prefix and class group gives 45,484 unique pairs. The
overlap between methods is quite good despite the simplicity of our prefix approach.

Next we construct current and lagged total net asset (TNA) values for value-weighting fund
returns within and across fund groups. In 9.2% of cases total net assets is undefined. We interpolate
TNA values to avoid discarding such a large fraction of our data. Before interpolating we set to
missing obvious data errors in which TNAs are recorded as negative or exceeding $1 trillion USD.
We linearly interpolate between non-missing log TNA values for each fund ID for which multiple
TNA values are available (using the log (1 + T'N A) formulation to avoid infinite values). The filling
procedure reduces the number of missing TNA values to 0.1% of the data. We then repeat or error-
filtering step and drop non-positive TNAs and TNAs exceeding $1 trillion, which increases the
number of missing values to 1.1% of the data. Lagging the TNA value by one month increases the
share of missing observations to 2.1% of data.

We then filter out extreme return observations resulting from data errors. For example, we
do not wish to include the recorded return of 533% on the Deutsche Equity 500 Index Fund
in September 1997. Berk and van Binsbergen (2015) and Pastor, Stambaugh, and Taylor (2015)
address these errors in part using external Bloomberg and Morningstar databases. We take a simpler
approach to eliminate errors. We drop the 26 observations with reported returns exceeding one (i.e.,
100%) in absolute value. This approach is inspired by the shape of the tail of extreme returns in the
data depicted in Figure A.I: the frequency of extreme returns decays roughly exponentially until
|r| = 100%, with a smattering of randomly spaced returns beyond this value. These observations
appear to come from a different distribution, and for this reason, we classify them as likely errors.

Because our analysis concerns mutual funds, we filter out exchange-traded funds (ETFs),
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Figure A.I: Distribution of Log Fund Returns

Figure plots the distribution of the log of absolute monthly mutual fund returns. We truncate the
plot to —1 on the left to maintain resolution on the extreme returns on the right. The dashed line
represents of cutoff at |r| = 100%.
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exchange-traded notes (ETNs), and variable annuity underlying (VAU) funds. To do this, we
discard any observations for which et flag indicates an ETF or ETN or vau_fund indicates a VAU
at any time in a fund’s life. These exclusions total 9.1% of observations.

We then construct fund group returns and total net assets by taking a weighted average of the
returns and a sum of TNAs across component fund IDs. The return weights are one-month lagged
TNAs. We retain observations for which the lagged TNA is undefined but the fund group only
has one fund ID, that is, the one fund ID has an effective weight of 100%. Fund group TNAs are
the sum of current TNA values for all fund IDs for which the TNA is defined. Aggregating funds
across share classes delivers 3,693,705 monthly fund-group observations.

As Fama and French (2010) note, “incubation bias arises because funds typically open to the
public—and their pre-release returns are included in mutual fund databases—only if the returns
turn out to be attractive.” We follow their approach to countering incubation bias by keeping
observations only after a fund group achieves a TNA of at least $10 million (in December 2016

dollars).?* We retain data from funds that later drop below this threshold to avoid introducing

240ur inflation index is the Consumer Price Index for All Urban Consumers (CPTAUCSL) series provided by the
Federal Reserve Bank of St. Louis’” FRED database.
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a selection bias. Dropping fund groups that never achieve a $10 million TNA eliminates 7.2% of
fund group-month observations. Dropping observations from potential incubation periods before
the $10 million threshold is achieved eliminates another 8.9% of the sample.

Next, we filter fund groups based on fund name and objective. We first exclude all funds with
names containing ETF, ETN, exchange-traded fund, exchange traded fund, exchange-traded note,
exchange traded note, iShares, and PowerShares (not case sensitive) as a redundant filter on top of
the CRSP-based ETF/ETN filter. These exclusions eliminate 10,779 observations. We then exclude
any funds with names that have clear international or non-equity connotations: international, intl,
bond, emerging, frontier, rate, fixed income, commodity, oil, gold, metal, world, global, China,
Furope, Japan, real estate, absolute return, government, exchange, euro, India, Israel, treasury,
Australia, Asia, pacific, money, cash, yield, U.K., UK, kingdom, municipal, Ireland, LIBOR, govt,
obligation, money, cash, yield, mm, m/m, diversified (but not diversified equity), and short term
(not case sensitive). This filter complements our requirement that a fund have a domestic equity
“ED” CRSP objective code.?® These filters reduce the number of valid funds from 22,509 to 7,334,
and the corresponding number of non-missing return observations decreases to 1,085,108 for the
entire December 1961 to December 2016 CRSP Mutual Fund Database.

