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ABSTRACT
Clustering methods such as k-means have found widespread use in a variety of applications. This article
proposes a split-sample testing procedure to determine whether a null hypothesis of a single cluster,
indicating homogeneity of the data, can be rejected in favor of multiple clusters. The test is simple to
implement, valid under mild conditions (including nonnormality, and heterogeneity of the data in aspects
beyond those in the clustering analysis), and applicable in a range of contexts (including clustering when
the time series dimension is small, or clustering on parameters other than the mean). We verify that the
test has good size control in finite samples, and we illustrate the test in applications to clustering vehicle
manufacturers and U.S. mutual funds.
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1. Introduction

Clustering methods provide researchers with a means of
imposing some structure on a set of data under analysis. They
are a middle ground between imposing strict homogeneity
and allowing complete heterogeneity across the variables under
analysis, enabling the researcher to group variables into clusters
and impose homogeneity only within a cluster. Such methods
have proven useful in a wide variety of applications including
medical research (e.g., Eisen et al. 1998; Liu et al. 2008),
economics (e.g., Francis, Owyang, and Savascin 2017; Patton
and Weller 2019), and computer science (e.g., Ray and Turi
1999; Steinbach, Karypis, and Kumar 2000).

A key input to cluster analysis is the number of clusters
to employ, and several methods for making this choice have
been proposed in the literature. Perhaps most widely known
is the “gap” statistic of Tibshirani, Walther, and Hastie (2003),
which looks at the reduction in a measure of within-cluster
heterogeneity as a function of the number of clusters. Other
approaches include those based on information criteria (e.g.,
Fraley and Raftery 2002; Sugar and James 2003; Bonhomme and
Manresa 2015) and those based on cross-validation methods
(e.g., Tibshirani and Walther 2005; Wang 2010; Fu and Perry
2017).

In many applications there is economic interest in the null
hypothesis of a single cluster, that is, that the variables under
analysis are homogeneous, or, more generally, homogeneous
in the attribute(s) under analysis. A rejection of this hypoth-
esis in favor of a model with multiple clusters represents evi-
dence of heterogeneity, a conclusion that can have important
implications. For example, a rejection could indicate that a
medical treatment is effective only for some subpopulations;
that investments with equal risk may have different expected

CONTACT Andrew J. Patton andrew.patton@duke.edu Duke University, Durham, NC.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/UBES.

returns; or that different geographic regions respond differently
to economic shocks. Existing methods for selecting the number
of clusters do not allow for a formal probabilistic statement
about the empirical evidence for or against a model with a single
cluster. For that, we need a hypothesis test.

We combine results from panel econometrics (e.g., Hansen
2007; Bonhomme and Manresa 2015) with methods from out-
of-sample forecast performance for model comparison (e.g.,
Diebold and Mariano 1995; West 1996) to present general meth-
ods for testing the null hypothesis of a single cluster imposing
only mild regularity conditions on the data. We do so in the
context of a panel of data containing N variables, each with
T repeated observations, where the length of each dependent
variable is d. Our testing approach exploits a standard assump-
tion made in cluster analyses: cluster assignments are stable
across repeated observations (e.g., time). This assumption is
often used to tune “bandwidth” parameters in applications such
as those considered here, and it enables us to estimate the cluster
assignments on one sample (e.g., the first T/2 observations, or
all odd-numbered observations) and then test the significance
of the differences across clusters in a separate sample. Our
asymptotic theory is developed for N, T → ∞, although we
can also accommodate any fixed T ≥ 2 .

The split-sample approach proposed here is simple to imple-
ment and we show that it allows one to conduct inference under
much weaker assumptions than existing methods. For example,
Liu et al. (2008) consider a high-dimensional setting (d � N) ,
and no repeated observations (T = 1) . Their approach takes
a Gaussian distribution as the null hypothesis, which makes
obtaining critical values for a test straightforward, however, the
assumption of Gaussianity is much stronger than the null of
homogeneous means, and in many economic applications Gaus-
sianity is not plausible. Maitra, Melnykov, and Lahiri (2012)
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consider a bootstrap test for multiple clusters, replacing the
assumption of Gaussianity with an assumption that the data are
identically distributed after some known transformation. Our
assumption that we have at least one repeated observation allows
us to weaken these assumptions considerably: we impose no dis-
tributional assumptions on the data beyond standard regularity
conditions and do not require homogeneity of the data beyond
that implied by the clustering analysis.

The remainder of our article is structured as follows. In
Section 2 we present the main theoretical results, along with
extensions to consider clustering on general estimated param-
eters (rather than means); tests when one of the clusters is
“small”; and tests when the time series sample size is small.
Section 3 presents simulation results on the finite-sample per-
formance of the proposed methods, and Section 4 applies these
tests to clustering vehicle manufacturers and U.S. mutual funds.
Section 5 concludes. The Appendix contains all proofs, and
the supplementary materials contain additional theoretical and
simulation results.

2. Testing for Multiple Clusters

Below we present our main result on testing for multiple clusters,
followed by results related to the choice of the number of clusters
to consider under the alternative, and some empirically useful
extensions of our main results.

2.1. Main Result

We observe T realizations of a collection of N variables, Yit for
i = 1, 2, . . . , N, and t = 1, 2, . . . , T, where dim (Yit) = d. In
all cases we consider a split of the full sample of T observations
into two mutually exclusive, though not necessarily exhaustive,
subsamples R and P , where card (R) = R and card (P) = P.
DefineFR as the information set σ

({Yit}N
i=1 , t ∈ R

)
, and let ‖·‖

denote the Euclidean norm.

Assumption 1. (a) The data come from Yit = mi + εit , where
εit ∼ iid Fi (0, �i), where Fi is some distribution with mean zero
and covariance matrix �i, for i = 1, . . . , N and t = 1, . . . , T,
and where, for all i, mi ∈ M ⊂ R

d, �i is strictly positive
definite, and E

[‖εit‖4] ≤ κ̄ < ∞ ∀ i, (b) εit ⊥⊥εjs∀ i �= j
and ∀ s, (c) N, P, R → ∞.

Assumption 1(a) allows the data to have arbitrary hetero-
geneity in variances and higher-order moments, subject to the
existence of fourth-order moments. Importantly, it does not
impose normality, as in Liu et al. (2008), nor does it require the
observations to be a known transformation away from homo-
geneity, as in Maitra, Melnykov, and Lahiri (2012). For our
baseline result, Assumption 1(b) imposes that the data are inde-
pendent across time and cross-sections, and Assumption 1(c)
imposes that the sizes of the cross-section and each of the
subsamples diverge; later in the article we relax each of these
conditions.

Assumption 2. mi = μ∗ ∀ i.

Assumption 2′. For known G ≥ 2, (a) mi ∈ {
μ∗

1, . . . , μ∗
G
} ∀ i,

(b)
∥∥∥μ∗

g − μ∗
g′
∥∥∥ > c > 0 ∀ g �= g′, and (c) limN→∞ Ng/N ≡

πg ≥ π > 0 for g = 1, . . . , G, where Ng ≡ ∑N
i=1 1

{
γ ∗

i = g
}

,
and γ ∗

i ∈ {1, . . . , G} indicates to which cluster variable i
belongs.

