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Is there a gap between the profitability of a trading strategy on paper and that which is 

achieved in practice? We answer this question by developing a general technique to mea- 

sure the real-world implementation costs of financial market anomalies. Our method ex- 

tends Fama-MacBeth regressions to compare the on-paper returns to factor exposures with 

those achieved by mutual funds. Unlike existing approaches, ours delivers estimates of all- 

in implementation costs without relying on parametric microstructure models or explicitly 

specified factor trading strategies. After accounting for implementation costs, typical mu- 

tual funds earn low returns to value and no returns to momentum. 
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1. Introduction 

Empirical asset pricing overflows with explanations

for differences in average returns across securities. The

proliferation of predictors distracts from genuine mar-

ket anomalies from which lessons could be drawn about

risks, preferences, and beliefs. Recent calls to action by
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Harvey et al. (2016) , Harvey (2017) , and Hou et al.

(2017) have focused on high false discovery rates and scur-

rilous academic practices. Fundamentally, they question

whether candidate factors in the cross section of expected

returns are real and actionable. 

We give on-paper trading strategies the benefit of the

doubt and instead investigate whether they are imple-

mentable in practice, thereby representing true expected

return factors or market anomalies. This line of inquiry

originates with Fama (1970) , who considers the role of

transactions costs in defining market efficiency and depar-

tures therefrom. 

Despite nearly 50 years of subsequent research, accu-

rately measuring real-world implementation costs for aca-

demic factors remains a formidable challenge. Existing ap-

proaches generally fall into two categories. The first cate-

gory entails using proprietary trading data to analyze costs

for a single firm (e.g., Keim and Madhavan, 1997; Engle

et al., 2012; Frazzini et al., 2015 ). Although selected firms

may not be representative of asset managers as a whole,

such analyses provide an informative lower bound on the
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implementation costs of factor strategies. The second ap- 

proach uses market-wide trading data such as NYSE Trade 

and Quote (TAQ) to estimate trading costs for individual 

securities and then cumulate simulated costs of trade im- 

plied by dynamic factor strategies (e.g., Lesmond et al., 

2004; Korajczyk and Sadka, 2004; Novy-Marx and Velikov, 

2016 ). Papers in this category typically extrapolate price 

impact estimates from small trades to large factor portfo- 

lios or ignore price impact costs entirely. 

Our work complements these approaches with a new 

cross-sectional technique that combines the best elements 

of both. Like papers that utilize proprietary trading data, 

our estimates reflect the all-in costs of implementing factor 

strategies, and they apply equally well for past and modern 

market environments [for which the zero-return day mea- 

sure of Lesmond et al. (1999) fails, for example]. Like pa- 

pers that estimate transaction cost functions using market 

data, our baseline methodology captures the costs faced 

by representative practitioners of factor investing instead of 

single, special investment managers. In contrast with both 

approaches, our methodology facilitates the evaluation of 

implementation costs without specifying the precise trades 

used to implement factor strategies and for arbitrary sub- 

sets of the asset management universe. These innovations 

are important because existing methods using precisely 

specified factor strategies with different data sources and 

sets of firms disagree on the implementability of factor 

strategies. For example, Lesmond et al. (2004) find no net- 

of-costs return to momentum using TAQ data and a repre- 

sentative set of traders, whereas Frazzini et al. (2015) find 

positive momentum premia for a large hedge fund. Al- 

though our methodology rests on few assumptions, it has 

sufficient resolution to reconcile these disparate results in 

a transparent way. 

Our methodology is an extension of the familiar Fama 

and MacBeth (1973) procedure. In the first stage, time se- 

ries regressions estimate factor loadings β i for each asset 

i , and in the second stage, cross-sectional regressions es- 

timate the compensation per unit of factor exposure λt at 

each date t . Standard assets are based on stock portfolios, 

and the resulting estimates of compensation for factor ex- 

posure, denoted λ̄S 
k 
, represent the on-paper profitability of 

a given factor strategy. We augment the set of assets to in- 

clude 4267 US domestic mutual funds, and we allow the 

compensation for factor exposure earned by mutual funds, 

λ̄MF 
k 

, to differ from that which is available on paper. Unlike 

stock portfolio returns, (gross) mutual fund returns reflect 

the real-world implementation costs of factor strategies. 1 

Thus, the difference between mutual fund and stock port- 

folio compensation λ̄S 
k 

− λ̄MF 
k 

delivers an estimate of im- 

plementation costs for factor k . 2 Because costs per unit of 

exposure are likely to be negatively correlated with factor 

exposures, that is, funds that earn greater net returns to 

a factor are more likely to take greater exposures to it, our 
1 We use gross returns to focus on the efficiency of mutual funds’ in- 

vesting technology instead of on the distribution of rents between man- 

agers and investors embedded in net returns. 
2 Our more sophisticated approaches account for time- and cross- 

sectional variation in implementation costs, which we discuss further be- 

low. 
estimate of implementation costs represents a lower bound 

on the costs faced by a representative mutual fund. 

Our empirical analysis focuses on the implementation 

costs of mutual funds for the market ( MKT ), value ( HML ),

size ( SMB ), and momentum ( UMD ) factors. We choose 

these factors because they comprise the dominant empir- 

ical models in academic finance (e.g., Fama and French, 

1992; Carhart, 1997 ) and because they serve as the basis 

for hundreds of billions of dollars in investments. We study 

mutual funds as our set of asset managers because they 

collectively manage more than $16 trillion of capital in the 

United States, and the mutual fund industry has been bet- 

ter populated for a longer period of time than alterna- 

tive asset managers such as hedge funds. 3 Our approach is 

readily extended to other factors and market participants. 

Our analysis delivers two new empirical facts on the 

all-in implementation costs of anomalies for typical mutual 

funds. First, momentum strategies suffer extreme under- 

performance in practice relative to on-paper strategies. Our 

full-sample estimates of all-in implementation costs are in 

the range of 7.2%–7.6% per year, which eliminates most 

profits accruing to momentum during the 1970–2016 pe- 

riod. About half of this cost is due to mutual funds’ in- 

ability to short. Our all-in cost estimates are considerably 

larger than those typically estimated using bid-ask spreads 

alone (e.g., Novy-Marx and Velikov, 2016 ). We conclude, 

as Lesmond et al. (2004) do, that momentum strategies 

are unprofitable for typical asset managers when a broader 

set of implementation costs are considered. Second, mu- 

tual fund implementation costs sharply reduce returns to 

the value factor; we estimate all-in costs of 2.6%–4.1% per 

year. In contrast, mutual funds implementation costs for 

the market and size factors are approximately zero. 

Our approach also yields insights into the sources of 

implementation costs for typical firms. Simple modifica- 

tions to the set of test portfolios, factors, and slopes 

considered allow us to attribute costs to three primary 

sources. First, by excluding microcap stock portfolios, we 

can gauge the potential shadow costs of investability re- 

strictions faced by real-world investors. Doing so, we find 

that difficulty in investing in the smallest stocks explains 

reductions in realizable factor compensation of 1% per year 

for value and momentum. Second, although mutual funds 

face shorting constraints, it is common to use the familiar 

long/short portfolios small-minus-big (SMB), high-minus- 

low (HML), and up-minus-down (UMD) as factors in as- 

set pricing regressions. 4 We develop two long-only vari- 

ants of the Carhart factors to assess the role of institutional 

constraints on shorting. We find that shorting frictions 

explain roughly half of mutual fund under-performance 

on momentum and between one-fifth and one-third of 

under-performance on value. Third, we consider the gap 

attributable to mutual funds tracking alternative variants 

of the usual academic factors. Sorting funds by their time 

series R 2 from the four-factor model, we estimate that 

around half of the average mutual fund under-performance 
3 See the “2017 Investment Company Fact Book,” available at http: 

//www.icifactbook.org/ . 
4 On shorting constraints, note that the Investment Company Act of 

1940 explicitly caps leverage for most mutual funds at one-third. 

http://www.icifactbook.org/deployedfiles/FactBook/Site%20Properties/pdf/2017/2017_factbook.pdf
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on value and momentum is associated with uncompen-

sated departures from the academic factors. 5 

As a third empirical contribution, we analyze varia-

tion in implementation costs across funds and time and

demonstrate the importance of considering such varia-

tion in evaluating the implementability of factor strate-

gies . While the typical firm’s compensation for momentum

is indistinguishable from zero, subsets of the mutual fund

universe can achieve positive returns to momentum net of

costs. A focused analysis on smaller subsets is also impor-

tant from an aggregate market efficiency perspective be-

cause a violation exists if some investors see anomalous

profits, even if a typical investor does not. For this pur-

pose, we segment the mutual-fund universe by (lagged) to-

tal net assets. Size is a natural sorting dimension because

Berk and Green (2004) , Pastor et al. (2015) , Berk and van

Binsbergen (2015) , and others link scale to gross-of-fees

performance. We rerun our cross-sectional analysis using

each mutual fund size category separately, and we confirm

that small and large mutual funds achieve different returns

to momentum from typical mutual funds. Using this in-

sight, we reconcile conflicting evidence on the transactions

cost rationale for the continued existence of the momen-

tum anomaly. 6 

Our approach provides an estimate of the gap in factor-

mimicking portfolio performance ( λS 
kt 

− λMF 
kt 

) for each par-

ticular factor and date, and we use this information to

study determinants of the time series of average imple-

mentation costs. We show that industry inflows are associ-

ated with increased strategy costs, which in turn neutralize

the secular declines in bid-ask spreads that affect the first

dollar traded in factor strategies. As a consequence, bid-

ask–spread based measures increasingly underestimate the

true costs of factor strategies as asset management (and

factor investing in particular) grows in scale. 

While our new approach delivers simple, nonparamet-

ric, estimates of the implementation costs for factor trad-

ing strategies, it does face some limitations. First, as men-

tioned above, our approach delivers lower bounds on im-

plementation costs. In our empirical analysis these bounds

do not greatly limit the economic conclusions we can

draw: the estimated costs are already so high as to elim-

inate or severely attenuate the on-paper profitability of

strategies such as value and momentum for typical mu-

tual funds. For other strategies, estimates that indicate pos-

itive returns net of costs do not necessarily imply that

an anomaly can be implemented by typical investors. In

this sense, our measures can diagnose an implementabil-

ity problem with a factor, but they cannot deliver a clean

bill of health. 

Secondly, our technique relies on real-world asset man-

agers to reveal implementation costs through realized re-

turns to their chosen factor exposures. We cannot speak
5 This analysis also addresses a potential concern about the strategies 

that mutual funds trade, which is discussed below. 
6 We also run subsample analyses by quintile of total net assets and 

four-factor R 2 s. Our methodology can accommodate many other splits of 

interest, e.g., sorting by factor betas sheds light on typical gains to run- 

ning combined strategies. We leave investigations of other cuts of the mu- 

tual fund universe to future work. 
to the costs of new factors that asset managers have not

had an opportunity to trade. 7 For the same reason, our ap-

proach cannot estimate implementation costs for counter-

factual factor exposures to evaluate strategy carrying ca-

pacities, unlike approaches that rely on parametric trans-

action cost models. 

Finally, like much of the literature on performance eval-

uation, our method is susceptible to criticism of the choice

of factors included in the analysis. A manager who is fol-

lowing a strategy that does not correspond to an approx-

imate linear combination of those included in the model

could appear to have high implementation costs for the in-

cluded strategies, even though she has low costs for the

strategy actually being implemented. We verify that omit-

ted mutual fund strategies do not drive our high imple-

mentation cost estimates by replicating large performance

gaps for funds with returns almost completely explained

by the academic factors (the average R 2 of the four-factor

model for these funds’ return histories is 94%). For these

funds, the scope for omitted strategies is too small to ex-

plain the observed real-world performance gaps. 

The remainder of the article is structured as follows.

Section 2 relates our work to existing papers in the lit-

erature. Section 3 describes our data. Section 4 presents

our findings on the implementation costs faced by mu-

tual funds. Section 5 decomposes estimated implementa-

tion costs into components due to shorting constraints, in-

vestment restrictions, and tracking errors. Section 6 exam-

ines implementation costs across different types of funds

and across time. Section 7 concludes. The appendix con-

tains additional details and analyses. 

2. Related literature 

The Fama and French three-factor model has been the

benchmark for empirical asset pricing since its introduc-

tion in 1992. This empirical model supplanted the capital

asset pricing model (CAPM), but its new value and size fac-

tors had little theoretical motivation. 8 As factors continued

to emerge over the next quarter century, most notably, the

momentum anomaly of Jegadeesh and Titman (1993) , sev-

eral strands of literature emerged in an attempt to tame

the “factor zoo” ( Cochrane, 2011 ). One active strand in-

vestigates the implementation costs of anomalies with a

particular focus on size, value, and momentum anomalies.

While implementation costs cannot explain why expected

return discrepancies come to be in the first place, this liter-

ature seeks to rationalize the continued existence of mar-

ket anomalies as their by-product. Our paper advances this

line of inquiry by introducing a new and readily general-

izable approach for measuring the real-world implementa-

tion costs of return factors and anomalies. 
7 This caveat does not apply in the particular case of momentum. 

Grinblatt et al. (1995) argue that momentum-like strategies are endemic 

among mutual funds in their 1975–1984 sample, decades before the pub- 

lication of Jegadeesh and Titman (1993) . 
8 Banz (1981) and Basu (1977) show price-earnings ratios and mar- 

ket capitalization as characteristics associated with deviations from the 

CAPM. 
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Existing methods for measuring implementation costs 

take two approaches. The first approach uses special- 

ized trading data to evaluate the costs of trade for large 

investment managers with the implicit assumption that 

these managers are representative of sophisticated invest- 

ment managers more generally. These papers typically as- 

sess trading costs using the Perold (1988) implementation 

shortfall measure, which captures the difference between 

realized profits and on-paper profits using a preset deci- 

sion price. This approach dates back at least to the Keim 

and Madhavan (1997) analysis of the transactions costs of 

a variety of investment styles for $83 billion of trades. 9 In 

this vein, Keim (2003) uses institutional trading data for 33 

firms and finds that trading costs likely eliminate profits to 

on-paper momentum strategies. 

A key challenge to this method is that institutional 

trading is endogenous: traders are particularly aggressive 

in their trading targets when liquidity is readily available, 

which in turn imparts a downward bias to estimated cost 

functions. Frazzini et al. (2015) overcome this challenge 

by using data from an investment manager whose trad- 

ing targets are model-generated and selected irrespective 

of market conditions. Armed with more than $1 trillion of 

trades, they analyze value, size, and momentum anoma- 

lies and find that all of them are implementable and scal- 

able to tens or hundreds of billions of dollars of invested 

capital. By their reckoning, and in contrast to the Keim 

(2003) managers, major anomalies continue to be anoma- 

lous if their asset manager’s costs are representative of 

typical investment managers’ costs. 

The second approach trades off accuracy for represen- 

tativeness in estimating implementation costs. Instead of 

using proprietary trading data for a single asset manager 

to estimate costs directly, other studies derive transactions 

costs using aggregate price and transaction records and ex- 

trapolate estimated price impact functions to factor trading 

strategies. 10 Much of this literature focuses on the momen- 

tum anomaly because of its high turnover, and even the 

originating article establishing the momentum anomaly 

considers a trading costs explanation (see Jegadeesh and 

Titman, 1993 , and later Jegadeesh and Titman, 2001 ). No- 

tably, none of these papers use precise all-in trading cost 

measures like implementation shortfall because theoretical 

or decision-date prices are not obtainable outside of spe- 

cialized trading data. 

Chen et al. (2002) estimate separate price impact func- 

tions for 5173 individual stocks and calculate the trad- 

ing costs accruing to size, value, and momentum strate- 

gies. The authors suggest that all factors have break-even 

carrying capacities on the order of millions of dollars 

( HML ) to hundreds of millions of dollars ( SMB ). By their 

calculations, factor strategies are not investable. Lesmond 

et al. (2004) suggest that momentum in practice trades 
9 Other studies use the Keim and Madhavan (1997) calibrated transac- 

tion cost functions to decompose fund performance for a larger universe 

of funds. For example, Wermers (20 0 0) , like our study, finds that imple- 

mentation costs meaningfully erode mutual fund returns. 
10 Grundy and Martin (2001) and Barroso and Santa-Clara (2015) invert 

this logic and calculate the transactions costs that would be required to 

wipe out the momentum anomaly. 
in “disproportionately high cost securities” rather than 

the typical transactions cost securities Jegadeesh and Tit- 

man (1993) use for approximating the momentum factor’s 

trading costs. Using effective spreads from TAQ, commis- 

sion schedules from a discount brokerage, and all-in fric- 

tions implied by zero-trading days ( Lesmond et al., 1999 ), 

Lesmond et al. (2004) argue that trading costs erase the 

returns to the momentum anomaly. 

Korajczyk and Sadka (2004) present more optimistic 

results on the investability of factor strategies. Korajczyk 

and Sadka (2004) use TAQ data to estimate effective and 

quoted spreads, the primary proportional costs studied in 

the literature, and price impact or “non- proportional trad- 

ing cost” functions from Glosten and Harris (1988) and 

Breen et al. (2002) . In utilizing different non-proportional 

cost functions from Lesmond et al. (2004) , Korajczyk and 

Sadka (2004) extrapolate trade-level costs to find positive 

net-of-cost returns to the momentum anomaly. They in- 

vert their cost function estimates to obtain a break-even 

momentum strategy carrying capacity of $5 billion. Novy- 

Marx and Velikov (2016) measure trading costs using effec- 

tive spreads recovered from the Hasbrouck (2009) Bayesian 

Gibbs sampler and tally costs of trading size, value, and 

momentum strategies, among others. The authors estimate 

strategy carrying capacities of $5 billion for momentum (as 

in Korajczyk and Sadka, 2004 ), $170 billion for size, and 

$50 billion for value, the latter two of which are com- 

parable to the estimates of Frazzini et al. (2015) . These 

approaches do not account for the price impact costs of 

large institutional investors, and they likely overestimate 

the true strategy carrying capacities as a result. 