Lastly, we restrict the set of funds to those with at least two years of monthly data in our
1970-2016 sample period. This filter reduces our sample to 7,320 mutual funds with 1,068,106

non-missing return observations. Summary statistics for this sample are reported in Table I.

B. Bias of Symmetric Fama-MacBeth Regressions with General h;;

If instead we were to include the loadings on the liquidity proxies in Equation (2), the second-

stage regression becomes

rie =Y Aubinlics+Y A’ Bliemr+ Y Nidalies+ Y A Auliemr+en t =1,...,T. (13)
k P [ l

cov((n:—1)Bi,8:)
: , var(B;)
)\ﬁ = 1. The problem with this approach is that the )\ﬁ term drops the time-varying part of 7;,

From the conjectured return process of Equation (5), 5\;59 = /\f , 5\@ =0+ , and

so we can no longer cleanly attribute time-varying costs to each return factor. Moreover the logic

of mutual funds scaling down strategies in the face of high costs applies to n;; rather than to n;.
To resolve the first issue we need to decompose 7 into factor-specific parts. The sum of all

time-varying costs to factor investing using mutual funds is

TVCy =Y mvii = Y <Z %’klﬂik) ~ (14)
! I K

25The CRSP objective code unifies Wiesenberger objective codes for 1962-1993 data, Strategic Insight objective
codes for 1993-1998 data, and Lipper objective codes for 1998-2016 data.
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Regressing total time-varying costs on (3;s decomposes costs into factor-specific time-varying parts,
TVCy = Z Z Nkt Bik 1t + €it. (15)
t k

This regression can be interpreted as rotating the transaction cost space onto the return factor
space. However, this rotation is imperfect because of cross-sectional variation in ;8. To see why
dispersion in +; is problematic, consider a single coefficient estimate in a one-return factor case of
Equation (15),

cov (Zz 77lt%l,ﬁz Z COU ﬂmzt il —’Yl) 51‘)
e + Z . (16)

"= cov ( cov (B;)
The first term represents the average exposure to liquidity or performance factors multiplied by
the factors’ time-t realizations. This is the term of interest, but instead we identify this term plus
a cross-sectional bias term. Focusing on the bias for each [, we might expect higher-than-average
cost-factor sensitivities ;; > 4; to be associated with lower betas if firms are risk averse. Although
we would expect betas to be negatively associated with total costs per unit of risk exposure 7, it
is not clear what relation the time-varying component alone should have with betas. Because of
this ambiguous sign and the additional complexity of this approach, it is preferable not to include

the liquidity exposures in the cross-sectional regression step.

C. Match Quality Adjustments and Reporting for Matched Pairs

A. Bias Adjustment for Imperfect Matches

Characteristics are not perfectly matched between stocks and mutual funds, and match char-
acteristics may differ systematically between stocks and matched mutual funds. We follow Imbens
and Rubin (2015)’s guidance to bias correct our matching estimator using a linear regression of
outcomes on mutual fund (“control-group”) attributes.? For each date t, we bias-adjust mutual

fund returns using a factor model for returns in which the estimated betas serve as risk exposures,

rie =i+ Y Ombin+en, i €MF, t=1,... T (17)
k

Despite its matched pairs origin, Equation (17) is our usual Fama-MacBeth cross-sectional regres-
sion on the set of mutual funds.

Using Equation (17), we shift our estimate of mutual fund returns by the difference in betas

26Bias-correction is optional in univariate matches, but it considered to be best practice. It is required to correct
for a “large-sample bias” for multivariate matches (Abadie and Imbens (2011)).
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between matched stocks and mutual funds multiplied by the time ¢ return to a unit of beta exposure,

LY S (55 - ). (18)

JeQ) k

where € (i) denotes the three-element set of mutual funds matched to stock i. In effect, bias-
correction marries the matched pairs approach with the factor model approach of Section IV. By
contrast with the cross-sectional analysis of Section IV, however, these adjustments are “local”

because differences in betas between stocks and matched mutual funds are small by construction.

B. Evaluation of Match Quality

Figure A.II plots the distribution of each matching variable () for unmatched stocks, matched
stocks, matched mutual funds, and all mutual funds. We see immediately that stocks have more
variable factor exposures than mutual funds, so the most extreme stocks on either side of the
beta distributions cannot be matched to mutual funds. Of stocks that are matched, their beta
distributions line up well with those of mutual funds: there are no systematic biases at any point
in the distribution of stock betas, as evidenced by the absence of over- and undershooting of the
red line by the yellow-dashed line. Matching in the tails of the stock beta distributions is achieved
by oversampling relatively extreme mutual funds. This feature manifests as a counterclockwise
rotation of the purple quantile plot for all mutual funds to achieve the yellow-dashed quantile plot
of matched mutual funds.