Assumption 2 defines the homogeneous case we study
under the null hypothesis. Assumption 2′ covers the alternative
hypothesis: (a) imposes that each variable belongs to one of
the G clusters, indicated by the group membership vector γ ,
(b) imposes that the cluster means are “well separated,” which
rules out any repeated values in the set

{
μ∗

1, . . . , μ∗
G
}

, and (c)
imposes that each cluster contains a nontrivial fraction of the
variables.

We stack the mean vectors for the G clusters into a single dG×
1 vector μ ≡ [

μ′
1, . . . , μ′

G
]′ . Define the full-sample estimator:(

μ̂NT , γ̂ NT
) = (1)

arg min
(μ,γ )∈MdG×�N,G

1
NT

N∑
i=1

T∑
t=1

G∑
g=1

∥∥∥Yit − μg

∥∥∥2
1
{
γi = g

}
The set �N,G is the subset of all possible allocations of N vari-
ables to G groups that satisfies ming Ng/N ≥ π > 0, that is, it
only allows for “nonnegligible” clusters.

Next define the estimator of the location parameters for a
given value of γ :

μ̃NT (γ ) = arg min
μ∈MdG

1
NT

N∑
i=1

T∑
t=1

G∑
g=1

∥∥∥Yit − μg

∥∥∥2
1
{
γi = g

}
(2)

We will look at a joint test that μ∗
g = μ∗

g′ for all g �= g′, a
total of d (G − 1) restrictions. To do so we will use the matrix:

Ad,G
(d(G−1)×dG)

= [
(ιG−1 ⊗ Id) , −Id(G−1)

]
(3)

where ιn is a n × 1 vector of ones, In is the n × n identity matrix,
and ⊗ is the Kronecker product. This allows us to state the null
as

H0 : Ad,Gμ∗ = 0 ⇔ H0 : μ∗
g = μ∗

g′ ∀ g �= g′ (4)

Theorem 1. Let γ̂ NR be the estimated group assignments based
on sample R, and let μ̃NP

(
γ̂ NR

)
be the estimated group means

from sample P using group assignments γ̂ NR. Define the test
statistic for the differences in the estimated means as

FNPR = NPμ̃′
NP

(
γ̂ NR

)
A′

d,G

(
Ad,G�̂NPRA′

d,G

)−1
Ad,Gμ̃NP

(
γ̂ NR

)
where �̂2

NPR
(dG×dG)

= diag
{
�̂1,NPR, . . . , �̂G,NPR

}

and �̂g,NPR
(d×d)

= 1
NP

∑
t∈P

N∑
i=1

(
Yit − ȲiP

) (
Yit − ȲiP

)′

π̂−2
g,NR1

{
γ̂i,NR = g

}
π̂g,NR ≡ 1

N

N∑
i=1

1
{
γ̂i,NR = g

}
, for g = 1, . . . , G.
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(a) Under Assumptions 1 and 2,

FNPR
d→ χ2

d(G−1), as N, P, R → ∞.

(b) Under Assumptions 1 and 2′,

FNPR
p→ ∞, as N, P, R → ∞.

The proof is presented in the Appendix. This theorem
shows that if the means of the variables are homogeneous
(i.e., Assumption 2 is satisfied) then the test statistic has a
χ2 limit distribution, while if the variables are heterogeneous
(Assumption 2′ is satisfied) then the test statistic diverges, and
so this test has power to detect multiple groups.

Importantly, the limit distribution of the test statistic is not
affected by the problem of estimated cluster assignments. Clus-
ter assignments are unidentified under the null hypothesis, and
obtaining results on the behavior of the estimated cluster assign-
ments in such a case is difficult. Indeed, even when the clusters
are well separated (i.e., under the alternative hypothesis), esti-
mation error in cluster assignments is difficult to treat, see Pol-
lard (1981, 1982) and Bonhomme and Manresa (2015). Without
distribution theory for the estimated cluster assignments it is
difficult to quantify the over-fitting problem that arises when
estimating a multi-cluster model on homogeneous data, and
simply ignoring the over-fitting problem leads to tests with poor
size control: in the simulation study described in Section 3 we
find rejection rates as high as 100% for a nominal 0.05 level test.
Our test overcomes the overfitting problem via a simple split-
sample approach.

Theorem 1 can be generalized to accommodate various
departures from the assumptions given above. Time series
dependence can be accommodated by employing results from
Hansen (2007). The main change required when allowing for
time series dependence is that the formation of subsamples
(R and P) now requires some structure. We suggest using
simply the first and second halves of the time series. It is
also possible to allow for general time series and cross-
sectional dependence, drawing on results in Bonhomme and
Manresa (2015) adapted to our application. The supplementary
materials contain details and formal results for these two
extensions.

2.2. Choice of G Under the Alternative

The test above requires a choice of the number of clusters
under the alternative, and in practice the value chosen may be
incorrect. Below we consider the behavior of the test when the
chosen value is too large or too small. The theory for behavior of
the test statistic under the null is unaffected by this problem, of
course, as under the null the true number of clusters is one and
Theorem 1(a) applies. To simplify exposition, we assume that
d ≡ dim (Yit) = 1 in this section.

First, consider the case that the model under the alternative
(G̃) has more clusters than are needed (G). In this case the model
considered under the alternative is “too big,” but importantly it
nests the correct model. We show below that the test remains
consistent in this case, although in finite samples it may have
lower power than the case where the correct value for the

number of clusters is chosen. Consider an assumption based on
the optimal G̃-cluster model:

Assumption 3′. Assume G̃ > G > 1, and (a) p lim N,R→∞ μ̂NR
exists, and is denoted μ�. (b) ming limN→∞ Ñg/N ≥ π >

0, where Ñg ≡ ∑N
i=1 1

{
γ

�
i = g

}
, and γ

�
i ∈

{
1, . . . , G̃

}
indicates to which cluster variable i is assigned.

The lemma below shows that the optimal G̃-cluster parame-
ter vector is the true G-cluster parameter vector, μ∗, with one
or more of its elements repeated.

Lemma 1. Assume that the DGP satisfies Assumptions 1 and
2′, but the researcher estimates a G̃ > G cluster model. Let
μ� = [

μ∗′, ϕ∗′]′ , where ϕ∗ is a (G̃ − G) vector with elements
drawn with replacement from μ∗, and let γ � be such that γ �

i =
γ

�
j ⇒ γ ∗

i = γ ∗
j ∀ i, j. Then

(
μ�, γ �)

is a solution to the G̃ -
cluster model as N, T → ∞.

The proof is presented in the supplementary materials.
Lemma 1 reveals that under Assumption 2′ the vector μ� is
“weakly well separated,” in that

∣∣∣μ�
g − μ

�
g′

∣∣∣ > c > 0 for at least

(G − 1) pairs
(
g, g′) ∈

{
1, . . . , G̃

}2
. The presence of repeated

values in μ� means that some pair-wise differences will be zero.
Next consider the case that the model under the alternative

(G̃) has fewer clusters than are needed (G). Choosing G̃ to be
too small will generally mean that the estimated cluster means
are not consistent for their true values, however, our concern
is only whether the null of a single cluster will be rejected.
Assumption 3′′(b) states that the population values of the cluster
means are, like the true cluster means, “well separated.” We
show in Lemma 2 that if d = 1 then c� > c and well-
separatedness is ensured, while for d > 1 it is possible to find
cases where c� < c, and so in such cases one must simply
assume the true cluster means are sufficiently well separated that
the misspecified cluster means are also well separated.1 Thus,
if G is not known ex ante, then if d = 1 choosing G̃ “small”
is preferable, while if d > 1, the above arguments suggest that
using a larger value of G is preferable.