In concurrent work, Arnott et al. (2017) argue, as we 

do, that mutual funds deliver much lower returns on value 

and momentum anomalies than on-paper factor counter- 

parts could indicate. Our paper differs from theirs in four 

key respects. First, we modify standard Fama-MacBeth re- 

gressions to develop a cost estimation procedure that is ro- 

bust to heterogeneity in implementation costs across both 

funds and time. Second, we decompose costs to highlight 

the respective roles of shorting, investability, and liquidity 

frictions. Third, we slice the cross section of mutual funds 

to distinguish among funds of different attributes and in 

so doing reconcile previous work on implementation costs. 

Fourth, our approach compares factor-mimicking portfolio 

returns for mutual funds and stock portfolios. The Arnott 

et al. (2017) use of on-paper factor returns as a benchmark 

is valid only if investors can frictionlessly trade stock fac- 

tors. 

3. Data 

Our mutual fund sample consists of 4267 United States 

domestic equity mutual fund groups with at least 24 non- 

missing monthly gross returns from January 1970 to De- 

cember 2016. In Appendix A , detailing our mutual fund fil- 

tering methodology, we describe a number of data clean- 

ing and filtering steps based on the recommendations of 

Berk and van Binsbergen (2015) , Pastor et al. (2015) , and 

others. One data processing step bears special mention: 

we map funds delineated by share class into fund groups. 

Share classes for funds with identical investments differ 
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Fig. 1. Count of active domestic equity mutual funds by month. 

This figure plots the count of non-missing returns by month for United States domestic equity mutual funds. The dashed line at January 1970 marks 

the starting point of our 1970–2016 sample. The dashed line at July 1993 marks the midpoint of the post-1970 sample as well as the start date for our 

post–Jegadeesh and Titman (1993) sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in fees charged to investors, but they are not otherwise

economically distinct. To aggregate returns within a fund

group, we take total net asset (TNA) weighted gross-of-fee

returns. The Center for Research in Security Prices (CRSP)

provides returns net of management and 12b-1 fees, and

we convert these into gross returns by adding expense ra-

tios divided by 12, following Fama and French (2010) . We

use “fund group” and “fund” interchangeably henceforth. 

Significant changes in the count of active mutual funds

reflect both a secular growth in the mutual fund indus-

try and continual improvements in data quality. 11 Fig. 1

highlights these changes by plotting the number of non-

missing returns for domestic equity mutual funds by

month. The number of funds increases from 276 in January

1970 to 979 in July 1993 to 2463 in December 2016. Be-

cause the number and composition of funds varies widely

over time, we conduct our analysis both on an extended

sample and on a more recent subsample. Our long sample

runs from January 1970 to December 2016. We discard the

1962–1969 window during which monthly returns are less

consistently provided and during which several of our liq-

uidity proxies are not available. Our recent subsample con-

sists of the second half of the long sample and runs from

July 1993 to December 2016. This start date postdates the

Jegadeesh and Titman (1993) evidence of the momentum

anomaly, the most recently discovered factor we consider.

Table 1 reports summary statistics for the set of mutual

funds used in our analysis. All told, the 1970–2016 sam-

ple consists of 724,995 fund-month observations and the

1993–2016 sample consists of 597,992 fund-month obser-

vations. 
11 Pages 1–2 of the CRSP mutual fund database guide details the amal- 

gamation of data sources used to construct returns from December 1961 

through the present. Page 16 discusses the merge of classifications into 

CRSP objective or style codes that we use to restrict the set of funds to 

United States domestic equity funds. 
Much of our analysis compares mutual funds with sim-

ilar stocks as measured by loadings on equity risk fac-

tors. Our Fama-MacBeth tests of Section 4 combine mutual

fund data with common test portfolios. Our first portfo-

lio set consists of the Fama-French 25 size-value double-

sorted portfolios plus 25 size-beta portfolios, 25 size-prior

return portfolios, and 25 size-Amihud illiquidity portfo-

lios to ensure adequate dispersion in factor loadings to

identify risk premia. We supplement this set of test as-

sets with an expanded cross section following the recom-

mendation of Lewellen et al. (2010) . In our larger portfolio

set, we add 49 industry portfolios, 25 size–operating prof-

itability portfolios, 25 size–investment portfolios, 10 mar-

ket beta–sorted portfolios, 10 market capitalization–sorted

portfolios, 10 book-to-market ratio–sorted portfolios, 10

prior-return–sorted portfolios, 10 Amihud illiquidity–sorted

portfolios, 10 operating profitability–sorted portfolios, and

10 investment–sorted portfolios for a total of 269 portfo-

lios. With the exception of the illiquidity-sorted portfolios,

all portfolio data are downloaded from Ken French’s web-

site. 12 Decile illiquidity portfolios sort stocks by the me-

dian daily Amihud illiquidity (daily absolute returns over

dollar volume) over the prior calendar year, and stocks are

assigned for the following year using deciles computed at

the end of June to match the timing convention of the

other portfolio data. 13 The 25 size–illiquidity portfolios sort

first on lagged market capitalization and then on Amihud

illiquidity quintile within each size bin to ensure that all

portfolios are nonempty. Our analysis uses both equal- and

value-weighted stock portfolios. 
12 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data _ library. 

html 
13 Our monthly stock sample consists of all CRSP stocks (share codes 10 

or 11) with at least 24 non-missing monthly returns, for a total of 22,121 

unique PERMNOs over the 1970–2016 sample period. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1 

Domestic equity mutual fund sample summary statistics. 

This table presents summary statistics for the 1970–2016 sample of 4267 United States domestic equity 

mutual funds. Panel A provides information on the time series of the number of active funds for each 

date as well as cross-sectional information on fund lifetimes and total net assets (TNA) at sample start, 

middle, and end. Panel B reports distributional information on fund excess returns, such as the mean 

return, return volatility and the Sharpe ratio. ρ̄MF is the average pairwise correlation with other mutual 

funds’ returns, and ρS& P500 is the correlation with the S&P 500 index return. 

Panel A: Mutual fund counts, ages and sizes 

Funds Lifetime TNA, Jan. 1970 TNA, July 1993 TNA, Dec. 2016 

(number) (years) (Million USD) (Million USD) (Million USD) 

Mean 1286 14.16 128.74 552.87 2590.70 

Std. Dev. 917 10.50 302.83 1533.70 13254.00 

25% 324 5.75 3.96 37.48 70.93 

50% 1023 11.58 23.90 118.36 314.00 

75% 2282 19.58 91.18 431.83 1421.30 

Panel B: Mutual fund return distribution characteristics 

Mean Return Return Vol. Sharpe ratio ρ̄MF ρS& P500 

(%/Month) (%/Month) (Annualized) (%) (%) 

Mean 0.46 4.88 0.41 74.10 84.97 

Std. Dev. 0.63 1.97 0.41 16.49 18.42 

25% 0.32 3.86 0.25 71.77 81.94 

50% 0.56 4.66 0.44 77.86 89.55 

75% 0.78 5.59 0.60 82.32 94.53 
We include several market and funding liquidity vari- 

ables to proxy for time-varying cost factors that can affect 

the performance of mutual funds relative to stocks. Our 

market liquidity variables are Amihud illiquidity ( Amihud, 

2002 ), Pastor-Stambaugh liquidity levels ( Pastor and Stam- 

baugh, 2003 ), NYSE-average bid-ask spreads ( Corwin and 

Schultz, 2012 ), and the Chicago Board of Exchange Stan- 

dard & Poors 500 (CBOE, S&P 500) Volatility Index (VIX), as 

motivated by Nagel (2012) . We use the Corwin and Schultz 

(2012) methodology to estimate bid-ask spreads because it 

enables measurement of market liquidity before TAQ be- 

comes available in 1993 and because it captures average 

effective spread levels and innovations better than other 

pre-TAQ methodologies (see Corwin and Schultz, 2012 , Ta- 

ble IV). 14 We use the CBOE S&P 100 Volatility Index (VXO) 

in place of the VIX in the pre-1990 period for which the 

VIX is not available. We compute Amihud illiquidity us- 

ing CRSP daily data with values averaged within a month 

as in Amihud (2002) , and we obtain the Pastor-Stambaugh 

series and CBOE VXO and VIX series from Robert Stam- 

baugh’s website 15 and the Federal Reserve of St. Louis’s 

FRED database, respectively. 

Our funding liquidity variables are the Frazzini and Ped- 

ersen (2014) “betting against beta” (BAB) factor, the He 

et al. (2017) intermediary capital ratio, the ten-year BAA 

minus ten-year Treasury spread, and the three-month Lon- 

don Interbank Offerred Rate (LIBOR) minus three-month 

Treasury yield or “TED” spread. The first two series are ex- 

pressly designed to capture institutions’ funding liquidity 
14 Corwin and Schultz make their code available at https://www3.nd. 

edu/ ∼scorwin/HILOW _ Estimator _ Sample _ 002.sas . As in their paper, we 

compute cross-sectional averages using only NYSE-listed stocks, and we 

use their variant of estimated spreads in which negative values are set to 

zero. 
15 http://finance.wharton.upenn.edu/ ∼stambaug/ 
constraints, and the latter two series are common prox- 

ies in the funding liquidity literature (e.g., Brunnermeier, 

2009 ). We obtain BAB from AQR’s website, 16 intermediary 

capital ratios from Asaf Manela’s website, 17 and credit and 

TED spreads from FRED. 

4. Fama-MacBeth estimates of implementation costs 

4.1. Fama-MacBeth methodology 

In this section, we consider the compensation per unit 

of risk exposure and investigate whether mutual funds ob- 

tain the same risk premium that academics achieve on 

paper. In our baseline estimation, we assume that mu- 

tual funds have a constant per-unit cost for implement- 

ing academic anomalies. Investing in a market index with 

βMKT = 1 results in a performance gap of η relative to the 

on-paper performance of a market index, and investing in 

a levered version of the market more generally results in a 

performance gap of ηβMKT . In this setting, we would ex- 

pect performance differences between stock and mutual 

fund portfolios to be linear in factor exposure. 

We estimate the “implementation gap” using aug- 

mented Fama and MacBeth (1973) two-stage regressions 

for the Carhart four-factor model ( Carhart, 1997 ). The time 

series regression step is standard except for the choice of 

test assets. We have N S = 100 and N S = 269 stock portfo- 

lios for the baseline and extended portfolio sets, respec- 

tively. In addition to stock portfolios, we N MF = 4267 mu- 

tual funds, of which more than a thousand are active 

in the typical month. As diversified entities spanning a 

wide range of multifactor risk exposures, mutual funds, 
16 https://www.aqr.com/Insights/Datasets/Betting- Against- Beta- Equity- 

Factors-Monthly 
17 http://apps.olin.wustl.edu/faculty/manela/data.html 

https://www3.nd.edu/scorwin/HILOW_Estimator_Sample_002.sas
http://finance.wharton.upenn.edu/~stambaug/
https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Monthly
http://apps.olin.wustl.edu/faculty/manela/data.html
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unlike stocks, need not be grouped into portfolios via a

characteristic-sorting procedure. 

The N S + N MF first-stage time series regressions are 

r it = αi + 

∑ 

k 

f kt βik + εit , i = 1 , . . . , N S , N S+1 , . . . , N S + N MF ,

(1)

where r it is the month t gross return on stock portfolio or

mutual fund i net of the contemporaneous risk-free rate

and f kt (for k = 1 , ..., K) is the return on factor k at date t .

The usual second-stage cross-sectional regressions are ex-

tended to accommodate the possibility of differences in

risk pricing for stocks and mutual funds, 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + εit , t = 1 , . . . , T . 

(2)

The regression in Eq. (2) is equivalent to two separate

cross-sectional regressions run on stocks and mutual funds

because the indicators partition the set of observations and

coefficients. λS 
kt 

and λMF 
kt 

represent the factor-mimicking

portfolio returns for stocks and mutual funds, that is, the

hypothetical date t returns to a stock or mutual fund port-

folio with βk = 1 and β j = 0 ∀ j � = k . 18 If these factors were

tradeable by real-world investors, f kt , λ
S 
kt 

, and λMF 
kt 

would

all be equal. The difference ˆ λ�
kt 

≡ ˆ λS 
kt 

− ˆ λMF 
kt 

is our estimate

of the implementation costs for strategy k , and it is the gap

between the on-paper returns of a given strategy (“what

you see”) and the actual returns achieved by an asset

manager facing real-world implementation costs (“what

you get”). Conceptually this difference captures both di-

rect costs such as spreads and price impact from factor

trading as well as indirect costs such as investing in liq-

uid versions of factors to robustify strategies against out-

flows. Our point estimates are the average of the monthly

differences in factor compensation λ̄�
k 

, and we construct

Newey and West (1987) standard errors for this difference

using three monthly lags to account for serial correlation

and heteroskedasticity in the λ-difference series. 

Throughout our analysis, we estimate cross-sectional

slopes of returns on risk exposures assuming that risk

exposures are constant. In making this assumption, we

prioritize minimizing the errors-in-variables problem aris-

ing from using noisy betas as inputs in the second-stage

Fama-MacBeth regression. This problem is vitally impor-

tant because we do not want to find differences in λs

simply as a by-product of higher measurement error in

mutual fund betas. Static betas effectively eliminate this

issue. Appendix F confirms that measurement error has

little effect on our results using univariate estimates of

potential attenuation effects and a new, instrumental-

variables approach to correct for measurement error in be-

tas ( Jegadeesh et al., 2019 ). In using static betas, we trade

off against taking on model misspecification arising from

time-varying stock portfolio or mutual fund risk exposures.
18 We verify in Appendix B that both stock– and mutual fund–based 

factor-mimicking portfolio returns replicate factor dynamics well. We 

thank Andrea Frazzini for this suggestion. 

 

 

Note, however, that if funds on average have timing ability,

then using static betas in place of time-varying betas un-

derstates true implementation costs. For example, if funds

scale up their betas when λ is high, then cross-sectional

slopes for mutual funds ˆ λt are biased up, and the average

estimated factor compensation 

¯̂
 λ exceeds its true value. 

Following Lettau et al. (2014) and others, we omit the

constant term in Eq. (2) to force cross-sectional average al-

phas to zero. Economically, this omission forces the typi-

cal zero-risk security or mutual fund to have zero excess

(gross) return at each point in time. We impose this re-

striction because the slope on βMKT is not otherwise well

identified in our stock portfolio sample; that is, the time

series of the intercept αt and the estimated market risk

premium λMKT,t are strongly negatively correlated and of

similar magnitudes. By contrast in the mutual fund sample,

market beta has a large and positive risk price regardless

of whether a constant is included. Empirically, the domi-

nant effect of suppressing the constant is delivering a rea-

sonable estimated market risk premium for stock portfo-

lios, and no factor risk premia are meaningfully affected

for mutual funds. 19 

4.2. Baseline estimates 

Table 2 presents estimates of Eq. (2) . The λ� value

in the upper-left corner indicates that the difference in

compensation per unit of market exposure is 0.38% per

year greater for risk exposures taken via mutual funds

than in (one hundred value-weighted) on-paper stock port-

folios. This difference declines slightly to 0.21% per year

when assessed against the full set of 269 portfolios. Nei-

ther effect is statistically or economically significant, and

the absence of a performance gap is robust to using equal-

weighted portfolios (bottom subtable) instead of value-

weighted portfolios. This result is unsurprising as mutual

funds are expected to be relatively good at implementing

the market factor. 

Broadening our focus to columns 1–4, we see that mu-

tual funds under-perform stocks in isolating factor expo-

sures for two of the other Carhart factors. The average im-

plementation gaps for value ( HML ) and momentum ( UMD )

range from of 50% to 80% of the total on-paper factor re-

turn in stock portfolios. The remaining compensation to

mutual funds for HML and UMD is positive ( λMF > 0), but

they are only 1%–3% per year and not statistically distin-

guishable from zero. Conversely, HML and UMD factors are

both highly compensated and statistically robust in value-

weighted stock portfolios in this period. On-paper compen-

sation for size factor ( SMB ) exposure has a smaller positive

point estimate, but this value is not reliably different from

zero. 

The point estimates for the differences λ� for HML and

UMD are typically more statistically significant than either

of the components of the difference λS or λMF . This feature

reflects the netting out of common variation in factor re-

alizations between the λ time series. Ideally, the residual

variation in λ� captures only random variation in trading
19 See Appendix F for additional discussion. 



522 A.J. Patton and B.M. Weller / Journal of Financial Economics 137 (2020) 515–549 

Table 2 

Implementation cost estimates, baseline specification. 

This table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfolios (third and 

fourth rows), domestic equity mutual funds (fifth row), and their difference (first and second rows). Coefficients are the 

average cross-sectional slopes λ̄k across monthly regressions of excess returns r it on time series betas ˆ βik , 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes the four Carhart (1997) factors and λ� is defined as λS − λMF . Stock portfolio sets are described in 

Section 3 . All coefficients are annualized and reported in percent. Standard errors are Newey-West with three lags. t 

statistics are reported in parentheses. Parameters different from zero at the 10%, 5% or 1% significance levels are marked 

with one, two or three asterisks. 