Table A.I quantifies match quality depicted in Figure A.II. All quintiles and factors have highly
similar means and standard deviations between matched stocks (Sps) and matched mutual funds
(Sy). All factors are matched well in quintiles one through four, and overall match percentages are
high (81%-93%). Match quality deteriorates slightly in the most extreme quintiles, and particularly
so in quintile five of market capitalization (the smallest stocks). Imperfect matching in the extreme
quintiles also manifests in the imbalance between the number of matched stocks and matched mutual
funds. For example, the typical matched mutual fund in the smallest stock group is used more than
five times: 1,325,215 stock-months are matched to three of 767,650 unique mutual fund-months.

The drawback to matching on a single variable is that other factors determining returns may
differ wildly between stocks and matched mutual funds. Figure A.III confirms this issue by plotting
bivariate distributions of four-factor betas when matches are constructed based only on By/xr.
Perfect matching between stocks and mutual funds would appear visually as complete coverage
of the green regions by the red region. Instead we see green clouds surrounding the red region,
indicating that matched mutual funds do not cover the same range of non-market betas as matched
mutual funds. Focusing on the third column of the first row as an example, we see that matched
stocks tend to have significantly larger Bsysp than matched mutual funds, so the existence of a size

premium would create a positive wedge between the returns on mutual funds and stocks.
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Figure A.IIl: Comparison of Samples on All Variables — Univariate 8 Matching on Byrxr

Figure plots the distribution of factor betas for unmatched stocks, matched stocks, and matched
mutual funds. Matches are constructed monthly using the single match variable Sy;x7, and plots
depict all bivariate distributions of Carhart (1997) four-factor betas. Stocks are considered
“matched” at date t if and only if they have at least three mutual funds within a Mahalanobis
distance of 0.250 of the matching variable during month ¢. Covariances for the Mahalanobis
metric are calculated across all stocks and mutual funds and all dates. To enhance visual clarity
we clip the distribution of betas at the 2.5 and 97.5 percentiles and plot every 25th data point for
unmatched and matched stocks. We plot every 75th data point for matched mutual funds because
each matched stock has three associated mutual funds in its approximating set. Diagonal
elements plot univariate histograms on a single beta rather than bivariate distributions.

‘ * unmatched stocks * matched stocks ¢ matched funds‘

ﬂMKT ﬁHML ’GSMB ’BUMD
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Table A.Il quantifies these visual disparities. Taking the same (1,3) coordinate, we see that
the typical matched-stock size betas are consistently 0.3-0.5 larger for stocks than for mutual
funds when entities are matched exclusively on market beta. Such differences are rife throughout
the table. An apples-to-apples comparison of stocks and mutual funds thus requires multivariate
matching if the true model of average returns has factors other than the market.

Figure A.IV and Table A.III report match quality when matching uses all four factor betas and
a wider caliper of 1o. The figure clarifies the trade-off between high multivariate match quality and
sample coverage. The blue region of unmatched stocks is quite small in the univariate matches, but
it visually dominates here. Likewise the matching along any single dimension is not quite as good
as in Figure A.II, as the red and green regions of matched mutual funds and matched stocks do
not perfectly coincide. However, these regions are much more similar than in the previous figure,
and the differences between matched stock and matched mutual fund betas are small enough to be
tamed by our local bias-adjustment methodology.

Table A.IIT quantifies this trade-off. Just over half of the sample is matched (the size of the blue
region in Figure A.IV overstates the sparse-matching problem because the red and green regions
are more densely populated). The distributions of matched stocks and matched mutual funds are
mostly comparable, but they differ in the tails as more extreme stock betas are matched with less
extreme mutual fund betas within our generous caliper. The table confirms the necessity of bias

adjustment for this high-dimensional match.
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Figure A.IV: Comparison of Samples on All Variables — Multivariate § Matching

Figure plots the distribution of factor betas for unmatched stocks, matched stocks, and matched
mutual funds. Matches are constructed monthly using all Carhart (1997) four-factor betas, and
plots depict all bivariate distributions of these betas. Stocks are considered “matched” at date ¢ if
and only if they have at least three mutual funds within a Mahalanobis distance of 1o of the
matching variables during month ¢. Covariances for the Mahalanobis metric are calculated across
all stocks and mutual funds and all dates. To enhance visual clarity we clip the distribution of
betas at the 2.5 and 97.5 percentiles and plot every 25th data point for unmatched and matched
stocks. We plot every 75th data point for matched mutual funds because each matched stock has
three associated mutual funds in its approximating set. Diagonal elements plot univariate
histograms on a single beta rather than bivariate distributions.

‘ * unmatched stocks ¢ matched stocks ¢ matched funds‘

Bkt
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