Assumption 3′′. Assume G > G̃ > 1, and (a) p lim N,R→∞ μ̂NR
exists and is denoted μ�. (b)

∣∣∣μ�
g − μ

�
g′

∣∣∣ > c� > 0 ∀ g �=
g′, and (c) ming limN→∞ Ñg/N ≥ π > 0, where Ñg ≡∑N

i=1 1
{
γ

�
i = g

}
, and γ

�
i ∈

{
1, . . . , G̃

}
indicates to which

cluster variable i is assigned.

Lemma 2. For d = 1, Assumption 2′(b) implies Assump-
tion 3′′(b), while for d > 1, this implication need not hold.

1Note that c
 depends on a variety of features of the problem: the true
number of clusters (G) , the number of clusters used in the alternative (G̃),
the separation of the true cluster means (c) , the dimension of the data (d) ,
and, for d > 1, the within-variable correlation of the data (�i) , which can
vary across i = 1, . . . , n.
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The following theorem contains results when the true num-
ber of clusters under the alternative is larger or smaller than that
chosen by the researcher.

Theorem 2. Let G̃ denote the number of groups considered by
the researcher and let γ̂ NR be the estimated group assignments
based on sample R, and let μ̃NP

(
γ̂ NR

)
be the estimated group

means from sample P using group assignments γ̂ NR. Define the
test statistic for the differences in the estimated means as

FNPR = NPμ̃′
NP

(
γ̂ NR

)
A′

G̃

(
AG̃�̂NPRA′

G̃

)−1

AG̃μ̃NP
(
γ̂ NR

)
where �̂NPR(

G̃×G̃
) = diag

{
ω̂2

1,NPR, . . . , ω̂2
G̃,NPR

}

and ω̂2
g,NPR

(1×1)

= 1
NP

∑
t∈P

N∑
i=1

(
Yit − ȲiP

)2
π̂−2

g,R 1
{
γ̂i,NR = g

}

π̂g,R ≡ 1
N

N∑
i=1

1
{
γ̂i,NR = g

}
, for g = 1, . . . , G̃.

(a) Under Assumptions 1 and 2′,

FNPR
d→ χ2

G̃−1, as N, P → ∞.

(b) Under Assumptions 1, 2′, and 3′ , or (c) 1, 2′, and 3′′

FNPR
p→ ∞, as N, P, R → ∞.

The proof is presented in the supplementary materials. The-
orem 2(b) shows that the test has unit asymptotic power under
the alternative, even when G̃ > G. In finite samples, power
may be lower than if the correct number of clusters was used,
as the critical values from a χ2

G distribution are increasing in G.
Theorem 2(c) confirms that if the cluster model with too few
clusters is well separated, then we obtain the expected result for
the test statistic under the alternative. We investigate the finite-
sample impact of choosing an incorrect value of G̃ in Section 3.

With the results above we can consider a simple multiple
testing procedure that applies when the researcher does not
know the correct value for G under the alternative, and wants to
consider a range of possible values. For example, the researcher
implements the test for G̃ = 2, . . . , Ḡ, a total of Ḡ − 1 tests. The
p-values from each of these tests, denoted pG̃, can be combined
via a Bonferroni adjustment: define the joint p-value as

pBonf = min

{
1,

(
Ḡ − 1

) × min
G̃∈{2,...,Ḡ} pG̃

}
(5)

then reject the null that G = 1 in favor of G ∈ {
2, . . . , Ḡ

}
if pBonf < α, where α is the desired level for the test. The
choice of Ḡ is important in this approach: if it is chosen it too
large, the Bonferroni adjustment will make the test conservative,
while if it is chosen too small then, for d > 1, the estimated
cluster parameters may be closer together than the true cluster
parameters (as discussed above) and thus harder to distinguish
via a test. We investigate this in our simulation study in Section 3
and, foreshadowing those results, we find that for larger sample
sizes setting Ḡ = 5 and combining the resulting four individual

tests using a Bonferroni correction works well, while for smaller
sample sizes setting Ḡ = 2 and using just a single test avoids a
loss of power.2

2.3. Extensions

2.3.1. Dealing with “Small” Clusters
Our interest is in the joint restriction that μ∗

g = μ∗
g′ for

all g �= g′, a total of (G − 1) restrictions. To allow for the
presence of “small” clusters, we will test an implication of this
null, namely that μ∗

g = μ∗
g′ for all g �= g′ s.t. πg , πg′ ≥ π .

We adjust Assumption 2(c) to require only that at least two
clusters are “large.” We simplify the exposition by assuming that
d ≡ dim (Yit) = 1, but the results generalize naturally to the
case that d > 1.

Assumption 2′(cS).
∑G

g=1 1
{
πg ≥ π

} ≥ 2, where π > 0, πg ≡
limN→∞ Ng/N ≥ π > 0, Ng ≡ ∑N

i=1 1
{
γ ∗

i = g
}

, and γ ∗
i ∈

{1, . . . , G} indicates to which cluster variable i belongs.

To implement this test, order the clusters so that π̂1,NR ≥
π̂2,NR ≥ · · · ≥ π̂G,NR, and define ĜNR as the number of “large”
estimated clusters, that is, the number of clusters that satisfy the
condition π̂g,NR ≥ π . For 2 ≤ G′ ≤ G, define the matrix

BG′,G
((G′−1)×G)

= [
ιG′−1, −I(G′−1), 0(G′−1,G−G′)

]
. (6)

This is the matrix comprised of the first
(
G′ − 1

)
rows of A1,G

defined in Equation (3). This allows us to obtain an implication
of the null for the ĜNR “large” clusters:

HS
0 : BĜNR,Gμ∗ = 0. (7)

Note that below we characterize the asymptotic distribution of
the p-value of the test statistic rather than the test statistic itself.
The limiting distribution of the latter depends on the value for
ĜNR, which in turn depends on FR ≡ σ

({Yit}N
i=1 , t ∈ R

)
.

Our proof technique relies on the limiting distribution being
independent of FR; we achieve this below by transforming the
test statistic to a p-value.

Theorem 3. Let γ̂ NR be the estimated group assignments based
on sample R, and let μ̃NP

(
γ̂ NR

)
be the estimated group means

from sample P using group assignments γ̂ NR. Let ϒ
(·; q

)
denote the CDF of a χ2 variable with q degrees of freedom,
and define the p-value for the differences in the estimated
means as:

2An alternative approach for choosing a value of G to use in the alternative
hypothesis is via cross-validation. In this approach, the sample is split into
three subsamples: the first for estimation of cluster assignments across a
range of values of G; the second for choosing the optimal value Ĝ∗; the
third for testing G = 1 versus G = Ĝ∗. Such an approach avoids the
need for a Bonferroni adjustment, which can cost power, but involves using
splitting the data across three subsamples rather than two, which can also
cost power. We leave a detailed investigation of such an approach for future
research.
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PvalNPR = 1 − ϒ
(

FNPR; ĜNR − 1
)

where FNPR = NPμ̃′
NP

(
γ̂ NR

)
B′

ĜNR,G

(
BĜNR,G�̂NPRB′

ĜNR,G

)−1

BĜNR,Gμ̃NP
(
γ̂ NR

)
�̂2

NPR
(dG×dG)

= diag
{
�̂1,NPR, . . . , �̂G,NPR

}

�̂g,NPR
(d×d)

= 1
NP

∑
t∈P

N∑
i=1

(
Yit − ȲiP

) (
Yit − ȲiP

)′

π̂−2
g,R 1

{
γ̂i,NR = g

}
π̂g,R ≡ 1

N

N∑
i=1

1
{
γ̂i,NR = g

}
, for g = 1, . . . , G.