1970 – 2016 1993 – 2016 

N S MKT HML SMB UMD MKT HML SMB UMD 

Panel A: Value-weighted stock portfolios 

λ� 100 −0.38 3.81 ∗∗∗ 0.26 7.18 ∗∗∗ −0.11 3.12 ∗∗∗ −0.24 4.27 ∗∗∗

( −1.28) (5.08) (0.42) (5.53) ( −0.32) (3.83) ( −0.29) (2.64) 

λ� 269 −0.21 2.59 ∗∗∗ −0.07 7.30 ∗∗∗ 0.28 2.09 ∗∗∗ −0.97 5.04 ∗∗∗

( −0.88) (3.81) ( −0.14) (5.54) (1.25) (3.31) ( −1.39) (2.89) 

λS 100 6.60 ∗∗∗ 6.43 ∗∗∗ 1.27 8.72 ∗∗∗ 7.67 ∗∗ 5.43 ∗ 1.96 6.01 

(2.75) (3.51) (0.75) (3.74) (2.35) (1.93) (0.81) (1.60) 

λS 269 6.77 ∗∗∗ 5.20 ∗∗∗ 0.94 8.85 ∗∗∗ 8.06 ∗∗ 4.40 1.23 6.78 ∗

(2.82) (2.84) (0.56) (3.80) (2.49) (1.54) (0.51) (1.83) 

λMF — 6.98 ∗∗∗ 2.62 1.01 1.54 7.78 ∗∗ 2.31 2.20 1.73 

(2.86) (1.51) (0.59) (0.63) (2.38) (0.83) (0.92) (0.45) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

Panel B: Equal-weighted stock portfolios 

λ� 100 −0.36 4.47 ∗∗∗ 2.34 ∗∗ 6.83 ∗∗∗ 0.07 3.16 ∗∗∗ 2.14 3.71 ∗∗

( −0.76) (5.57) (2.41) (5.21) (0.12) (3.29) (1.55) (2.21) 

λ� 269 0.25 3.31 ∗∗∗ 2.22 ∗∗ 8.51 ∗∗∗ 0.95 2.01 ∗ 2.05 6.04 ∗∗∗

(0.5) (3.58) (2.05) (6.19) (1.45) (1.96) (1.34) (3.13) 

λS 100 6.62 ∗∗∗ 7.09 ∗∗∗ 3.35 ∗∗∗ 8.37 ∗∗∗ 7.85 ∗∗ 5.48 ∗∗ 4.34 5.45 

(2.75) (3.91) (1.70) (3.59) (2.39) (1.99) (1.53) (1.44) 

λS 269 7.23 ∗∗∗ 5.93 ∗∗∗ 3.23 10.06 ∗∗∗ 8.73 ∗∗∗ 4.33 4.25 7.78 ∗∗

(3.02) (3.03) (1.56) (4.17) (2.69) (1.47) (1.43) (1.98) 

λMF — 6.98 ∗∗∗ 2.62 1.01 1.54 7.78 ∗∗ 2.31 2.20 1.73 

(2.86) (1.51) (0.59) (0.63) (2.38) (0.83) (0.92) (0.45) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

20 For example, Section 4.4 evaluates a purely characteristic-based vari- 

ant of our Fama-MacBeth regressions with similar results. The online 

supplemental appendix introduces a complementary, matched-pairs ap- 

proach to investigating mutual fund implementation costs. In the spirit 

of Daniel et al. (1997) , this approach compares returns to high book-to- 

market ratio, small size, and high prior return stocks and mutual funds 

with similar risk characteristics. The analysis therein has the ancillary 

benefit of controlling for differences in the distribution of betas between 

stock portfolios and mutual funds, which may be important if compensa- 

tion for factor exposure is earned only in some segments of this distribu- 

tion. 
costs. In practice, this residual variation also captures id- 

iosyncratic differences in estimated risk prices associated 

with using different sets of test assets; the difference be- 

tween λ� estimated from the set of 100 stock portfolios 

and the set of 269 stock portfolios suggests that the imple- 

mentation gap depends in part on the stock benchmarks 

employed. 

Columns 5–8 reproduce these tests for the July 1993 

to December 2016 sample. Mutual funds achieve lower re- 

turns to HML and UMD and higher returns to SMB than 

in the full sample, and these returns are universally sta- 

tistically indistinguishable from zero. For stock portfolios, 

the compensation for HML and UMD ( SMB ) exposures also 

decreases (increases) relative to the full sample. The net 

effect of these changes is a small decrease in the typi- 

cal implementation gap for HML and a moderate decrease 

in the implementation gap for UMD . The implementation 

gap is roughly unchanged for market exposure (effectively 

zero) and SMB exposure (positive but now statistically in- 

significant). Focusing on this latter subsample with a more 

broadly representative set of mutual funds does not change 

our conclusions on the high real-world efficacy of achiev- 
ing market exposure and size and the low real-world effi- 

cacy of implementing value and momentum. 

In sum, no factor other than the market earns reli- 

ably positive risk premia for the typical mutual fund. This 

finding is our first main result, and below we investi- 

gate whether it survives alternative weightings (includ- 

ing equal-weighted returns in the lower panel), enriched 

methodologies, additional controls, and sample splits. 20 

Section 4.5 presents a detailed comparison of our esti- 

mates to prior work, and we present discussion of eco- 

nomic mechanisms and implications there. However, we 
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21 Ideally we would use all liquidity variables instead of their principal 

components because we want time-varying determinants of ηit to lie in 

the span of the liquidity-augmented factor model. To this end, we include 

all proxies in a sparse-regression approach in Appendix D . 
22 The CBOE VXO and the TED spread series start in January 1986. 

Our principal components procedure accommodates the missing liquidity 

proxy data using MATLAB’s alternating least squares (PCA-ALS) algorithm 

[based on Roweis (1998) and similar to the expectation-maximization 

procedure described in Appendix A of Stock and Watson (2002) ]. PCA- 

ALS extract s factors and completes missing data by conjecturing princi- 

pal components and iteratively estimating principal component loadings 

φ and factor values g until the distance between known and fitted values 

achieves a local minimum. We run PCA-ALS from one thousand starting 
understand that implementation cost estimates of this

magnitude may surprise some readers, and it is worth

mentioning now an intuitive channel by which real-world

compensation to these factors may fall to zero even as on-

paper returns persist. 

Using evidence from mutual fund flows, Berk and van

Binsbergen (2016) and Barber et al. (2016) demonstrate

that investors appear to use the CAPM to evaluate market

risks, and compensation accruing to non-market sources

is perceived as skill. By this logic, capital market equilib-

rium requires that real-world factor compensation must be

squeezed to zero because these other factors are not seen

as risky. Otherwise, if funds were to achieve positive re-

turns to HML and UMD , funds could load on these factors

to achieve alpha and attract inflows indefinitely. Our find-

ings indicate that equilibrium obtains through greater im-

plementation costs rather than through reduced on-paper

factor compensation. Higher implementation costs result-

ing from greater fund size ( Berk and Green, 2004 ) or in-

dustry scale ( Pastor and Stambaugh, 2012 ) are two estab-

lished mechanisms by which these costs can adjust until

achievable anomalous returns disappear. 

4.3. Estimates when costs vary across funds and time 

Time-varying implementation costs complicate the

comparison of compensation per unit of factor risk. To see

why, consider the following augmented model of mutual

fund costs. As above, let there be a set of academic factors

f , where f t is a 1 × K vector. Each mutual fund i imple-

ments its favored version of academic factors and earns a

return of 

h it = f t − ηit , (3)

where ηit reflects tilts away from the academic factor on

account of trading costs or factor optimization. This section

differs from Section 4.2 in that we no longer assume that

η is constant across funds and time in interpreting λ�. Al-

lowing for cross-fund heterogeneity is particularly impor-

tant in light of prior work by Edelen et al. (2007) , Anand

et al. (2011) , and Edelen et al. (2013) showing substantial

heterogeneity in execution and trading costs among mu-

tual funds. 

The ηit term in turn can be decomposed into compo-

nents, 

ηit = ηi + ηt γi + ˜ ηit . (4)

The first component is the fixed, fund-specific cost of trad-

ing a factor. The second component is a set of L time-

varying liquidity costs, ηt multiplied by the L × K loadings

of all factors on these liquidity costs, γ i . Finally, ˜ ηit is a

1 × K set of idiosyncratic costs, e.g., a surprise redemption

demand that makes continued investment in factor k more

costly for fund i . 

In this heterogeneous cost specification, funds earn re-

turns of 

r it = αi + h it βi + εit 

= ( αi − ηi βi ) + ( f t − ηt γi ) βi + ( εit − ˜ ηit βi ) . (5)
An ideal test compares the average compensation f t
for factor exposure for on-paper investment in stocks

against the compensation h it for factor exposure for

real-world investment. In the constant cost setting of

Section 4.1 , we achieve this ideal: ηit simplifies to η, and

Fama-MacBeth regressions recover consistent estimates of

h as the difference in λs in Eq. (2) . 

In this general setting we face two key challenges that

complicate the comparison of f t and h it . First, trading costs

vary over time, and these costs can co-vary with factor

realizations. For example, during the 20 07–20 08 financial

crisis, the aggregate market declines sharply just as fund-

ing and market liquidity deteriorate significantly. Omit-

ting relevant liquidity factors thus contributes to an omit-

ted variable bias in time series estimates of β i for in-

vestment managers, which in turn potentially invalidates

simple comparisons of second-stage slope estimates. Sec-

ond, investment managers select their risk exposures en-

dogenously. An investor who has discovered improvements

upon academic factors and another who faces particularly

high trading costs are unlikely to select the same factor ex-

posures, all else equal. For this reason, we would expect

mutual fund-specific trading costs ηi to be correlated with

β i in the cross-section. 

We now address these two sources of bias. First, to

address the omission of trading cost factors, we assume

that trading costs or optimization gains for mutual funds

are spanned by liquidity proxies considered in the liter-

ature (and described in Section 3 ). To avoid overfitting

by including too many correlated liquidity proxies, we

start with two. 21 We use the first principal component of

four market-liquidity variables [ Amihud (2002) illiquidity,

Pastor and Stambaugh (2003) liquidity, Corwin and Schultz

(2012) bid-ask spreads, and the CBOE VIX/VXO] and the

first principal component of four funding-liquidity vari-

ables [the Frazzini and Pedersen (2014) “betting against

beta” factor, the He et al. (2017) intermediary capital risk

factor, 10-year BAA minus 10-year Treasury spreads, and

3-month LIBOR minus 3-month Treasury yield or “TED”

spreads]. 22 We normalize all liquidity variables to have

unit standard deviation before taking principal compo-

nents because liquidity proxies vary widely in their scales.

We assign these components an illiquidity interpretation

by normalizing them to be positively correlated with the

VIX/VXO. 

We then run Fama-MacBeth regressions as before, but

we extend the factor model to include these liquidity prox-
points and select the global distance-minimizing factors and loadings. 
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24 Berk (20 0 0) and Davis et al. (20 0 0) provide other views in the debate 

on compensation to factors or characteristics. We thank Juhani Linnain- 

maa and Ronnie Sadka for the suggestion to consider both perspectives. 
25 For this reason, characteristics are sometimes used in place of other- 

wise noisily estimated betas, or as instruments for them (e.g., Shanken, 

1992; Kelly et al., 2018; Fama and French, 2018 ). Thus, the characteristics 

of Eq. (8) can be seen as a substitute for (imprecise) time-varying betas 

in evaluating mutual fund implementation costs. 
26 Because of these time trends and because a zero value of a charac- 
ies in the time series regressions, 

r it = αi + 

∑ 

k 

f kt βik + 

∑ 

l 

˜ ηlt ̃  γil + εit , 

i = 1 , . . . , N S , N S+1 , . . . , N S + N MF , (6) 

where ˜ ηlt are the liquidity factor proxies at time t . The 

second-stage cross-sectional regressions are exactly as in 

Eq. (2) . 

The mismatch in model specification for the time se- 

ries and cross-sectional regressions is intentional, and the 

decomposition of the resulting second-stage coefficient es- 

timates reveals why the second source of bias, cross- 

sectional heterogeneity in implementation costs, makes 

our results conservative. In the time series regressions, we 

recover fund exposures to the academic factors, and we 

need the additional liquidity proxy variables to cleanse the 

estimated mutual fund factor loadings of omitted illiquid- 

ity components. By contrast, in the second stage, we re- 

cover the cost per unit exposure to the academic factors 

and do not want to include the liquidity proxy exposures. 

Excluding the liquidity factors only in the second stage de- 

livers ˆ λS 
t = λS 

t and 

ˆ λ�
t = λS 

t −
cov 

(
r MF 

it 
, βi 

)
v ar ( βi ) 

= − cov ( αi − ηit βi , βi ) 

v ar ( βi ) 

= η̄t − cov ( ( ̄ηt − ηit ) βi , βi ) 

v ar ( βi ) 
. (7) 

The final equality makes the standard assumption that al- 

phas and betas are cross-sectionally uncorrelated. η̄t rep- 

resents the cross-sectional average per-unit liquidity costs 

to implementing the factor. The second term is the co- 

variance between deviations from the average costs and 

βs. Funds with a particular skill in investing in a factor 

likely have higher exposures to it, β i is endogenous, so 

β i is high when η̄t − ηit is high, and β i is close to zero 

when η̄t − ηit is negative (negative betas do not reverse the 

sign on costs). Combining these features, the overall covari- 

ance is positive, and the cross-sectional slopes of returns 

with respect to β i are biased upward ( ̂ λMF 
t > λMF 

t ). 23 Con- 

sequently, λMF 
kt 

is an upper bound on the realizable gains to 

factor investing per unit risk exposure, and λ�
kt 

is a lower 

bound on the costs of implementing a factor strategy. 

Table 3 presents results from the liquidity-extended 

first-stage regression. Results are virtually the same as 

those of the baseline specification in Table 2 with one 

exception. Mutual funds’ (already low) annual compensa- 

tion for UMD exposure decreases from 1.54% to 1.28% in 

the long sample and from 1.73% to 0.76% in the recent 

sample, suggesting that liquidity factor exposure at least 

partly explains mutual funds’ compensation for momen- 

tum. Asness et al. (2013) find that momentum loads posi- 

tively on liquidity risk, and we find that the same holds for 

mutual funds’ implementation of momentum. We examine 
this feature in detail in Section 6.2 . 

23 Including liquidity proxies in the second stage introduces a more 

opaque omitted variable bias, as we discuss in Appendix C . 
4.4. Cross-sectional characteristic regressions 

The Fama-MacBeth regression approach of the preced- 

ing sections estimates implementation costs for asset pric- 

ing factors under the assumption that factor exposures 

are the source of risk premia. However, Daniel and Tit- 

man (1997) and Daniel et al. (1997) , among others, argue 

that characteristics such as book-to-market ratios and mar- 

ket capitalization dominate factors in explaining the cross- 

section of expected stock returns and mutual fund perfor- 

mance. 24 To address this class of models, we modify our 

baseline two-stage regression approach to use character- 

istics instead of factor betas. The resulting cross-sectional 

slopes are estimates of the compensation to characteris- 

tics accruing to on-paper stock portfolios and in real-world 

mutual funds. 

We obtain characteristic prices in the style of Fama- 

MacBeth regressions by replacing the time series beta esti- 

mates from Eq. (1) with stock portfolio or fund character- 

istics, c ikt , in the cross-sectional regressions, 

r it = 

∑ 

k 

λS 
kt c ikt 1 i ∈ S + 

∑ 

k 

λMF 
kt c ikt 1 i ∈ MF + εit , t = 1 , . . . , T . (8) 

Because characteristics are directly observed, not esti- 

mated, we no longer face an errors-in-variables problem 

arising from using estimated betas in the second-stage re- 

gression. 25 This feature allows us to use time-varying char- 

acteristics c ikt rather than averages over the full time se- 

ries. Indeed this replacement is critical because while betas 

are relatively stable across the sample period, characteris- 

tics such as average market capitalization have strong time 

trends. 26 

With the modified methodology in hand, the next step 

is to specify the set of characteristics and their construc- 

tion. We follow Daniel and Titman (1997) and Daniel et al. 

(1997) in using market capitalization, book-to-market ra- 

tios, and prior returns as characteristics. We construct 

these characteristics at the stock-month level using book- 

to-market ratios from the most recent fiscal year, market 

capitalization at the end of the current month, and prior 

12-month minus 2-month returns. We then lag book-to- 

market ratios and market capitalization by one month to 

ensure that all characteristics are available to market par- 

ticipants at the start of month t . To control data errors 

in the book-to-market ratio, we drop negative values and 

winsorize at the 1% level within each date. 
teristic need not command a zero risk premium (unlike betas), we also 

include a constant as part of the characteristic set. The inclusion of a con- 

stant at each date eliminates the influence of time trends by absorbing 

shifts in the means of the characteristics. By the same token, absorbing 

time-varying means of the characteristics renders the constant term un- 

interpretable, and we do not report it in our results. 
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Table 3 

Implementation cost estimates including liquidity principal components. 

This table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfolios (third and 

fourth rows), domestic equity mutual funds (fifth row), and their difference (first two rows). Coefficients are the average 

cross-sectional slopes λ̄k across monthly regressions of excess returns r it on time series betas ˆ βik , 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes the four Carhart (1997) factors and λ� is defined as λS − λMF . First-stage regression estimates include 

these factors, the first principal component of market liquidity proxies, and the first principal component of funding 

liquidity proxies. Liquidity proxies and stock portfolio sets are described in Section 3 . All coefficients are annualized and 

reported in percent. Standard errors are Newey-West with three lags. t statistics are reported in parentheses. Parameters 

different from zero at the 10%, 5% or 1% significance levels are marked with one, two or three asterisks. 