(a) Under Assumptions 1 and 2′,

PvalNPR
d→ Unif (0, 1) , as N, P, R → ∞.

(b) Under Assumptions 1 and 2′(a),(b),(cS),

PvalNPR
p→ 0, as N, P, R → ∞.

2.3.2. Diverging N and finite T
We consider here the case that the number of repeated obser-
vations (T, in our notation) is small relative to the number of
variables, N. Our split-sample approach to overcome the over-
fitting problem requires only T ≥ 2, not T → ∞. We consider
the finite T case by modifying Assumption 1 as follows. We again
simplify exposition by assuming that d ≡ dim (Yit) = 1 and
G = 2, but the results generalize naturally to the case that d > 1
and/or G > 2.

Assumption 1′. (a) The data come from Yit = mi + εit , for
i = 1, . . . , N, and t = 1, . . . , T ≥ 2, where mi ∈ [

m, m̄
] ⊂

R and V [εit] ≡ σ 2
i ∈ [

σ 2, σ̄ 2] ⊂ R++ ∀ i, E [εit] = 0 and
E

[|εit|4+δ
] ≤ κ̄ < ∞∀i for some δ > 0, (b) εit⊥⊥εjt∀ i �= j, and

εit⊥⊥εjs∀ i, j for (t, s) ∈ {R,P}, and (c) N → ∞, and R, P ≥ 1.

Assumption 1′(a) allows for cross-sectional heteroscedas-
ticity, and heterogeneity more generally, in the distribution of
residuals, subject to them being mean zero and having finite
4+δ moments. Assumption 1′(b) imposes cross-sectional inde-
pendence, and time series independence across the R and P
subsamples. Within each of theR andP subsamples, time series
dependence is not constrained. Assumption 1′(c) requires the
cross-sectional dimension to diverge, and each subsample to
have at least one observation.

Theorem 4. Let γ̂ NR be the estimated group assignments based
on sample R, and let μ̃NP

(
γ̂ NR

)
be the estimated group means

from sample P using group assignments γ̂ NR. Define the t-
statistic for the differences in the estimated means as:

tstatNPR =
√

NP
(
μ̃1,NP

(
γ̂ NR

) − μ̃2,NP
(
γ̂ NR

))
ω̂NPR

where ω̂2
NPR ≡ 1

NP

N∑
i=1

ι′Pε̂iε̂
′
iιP

(
π̂−2

1,NR1
{
γ̂i,NR = 1

}

+ π̂−2
2,NR1

{
γ̂i,NR = 2

})
ε̂i

(P×1)

= Yi − μ̃γ̂i,NR,NP
(
γ̂ NR

)
ιP

and π̂g,NR ≡ 1
N

N∑
i=1

1
{
γ̂i,NR = g

}
, for g = 1, 2.

where ιP is a (P × 1) vector of ones.

(a) Under Assumption 1′ and 2,

tstatNPR
d→ N (0, 1) , as N → ∞.

(b) Under Assumption 1′ and 2′,

|tstatNPR| p→ ∞ , as N → ∞.

This theorem expands the applicability of the testing
approach proposed in this article: we now only need T ≥ 2,
rather than T “large” in an asymptotic sense. Of course, the
power of the test will be greater if a larger sample size is available,
but this theorem shows that even in applications with a small
time series sample size, the proposed testing approach may be
adopted.

2.3.3. Clustering on Estimated Parameters
Here we consider the problem of clustering on some parameter,
β ∈ A ⊂ Rb, estimated for each of the N variables. This allows
researchers to cluster on other features of the data, such as vari-
ances, higher-order moments, regression coefficients, or other
estimated parameters. For each variable i and each subsample
R and P , we have a (b × 1) vector of estimated parameters(
β̂ i,R, β̂ i,P

)
. We assume that the estimated parameters satisfy

the following assumption.

Assumption 4. (a) The estimated parameters satisfy β̂ i,S =
β∗

i + εi,S, for i = 1, . . . , N, and S ∈ {R, P} , where
∥∥β∗

i
∥∥ is

bounded ∀ i, V
[
εi,S

] ≡ �i a positive definite matrix, E
[
εi,S

] =
0 and E

[∣∣εi,k,S
∣∣4+δ

]
≤ κ̄ < ∞∀i, all k = 1, . . . , b for some

δ > 0, (b) εi,S⊥⊥εj,S∀ i �= j, S ∈ {R, P} , and εi,R⊥⊥εj,P∀ i, j , and
(c) N → ∞.

These assumptions mimic those in Assumption 1′, in that
Assumption 4(a) allows for cross-sectional heteroscedasticity
and heterogeneity in the distribution of errors in the estimated
parameters, subject to them being mean zero and having finite
4 + δ moments. Assumption 4(b) imposes cross-sectional inde-
pendence, and time series independence across the R and P
subsamples. In applications with time series dependence, the
latter assumption may be satisfied if the R and P subsamples
are separated by a middle, unused, sample of the data.

Assumption 2P. (a) The cluster parameters satisfy β∗
i = α∗ ∀ i.

Assumption 2′
P. (a) The cluster parameters satisfy β∗

i ∈{
α∗

1, . . . , α∗
G
} ∀ i, (b)

∥∥∥α∗
g − α∗

g′
∥∥∥ > c > 0 ∀ g �= g′, (c)

limN→∞ Ng/N ≡ πg ≥ π > 0 for g = 1, . . . , G, where
Ng ≡ ∑N

i=1 1
{
γ ∗

i = g
}

, and γ ∗
i ∈ {1, . . . , G} indicates to

which cluster variable i belongs.
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We stack the parameter vectors for the G clusters into a single
bG × 1 vector α ≡ [

α′
1, . . . , α′

G
]′ and define the estimator:(

α̂NS, γ̂ NS
) = (8)

arg min
(α,γ )∈AG×�N,G

1
N

N∑
i=1

G∑
g=1

(
β̂ i,S − αg

)2
1

{
γi = g

}
, for S ∈ {R, P}

as well as the estimator of the cluster parameters for a given value
of the group membership vector:

α̃NP (γ ) = arg min
α∈AG

1
N

N∑
i=1

G∑
g=1

(
β̂ i,P − αg

)2
1
{
γi = g

}
. (9)

The theorem provides a test for multiple clusters based on a
general estimated parameter vector.

Theorem 5. Let γ̂ NR be the estimated group assignments based
on sampleR, and let α̃NP

(
γ̂ NR

)
be the estimated cluster param-

eters from sample P using group assignments γ̂ NR. Define the
test statistic for the differences in the estimated means as

FNPR = Nα̃′
NP

(
γ̂ NR

)
A′

bG

(
AbG�̂NPRA′

bG

)−1

AbGα̃NP
(
γ̂ NR

)
where �̂NPR

(bG×bG)

= diag
{
�̂1,NPR, . . . , �̂G,NPR

}

and �̂g,NPR
(b×b)

= 1
N

N∑
i=1

π̂−2
g,NR1

{
γ̂i,NR = g

}
(
β̂ i,P − α̃g,NP

(
γ̂ NR

))2

π̂g,NR ≡ 1
N

N∑
i=1

1
{
γ̂i,NR = g

}
, for g = 1, . . . , G.

(a) Under Assumptions 4 and 2P,

FNPR
d→ χ2

d(G−1), as N → ∞.

(b) Under Assumptions 4 and 2′
P,

FNPR
p→ ∞, as N → ∞.

3. Simulation Study

In this section we investigate the finite-sample behavior of the
proposed tests. We first study the finite-sample size of the test,
using the design:

Yit = mi + εit , i = 1, . . . , N; t = 1, . . . , T (10)
εit ∼ iid Fi (0, Id) .

We impose mi = 0∀ i, thereby ensuring that the null of homoge-
neous means is satisfied. We consider a variety of configurations
of the problem: N ∈ {30, 150, 300}, T ∈ {50, 250, 1000}, d ∈
{1, 2, 5}, G ∈ {2, 3, 4, 5} . In addition to the four individual
values of G considered under the alternative, we also study the
performance of a Bonferroni-corrected combination method
that considers all four tests.

We take εit to be Normally distributed or heterogeneously
distributed; in the latter case the distribution for each variable i is
randomly selected from one of N (0, 1), Exp (2) , Unif (−3, 3),
χ2 (4) or t (5), standardized to have zero mean and unit vari-
ance. The heterogeneous data cannot be considered using the
tests of Liu et al. (2008) and Maitra, Melnykov, and Lahiri (2012).
We implement the test in Theorem 1 at the 0.05 significance
level, splitting the time series evenly to form the R and P
samples. We use 1000 replications.

Table 1 reports the finite-sample size results. We see that
the rejection rates are generally very close to the nominal level
of 0.05, for both the Normal and the heterogeneous data. It is
noteworthy that the Bonferroni-based test, which sets Ḡ = 5
and combines four individual tests, also has rejection rates close
to the nominal level, indicating that the well-known tendency
for a Bonferroni-adjusted test to be conservative does not arise
here. In the supplementary materials we repeat this simulation
study using a test that does not split the time series into R and
P samples. Table SA.1 reveals that the finite-sample rejection
rates for such an approach are 100% in all but one configu-
ration (where it is instead 99%), confirming the finite-sample
size problems stemming from k-means overfitting the data, and
motivating our approach.

We next consider the finite-sample power of the proposed
test. We fix d ≡ dim (Yit) = 1 and we consider an alternative
containing G = 2 clusters. The cluster means are set to (0, μ2) ,
with μ2 ∈ [0, 0.5] . The case that μ2 = 0 corresponds to the
null of a single cluster, and the rejection rate at that point should
equal 0.05, the size of the test. As μ2 increases the cluster means
become better separated and we expect the test to reject the null
with greater frequency. Figure 1 reveals that the test has strong
power to reject the null hypothesis when the sample sizes (N, T)

are large, and when the distance between cluster means is large.
When (N, T) = (30, 50) the test fails to detect small differences
between the cluster means, and unit power is only achieved
when μ2 = 0.5. When (N, T) = (150, 1000) even small
differences are significant, and unit power is achieved at μ2 =
0.1. It is noteworthy that the power of the test is essentially iden-
tical for Normally and heterogeneously distributed data. For
the remainder of the simulation results we focus on Normally
distributed data; the results for heterogeneously distributed data
are very similar.

Figure 2 studies the sensitivity of the test to the choice of
number of clusters under the alternative. We consider two rep-
resentative combinations of sample sizes (N, T) = (30, 50) and
(150, 250) , and for each sample size pair we choose a value of
μ2 such that the test has power strictly inside (0.05, 1) , namely
μ2 = 0.2 and μ2 = 0.075, respectively. In the left panel, the true
number of clusters is two, and we consider tests that allow for
between two and five clusters under the alternative. Consistent
with intuition, for both sample size pairs, we observe a decrease
in power as the number of clusters is increased from two to five,
though the decrease is small (e.g., power drops from 0.21 to 0.20
for the smaller sample size).

In the right panel of Figure 2 the true number of clusters is
five (with cluster means evenly spaced between zero and either
0.2 or 0.075 depending on the sample size). Like the left panel,
we find that power is nearly unaffected by the choice of G, with
a slight increase in power from using smaller G. Though the
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Table 1. Finite sample rejection rates.

N = 30 30 30 150 150 150 600 600 600
d G T = 50 250 1000 50 250 1000 50 250 1000

Panel A: Normal data
1 2 0.055 0.049 0.056 0.057 0.046 0.055 0.059 0.056 0.048
1 3 0.052 0.047 0.035 0.046 0.045 0.047 0.050 0.043 0.055
1 4 0.057 0.042 0.064 0.034 0.059 0.052 0.053 0.056 0.036
1 5 0.058 0.054 0.059 0.034 0.048 0.053 0.049 0.051 0.047
1 Bonf. 0.057 0.057 0.055 0.045 0.048 0.049 0.059 0.045 0.045
2 2 0.040 0.048 0.064 0.040 0.046 0.052 0.049 0.046 0.039
2 3 0.048 0.051 0.060 0.040 0.062 0.045 0.036 0.058 0.061
2 4 0.072 0.061 0.046 0.050 0.040 0.047 0.039 0.061 0.044
2 5 0.058 0.044 0.043 0.045 0.063 0.043 0.067 0.053 0.054
2 Bonf. 0.049 0.044 0.066 0.042 0.050 0.040 0.045 0.064 0.047
5 2 0.040 0.058 0.060 0.049 0.051 0.062 0.052 0.041 0.044
5 3 0.050 0.052 0.059 0.052 0.054 0.044 0.052 0.049 0.053
5 4 0.066 0.047 0.054 0.041 0.067 0.053 0.052 0.055 0.051
5 5 0.083 0.049 0.049 0.055 0.037 0.044 0.059 0.049 0.048
5 Bonf. 0.065 0.051 0.063 0.043 0.051 0.049 0.050 0.044 0.050

Panel B: Heterogeneous data
1 2 0.055 0.045 0.040 0.042 0.061 0.060 0.049 0.040 0.055
1 3 0.062 0.046 0.062 0.041 0.057 0.050 0.047 0.047 0.057
1 4 0.045 0.045 0.053 0.053 0.062 0.053 0.052 0.052 0.036
1 5 0.058 0.050 0.057 0.052 0.053 0.039 0.051 0.044 0.057
1 Bonf. 0.060 0.043 0.053 0.040 0.052 0.056 0.050 0.045 0.051
2 2 0.048 0.049 0.048 0.045 0.048 0.045 0.042 0.053 0.043
2 3 0.053 0.039 0.045 0.050 0.046 0.062 0.049 0.045 0.052
2 4 0.063 0.059 0.051 0.055 0.053 0.050 0.037 0.045 0.058
2 5 0.049 0.037 0.075 0.053 0.038 0.041 0.041 0.047 0.041
2 Bonf. 0.050 0.044 0.049 0.053 0.039 0.046 0.038 0.043 0.049
5 2 0.054 0.049 0.044 0.048 0.049 0.057 0.044 0.047 0.039
5 3 0.056 0.038 0.050 0.053 0.045 0.055 0.052 0.043 0.040
5 4 0.076 0.067 0.039 0.063 0.047 0.048 0.053 0.045 0.054
5 5 0.069 0.055 0.050 0.070 0.041 0.047 0.040 0.057 0.051
5 Bonf. 0.066 0.054 0.050 0.047 0.032 0.062 0.040 0.046 0.046