1970 – 2016 1993 – 2016 

N S MKT HML SMB UMD MKT HML SMB UMD 

Panel A: Value-weighted stock portfolios 

λ� 100 −0.44 4.07 ∗∗∗ 0.35 7.49 ∗∗∗ −0.12 3.30 ∗∗∗ −0.24 5.23 ∗∗∗

( −1.45) (5.17) (0.57) (5.71) ( −0.36) (3.92) ( −0.29) (3.09) 

λ� 269 −0.22 2.83 ∗∗∗ −0.02 7.55 ∗∗∗ 0.27 2.30 ∗∗∗ −0.93 5.84 ∗∗∗

( −0.92) (3.87) ( −0.03) (5.70) (1.22) (3.54) ( −1.32) (3.29) 

λS 100 6.55 ∗∗∗ 6.71 ∗∗∗ 1.26 8.77 ∗∗∗ 7.68 ∗∗ 5.38 ∗ 1.98 5.99 

(2.74) (3.63) (0.74) (3.76) (2.37) (1.90) (0.82) (1.59) 

λS 269 6.77 ∗∗∗ 5.47 ∗∗∗ 0.89 8.84 ∗∗∗ 8.08 ∗∗ 4.39 1.30 6.60 ∗

(2.83) (2.94) (0.53) (3.78) (2.51) (1.51) (0.54) (1.78) 

λMF — 6.99 ∗∗∗ 2.64 0.90 1.28 7.80 ∗∗ 2.09 2.22 0.76 

(2.87) (1.51) (0.53) (0.52) (2.41) (0.74) (0.92) (0.20) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

Panel B: Equal-weighted stock portfolios 

λ� 100 −0.53 4.48 ∗∗∗ 2.69 ∗∗∗ 6.92 ∗∗∗ 0.00 2.67 ∗∗∗ 2.32 ∗ 4.00 ∗∗

( −1.12) (5.35) (2.75) (5.14) (0.00) (2.59) (1.71) (2.27) 

λ� 269 0.05 3.64 ∗∗∗ 2.64 ∗∗ 8.54 ∗∗∗ 0.74 1.92 ∗ 2.29 5.73 ∗∗∗

(0.09) (3.79) (2.44) (5.95) (1.09) (1.81) (1.56) (2.82) 

λS 100 6.46 ∗∗∗ 7.12 ∗∗∗ 3.60 ∗ 8.20 ∗∗∗ 7.81 ∗∗ 4.76 ∗ 4.54 4.76 

(2.70) (3.88) (1.84) (3.51) (2.40) (1.73) (1.63) (1.26) 

λS 269 7.04 ∗∗∗ 6.28 ∗∗∗ 3.55 ∗ 9.82 ∗∗∗ 8.55 ∗∗∗ 4.01 4.51 6.49 

(2.97) (3.14) (1.73) (4.05) (2.66) (1.35) (1.57) (1.64) 

λMF — 6.99 ∗∗∗ 2.64 0.90 1.28 7.80 ∗∗ 2.09 2.22 0.76 

(2.87) (1.51) (0.53) (0.52) (2.41) (0.74) (0.92) (0.20) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uity funds in CRSP for the March 1980 to September 2015 period in which 

linking data are available. 
28 Characteristic ranks are an alternative transformation sometimes used 

in characteristic regressions, but they are inappropriate in our setting for 

two reasons. First, a change in rank has a different meaning for stock 

portfolios and mutual funds, particularly in light of the flow-performance 
We then build characteristics at the stock portfolio and

mutual fund group levels as value-weighted averages of

the characteristics of their constituent stocks. For stock

portfolios, we use Ken French breakpoints where avail-

able to partition NYSE, AMEX, and NASDAQ common stocks

(share code 10 or 11). For illiquidity-sorted portfolios, we

use quintiles of Amihud illiquidity in univariate-sorted

portfolios and conditional quintiles of Amihud illiquidity

by market capitalization bin in double-sorted portfolios.

The stock portfolio value of each characteristic is the value-

weighted average of its constituent stocks’ characteristics. 

To construct mutual fund characteristics, we first ob-

tain mutual fund holdings using the Thomson Reuters mu-

tual funds holdings database (s12). We match holdings at

the fund level using MFLINKS to convert Thomson Reuters

identifiers to CRSP mutual fund identifiers. 27 We form

fund-level characteristics as the dollar holdings-weighted
27 Details on the merge procedure are available at the Guide for 

MFLINKS on Wharton Data Research Services (WRDS); most importantly 

for our application, the link table matches up to 98% of the domestic eq- 
average of stock-level characteristics and fund-group char-

acteristics as the TNA-weighted average of fund-level char-

acteristics. Finally, we take logs of book-to-market ratios

and market capitalization to prevent the regressions from

being dominated by outlier firms. 28 

Table 4 reports results of Fama-MacBeth style regres-

sions using our characteristic pricing model. By contrast

with Daniel and Titman (1997) , we do not find strong ev-

idence of compensation for characteristics in stock or mu-

tual fund portfolios. This result is likely due to the sensi-
relation related to mutual funds’ prior returns characteristic. Second, 

the distribution of characteristics differs for stock portfolios and mutual 

funds, so ranking must be performed across all entities so as to not de- 

stroy information about differences in average characteristics. However, 

doing so introduces the undesirable feature that stock portfolio character- 

istics depend on the set of mutual funds considered and vice versa. 
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Table 4 

Implementation cost estimates using a characteristic model. 

This table reports Fama-MacBeth estimates of the compensation for characteristic expo- 

sure for stock portfolios (third and fourth rows), domestic equity mutual funds (fifth row), 

and their difference (first two rows). Coefficients are the average cross-sectional slopes λ̄k 

across monthly regressions of excess returns r it on characteristics, 

r it = 

(
λS 

0 t + λS 
Bt BM it + λS 

St SIZE it + λS 
Pt P212 it 

)
1 i ∈ S 

+ 

(
λMF 

0 t + λMF 
Bt BM it + λMF 

St SIZE it + λMF 
Pt P212 it 

)
1 i ∈ MF + εit , t = 1 , . . . , T, 

where BM denotes lagged log book-to-market ratios, SIZE denotes lagged log market cap- 

italization, and P 212 denotes prior 2–12 month return. λ� is defined as λS − λMF . Stock 

portfolio sets are described in Section 3 . All coefficients are annualized and reported in 

percent. Standard errors are Newey-West with three lags. t statistics are reported in paren- 

theses. Parameters different from zero at the 10%, 5% or 1% significance levels are marked 

with one, two or three asterisks. 

1980 – 2015 1993 – 2015 

N S BM SIZE P 212 BM SIZE P 212 

Panel A: Value-weighted stock portfolios 

λ� 100 1.86 −0.37 10.64 ∗ 2.10 −0.51 9.04 

(1.07) ( −0.97) (1.90) (0.89) ( −1.10) (1.25) 

λ� 269 −0.06 −0.11 7.16 ∗ −1.33 −0.14 7.99 ∗

( −0.04) ( −0.42) (1.92) ( −0.78) ( −0.39) (1.69) 

λS 100 2.53 −0.69 16.07 ∗∗ 2.17 −0.98 10.55 

(1.28) ( −1.21) (2.36) (0.82) ( −1.38) (1.14) 

λS 269 0.67 −0.43 13.02 ∗∗ −1.14 −0.60 10.17 

(0.58) ( −1.07) (2.49) ( −0.76) ( −1.16) (1.41) 

λMF — 0.69 −0.34 5.70 ∗ 0.10 −0.49 1.91 

(0.48) ( −0.90) (1.82) (0.05) ( −1.06) (0.44) 

T 429 429 429 267 267 267 

N̄ MF 997 997 997 1405 1405 1405 

Panel B: Equal-weighted stock portfolios 

λ� 100 2.78 −0.44 10.48 ∗ 3.60 −0.62 10.39 

(1.52) ( −1.07) (1.80) (1.43) ( −1.24) (1.36) 

λ� 269 −0.17 0.18 13.07 ∗∗∗ −1.22 0.16 16.20 ∗∗∗

( −0.12) (0.64) (3.71) ( −0.70) (0.42) (3.53) 

λS 100 3.35 −0.76 15.89 ∗∗ 3.51 −1.08 11.87 

(1.60) ( −1.36) (2.29) (1.24) ( −1.59) (1.24) 

λS 269 0.47 −0.14 18.82 ∗∗∗ −1.19 −0.31 18.21 ∗∗∗

(0.47) ( −0.49) (3.93) ( −0.90) ( −0.90) (2.71) 

λMF — 0.69 −0.34 5.70 ∗ 0.10 −0.49 1.91 

(0.48) ( −0.90) (1.82) (0.05) ( −1.06) (0.44) 

T 429 429 429 267 267 267 

N̄ MF 997 997 997 1405 1405 1405 
tivity of characteristic-based pricing models to the choice 

of functional form, and average return compensation may 

not be linear in logs. The prior returns characteristic is 

highly compensated in both value- and equal-weighted 

stock portfolios: a 1% increase in prior return is associated 

with a 10–19 basis point increase in future returns. Turning 

to mutual funds, compensation to this characteristic is a far 

lower 1.9–5.7 basis points, and only the latter value is even 

marginally statistically significant. Hence, the implemen- 

tation gap on the momentum characteristic remains pro- 

hibitively high at 56%–90% of the on-paper stock portfolio 

compensation. Paralleling our results in Sections 4.2 –4.3 , 

we conclude that mutual funds cannot reliably earn premia 

on characteristic versions of any of the Carhart anomalies. 

4.5. Comparison with cost estimates from other work 

Table 5 compares our real-world factor return estimates 

with estimates from selected works in the literature. Novy- 
Marx and Velikov (2016) estimate trading costs by sum- 

ming effective bid-ask spreads of traded securities, and 

by their reckoning, momentum’s trading costs reduce the 

gross strategy return from 16.0% per year to 8.16% per 

year (Table 3 of their paper). These positive momentum 

returns net-of-costs likely significantly overstate achiev- 

able returns, however, because their calculation ignores the 

price impact of trading that is particularly relevant to insti- 

tutional investors. 

Papers that consider price impact costs reach mixed 

conclusions on the implementability of momentum. 

Korajczyk and Sadka (2004) suggest that momentum prof- 

its exist only at small scales (the table reports only their 

returns net of proportional costs, and, by their reckon- 

ing, non-proportional costs quickly overwhelm strategy re- 

turns), and Lesmond et al. (2004) argue that high trans- 

action costs preclude profitable momentum strategies al- 

together. Because these studies estimate transactions-cost 

functions using all TAQ transactions, their average imple- 
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Table 5 

Comparison with selected factor profitability estimates from prior work. 

This table presents estimates of factor strategy returns. The first set of estimates are 

cross-sectional slopes using Fama-MacBeth regressions from Table 2 . For brevity we 

report only the estimates in which liquidity proxy principal components appear in 

the time series step, and we focus on the slopes for the full sample of mutual funds 

and for small mutual funds (lagged total net assets between $10 million and $50 

million). Standard errors are Newey-West with three lags. The second set of esti- 

mates are value-weighted momentum strategy returns from Table IV of Korajczyk 

and Sadka (2004) . Alphas are constructed relative to the Fama-French three fac- 

tors. αespr. 
net and αqspr. 

net represent excess momentum returns net of proportional costs 

as measured by effective spreads and quoted spreads, respectively. The third set 

of estimates are equal-weighted strategy returns from Table 3 of Lesmond et al. 

(2004) (value-weighted returns are not reported). r LDV 
net and r direct 

net are momentum 

returns net of Lesmond et al. (1999) -implied costs and “direct” costs (consisting of 

bid-ask spreads and trading commissions), respectively. The fourth set of estimates 

are realized strategy returns from Table IV of Frazzini et al. (2015) . The final set 

of estimates are value-weighted strategy returns net of Hasbrouck (2009) –implied 

effective spreads from Table 3 of Novy-Marx and Velikov (2016) . Throughout re- 

turns are annualized and t statistics are reported in parentheses. Parameters differ- 

ent from zero at the 10%, 5% or 1% significance levels are marked with one, two or 

three asterisks. 

Study 

(sample period) Parameter HML SMB UMD 

This paper λMF 2.64 0.90 1.28 

(1970–2016) (1.51) (0.53) (0.52) 

λMF 
small 

2.55 1.37 2.62 

(1.37) (0.82) (0.97) 

Korajczyk and Sadka (2004) αgross 6.84 ∗∗∗

(1967–1999) (4.54) 

αespr. 
net 5.40 ∗∗∗

(3.59) 

αqspr. 
net 4.80 ∗∗∗

(3.17) 

Lesmond et al. (2004) r gross 7.83 ∗∗∗

(1980–1998) (6.22) 

r LDV 
net 0.13 

(0.07) 

r direct 
net 2.24 

(1.22) 

Frazzini et al. (2015) r gross 4.86 7.98 ∗∗∗ 2.26 

(1986–2013) (1.12) (3.01) (0.40) 

r net 3.51 6.52 ∗∗ -0.77 

(0.80) (2.48) (-0.14) 

Novy-Marx and Velikov (2016) r gross 5.64 ∗∗∗ 3.96 ∗ 15.96 ∗∗∗

(1963–2013) (2.68) (1.66) (4.80) 

r net 5.04 ∗∗ 3.36 8.16 ∗∗

(2.39) (1.44) (2.45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mentation cost estimates smooth over heterogeneous in-

vestors and over trades unrelated to momentum strategies.

Nevertheless, Lesmond et al. (2004) find that momentum

has an economically unimportant premium for the average

trader. 

Our factor compensation estimates fall on the lower

end of the spectrum, and our results are most similar to

Lesmond et al. (2004) in that we find no net-of-cost com-

pensation to momentum. We square our implementation

cost estimates with prior work in two ways. First, we de-

compose implementation costs to better understand what

frictions erode mutual funds’ ability to capture factor pre-

mia. Section 5 considers the roles of shorting frictions and

limitations on funds’ investable universe, as well as the

trade-off between tracking error and performance more

generally. Second, Section 6 considers cross-sectional and

time series variation in costs across funds, and we find
substantial heterogeneity. Differences between average and

skilled funds reconcile the lower costs seen in studies of

single funds using proprietary trading data and studies of

average traders in TAQ. 

5. Decomposing implementation costs 

5.1. The role of mutual fund shorting constraints 

The implementation gap we estimate reflects the dif-

ference between on-paper and real-world performance for

zero-cost factor strategies. Such strategies consist of fi-

nancing long position by shorting other stocks, for exam-

ple, selling growth stocks to purchase value stocks. Institu-

tional impediments to shorting may significantly increase

costs on the short side and reduce the performance of real-

world factor strategies. 
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Table 6 

Implementation cost estimates based on long-only factors. 

This table reports Fama-MacBeth estimates of the compensation for long-only factor exposure for positive and 

negative beta stock portfolios (third and fourth rows), domestic equity mutual funds (fifth row), and their difference 

(first two rows). Coefficients are the average cross-sectional slopes λ̄k across monthly regressions of excess returns 

r it on time series betas ˆ β+ 
ik 

, 

r it = 

∑ 

k 

λS 
kt 

ˆ β+ 
ik 

1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ β+ 
ik 

1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes the long-only versions of the Carhart (1997) factors (the excess returns on MKT, H, S , and U ) 

and λ� is defined as λS − λMF . Stock portfolio sets are described in Section 3 . All coefficients are annualized and 

reported in percent. Standard errors are Newey-West with three lags. t statistics are reported in parentheses. Pa- 

rameters different from zero at the 10%, 5% or 1% significance levels are marked with one, two or three asterisks. 

1970 – 2016 1993 – 2016 

N S MKT HML + SMB + UMD + MKT HML + SMB + UMD + 

Panel A: Value-weighted stock portfolios 

λ� 100 −0 . 61 ∗ 2.56 ∗∗∗ 0.52 3.09 ∗∗∗ −0.32 2.10 ∗∗∗ 0.32 2.41 ∗∗∗

( −1.94) (4.05) (1.00) (4.52) ( −0.92) (3.85) (0.56) (2.98) 

λ� 269 −0.29 1.60 ∗∗∗ 0.02 2.85 ∗∗∗ 0.18 1.30 ∗∗∗ −0.34 2.46 ∗∗∗

( −1.21) (2.72) (0.04) (4.25) (0.81) (3.00) ( −0.61) (2.85) 

λS 100 6.22 ∗∗∗ 12.25 ∗∗∗ 9.19 ∗∗∗ 11.69 ∗∗∗ 7.32 ∗∗ 12.89 ∗∗∗ 10.84 ∗∗ 12.12 ∗∗∗

(2.59) (4.33) (2.85) (4.11) (2.24) (3.19) (2.54) (3.22) 

λS 269 6.54 ∗∗∗ 11.29 ∗∗∗ 8.68 ∗∗∗ 11.46 ∗∗∗ 7.82 ∗∗ 12.09 ∗∗∗ 10.17 ∗∗ 12.17 ∗∗∗

(2.73) (3.95) (2.68) (4.02) (2.41) (2.95) (2.38) (3.24) 

λMF — 6.83 ∗∗∗ 9.69 ∗∗∗ 8.66 ∗∗∗ 8.60 ∗∗∗ 7.63 ∗∗ 10.80 ∗∗∗ 10.51 ∗∗ 9.71 ∗∗

(2.81) (3.25) (2.60) (2.85) (2.34) (2.59) (2.44) (2.48) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

Panel B: Equal-weighted stock portfolios 

λ� 100 −0.83 3.82 ∗∗∗ 2.21 ∗∗∗ 3.64 ∗∗∗ −0.25 3.11 ∗∗∗ 2.31 ∗∗∗ 3.27 ∗∗∗

( −1.66) (6.06) (3.37) (5.46) ( −0.43) (5.57) (2.64) (4.01) 

λ� 269 −0.26 3.40 ∗∗∗ 2.17 ∗∗∗ 4.25 ∗∗∗ 0.41 2.84 ∗∗∗ 2.38 ∗∗ 4.26 ∗∗∗

( −0.50) (4.92) (2.96) (6.29) (0.66) (4.21) (2.25) (4.86) 

λS 100 6.00 ∗∗ 13.50 ∗∗∗ 10.88 ∗∗∗ 12.24 ∗∗∗ 7.38 ∗∗ 13.91 ∗∗∗ 12.82 ∗∗∗ 12.98 ∗∗∗

(2.49) (4.71) (3.27) (4.27) (2.23) (3.41) (2.87) (3.39) 

λS 269 6.57 ∗∗∗ 13.09 ∗∗∗ 10.83 ∗∗∗ 12.86 ∗∗∗ 8.04 ∗∗ 13.64 ∗∗∗ 12.90 ∗∗∗ 13.98 ∗∗∗

(2.75) (4.44) (3.19) (4.44) (2.46) (3.23) (2.80) (3.64) 

λMF — 6.83 ∗∗∗ 9.69 ∗∗∗ 8.66 ∗∗∗ 8.60 ∗∗∗ 7.63 ∗∗ 10.80 ∗∗∗ 10.51 ∗∗ 9.71 ∗∗

(2.81) (3.25) (2.60) (2.85) (2.34) (2.59) (2.44) (2.48) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

ket capitalization for all dates, then the return to the tilt factor HML # is 

H − ( H + L ) / 2 or HML /2, and the accessible tilt factor is proportional to 

standard HML . 
30 Intriguingly, the scaling of long-only implementation costs relative 
In this section we adapt our Fama-MacBeth approach 

to evaluate the extent to which implementation gaps arise 

from shorting frictions. To do this, we consider two long- 

only variants of value, size, and momentum. For pure no- 

shorting strategies, mutual funds borrow at the risk-free 

rate to invest in the long side of each factor. Our long-only 

factors are the excess returns on H, S , and U portfolios, all 

of which are accessible to short-sale constrained mutual 

funds, and we denote these long-only factors with a “+”

superscript. 

The typical mutual fund is highly exposed to the mar- 

ket, the mean and median correlations with the S&P 500 

are 85% and 90%, and increasing exposure to H, S , or U can 

be financed by reducing a long position in other securi- 

ties (e.g., the market) instead of by opening a short po- 

sition. With this motivation, we also consider returns on 

“tilt” factors, defined as the difference between the long- 

factor portfolios and the market. 29 We denote the tilt fac- 
29 Such tilt factors also have the advantage of closely tracking the tra- 

ditional Carhart factors. For example, if H and L have comparable mar- 
tors with a “# ” superscript. For both sets of factors, we do 

not modify MKT because the market factor is already in ex- 

cess return form and accessible to long-only funds. 

Table 6 reports stock portfolio and mutual fund returns 

to the long-only Carhart factors. Focusing on the differ- 

ences in premia earned, λ�, relative to the baseline esti- 

mates, the long-only factor implementation costs are about 

60% as large for HML + and about 40% as large for UMD 

+ , 
but they are of comparable statistical significance. 30 As 

before, we find no evidence of significant implementa- 

tion costs for market or long-only size factor exposures in 

value-weighted portfolios. Equal-weighted portfolio results 
to total implementation costs is in line with the Israel and Moskowitz 

(2013) finding that roughly 60% of the value premium and 50% of the mo- 

mentum premium are earned on the long side of the anomalies. We find 

that real-world trading costs are roughly proportional to premia earned 

in on-paper portfolios. 
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Table 7 

Implementation cost estimates based on tilt factors. 

This table reports Fama-MacBeth estimates of the compensation for long-only factor exposure for positive 

and negative beta stock portfolios (third and fourth rows), domestic equity mutual funds (fifth row), and 

their difference (first two rows). Coefficients are the average cross-sectional slopes λ̄k across monthly re- 

gressions of excess returns r it on time series betas ˆ β# 
ik 
, 

r it = 

∑ 

k 

λS 
kt 

ˆ β# 
ik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ β# 
ik 1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes “tilt” versions of the Carhart (1997) factors (the excess return on the market, and H, S , 

and U net of the market) and λ� is defined as λS − λMF . Stock portfolio sets are described in Section 3 . 

All coefficients are annualized and reported in percent. Standard errors are Newey-West with three lags. t 

statistics are reported in parentheses. Parameters different from zero at the 10%, 5% or 1% significance levels 

are marked with one, two or three asterisks. 

1970 – 2016 1993 – 2016 

N S MKT HML # SMB # UMD # MKT HML # SMB # UMD # 

Panel A: Value-weighted stock portfolios 

λ� 100 −0 . 61 ∗ 3.17 ∗∗∗ 1.13 ∗ 3.70 ∗∗∗ −0.32 2.41 ∗∗∗ 0.64 2.72 ∗∗∗

( −1.94) (4.34) (1.77) (5.08) ( −0.92) (3.39) (0.86) (3.09) 

λ� 269 −0.29 1.89 ∗∗∗ 0.31 3.15 ∗∗∗ 0.18 1.11 ∗∗ −0.52 2.27 ∗∗∗

( −1.21) (3.06) (0.58) (4.81) (0.81) (2.36) ( −0.91) (2.74) 

λS 100 6.22 ∗∗∗ 6.03 ∗∗∗ 2.97 ∗ 5.47 ∗∗∗ 7.32 ∗∗ 5.58 ∗∗ 3.52 4.80 ∗∗∗

(2.59) (4.19) (1.94) (4.57) (2.24) (2.49) (1.64) (2.72) 

λS 269 6.54 ∗∗∗ 4.75 ∗∗∗ 2.15 4.92 ∗∗∗ 7.82 ∗∗ 4.28 ∗ 2.36 4.35 ∗∗

(2.73) (3.28) (1.42) (4.18) (2.41) (1.85) (1.11) (2.54) 

λMF — 6.83 ∗∗∗ 2.86 ∗ 1.83 1.77 7.63 ∗ 3.16 2.88 2.08 

(2.81) (1.92) (1.17) (1.47) (2.34) (1.36) (1.34) (1.24) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

Panel B: Equal-weighted stock portfolios 

λ� 100 −0.83 4.65 ∗∗∗ 3.04 ∗∗∗ 4.47 ∗∗∗ −0.25 3.36 ∗∗∗ 2.56 ∗∗ 3.52 ∗∗∗

( −1.66) (5.56) (3.16) (5.92) ( −0.43) (4.31) (2.18) (3.81) 

λ� 269 −0.26 3.66 ∗∗∗ 2.43 ∗∗ 4.52 ∗∗∗ 0.41 2.43 ∗∗ 1.97 3.85 ∗∗∗

( −0.50) (3.97) (2.28) (6.33) (0.66) (2.55) (1.38) (4.34) 

λS 100 6.00 ∗∗ 7.50 ∗∗∗ 4.88 ∗∗∗ 6.24 ∗∗∗ 7.38 ∗∗ 6.53 ∗∗∗ 5.44 ∗∗ 5.60 ∗∗∗

(2.49) (5.06) (2.75) (4.98) (2.23) (2.98) (2.23) (3.08) 

λS 269 6.57 ∗∗∗ 6.52 ∗∗∗ 4.27 ∗∗ 6.29 ∗∗∗ 8.04 ∗∗ 5.60 ∗∗ 4.85 ∗ 5.93 ∗∗∗

(2.75) (4.00) (2.26) (4.82) (2.46) (2.27) (1.82) (3.23) 

λMF — 6.83 ∗∗∗ 2.86 ∗ 1.83 1.77 7.63 ∗ 3.16 2.88 2.08 

(2.81) (1.92) (1.17) (1.47) (2.34) (1.36) (1.34) (1.24) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are very similar, although we do find a significant SMB +

implementation gap because of the increased weight as-

signed to difficult-to-access microcaps with high average

returns. 

The table also reports the risk premia earned on the

long side of each factor. On paper, long-only value and mo-

mentum premia are large relative to the equity premium,

with gaps of 5%–6% depending on the choice of portfo-

lio weighting and time period. These expected-return im-

provements earned by tilting away from the market port-

folio are reflected much less strongly in mutual funds. 

Table 7 replaces long-only factors with tilt factors. Our

conclusions are much the same as above: HML # and UMD 

#

suffer lar ge im plementation costs in practice regardless of

time period or portfolio weighting. Moreover, the magni-

tude of these estimated costs is comparable to that of the

long-only factors in Table 6 : real-world under-performance

is robust to assumptions on how funds implement the long

side of anomalies. Focusing on the second and third panels

delivers statistical assessments of the cross-column com-

parisons of Table 6 . Mutual funds earn a marginally statis-
tically significant premium on value tilts in the full sample

and zero premium to factor tilts for all other factors and

sample periods. By contrast, stocks earn robust premia to

value and momentum tilts. 

From both tables we conclude that the implementation

costs of long-only versions of standard factors are signifi-

cant and comparable to short-side costs. Real-world short-

ing frictions hence explain as much as half of the high

all-in implementation costs of value and momentum fac-

tors. The high cost of shorting restrictions may explain the

growing popularity of levered mutual funds, e.g., “130/30”

funds, for which these restrictions are less binding. 

5.2. The role of investability frictions 

Implementation costs attenuate the returns to traded

securities and motivate investors to depart from prescribed

factor strategies. Frictions that reduce the set of invest-

ment opportunities are an important “shadow” implemen-

tation cost, analogous to the shadow price on a constraint

on which stocks can be included in a portfolio, faced by
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31 Appendix G considers an alternative way to focus on funds that target 

particular factors. We find that funds with reliable exposures to a factor 

suffer only slightly lower costs than the typical mutual fund. 
32 The top R 2 quintile also includes many index funds (roughly 5% of 

observations in our sample). Because index funds seek to replicate factors 

at the lowest possible cost, we expect factor compensation estimates for 

this quintile to represent the best case achievable for passive or active 

mutual funds. 
real-world investors and missed by existing measures of 

costs. In this section we consider the role of security size 

in circumscribing mutual funds’ investable universe. Se- 

curity size is a natural candidate for explaining the per- 

formance gap between on-paper and real-world factor in- 

vesting because the highest returns to HML exposure are 

earned in the smallest stocks ( Fama and French, 2012; Is- 

rael and Moskowitz, 2013 ), and low-market capitalization 

securities are too small to accommodate meaningful in- 

vestment by large mutual funds. 

The smallest stocks, or “microcaps,” present especially 

challenging environments for asset managers because of 

their particularly low carrying capacities and high trans- 

action costs. Perhaps because of the challenges facing po- 

tential arbitrageurs in this space, the majority of academic 

anomalies exist only in these “dusty corners” of the stock 

market ( Hou et al., 2017 ). To evaluate the effect of micro- 

caps on our cost estimates, we exclude microcaps from 

our set of stock portfolios. We follow Fama and French 

(2008) and Hou et al. (2017) in defining microcaps as 

stocks with market capitalization less than the 20th per- 

centile of NYSE market capitalization, and we implement 

this filter by dropping the smallest-size portfolios from 

double-sorted size-value, size-beta, size-prior return, and 

size-Amihud portfolios. This exclusion eliminates a fifth of 

the portfolios but only 3% of market capitalization ( Fama 

and French, 2008 ). 

Table 8 reports Fama-MacBeth estimates of factor pre- 

mia on this set of stock portfolios. We present only 

value-weighted results because we are interested in down- 

weighting tiny stocks to reflect the investable universe. Our 

main finding is that microcaps indeed explain some of the 

measured performance attrition for value and momentum 

strategies, but not enough to close the measured imple- 

mentation gap. As a useful placebo, the gap on replicating 

performance on the value-weighted market changes by at 

most a few basis points. 

In the 1970–2016 sample, both value and momentum 

compensation are about 1% smaller in the stock portfo- 

lios in which microcaps are excluded. This difference per- 

sists for value in the more recent sample, echoing Fama 

and French (2012) and Israel and Moskowitz (2013) , but 

it roughly halves for momentum. Nevertheless, the per- 

formance gap between non-microcap stock portfolios and 

mutual funds remains economically large and statistically 

robust. If mutual funds indeed cannot invest in microcap 

stocks, this narrowing of the investable universe explains 

about one-third of the implementation gap for value and 

about one-sixth of the implementation gap for momentum. 

5.3. Tracking error and the performance of factor strategies 

Mutual funds face a trade-off between following high- 

cost canonical factor strategies and deviating from those 

strategies to capture the bulk of factor premia at lower 

costs. Benchmark-based performance evaluation in partic- 

ular pushes funds to mimic factor benchmarks despite 

the potentially lower Sharpe ratios of doing ( Basak and 

Pavlova, 2013 ). In this section we split our sample into 

quintiles by Carhart four-factor R 2 s to evaluate whether 
variation in tracking error is associated with factor strat- 

egy performance. 

This split also serves a second function in combating 

bias in our implementation cost estimates that arises from 

misspecifying mutual fund strategies. Bias occurs if inci- 

dental factor exposures incurred by other activities are 

cross-sectionally correlated with mutual fund returns. For 

especially high R 2 values in the time series regressions, the 

scope for omitted variable bias is small if coefficients are 

stable across specifications, as they are in our study ( Oster, 

2019 ). 

To perform this split, we run the time series regressions 

fund-by-fund as before using the Carhart (1997) model, 

and we sort funds into one of five equally-spaced bins at 

each date based on the R 2 of their time series regression. 31 

Funds with high R 2 have returns nearly spanned by the 

academic strategies, and these funds have low tracking er- 

ror and little scope for omitted strategies that might com- 

plicate the interpretations of λMF and λ�. 32 Conversely, 

funds with lower R 2 either implement academic strate- 

gies with greater discretion and/or tracking error, or imple- 

ment strategies that we cannot observe. We then construct 

cross-sectional mutual fund factor compensation estimates 

for each R 2 group as in Tables 2 –3 . 

Table 9 presents results from the splits by explanatory 

power of the four-factor model on the full 1970–2016 sam- 

ple. The decomposition by R 2 delivers two results related 

to how funds implement asset pricing factors. First, per- 

haps unsurprisingly, funds that track factors more closely 

are generally more efficient at earning factor premia. Per- 

formance differences across fund quintiles are statistically 

significant for MKT, SMB , and UMD factors. This result is 

reversed for the market factor. Funds with greater devia- 

tions from the academic factors typically achieve greater 

returns to market beta. Small deviations from the CRSP 

market go a long way toward improving returns: market 

exposure is compensated 41–81 basis points more in mu- 

tual funds that track the four factors less well. This find- 

ing reinforces the importance of using flexible approaches 

to measuring implementation costs that are robust to real- 

world departures from the academic factors. 

Second, and more importantly for our study, relative 

to the average mutual fund, funds with the highest R 2 s 

achieve economically similar performance on market and 

value factors and somewhat higher performance on size 

and momentum factors. Value premia are about 1% larger 

among the funds most closely mimicking academic factors, 

and compensation for value exposure is significantly differ- 

ent from zero at the 5% level for the highest R 2 quintile. 

Likewise, returns to momentum exposure for this group 

are nearly triple those of the typical mutual fund, and 

they are statistically significant with strength depending 
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Table 8 

Implementation cost estimates with microcaps excluded. 

This table reports Fama-MacBeth estimates of the compensation for factor exposure in value-weighted stock portfolios 

in the baseline regressions (Panel A) and regressions with liquidity principal components (Panel B). Coefficients are the 

average cross-sectional slopes λ̄k across monthly regressions of excess returns r it on time series betas ˆ βik , 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes the four Carhart (1997) factors and λ� is defined as λS − λMF . First-stage regression estimates in Panel 

B include these factors, the first principal component of market liquidity proxies, and the first principal component 

of funding liquidity proxies. Liquidity proxies and stock portfolio sets are described in Section 3 , with the important 

distinction that all portfolios with the smallest market capitalization quintile are excluded in the N S = 80 specifications. 

All coefficients are annualized and reported in percent. Standard errors are Newey-West with three lags. t statistics are 

reported in parentheses. Parameters different from zero at the 10%, 5% or 1% significance levels are marked with one, 

two or three asterisks. 

1970 – 2016 1993 – 2016 

N S MKT HML SMB UMD MKT HML SMB UMD 

Panel A: Baseline specification 

λ� 80 −0.37 2.85 ∗∗∗ 0.70 6.14 ∗∗∗ 0.10 2.06 ∗∗ −0.42 3.49 ∗∗

( −1.39) (3.84) (1.24) (4.66) (0.32) (2.44) ( −0.61) (2.12) 

λS 80 6.61 ∗∗∗ 5.47 ∗∗∗ 1.71 7.68 ∗∗∗ 7.88 ∗∗∗ 4.37 1.78 5.23 

(2.74) (3.03) (1.07) (3.31) (2.40) (1.57) (0.80) (1.41) 

λS 100 6.60 ∗∗∗ 6.43 ∗∗∗ 1.27 8.72 ∗∗∗ 7.67 ∗∗ 5.43 ∗ 1.96 6.01 

(2.75) (3.51) (0.75) (3.74) (2.35) (1.93) (0.81) (1.60) 

λMF – 6.98 ∗∗∗ 2.62 1.01 1.54 7.78 ∗∗ 2.31 2.20 1.73 

(2.86) (1.51) (0.59) (0.63) (2.38) (0.83) (0.92) (0.45) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

Panel B: Including liquidity principal components 

λ� 80 −0.37 2.97 ∗∗∗ 0.55 6.42 ∗∗∗ 0.13 2.25 ∗∗∗ −0.69 4.55 ∗∗∗

( −1.34) (3.81) (0.97) (4.82) (0.4) (2.64) ( −0.96) (2.65) 

λS 80 6.63 ∗∗∗ 5.60 ∗∗∗ 1.45 7.70 ∗∗∗ 7.93 ∗∗ 4.34 1.53 5.31 

(2.76) (3.10) (0.91) (3.31) (2.43) (1.56) (0.68) (1.43) 

λS 100 6.55 ∗∗∗ 6.71 ∗∗∗ 1.26 8.77 ∗∗∗ 7.68 ∗∗ 5.38 ∗ 1.98 5.99 

(2.74) (3.63) (0.74) (3.76) (2.37) (1.90) (0.82) (1.59) 

λMF – 6.99 ∗∗∗ 2.64 0.90 1.28 7.80 ∗∗ 2.09 2.22 0.76 

(2.87) (1.51) (0.53) (0.52) (2.41) (0.74) (0.92) (0.20) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on specification. Even so, the funds that most closely track

the four academic factors continue to significantly under-

perform the on-paper factors. The best-performing R 2 seg-

ments for value see an implementation gap of 1%–2% rela-

tive to the stock portfolios, and the momentum implemen-

tation gap for these funds is roughly half the on-paper mo-

mentum premium. 