NOTE: This table presents the proportion of simulations in which we reject the null of a single cluster in favor of multiple clusters, using the test proposed in Theorem 1
at a 0.05 significance level. The top panel presents results for iid Normal data; the lower panel presents results when the distribution is randomly drawn from one of
N (0, 1), Exp (2), Unif (−3, 3) , χ2 (4) or t (5), each standardized to have zero mean and unit variance. The dimension of the variables is denoted d, the number of groups
considered under the alternative is denoted G, the number of variables is denoted N, and the number of time series observations is denoted T . Rows labeled “Bonf.” use
tests with a Bonferroni correction to consider G ∈ {2, 3, 4, 5} under the alternative. The number of simulations is 1000.

models with G < 5 are misspecified, Lemma 2 shows that for
d = 1, as in this design, the too-small models will have cluster
means that are better separated than the correct model, increas-
ing power. Importantly, when d > 1, Lemma 2 shows that
choosing a too-small value for G can make the estimated cluster
parameters harder to separate, thereby reducing the power of the
test, and it is possible that in such cases the optimal G is larger
than two. Broadly, though, Figure 2 suggests that the test exhibits
reasonable robustness to the choice of G.

Figure 3 examines the performance of a test based on a Bon-
ferroni adjustment to combine four tests using G = 2, 3, 4, 5,
compared with a test that correctly chooses G = 2. Unsur-
prisingly, the Bonferroni-corrected test is conservative, at least
for the smaller sample size, and exhibits lower power than the
test using the correct value of the G. When the sample sizes are
small, (N, T) = (30, 50), the loss of power is sizeable, however,
for larger sample sizes, (N, T) = (150, 250) , the power loss is
minimal.

Next we study the performance of the test in Theorem 3,
designed to accommodate small clusters. We again consider
(N, T) = (30, 50) and (150, 250) , with d = 1. We set the
number of clusters to three, and we look at the impact of a small
cluster by varying the proportion of variables in the third cluster,
denoted π3. We set π1 = π2 = (1 − π3) /2, and consider
π3 ∈ [1/100, 1/3] , with the largest value for π3 corresponding

to all clusters having the same weight. We set the mean of the
first cluster to zero in all cases, μ1 = 0, and we set the second
cluster mean μ2 = μ3/2. To study the finite-sample size of the
test, we set μ3 = 0. To study power we choose μ3 such that
the test has power strictly inside (0.05, 1) , namely μ3 = 0.2 for
(N, T) = (30, 50) and μ3 = 0.075 for (N, T) = (150, 250). We
use a threshold of π = 0.1 to decide whether a cluster is “small”
and thus excluded from the test. The left panel of Figure 4 shows
that the test in Theorem 3 controls the size of the test. The right
panel shows, as expected, that the power of the test increases as
the smallest cluster grows to be closer in size to the other two
clusters.

To illustrate the applicability of the test for clusters on a
general estimated parameter, we next consider an application
where the clusters are found using the variables’ autoregressive
coefficients. That is, for each variable Yi,t we consider the autore-
gression:

Yi,t = φ0,i + φ1,iYi,t−1 + εi,t (11)

and the cluster model assumption is that the AR(1) coefficients
take one of only two values

φ1,i = αγi , i = 1, 2. (12)

We fix α1 = 0.5 and we vary the autoregressive coefficient of
the second cluster, α2 ∈ [0.1, 0.9]. Figure 5 shows the results
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Figure 1. This figure shows test rejection frequencies as a function of μ2, holding μ1 = 0, for six different combinations of sample sizes, and for two types of data (Normally
and heterogeneously distributed). When μ2 = 0 the rejection frequency should equal 0.05, the nominal size of the test.

for two representative combinations of sample sizes, (N, T) =
(30, 50) and (150, 250) . For the smaller sample size the test is
unable to reject the null of a single cluster for values of α2 within
about 0.1 of α1; the sampling variation in the estimated AR(1)
parameters is simply too large in that case. As the differences
between the cluster AR(1) parameters grows, or if we use a larger
sample size, the power of the test increases. For both sample

sizes the finite-sample size of the test is close to the nominal
value.

Finally, we investigate the performance of the test in Theo-
rem 4, which is applicable when T is small. We consider T ∈
{2, 4, 6, 10} , and values of N ∈ {30, 150, 600} . Figure 6 shows
that even when T = 2, the test has reasonable size control:
the rejection rate for N = 30 is 0.07, so only slightly above
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Figure 2. This figure shows test rejection frequencies as a function of G̃, the number of clusters considered under the alternative, for two different combinations of sample
sizes. In the left panel the correct number of clusters is 2, while in the right panel it is 5. The distance between the first and last (ordered) cluster means is 0.2 when
(N, T) = (30, 50) and 0.075 when (N, T) = (150, 250) . The nominal size is 0.05.

Figure 3. This figure shows test rejection frequencies as a function of μ2, holding μ1 = 0, for two different combinations of sample sizes, and for two tests: the first uses
G = 2 under the alternative, the second considers G ∈ {2, 3, 4, 5} and uses a Bonferroni correction to control for multiple testing. When μ2 = 0 the rejection frequency
should equal 0.05, the nominal size of the test.

Figure 4. This figure shows test rejection frequencies as a function of π3, the fraction of variables in the smallest cluster. The fractions of variables in the other two groups
is set at (1 − π3) /2. Two different combinations of sample sizes are considered. The distance between the first and third (ordered) cluster means is zero in the left panel,
and is 0.2 when (N, T) = (30, 50) and 0.075 when (N, T) = (150, 250) in the right panel. The nominal size of the test is 0.05.
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Figure 5. This figure shows test rejection frequencies as a function of φ2, the AR(1)
parameter of the second cluster, when the parameter for the first cluster is φ1 = 0.5.
Two different combinations of sample sizes are considered. When φ2 = 0.5 the
rejection frequency should equal 0.05, the nominal size of the test.

the nominal level. (The rejection rates when N = 30 and
T = 4, 6, or 10 are between 0.07 and 0.08.) The power is
low for the smallest value of N, but when N = 150 or 600
power is nontrivial. As T increases to 4, 6 and 10 we see that size
control is maintained, and power increases. Naturally, a test with
such small values of T has lower power than for larger values of
T, for example, the results in Figure 1, however, the results in
Figure 6 show that even for very small values of T, size control
is maintained and nontrivial power can be achieved with a large
cross-sectional sample size.

4. Empirical Applications

4.1. Vehicle Manufacturer Clusters

To illustrate our methodology in a well-known setting, we use
a standard dataset, built into Matlab, on car attributes for 307
vehicle models from 30 manufacturers in seven countries during
1970–1982. Vehicle attributes include acceleration, number of
cylinders, engine displacement, horsepower, miles per gallon,
and weight, the last of which we log to avoid identifying outliers
as separate clusters. We split our data into R and P samples
of 1970–1975 and 1976–1982, respectively. Within each sam-
ple, we average vehicle attributes by manufacturer across all
combinations of models and model years, and we retain only
observations with nonmissing values of all attributes and man-
ufacturers with models in both samples. Our resulting sample
consists of 24 manufacturers. To make scales comparable across
characteristics, we standardize each attribute within each sam-
ple by demeaning and dividing by the standard deviation across
manufacturers.