One potential concern with sorting by R 2 s is that do-

ing so is equivalent to sorting on the precision in β esti-

mates. Because attenuation toward zero increases in mea-

surement error, compensation to factor premia may be

biased downward more for low R 2 funds than high R 2

funds. In unreported results we apply the same Jegadeesh

et al. (2019) measurement-error correction described in

Appendix F . Results are unchanged throughout Table 9 ,

with one notable exception: unlike the preceding results,

the momentum implementation gap for the most success-

ful segment is a third of the on-paper momentum pre-

mium in the full sample and a sixth in the recent sample.

We leave a fuller analysis of cross-sectional differences in

mutual funds’ ability to harvest factor premia to ongoing

work. 
6. Cost estimates across funds and time 

6.1. Implementation costs across funds 

With the exception of the breakdown by four-factor R 2 s,

our analysis thus far considers the implementation costs of

factor strategies for an average mutual fund, with no atten-

tion paid to heterogeneous characteristics and costs. Vari-

ation in investors’ trading technologies may drive a wedge

between a typical asset manager and the marginal investor

in an anomaly. By dividing asset managers into groups

we can learn whether factors are broadly (in)accessible or

whether they generate positive net-of-costs returns for a

subset of managers. In this section, we briefly demonstrate

the utility of our cross-sectional approach for examining

segments of asset managers. 

Motivated by extensive work relating fund size to gross-

of-fees performance (e.g., Berk and Green, 2004; Pastor

et al., 2015; Berk and van Binsbergen, 2015 ), we split fund

groups into groups based on lagged total net assets. We

then run our second-stage cross-sectional regressions, pre-

sented in Eq. (2) , separately for each asset manager TNA
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Table 9 

Fama-MacBeth slopes for stocks and mutual funds, R 2 quintile splits. 

Table reports Fama-MacBeth estimates of the compensation for factor exposure for domestic equity mutual funds. 

Coefficients are the average cross-sectional slopes ̄λg 

k 
across monthly regressions of excess returns r it on time series 

betas ˆ βik for each group of mutual funds g , 

r it = 

∑ 

k 

λMF,g 

kt 
ˆ βik + εit , t = 1 , . . . , T, g = 1 , . . . , 5 , 

where k indexes the four Carhart (1997) factors. We partition mutual funds into five equal groups sorted by time 

series regression R 2 s from the Carhart model, where R 2 cutoffs are set at each date based on the sample of live 

funds. “5” indicates the highest R 2 funds, and “1” indicates the lowest R 2 funds. The first column reports the 

average R 2 s across all fund-date observations within each R 2 group. Subsequent first-stage regression estimates 

include these factors only (columns two to five) and the first principal component of market and funding liquidity 

proxies (columns six to nine). Liquidity proxies and stock portfolio sets are described in Section 3 . λ�
5 is the 

difference between compensation for factor exposure between the 269 stock portfolios and the highest R 2 fund 

group. All coefficients are annualized and reported in percent. Standard errors are Newey-West with three lags. t 

statistics are reported in parentheses. Parameters different from zero at the 10%, 5% or 1% significance levels are 

marked with one, two or three asterisks. The final three rows report the p values of F tests of coefficients being 

jointly different from zero, of F tests of equality of coefficients, and the Patton and Timmermann (2010) test of 

non-monotonicity of coefficients. 

Baseline specification Including liquidity PCs 

R̄ 2 MKT HML SMB UMD MKT HML SMB UMD 

λMF 
5 94.2% 6.50 ∗∗∗ 3.60 ∗∗ 1.78 4.59 ∗ 6.52 ∗∗∗ 3.97 ∗∗ 1.74 5.36 ∗∗

(2.69) (1.99) (1.04) (1.68) (2.71) (2.15) (1.02) (1.99) 

λMF 
4 89.9% 6.91 ∗∗∗ 2.93 ∗ 2.67 0.73 6.89 ∗∗∗ 3.04 ∗ 2.72 0.34 

(2.82) (1.70) (1.57) (0.26) (2.83) (1.74) (1.59) (0.12) 

λMF 
3 86.0% 7.31 ∗∗∗ 3.00 ∗ 0.09 3.23 7.28 ∗∗∗ 2.89 0.11 2.30 

(2.96) (1.68) (0.05) (1.20) (2.95) (1.59) (0.06) (0.86) 

λMF 
2 79.9% 7.29 ∗∗∗ 2.66 1.15 −0.81 7.27 ∗∗∗ 2.42 1.14 −1.45 

(2.98) (1.48) (0.64) ( −0.31) (2.98) (1.32) (0.64) ( −0.55) 

λMF 
1 55.4% 7.00 ∗∗∗ 2.93 −0.98 2.08 7.14 ∗∗∗ 3.44 ∗ −1.51 2.38 

(2.80) (1.52) ( −0.49) (0.72) (2.85) (1.75) ( −0.75) (0.81) 

λMF 81.1% 6.98 ∗∗∗ 2.62 1.01 1.54 6.99 ∗∗∗ 2.64 0.90 1.28 

(2.86) (1.51) (0.59) (0.63) (2.87) (1.51) (0.53) (0.52) 

λS – 6.77 ∗∗∗ 5.20 ∗∗∗ 0.94 8.85 ∗∗∗ 6.77 ∗∗∗ 5.47 ∗∗∗ 0.89 8.84 ∗∗∗

(2.82) (2.84) (0.56) (3.80) (2.83) (2.94) (0.53) (3.78) 

λ�
5 – 0.27 1.60 ∗∗ −0.84 4.26 ∗∗∗ 0.25 1.49 ∗ −0.85 3.48 ∗∗

(1.17) (2.02) ( −1.45) (2.80) (1.08) (1.85) ( −1.46) (2.21) 

λi = 0 0.00 ∗∗∗ 0.41 0.00 ∗∗∗ 0.02 ∗∗ 0.00 ∗∗∗ 0.22 0.00 ∗∗∗ 0.00 ∗∗∗

λi = λ∗ 0.00 ∗∗∗ 0.83 0.00 ∗∗∗ 0.01 ∗∗∗ 0.01 ∗∗ 0.47 0.00 ∗∗∗ 0.00 ∗∗∗

�λ� 0 0.27 0.08 ∗ 0.79 0.68 0.13 0.37 0.85 0.78 
group. 33 We set aside funds with less than $10 million in 

assets because selection into this group implies that the 

fund has lost money (we retain observations only after 

funds reach $10 million in assets to avoid incubation bias). 

Table 10 presents results from these segmented regres- 

sions on the full 1970–2016 sample. As in Tables 2 –3 , mu- 

tual funds generally achieve returns to market factor expo- 

sure comparable to those of on-paper stock portfolios. HML 

also earns positive compensation for most TNA groups, but 

returns to HML are not statistically different from zero 

in both specifications, with the possible exception of the 

mega-funds group. Point estimates for returns to SMB are 

positive for all fund size groups excluding micro funds, 

but SMB compensation estimates are not statistically dis- 

tinguishable from zero or from each other. 
33 Groups are assigned separately for each date with cutoffs in terms 

of December 2016 dollars. The micro-fund group has TNA t < $10 M and 

contains 5.2% of the data. The small-fund group has $10 M < TNA t < $50 M 

and contains 22.8% of the data. The medium-fund group has 

$50 M < TNA t < $250 M and contains 31.8% of the data. The large- 

fund group has $250 M < TNA t < $1 B and contains 22.5% of the data. The 

mega-fund group has TNA t > $1 B and contains 17.7% of the data. 
Focusing on momentum, we estimate large differences 

in compensation across mutual fund size categories, with 

the smallest funds earning 5%–6% more per unit mo- 

mentum beta than the largest funds. Notwithstanding the 

greater momentum-strategy performance of small funds, 

we nonetheless continue to reject the hypothesis that 

these funds perform as well as on-paper stock portfolios. 

We can also reject non-monotonicity of momentum com- 

pensation across size categories using the bootstrap test of 

Patton and Timmermann (2010) : we find momentum strat- 

egy performance is significantly decreasing in fund size. 

This feature makes intuitive sense in that momentum is a 

high-turnover strategy, and larger funds suffer greater mar- 

ket impact costs in implementing momentum than smaller 

funds. 

From this analysis we conclude that heterogeneity 

among asset managers is important when considering the 

net-of-costs returns to momentum. When we focus only 

on small mutual funds, net-of-costs compensation to mo- 

mentum looks quite different from that of the average 

fund. Which momentum premium is of greater interest 

hinges on whether the researcher evaluates a broad set 
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Table 10 

Fama-MacBeth slopes for stocks and mutual funds, size splits. 

This table reports Fama-MacBeth estimates of the compensation for factor exposure for domestic equity mutual funds. Coefficients are the 

average cross-sectional slopes λ̄g 

k 
across monthly regressions of excess returns r it on time series betas ˆ βik for each group of mutual funds g , 

r it = 

∑ 

k 

λMF,g 

kt 
ˆ βik + εit , t = 1 , . . . , T, g = 1 , . . . , 5 , 

where k indexes the four Carhart (1997) factors. We partition mutual funds into four groups based on one-month lagged total net 

assets (TNA), with TNA cutoffs specified in December 2016 USD. The micro-fund group has TNA t < $10 M , the small-fund group has 

$10 M < TNA t < $50 M , the medium-fund group has $50 M < TNA t < $250 M , the large-fund group has $250 M < TNA t < $1 B , and the 

mega-fund group has TNA t > $1 B . First-stage regression estimates include these factors only (columns one to four) and the first princi- 

pal component of market and funding liquidity proxies (columns five to eight). Liquidity proxies and stock portfolio sets are described in 

Section 3 . λ�
small 

is the difference between compensation for factor exposure between the 269 stock portfolios and the small-fund group. 

All coefficients are annualized and reported in percent. Standard errors are Newey-West with three lags. t statistics are reported in paren- 

theses. Parameters different from zero at the 10%, 5% or 1% significance levels are marked with one, two or three asterisks. The final three 

rows report the p values of F tests of coefficients being jointly different from zero, of F tests of equality of coefficients, and the Patton and 

Timmermann (2010) test of non-monotonicity of coefficients. 

Baseline specification Including liquidity PCs 

MKT HML SMB UMD MKT HML SMB UMD 

λMF 
mega 6.66 ∗∗∗ 3.11 ∗ 1.89 −2.53 6.67 ∗∗∗ 3.15 ∗ 1.94 −2.77 

(2.74) (1.67) (1.05) ( −0.75) (2.75) (1.66) (1.08) ( −0.84) 

λMF 
large 

6.85 ∗∗∗ 2.78 0.90 0.86 6.86 ∗∗∗ 2.83 0.91 0.04 

(2.78) (1.54) (0.52) (0.31) (2.79) (1.54) (0.53) (0.02) 

λMF 
medium 

7.02 ∗∗∗ 2.45 0.90 2.36 7.00 ∗∗∗ 2.45 0.96 1.76 

(2.87) (1.41) (0.52) (0.92) (2.86) (1.37) (0.55) (0.68) 

λMF 
small 

7.36 ∗∗∗ 2.94 1.20 3.40 7.30 ∗∗∗ 2.55 1.37 2.62 

(2.98) (1.64) (0.72) (1.25) (2.96) (1.37) (0.82) (0.97) 

λMF 
micro 

7.18 ∗∗∗ 2.60 −2.68 −0.24 7.18 ∗∗∗ 2.54 −3.29 −0.04 

(2.94) (1.11) ( −1.32) ( −0.06) (2.92) (1.11) ( −1.59) ( −0.01) 

λ�
small 

−0.59 2.26 ∗∗ −0.26 5.45 ∗∗∗ −0.53 2.92 ∗∗ −0.48 6.22 ∗∗∗

( −1.59) (2.22) ( −0.34) (3.32) ( −1.4) (2.58) ( −0.62) (3.76) 

λMF 6.98 ∗∗∗ 2.62 1.01 1.54 6.99 ∗∗∗ 2.64 0.90 1.28 

(2.86) (1.51) (0.59) (0.63) (2.87) (1.51) (0.53) (0.52) 

λi = 0 0.01 ∗∗∗ 0.46 0.56 0.11 0.01 ∗∗ 0.52 0.52 0.14 

λi = λ∗ 0.13 0.81 0.46 0.13 0.20 0.83 0.44 0.13 

�λ� 0 0.01 ∗∗∗ 0.28 0.20 0.01 ∗∗∗ 0.01 ∗∗∗ 0.06 ∗ 0.28 0.01 ∗∗∗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of firms, as in benchmarking applications, or marginal in-

vestors, as in discussions of market efficiency. Intriguingly

we find that the largest mutual funds earn the most neg-

ative compensation for momentum exposure, suggesting

that the firm examined in Frazzini et al. (2015) is excep-

tional, or that non-mutual fund asset managers have differ-

ent compensation schedules for factor exposure. More gen-

erally, our results reveal that the long-standing disagree-

ment on the profitability of momentum strategies likely

arises in part because market-wide and single-firm anal-

yses, e.g., Lesmond et al. (2004) and Frazzini et al. (2015) ,

respectively, focus on different sets of institutions with dif-

ferent factor implementation technologies. 

6.2. Implementation costs over time 

The preceding analysis considers how implementation

costs vary in the cross section. In this section, we inves-

tigate determinants of time series variation in implemen-

tation costs. Fig. 2 plots the log return of the on-paper

factor–mimicking portfolios minus the log return of the

corresponding mutual fund factor–mimicking portfolio. To

do this we invoke the interpretation of Fama-MacBeth co-

efficients λkt as the date t return on a portfolio with a

unit loading on factor k and zero loading on all other fac-
tors. Our series is the centered rolling difference in perfor-

mance, 

y k ( t ) = 

t+6 ∑ 

s = t−6 

log 
(
1 + λS 

kt 

)
− log 

(
1 + λMF 

kt 

)
≈

t+6 ∑ 

s = t−6 

λ�
kt . (9)

The four panels of Fig. 2 depict factor implementa-

tion costs for each set of liquidity proxies using the 269

stock portfolios as the on-paper return benchmark. Al-

though magnitudes vary slightly across specifications, the

two slope series are highly similar for each factor. The

implementation gap is clearly rank-ordered as UMD, HML,

SMB , and MKT , with large and positive implementation

gaps for UMD and HML , no implementation gap for SMB ,

and a small negative implementation gap for MKT . The dif-

ference series are also affected by macroeconomic events.

All four implementation gaps fall before the end of the

tech bubble of the late 1990s and rise during the subse-

quent crash and the Great Recession of 20 07–20 09. One

interpretation of this feature is that factor returns are most

accessible by investment managers when market liquid-

ity is abundant and funding constraints are unlikely to be

binding. 

Perhaps the most intriguing feature of Fig. 2 is the

absence of a clear trend in strategy implementation

costs. This feature contrasts with well-documented secular
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Fig. 2. Rolling performance difference between mutual funds and stocks ( β = 1 ). 

This figure plots the rolling difference between log Fama-MacBeth cross-sectional slopes for stock portfolios ( S ) and mutual funds ( MF ). Each series y k ( t ) 

equals the centered rolling difference 

y k ( t ) = 

t+6 ∑ 

s = t−6 

log 
(
1 + λS 

kt 

)
− log 

(
1 + λMF 

kt 

)
, 

where λkt are cross-sectional slopes from monthly regressions of excess returns r it on time series betas ˆ βik . Each panel plots differences in slopes when 

no liquidity proxies are included in the time series regressions and when the first principal components (PCs) of market liquidity proxies and of funding 

liquidity proxies are included. Stock portfolio slopes are estimated using all 269 portfolios described in Section 3 . Solid lines depict averages of series 

means. NBER recessions are in gray. 
declines in bid-ask spreads and commissions since 1970 

(e.g., Jones, 2002; Corwin and Schultz, 2012 ). An equilib- 

rium perspective on the size of the asset management sec- 

tor suggests why we instead obtain a stationary time se- 

ries. 34 As trading technology improves and equity interme- 

diation becomes more competitive, the cost of trading the 

first dollar of a factor strategy declines. Perceived sector- 

level alphas increase for factor investors, and aggregate in- 

flows attract new entrants (as in Fig. 1 ) or contribute to the 

growth of existing fund managers (as in Berk and Green, 

2004 ). These inflows increase the scale of factor invest- 

ing, which in turn increases non-proportional transactions 
34 Augmented Dickey-Fuller tests reject the null of a unit root in imple- 

mentation costs at the 0.1% significance level in all series. 
costs such as price impact. In equilibrium, this process 

continues until factor alphas fall to zero for the marginal 

dollar. Consequently, the average dollar invested in factor 

strategies could see no reduction in implementation costs 

despite improvements in trading technology. 

Following the suggestion of a referee, we also evalu- 

ate implementation costs around known changes in trading 

costs. We consider three key events: the 1975 “May Day”

move to negotiated trading commissions, the June 1997 re- 

duction in the minimum tick size to 16ths of a dollar, and 

the April 2001 decimalization of US stock markets. In se- 

lecting months, we choose the date of completion for tran- 

sitions by the New York Stock Exchange, the dominant ex- 

change of these eras. We use these event dates to parti- 

tion our sample into four parts, and we estimate average 
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Table 11 

Implementation cost estimates before and after important market structure changes. 

This table reports Fama-MacBeth estimates of mutual fund implementation costs before 

and after three important market structure changes. Implementation costs are measured 

as the difference in average compensation for factor exposure between mutual fund and 

stock portfolios. Costs are the average cross-sectional slopes λ̄k across monthly regres- 

sions of excess returns r it on time series betas ˆ βik , 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes the four Carhart (1997) factors and λ� is defined as λS − λMF . Event 

dates are the 1975 “May Day” move to negotiated trading commissions, the 1997 re- 

duction in the minimum tick size to 16ths of a dollar, and the 2001 decimalization of 

US stock markets. Stock portfolio sets are described in Section 3 . All coefficients are an- 

nualized and reported in percent. t statistics for differences in implementation costs are 

reported in parentheses. Parameters different from zero at the 10%, 5% or 1% significance 

levels are marked with one, two or three asterisks. 