We assuming G = 2 clusters, and use k-means on theR sam-
ple, with 1000 starting values initialized by k-means++ (Arthur
and Vassilvitskii 2007). Table 2 summarizes the results. Panel
A shows that “Group 1” (American) manufacturers typically

produce vehicles with more cylinders, larger engines, greater
horsepower, lower mileage, and greater weight than “Group 2”
(European and Japanese) manufacturers. Note that all cross-
cluster characteristic differences are larger on theR sample than
on theP sample, consistent with the clustering procedure fitting
both true differences among manufacturers as well as noise. The
p-value from the test for multiple clusters is less than 0.001,
indicating strong evidence in against the null of a single cluster.
We conclude that at least two clusters are needed to describe
vehicle manufacturers during this period.

In Panel B of Table 2 we present the constituents of each
cluster, and a clear pattern emerges: we find that manufacturers
cleave perfectly by region of origin, with Group 1 comprised
completely of the American manufacturers, and Group 2 con-
taining all the non-American manufacturers.

4.2. Mutual Fund Clusters

Performance evaluation, for example, for mutual funds or hedge
funds, is one of the central concerns of empirical finance.
Most performance evaluation takes the form of comparing
fund returns to a benchmark return, for example, the return
on a strategy or style with similar risk characteristics. A
popular article in style analysis, Brown and Goetzmann (1997)
pioneered the application of k-means clustering for the
purpose of benchmark formation and assignment of funds
to benchmarks. We use the testing approach proposed in this
article to determine whether mutual fund styles are truly distinct
in the data. We cluster based on risk exposures (betas) rather
than returns themselves (as done in the original study) to
facilitate interpretation of the results.

We use daily data from the CRSP Mutual Fund Database, see
Patton and Weller (2019) for the data construction, filtering, and
aggregation methodology. We use the first full year of the daily
series (1999) for theR sample and the second year (2000) for the
P sample, and we retain only U.S. domestic equity mutual funds
that report for at least half the days in each year. The resulting
sample consists of 1743 mutual funds.

We run the following regression for each fund:

rit = αi +
∑4

k=1
βikfkt + σiεit (13)

As factors, fkt , we use the value-weighted market (MKT),
size (SMB), value (HML), and momentum (UMD) returns of
the Carhart (1997) model.3 We also estimate average abnormal
returns (αi) and idiosyncratic volatility (σi) for each fund but
we do not cluster on these attributes.

We use k-means clustering on the R sample, with 1000
starting values initialized by k-means++. We follow Brown and
Goetzmann (1997) and use G = 8 clusters. Table 3 sum-
marizes the results of the clustering procedure. Fund clusters
differ markedly in the parameters on which the clustering was
done (the risk exposures, βik) and interestingly also in the other
parameters of the model (αi and σi). For example, annualized
average abnormal returns (αi) range between −3% and 22%
across the clusters. This heterogeneity cannot be accommodated
by other tests for multiple clusters.

3The factor data is available at http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 6. This figure shows test rejection frequencies as a function of μ2, holding μ1 = 0, for four different time series sample sizes, and three different cross-sectional
sample sizes. When μ2 = 0 the rejection frequency should equal 0.05, the nominal size of the test.

Table 2. Vehicle manufacturer clusters.

Panel A: Cluster properties by characteristic

Acceleration Cylinders Displacement Horsepower MPG Weight
(s to 60mph) (#) (in3) (hp) (mpg) (log lbs)

Normalized values, R sample

Group 1 −0.441 0.641 0.709 0.690 −0.639 0.636
Group 2 0.326 −1.110 −1.057 −0.704 0.973 −0.949

Normalized values, P sample

Group 1 −0.125 0.507 0.628 0.450 −0.486 0.573
Group 2 0.152 −0.557 −0.650 −0.318 0.266 −0.461

Raw values, P sample

Group 1 15.76 5.82 217.25 105.02 23.21 8.04
Group 2 16.46 4.21 111.06 83.67 28.94 7.78

Panel B: Cluster assignments

Group 1 AMC Buick Chevrolet Chrysler Dodge Ford
Mercury Oldsmobile Plymouth Pontiac

Group 2 Audi BMW Datsun Fiat Honda Mazda
Opel Peugeot Renault Saab Subaru Toyota

Volkswagon Volvo

NOTE: This table presents group averages of manufacturer-level characteristics in a G = 2 cluster model for R (1970–1975) and P (1976–1982) samples (Panel A) and
manufacturer names by group (Panel B). The “raw values” in Panel A are renormalized using the P-sample characteristic means and standard deviations.
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Table 3. Mutual fund clusters.

Group N̂g β̂MKT β̂SMB β̂HML β̂UMD α̂ σ̂

R sample

1 420 0.905 −0.088 0.073 −0.022 −0.817 4.579
2 198 1.266 0.925 0.287 0.233 17.875 11.263
3 84 1.320 0.677 −0.342 0.414 21.722 15.294
4 238 1.058 0.685 0.705 −0.164 3.500 9.224
5 224 0.840 0.368 0.341 −0.026 5.463 8.469
6 210 0.959 −0.017 −0.286 0.176 0.216 7.561
7 270 1.004 −0.004 0.522 −0.194 0.768 6.791
8 99 0.029 0.047 0.075 0.006 −3.155 4.994

P sample

1 420 0.883 −0.142 0.104 −0.021 3.370 6.238
2 198 1.210 0.807 −0.041 0.080 14.896 13.849
3 84 1.219 0.428 −0.825 0.228 27.074 19.375
4 238 0.975 0.494 0.493 −0.168 12.257 11.096
5 224 0.809 0.288 0.198 −0.067 7.883 10.617
6 210 0.966 −0.061 −0.306 0.118 12.108 11.034
7 270 0.954 −0.077 0.538 −0.175 6.725 9.31
8 99 0.042 0.066 0.029 −0.027 2.398 6.769

NOTE: This table presents group averages of fund-level characteristics in a G = 8
group model for R (year 1999) and P (year 2000) samples. Average abnormal
returns (α) and idiosyncratic volatility (σ ) are annualized and reported in percent.

Unlike the two-group example in the previous section, dif-
ferences between these eight groups, each with four dimensions
of characteristics, are more difficult to present in tabular form.
Nevertheless, the factor loadings in Table 3 reveal some clear
clusters: Group 1, with a loading of near one of the market
factor and relatively small loadings on the other three factors, is
a “market” style cluster; Group 2, with high loadings on both the
market and the size factor, is a “small capitalization” style cluster;
Group 7, with high loadings on the aggregate market and value
factors, is a value cluster; and Group 8, with factor loadings close
to zero on all four factors, is a “market-neutral” style cluster.
The p-value from the test for multiple clusters is less than 0.001,
indicating strong evidence against the null of a single cluster. We
conclude that mutual funds indeed have different styles.

5. Conclusion

This article proposes methods to determine whether a null
hypothesis of a single cluster, indicating homogeneity of the
data, can be rejected in favor of multiple clusters. The new
test is simple to implement and valid under relatively mild
conditions, including nonnormality, and heterogeneity of the
data in aspects beyond those in the clustering analysis. We show
via an extensive simulation study that the test has good finite-
sample size control. We present extensions of the test for a
range of applications, including clustering when the time series
dimension is small, or clustering on parameters other than the
mean.