Baseline specification Including liquidity PCs 

N S = 100 N S = 269 N S = 100 N S = 269 

Panel A: Value-weighted stock portfolios 

λ̄�
1970 −1974 6.24 6.09 7.13 6.93 

λ̄�
1975 −1996 2.91 2.38 2.72 2.22 

λ̄�
1997 −20 0 0 2.37 1.91 3.65 3.05 

λ̄�
2001 −2016 1.34 1.29 1.44 1.37 

λ̄�
1975 −1996 –λ̄�

1970 −1974 −3 . 34 ∗∗ −3 . 71 ∗∗∗ −4 . 41 ∗∗∗ −4 . 71 ∗∗∗

( −2.31) ( −2.74) ( −2.93) ( −3.32) 

λ̄�
1997 −20 0 0 –λ̄�

1975 −1996 −0.54 −0.47 0.93 0.83 

( −0.32) ( −0.3) (0.54) (0.52) 

λ̄�
2001 −2016 –λ̄�

1997 −20 0 0 −1.03 −0.62 −2.21 −1.68 

( −0.63) ( −0.41) ( −1.39) ( −1.12) 

F 
(
λ̄�

1970 −1974 = . . . = ̄λ�
2001 −2016 

)
3.73 ∗ 4.08 ∗∗ 4.92 ∗∗ 5.37 ∗∗

p -value 0.05 0.04 0.03 0.02 

Panel B: Equal-weighted stock portfolios 

λ̄�
1970 −1974 6.73 6.89 7.61 7.90 

λ̄�
1975 −1996 3.50 3.55 3.19 3.31 

λ̄�
1997 −20 0 0 3.22 3.23 4.39 4.36 

λ̄�
2001 −2016 1.94 2.57 2.00 2.71 

λ̄�
1975 −1996 –λ̄�

1970 −1974 −3 . 23 ∗∗ −3 . 33 ∗∗ −4 . 42 ∗∗∗ −4 . 59 ∗∗∗

( −2.15) ( −2.30) ( −2.85) ( −3.08) 

λ̄�
1997 −20 0 0 –λ̄�

1975 −1996 −0.27 −0.33 1.20 1.05 

( −0.16) ( −0.19) (0.68) (0.60) 

λ̄�
2001 −2016 –λ̄�

1997 −20 0 0 −1.28 −0.66 −2.39 −1.65 

( −0.79) ( −0.39) ( −1.51) ( −0.95) 

F 
(
λ̄�

1970 −1974 = . . . = ̄λ�
2001 −2016 

)
3.41 ∗ 2.78 ∗ 4.68 ∗∗ 4.03 ∗∗

p -value 0.07 0.10 0.03 0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

implementation costs across the four factors in each. This

composite represents the typical all-in cost faced by mu-

tual funds per unit of risk exposure. We then test for

whether the differences in costs are statistically significant

for each event and jointly across events. 

Table 11 reports cost estimates and statistical tests

for whether their differences are different from zero be-

fore and after market structure changes. The table re-

veals a clear decrease in implementation costs across mar-

ket structure changes, and costs are monotone decreas-

ing or nearly so (the point estimate λ̄1997 −20 0 0 is some-

times larger than λ̄1975 −1996 ). The corresponding point es-

timates are typically negative in the second subpanel, but

these differences are statistically different from zero only

for the May Day shift to negotiated commissions. Typically,

the implementation cost series is too short and too noisy

to detect differences reliably, as we observe in Fig. 2 . We
reject the hypothesis that implementation costs are equal

across market structures at the 10% level without liquid-

ity proxies and at the 5% level with them. We conclude

that implementation costs indeed decline with important

changes in trading costs. That these differences are not

even larger suggests that trading-cost reductions are coun-

teracted by another equilibrating mechanism, such as the

previously conjectured growth in fund size generally or

dollar-weighted factor exposures specifically. 

Our conjectured equilibrium adjustment mechanism

hinges on non-proportional trading costs, and it generates

a testable prediction that industry-level inflows increase

implementation costs of factor strategies. We analyze this

relation between implementation costs, flows, and illiquid-

ity more formally by relating the cost time series with liq-

uidity and fund flow proxies. We start by constructing illiq-

uidity proxies as the first principal components of market
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Table 12 

Liquidity, flows, and the implementation gap. 

This table reports estimates of a regression of annualized implementation gaps λ�
kt 

on the first principal component (PC) of funding liquidity proxies ( FL ) 

and market liquidity proxies ( ML ), as well as the cross-sectional average and standard deviation of fund inflows ( MFLOW and DFLOW , respectively), 

λ�
kt = α + βMFLOW MF LOW + βDFLOW DF LOW + βML PC ML + βFL PC FL + εkt , 

where k indexes the four Carhart (1997) factors. Implementation costs are estimated with principal components of market and funding liquidity proxies 

in the time series regressions for mutual fund and stock portfolio betas. Liquidity proxies and stock portfolio sets are described in Section 3 . Illiquidity 

principal components have unit standard deviation and are constructed to be negatively correlated with the market return and positively correlated with 

the VIX/VXO. Fund flows are T NA it / T NA i,t−1 − ( 1 + R it ) . Standard errors are Newey-West with three lags. t statistics are reported in parentheses. Parameters 

different from zero at the 10%, 5% or 1% significance levels are marked with one, two or three asterisks. 

MKT HML SMB UMD 

Panel A: Baseline specification 

βMFLOW 0.07 −0.02 1.91 ∗∗ 1.30 −0.02 −0.19 0.65 −0.03 

(0.27) ( −0.06) (2.21) (1.47) ( −0.04) ( −0.34) (0.50) ( −0.03) 

βDFLOW −0.05 −0.10 −2 . 16 ∗ −2 . 45 ∗∗ 0.13 0.09 −1.81 −2.09 

( −0.13) ( −0.27) ( −1.87) ( −2.15) (0.23) (0.17) ( −0.92) ( −1.08) 

βML 0.53 ∗ 0.55 ∗ 2.80 ∗∗∗ 3.03 ∗∗∗ 0.44 0.44 2.75 3.03 

(1.65) (1.68) (2.81) (3.31) (0.59) (0.59) (1.53) (1.64) 

βFL −0.46 −0.49 −3 . 08 ∗∗∗ −3 . 08 ∗∗∗ −0.68 −0.73 −2.92 −0.73 

( −1.34) ( −1.35) ( −3.28) ( −3.12) ( −0.88) ( −0.88) ( −1.57) ( −0.88) 

α −0.21 −0.21 −0.21 2.59 ∗∗∗ 2.59 ∗∗∗ 2.59 ∗∗∗ −0.07 −0.07 −0.07 7.30 ∗∗∗ 7.30 ∗∗∗ 7.30 ∗∗∗

( −0.88) ( −0.88) ( −0.88) (3.85) (3.87) (3.92) ( −0.14) ( −0.14) ( −0.14) (5.59) (5.57) (5.65) 

Panel B: Including liquidity principal components 

βMFLOW 0.10 −0.02 2.38 ∗∗ 1.55 −0.14 −0.25 1.87 0.00 

(0.39) ( −0.09) (2.50) (1.64) ( −0.29) ( −0.46) (1.42) (0.00) 

βDFLOW −0.02 −0.07 −1.95 −2 . 28 ∗ 0.01 −0.07 −1.50 −1.70 

( −0.05) ( −0.19) ( −1.57) ( −1.90) (0.02) ( −0.12) ( −0.76) ( −0.91) 

βML 0.57 ∗ 0.58 ∗ 3.42 ∗∗∗ 3.61 ∗∗∗ 0.76 0.79 2.38 2.61 

(1.82) (1.83) (3.38) (3.88) (0.90) (0.93) (1.41) (1.51) 

βFL −0 . 61 ∗ −0 . 63 ∗ −4 . 12 ∗∗∗ −4 . 01 ∗∗∗ −0.54 −0.64 −6 . 69 ∗∗∗ −0.64 

( −1.79) ( −1.77) ( −4.28) ( −4.05) ( −0.69) ( −0.76) ( −3.77) ( −0.76) 

α −0.22 −0.22 −0.22 2.83 ∗∗∗ 2.83 ∗∗∗ 2.83 ∗∗∗ −0.02 −0.02 −0.02 7.55 ∗∗∗ 7.55 ∗∗∗ 7.55 ∗∗∗

( −0.91) ( −0.92) ( −0.92) (3.92) (4.03) (4.08) ( −0.03) ( −0.03) ( −0.03) (5.73) (5.92) (5.98) 

 

liquidity proxies and of funding liquidity proxies, as de- 

scribed in Section 4.3 . We also construct flow variables to 

capture costs associated with fund inflows and outflows. 

Fund flows are the component of asset growth not ex- 

plained by returns, 

f low it = 

T NA it 

T NA i,t−1 

− ( 1 + R it ) . (1 0) 

We summarize the distribution of flows with its first and 

second cross-sectional moments, the cross-sectional aver- 

age fund flow ( MFLOW ) and the cross-sectional dispersion 

in fund flows ( DFLOW ). In addition to speaking to returns 

to scale, flow variables are a natural candidate for explain- 

ing trading costs because large flows into the mutual fund 

sector or reshuffling of assets among mutual funds gen- 

erates liquidity demands. To enhance interpretability, we 

normalize all right-hand-side variables to have mean zero 

and standard deviation one. 

Table 12 reports results from regressions of λ�
kt 

, for each 

of the factors k = 1 , 2 , 3 , 4 , on the liquidity and fund flow

proxies, 

λ�
kt = α + βMF LOW 

MF LOW + βDF LOW 

DF LOW + βML P C ML 

+ βF L P C F L + εkt . (11) 

We report only value-weighted results for the 269 stock 

portfolios because relations between costs and liquidity 

proxies are similar for value-weighted and equal-weighted 

stock portfolios and for 100 and 269 stock portfolios. 
Columns (1)-(3) of Table 12 refer to the market factor, 

columns (4)-(6) refer to the value factor, columns (7)-(9) 

refer to the size factor, and columns (10)-(12) refer to the 

momentum factor. 

We draw four lessons from Table 12 . First, the time- 

invariant component of implementation costs from Eq. (4) 

is large and positive for these factors, as evidenced by 

the constant terms for HML and UMD . Second, focusing on 

flows, average inflows are weakly associated with higher 

implementation costs for value and momentum factors, 

and cross-sectional dispersion in flows is weakly associated 

with lower implementation costs for these factors. We find 

no flow-cost relations for market and size factors, as is ex- 

pected because these costs are small in magnitude to begin 

with. We interpret these relations as suggestive evidence 

that inflows are expensive from a transactions-cost stand- 

point for funds trading value and momentum strategies, 

thereby contributing to diseconomies of scale and station- 

ary average implementation costs, and that reallocation of 

funds within the mutual fund sector may increase liquid- 

ity trading [in a Kyle (1985) sense], thereby reducing av- 

erage transactions costs for value and momentum traders. 

Third, focusing on illiquidity principal components, mar- 

ket illiquidity increases implementation costs, and partic- 

ularly so for value and momentum strategies. Intuitively 

trading becomes more expensive when market liquidity is 

low. Fourth, funding illiquidity decreases implementation 

costs (again most strongly for HML and UMD ). We con- 



A.J. Patton and B.M. Weller / Journal of Financial Economics 137 (2020) 515–549 537 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jecture that mutual funds are insulated from funding liq-

uidity shocks that affect highly levered institutional asset

managers such as hedge funds [ Sadka (2010) and Boyson

et al. (2010) , among others, discuss hedge funds’ particular

vulnerability to funding liquidity shocks], and, hence, mu-

tual funds can acquire the ingredients of factor strategies

from distressed asset managers at a discount during times

of strained funding liquidity. 

7. Conclusion 

Existing methods for assessing the implementation

costs of financial market anomalies use proprietary trad-

ing data for single firms or market-wide trading data com-

bined with parametric transactions cost models. We pro-

pose an extension of Fama-MacBeth regression to estimate

implementation costs using only returns data from stocks

and mutual funds. Doing so frees us from the requirement

of specifying factor trading strategies and transaction costs

models that may be incomplete or misspecified. Moreover,

the ready availability of returns data for a large universe

of investment managers enables detailed investigation of

factor implementation costs in the cross-section and over

time. 

We demonstrate that mutual funds are generally poorly

compensated for exposure to some common risk factors.

Our estimates based on Fama-MacBeth regressions imply

that implementation costs erode almost the entirety of the

return to value and momentum strategies for typical mu-

tual funds but have little effect on market and size factor

strategies. Taken together, these results paint a sobering

picture of the real-world returns to the most important fi-

nancial market anomalies. These costs derive in part from

institutional constraints often ignored in studies of aca-

demic anomalies, such as shorting and investability con-

straints, but even these frictions do not fully explain high

observed costs. We find suggestive evidence that unprof-

itable deviations from standard academic strategies and

greater market impact associated with fund growth con-

tribute to the remainder. 

Sample splits reveal considerable heterogeneity in im-

plementation costs among funds. Using a very different es-

timation method and data set, our results agree with the

Lesmond et al. (2004) analysis that momentum profits in

particular may be out of reach for a typical asset man-

ager. However, we find smaller funds and funds that better

track academic factors tend to perform significantly better

in earning factor premia than larger funds and funds with

greater tracking error. In this respect, markets may be effi-

cient from the perspective of an average mutual fund, even

if some segments of the mutual fund space see a very dif-

ferent picture of risk and return net-of-costs. Analyses us-

ing proprietary data from single funds cannot reveal such

heterogeneity. 

The nonparametric, market-based method for estimat-

ing all-in implementation costs proposed in this paper can

be viewed as an independent check on prior work be-

cause it differs in both estimation strategy and data em-

ployed. The assumptions underlying our approach are few

and transparent, and our stark findings on realizable fac-

tor premia obtain under a wide range of alternative speci-
fications. While we do not anticipate resolving a decades-

old dispute on whether momentum is accessible to typ-

ical investors, our approach forces a conversation about

the palatability of assumptions on representativeness, price

impact, and the like made in existing work. 

Appendix A. Mutual fund filters 

We clean the CRSP mutual fund database at the indi-

vidual fund and fund group levels. We first clean at the

lowest level of aggregation to deal with missing and erro-

neous data, and then we filter our sample based on fund

group-level information. 

A.1. Cleaning procedures at the fund level 

We first flag fund-dates with reporting frequencies less

than monthly in the monthly returns file (6,526,393 obser-

vations). As discussed by Elton et al. (2001) and Fama and

French (2010) , about 15% of funds before 1983 report re-

turns only annually, and we mark as missing the fund re-

turns for which neither adjacent month has a non-zero and

non-missing return. These annual returns comprise 1.71%

of fund-month observations. 

Next we construct current and lagged total net asset

values for value-weighting fund returns within and across

fund groups. Nearly a tenth of TNA values are undefined,

and we interpolate TNA values to avoid discarding such a

large fraction of the data. Before interpolating, we flag as

missing invalid TNA values that arise because of record-

ing errors or bottom coding. As noted in the CRSP mutual

fund database documentation, entries of $10 0,0 0 0 denote

TNAs of less than or equal to this value. Although not doc-

umented, entries of $10 0 0 seem to serve a similar role. We

eliminate bottom-coded TNAs by setting to missing values

less than or equal to $10 0,0 0 0 US dollars. Likewise, we set

to missing TNA values exceeding $1 trillion US dollars, as

no single fund has ever reached this value. Imposing these

filters, 14.9% of TNA observations are flagged as missing. 

We interpolate TNAs in three steps. First, we compute a

predicted TNA by multiplying the last available TNA value

by cumulative returns since that date. This predicted TNA

value misses inflows and outflows from the fund. Second,

when available, we reconcile predicted TNAs and the next

filled TNA observation. The ratio of true TNA to predicted

TNA (minus one) is a discrepancy associated with fund

inflows or outflows. We assume flows are constant be-

tween known TNA values, and we multiply predicted TNA

by ( 1 + discrepancy ) 
s/ �t 

, where s is the number of months

since the last known TNA value and �t is the number of

months between TNA values. We assume a discrepancy of

zero if there is no next known TNA. Third, we run the

first and second steps backward to use return data to fill

in TNAs before the first reported TNA value. Given the in-

terpolated values, we again set as missing any TNA values

smaller than $10 0,0 0 0 or greater than $1 trillion. The fill-

ing and cleaning procedures reduce the number of missing

TNA values to 2.8% of the data. 

Share classes differ from one another in their fee struc-

tures, and we account for this variation before aggregat-

ing across share classes within a fund. We convert net re-
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Fig. A.1. Distribution of fund returns. 

This figure plots the distribution of the log of absolute monthly mutual fund returns. We truncate the plot to −1 on the left to maintain resolution on the 

extreme returns on the right. The dashed line represents of cutoff at | r | = 100% . 
turns to gross returns by adding to net returns the annual 

expense ratio divided by 12, following Fama and French 

(2010) . The fund summary file has missing or non-positive 

expense ratios for 16.9% of observations, and we take sev- 

eral steps to fill in the missing data. First, as before, we 

fill missing expense ratios with the nearest observation 

with a non-missing value within each CRSP fund num- 

ber group. This operation reduces the number of miss- 

ing expense ratios to 8.4% of the summary data. We then 

merge the monthly return data with the summary data by 

fund number and calendar quarter. This merge assigns ex- 

pense ratios to 76.2% of fund-month observations. For un- 

merged observations, we merge again on fund number and 

year, where we take the average expense ratio within the 

fund number-year in the fund summary file. This opera- 

tion boosts the number of fund-month observations with 

an expense ratio to 88.5% of the data or 5,774,820 obser- 

vations. We then drop the 89 observations with expense 

ratios exceeding 50% as these are almost certainly data er- 

rors. 