Some interesting extensions remain. For example, García-
Escudero and Gordaliza (1999) propose a robust version of k-
means based on trimmed means, Witten and Tibshirani (2010)
propose a method to optimally choose the features on which
to cluster, and Ng, Jordan and Weiss (2002) propose a spectral
clustering method. Another interesting extension is rethinking
how the number of clusters is treated in the asymptotic theory:
The results in this article apply when G̃ is small relative to the
sample size, however, if a researcher were to consider a large

number of clusters, then an asymptotic framework in which
G̃ is modeled as diverging with the sample size may provide
better finite-sample approximations. In an estimation context,
such a framework is studied by Bester and Hansen (2016) with
known group assignments and by Bonhomme, Lamadon, and
Manresa (2021) with estimated group assignments. Recent work
on high-dimensional Gaussian approximations and uniform
confidence bounds on parameter vectors of diverging lengths,
see Chernozhukov, Lee, and Rosen (2013), Belloni et al. (2015)
and Li and Liao (2020) for example, may also be useful for
such an analysis. We leave these interesting extensions for future
research.

Appendix A: Proofs

Proof of Theorem 1. (a) We first find the limiting distribution of√
NPμ̃NP

(
γ̂NR

)
conditional on FR. Denote N̂g,R ≡ ∑N

i=1
1
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}
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where �i ≡ V [εit] and the second line holds as εit is uncorrelated in
the time series and cross section. Combining the Cramér-Wold device
with Theorem 5.11 of White (2001), for example, we then obtain the
asymptotic distribution of μ̃g,NP

(
γ̂NR

)
:
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since 1
{
γ̂i,NR = g

}
1

{
γ̂i,NR = g′} = 0 for g �= g′. Thus, we obtain the

limiting distribution for the entire vector μ̃NP
(
γ̂NR

)
:

√
NP�̄

−1/2
NR

(
μ̃NP

(
γ̂NR

) − μ∗) d→ N (0, I)

where �̄NR is block-diagonal, with
(
�̄1NR, . . . , �̄GNR

)
along the diag-

onal. Consider the following estimator of �̄gNR :
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This can be shown to be consistent for �̄gNR using Kolmogorov’s
law of large numbers for independent heterogeneous data (e.g., White
2001, Theorem 3.7), and noting that Assumption 1(a) ensures the 2+δ

moment condition on εit and the finiteness of �i ∀i. This holds for all
g, and so we have �̂NPR − �̄NR

p→ 0. This implies that

√
NP�̂

−1/2
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(
μ̃NP

(
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) − μ∗) d→ N (0, I)

Under the null hypothesis of one cluster we have μ∗ = ιG ⊗ μ� for
some (d × 1) vector μ�, which implies that AdGμ∗ = 0d(G−1). Thus,
the F -statistic obeys

FNPR = NPμ̃′
NP
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A′
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)−1
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As the limiting distribution of the F-statistic does not depend on FR,
its unconditional distribution is also χ2

d(G−1)
, completing the proof.

(b) Note that μ̃NP
(
γ̂NR

) − μ∗ = (
μ̂NR − μ∗) + (

μ̃NP
(
γ̂NR

)
−μ̂NR

)
. Our Assumption 1 is sufficient for Assumption 1 of Bon-

homme and Manresa (2015), and their Theorem 1 implies that the first
term is op (1) as N, R → ∞. The second term is
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= op (1) , as N, P, R → ∞.

The penultimate line follows from a law of large numbers of indepen-
dent heterogeneous data (e.g., White 2001, Theorem 3.7) the conditions
for which are satisfied given our Assumption 1. This holds for g =
1, . . . , G, and thus μ̃NP

(
γ̂NR

) p→ μ∗ as N, P, R → ∞. This implies
that

μ̃′
NP

(
γ̂ NR
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(
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)−1
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(
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)−1
Ad,Gμ∗ > 0

by Assumption 2′(b) (clusters are “well separated”), the positive defi-
niteness of �̄NR, and the full row rank of Ad,G. Thus,
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(
Ad,G�̂NPRA′

d,G

)−1

Ad,Gμ̃NP
(
γ̂ NR

) p→ ∞, as N, P, R → ∞
completing the proof.

Proof of Theorem 3. (a) This is done using the same methods as The-
orem 1 for d = 1 and G = ĜNR. We note that the reordering of the
clusters (from largest to smallest) is known given FR, as is the value of
ĜNR. Thus, following the steps in the proof of Theorem 1(a) we have

FNPR
d→ χ2

q where q = ĜNR − 1. This limit distribution depends
on FR via the value of ĜNR; by transforming the test statistic using

its limiting CDF we obtain PvalNPR
d→ Unif (0, 1) conditional on FR,

and since the limit distribution does not depend on FR, this result also
holds unconditionally.

(b) As in the proof of Theorem 1(b), note that μ̃NP
(
γ̂ NR

) −
μ∗ = (

μ̂NR − μ∗) + (
μ̃NP

(
γ̂ NR

) − μ̂NR
)

. Our Assumption 1 is
sufficient for Assumption 1 of Bonhomme and Manresa (2015), and
their Theorem 1 implies that the first term on the RHS is op (1), as
N, R → ∞. (Note that their Theorem 1 does not require nonneg-
ligibility of group sizes.) The first ĜNR elements of the second term
are op (1) as N, P, R → ∞ using the same derivation as in the proof
of Theorem 1(b), noting that the condition that π > 0 holds for
g ∈

{
1, . . . , ĜNR

}
,and we have ĜNR ≥ 2 by Assumption 2′( cS). This

implies that
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BĜNR,Gμ̃NP

(
γ̂ NR

)
→ μ∗′B′
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rank of BĜNR,G. Thus, FNPR

p→ ∞ and PNPR
p→ 0 as N, P, R →

∞.

Proof of Theorem 4. The proof of this theorem follows from that of
Theorem 5, using the mean as the parameter on which to cluster, and
specializing to the d = 1 and G = 2 case.

Proof of Theorem 5. (a) As in the main theorem, we have
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1, 2, and 3(b) of Hansen (2007, Theorem 1) and thus we have
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Stacking the parameter estimates for each group, and noting that the
errors are uncorrelated across groups, we obtain

√
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−1/2
NR
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) − α∗) d→ N (0, I)

where �̄NR is block-diagonal, with
(
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)
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onal. Following Hansen (2007, Theorem 1) we can consistently estimate
�̄gNR using
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Under the null hypothesis we have α∗ = ιG ⊗ α� for some (b × 1)

vector α�, implying that AbGα∗ = 0b(G−1). Thus, the F-statistic obeys
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(
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As the limiting distribution does not depend on FR, its unconditional
distribution is also χ2
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, completing the proof.

(b) Note that α̃g,NP
(
γ̂ NR

) − α∗ = (
α̂g,NR − α∗) + (

α̃g,NP
(
γ̂ NR

)
−α̂g,NR

)
. Our Assumption 4 is sufficient for the assumptions in Bon-

homme and Manresa (2015, Appendix S2.2.1), which implies that the
first term on the RHS is op (1), as N → ∞. The second term is
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under Assumption 4 and noting that Uig,R is bounded. Thus,
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by Assumption 2′P (clusters are well separated), the positive definite-
ness of �̄NR, and the full row rank of AbG. Thus,
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) → ∞ as N → ∞
completing the proof.

Supplementary Materials

The supplemental appendix contains additional theoretical and simulation
results.
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