We next filter out extreme return observations result- 

ing from data errors. For example, we do not wish to in- 

clude the recorded return of 533% on the Deutsche Equity 

500 Index Fund in September 1997. Berk and van Binsber- 

gen (2015) and Pastor et al. (2015) address these errors in 

part using external Bloomberg and Morningstar databases. 

We take a simpler approach to eliminate errors. We drop 

the 23 observations with reported returns exceeding one 
(i.e., 100%) in absolute value. This approach is inspired by 

the shape of the tail of extreme returns in the data de- 

picted in Fig. A.1 : the frequency of extreme returns decays 

roughly exponentially until | r | = 100% , with a smattering 

of randomly spaced returns beyond this value. These obser- 

vations appear to come from a different distribution, and 

for this reason, we classify them as likely errors. 

Because our analysis concerns mutual funds, we filter 

out exchange-traded funds (ETFs), exchange-traded notes 

(ETNs), and variable annuity underlying (VAU) funds. To do 

this, we discard any observations for which “et_flag” indi- 

cates an ETF or ETN or “vau_fund” indicates a VAU at any 

time in a fund’s life. These exclusions total 9.1% of obser- 

vations. 

A.2. Aggregation into fund groups 

Having accounted for the salient variation across share 

classes, we next identify share classes of the same fund. As 

a preliminary step, we fill missing fund names using the 

nearest observation with a non-missing fund name within 

each CRSP fund number group. Of the 1,859,702 observa- 

tions in the fund summary file, we assign fund names for 

19,460 observations and remove 242 observations with- 

out recoverable names. We then repeat this procedure for 

missing fund tickers. This matching step assigns 116,238 of 

the 274,875 observations with missing tickers. By contrast 
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35 Our inflation index is the Consumer Price Index for All Urban Con- 

sumers (CPIAUCSL) series provided by the Federal Reserve Bank of St. 

Louis’ FRED database. 
36 The CRSP objective code unifies Wiesenberger objective codes for 

1962–1993 data, Strategic Insight objective codes for 1993–1998 data, and 

Lipper objective codes for 1998–2016 data. 
with observations missing names, we retain observations

with missing tickers. 

We then follow almost exactly the two-step fund class

grouping procedure of Berk and van Binsbergen (2015) and

Pastor et al. (2015) . 

1. We identify share classes following three mutually ex-

clusive rules. First, if the CRSP fund name contains a

semicolon and the phrase after the last semicolon does

not contain a forward slash, we retain the fund name

prior to the last semicolon as the fund group name.

Second, if the CRSP fund name contains a forward slash,

and the entire phrase after the last forward slash does

not contain a space or a semicolon, we use the word

prior to the last forward slash as the fund group name.

Third, if neither rule applies, we assume that the CRSP

fund name does not include a share class. 

We make a minor adjustment to their methodology

before applying these rules. Although handling semi-

colons is straightforward, forward slashes—the other

class-name delimiter used in CRSP—require more care.

For example, fund names include “Franklin/Templeton”

and “M/M” (money market), so “/” does not serve only

as a delimiter, and the absence of a space does not

guarantee that the subsequent string is a share class.

So as a preliminary step, we replace forward slashes in

T/F, T/E, M/M, L/S, Small/Mid, Long/Short, S/T, and L/T

with backslashes in fund names. 

2. We define equivalent funds as those sharing an ad-

justed name or a ticker symbol. To do so, we itera-

tively build equivalence classes of funds with equiva-

lent names and/or ticker symbols. Because equivalence

is transitive, a pair of funds that shares a name, and

another fund that shares a ticker with the second fund,

are all considered to be of the same group. 

This mapping reduces the 61,734 surviving unique fund

identifications (IDs) in the CRSP monthly returns file to

23,613 unique fund groups. Of the 6,522,095 observations

in the monthly return file, only 4298 of these are not as-

signed a fund group, and these observations are dropped. 

A.3. Cleaning procedures at the fund group level 

We construct fund group returns and total net assets

by taking a weighted average of returns across component

fund IDs. The return weights are one-month lagged TNAs.

We retain observations for which the lagged TNA is unde-

fined but the fund group only has one fund ID, that is, the

one fund ID has an effective weight of 100%. Likewise, fund

group TNAs are the sum of current TNA values across com-

ponent fund IDs. Aggregating funds across share classes

delivers 2,244,101 monthly fund-group observations. 

As Fama and French (2010) note, “incubation bias arises

because funds typically open to the public—and their pre-

release returns are included in mutual fund databases—

only if the returns turn out to be attractive.” We follow

their approach to countering incubation bias by keeping

observations only after a fund group achieves a TNA of
at least $10 million (in December 2016 dollars). 35 We re-

tain data from funds that later drop below this thresh-

old to avoid introducing a selection bias. Dropping fund

groups that never achieve a $10 million TNA eliminates

2.3% of fund group-month observations. Dropping observa-

tions from potential incubation periods before the $10 mil-

lion threshold is achieved eliminates another 3.9% of the

sample. 

Next, we filter fund groups based on fund name and

objective. We first exclude all funds with names con-

taining “ETF,” “ETN,” “exchange-traded fund,” “exchange

traded fund,” “exchange-traded note,” “exchange traded

note,” “iShares,” and “PowerShares” (not case sensitive) as

a redundant filter on top of the CRSP-based ETF/ETN filter.

These exclusions eliminate 3006 observations. We then ex-

clude any funds with names that have clear international

or non-equity connotations: “international,” “intl,” “bond,”

“emerging,” “frontier,” “rate,” “fixed income,” “commodity,”

“oil,” “gold,” “metal,” “world,” “global,” “China,” “Europe,”

“Japan,” “real estate,” “absolute return,” “government,” “ex-

change,” “euro,” “India,” “Israel,” “treasury,” “Australia,”

“Asia,” “pacific,” “money,” “cash,” “yield,” “U.K.,” “UK,”

“kingdom,” “municipal,” “Ireland,” “LIBOR,” “govt,” “obli-

gation,” “money,” “cash,” “yield,” “mm,” “m/m,” “diversi-

fied” (but not “diversified equity”), and “short term” (not

case sensitive). This filter complements our requirement

that a fund have a domestic equity “ED” CRSP objective

code. 36 These filters reduce the number of valid funds

from 12,691 to 4282, and the corresponding number of

non-missing return observations decreases to 740,899 for

the entire December 1961 to December 2016 CRSP mutual

fund database. 

Finally, we restrict the set of funds to those with at

least two years of monthly data in our 1970–2016 sam-

ple period. This filter reduces our sample to 4267 mutual

funds with 724,995 non-missing return observations. Sum-

mary statistics for this sample are reported in Table 1 . 

Appendix B. Quality of factor approximation by 

mimicking portfolios 

Fama-MacBeth cross-sectional slopes are factor-

mimicking portfolio returns. This equivalence allows

us to interpret differences in slopes as differences in factor

compensation for stock and mutual fund portfolios. In

standard Fama-MacBeth regressions in which a constant is

included in the cross-sectional step, mimicking portfolio

weights and loadings on other factors are constrained to

zero in synthesizing the mimicking return on factor k .

In our setting, the cross-sectional slopes have the same

interpretation of mimicking portfolio returns, but the zero-

weight constraint is not enforced. Moreover, because our

mutual fund panel is unbalanced, the implied weights of
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Table A.1 

Time series regressions of factor-mimicking portfolio returns on Carhart f‘actors. 

This table reports coefficients and R 2 s of time series regressions of factor-mimicking port- 

folio returns on the four Carhart (1997) factors, that is, 

ˆ λkt = γ0 + γ1 MKT t + γ2 HML t + γ3 SMB t + γ4 UMD t + εkt , 

for k ∈ { MKT, HML, SMB, UMD }. Panels A and B use mimicking returns from our baseline 

specification [ Eqs. (1) and (2) ], and Panels C and D use mimicking returns from the liquidity 

principal-component augmented specification [ Eqs. (6) and (2) ]. We suppress reporting of 

the constant term γ 0 because it is identically zero in all specifications. “Stock”–mimicking 

portfolios use the expansive portfolio set of 269 stock portfolios, and “MF” mimicking port- 

folios use all domestic equity mutual funds. Liquidity proxies and stock portfolio sets are 

described in Section 3 . 

MKT HML SMB UMD 

Stocks MFs Stocks MFs Stocks MFs Stocks MFs 

Panel A: Baseline specification, 1970–2016 

MKT 1.00 1.00 0.00 0.04 0.00 −0.01 0.00 0.06 

HML 0.00 −0.02 1.00 0.91 0.00 0.00 0.00 −0.05 

SMB 0.00 0.03 0.00 0.04 1.00 0.99 0.00 −0.03 

UMD 0.00 0.01 0.00 −0.01 0.00 0.00 1.00 0.95 

R 2 0.99 0.99 0.79 0.71 0.94 0.89 0.95 0.74 

Panel B: Baseline specification, 1993–2016 

MKT 1.00 1.00 0.00 0.02 0.00 −0.01 0.00 −0.01 

HML 0.00 0.00 1.00 0.97 0.00 0.00 0.00 −0.03 

SMB 0.00 0.01 0.00 0.00 1.00 1.01 0.00 0.00 

UMD 0.00 0.00 0.00 −0.01 0.00 0.00 1.00 0.95 

R 2 0.99 0.99 0.74 0.75 0.95 0.93 0.96 0.79 

Panel C: Including liquidity principal components, 1970–2016 

MKT 1.00 0.99 0.01 0.04 −0.01 −0.01 0.00 0.02 

HML 0.00 −0.02 1.02 0.93 0.00 −0.01 0.01 −0.08 

SMB 0.00 0.03 0.00 0.04 1.00 0.99 0.00 −0.02 

UMD 0.00 0.01 0.01 0.01 0.00 0.00 1.00 0.94 

R 2 0.99 0.99 0.79 0.70 0.94 0.90 0.95 0.74 

Panel D: Including liquidity principal components, 1993–2016 

MKT 1.00 0.99 0.00 0.00 0.01 0.00 −0.01 −0.06 

HML 0.00 0.00 1.01 0.99 0.00 −0.01 0.00 −0.08 

SMB 0.00 0.00 0.00 0.00 1.00 1.01 0.00 0.00 

UMD 0.00 0.00 0.01 0.01 0.00 0.00 1.00 0.92 

R 2 0.99 0.99 0.74 0.75 0.95 0.93 0.96 0.80 
any given mutual fund in the best approximating portfolio 

are likely to vary over time. 

We now confirm that relaxing the zero- and constant- 

weight constraints does not affect the mimicking portfo- 

lio’s essential properties of unconditional betas equal to 

one on the mimicked factor, unconditional betas equal to 

zero on other factors, and no average compensation not at- 

tributable to the factors themselves (e.g., no contamination 

by risk-free compensation). If these conditions are met, the 

return on the mimicking portfolios retains the key inter- 

pretation as the return to factor k for the selected set of 

test assets. 

We verify these properties using time series regressions 

of factor-mimicking portfolio returns on the Carhart factor 

series, 

ˆ λkt = γ0 + γ1 MKT t + γ2 HML t + γ3 SMB t + γ4 UMD t + εkt , 

(B.1) 

for k ∈ { MKT, HML, SMB, UMD }. If the mimicked portfo- 

lios were poor approximations, for example, they have the 

wrong scale, the coefficient on factor k would differ from 

one and/or the coefficients on the other factors or the con- 

stant would differ from zero. Note that coefficients may 
differ slightly from one or zero because our time series 

is of finite length, and some periods’ mimicking returns 

may be noisy approximations because of imperfect span- 

ning of the academic factors. The variance of the error 

term is likely to be especially large in earlier eras in which 

mutual funds may have small loadings on momentum or 

other academic factors. 

Table A.1 reports results from the regression in Eq. (B.1) . 

The constant γ 0 is not reported because it is zero to two 

decimal places in all specifications. Because the stock port- 

folios used in constructing the mimicking portfolios con- 

tain those used to construct the academic factors, coeffi- 

cients are exactly one and zero for stock portfolios in the 

baseline specification. Coefficients for mutual fund port- 

folios differ slightly from one and zero, as expected, but 

these differences are economically negligible, and factor k 

variation dominates in explaining ˆ λkt . The greater noise 

in the mutual-fund–mimicking portfolios manifests also in 

the slightly lower R 2 s of the mutual-fund regressions rela- 

tive to the stock portfolio regressions. These differences are 

small for all factors other than momentum, for which mu- 

tual funds historically have smaller dispersion in loadings. 

Results are virtually identical in the lower panel with 

one important difference. Because the first- and second- 
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37 We interpolate missing elements of the VXO/TED series using their 

matrix-completed values φ′ 
V XO g ML and φ′ 

TED g FL from the PCA-ALS proce- 

dure described in footnote 22 . 
stage regressions differ in the principal-component aug-

mented regressions, coefficients need not be exactly one

and zero in Eq. (B.1) , even for the stock portfolios that

would otherwise span the factors perfectly. Coefficients

typically differ from zero or one by less than 2%, with

the largest differences being for mutual-fund momentum

at 8%. Still, the scale differences in the mimicking port-

folios do not come close to explaining differences in fac-

tor means for stock portfolios and mutual funds: even an

8% (1%) scale difference for momentum cannot explain the

nearly 100% (50%) difference in momentum (value) premia

between stock portfolios and mutual funds. 

Appendix C. Bias of symmetric Fama-MacBeth 

regressions with general h it 

Section 4.3 implements an asymmetric Fama-MacBeth

regression in which the first stage includes liquidity prox-

ies, and the second stage does not. If instead we were to

also include the loadings on the liquidity proxies in Eq. (2) ,

the second-stage regression becomes 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + 

∑ 

l 

λS 
lt ̂  γil 1 i ∈ S 

+ 

∑ 

l 

λMF 
lt ˆ γil 1 i ∈ MF + εit . t = 1 , . . . , T . (C.1)

From the conjectured return process of Eq. (5) , ˆ λS 
t = λS 

t ,

ˆ λ�
kt 

= η̄ + 

cov ( ( ηi −η̄) βi ,βi ) 
v ar ( βi ) 

, and 

ˆ λ�
lt 

= ηlt . The problem with

this approach is that the ˆ λ�
lt 

terms absorb the time-varying

part of ηit , so we can no longer cleanly attribute time-

varying costs to each return factor. Moreover, the logic of

mutual funds scaling down strategies in the face of high

costs applies to ηit rather than to ηi . 

To resolve the first issue, we need to decompose ηst

into factor-specific parts. The sum of all time-varying costs

is 

T V C it ≡
∑ 

l 

ηlt γil = 

∑ 

l 

ηlt 

( ∑ 

k 

γikl βik 

) 

. (C.2)

Regressing total time-varying costs on β i s decomposes

costs into factor-specific time-varying parts, 

T V C it = 

∑ 

t 

∑ 

k 

ηkt βik 1 t + εit . (C.3)

This regression can be interpreted as projecting time-

varying liquidity costs onto the factor-exposure space.

However, this rotation is imperfect because of cross-

sectional variation in γ i s. To see why dispersion in γ i

is problematic, consider a single coefficient estimate in a

one-return factor case of Eq. (C.3) , 

ˆ ηt = 

cov ( 
∑ 

l ηlt γil , βi ) 

cov ( βi ) 

= 

∑ 

l 

ηlt γ̄l + 

∑ 

s 

cov ( βi ηlt ( γil − γ̄l ) , βi ) 

cov ( βi ) 
. (C.4)

The first term represents the average exposure to liquidity

factors multiplied by the factors’ time t realizations. This is

the term of interest, but instead we identify this term plus

a cross-sectional bias term. 
Focusing on the bias for each l , we might expect higher-

than-average cost-factor sensitivities γil > γ̄l to be associ-

ated with lower betas if firms are risk averse. Although we

would expect betas to be negatively associated with total

costs per unit of risk exposure ηit , it is not clear what re-

lation the time-varying component alone should have with

betas. Because of this ambiguous sign and the additional

complexity of this approach, it is preferable not to include

the liquidity exposures in the cross-sectional regression

step. 

Appendix D. Spanning variation in η using many 

liquidity proxies 

Including more covariates increases the likelihood that

we span variation in implementation costs, ηit , by includ-

ing all salient liquidity proxies. At the same time, includ-

ing additional highly correlated cost proxies may overfit

the first-stage regression and deliver nonsensical cross-

sectional slopes in the second stage. 

Sparse regression techniques offer a solution to this

challenge. We supplement the standard first-stage regres-

sion with a Lasso or l 1 -penalized regression ( Tibshirani,

1994 ). We augment the least-squares minimization prob-

lem in the time series regressions with additional terms to

penalize liquidity coefficients, 

min 

β, ̃ γ

1 

T i 

∑ 

t 

( 

r it −
∑ 

k 

f kt βik −
∑ 

l 

˜ ηlt ̃  γil 

) 2 

+ κ

( ∑ 

k 

ω k | βik | + 

∑ 

l 

ω l | ̃  γil | 
) 

, (D.1)

where κ represents a penalty term for coefficients differ-

ent from zero, and ω k and ω l represent additional relative

penalties explained below. The problem reduces to least

squares when κ = 0 ; otherwise, liquidity coefficients are

compressed toward zero. Note that we do not require a pe-

nalization in the cross-sectional step because the second-

stage regression omits liquidity proxies. As before, we nor-

malize all liquidity proxies to give them similar scales and

an equal chance of entering the Lasso regression. 37 

Lasso simultaneously prevents overfitting in the time

series regressions by shrinking coefficients and selects co-

variates by zeroing out coefficients that would otherwise

be close to zero. Both features facilitate the use of many

liquidity proxies even when a mutual fund is relatively

short-lived. Moreover, we no longer need to choose which

measure(s) best approximate the costs faced by each fund,

and different liquidity measures can be more salient for

different mutual funds. First-stage penalization also knocks

out spurious strategy loadings for funds that take on risk

exposures unintentionally; a small non-zero loading taken

en route to implementing a different strategy will be ze-

roed out. 

The original Lasso implementation sets ω k = ω l = 1 for

all k and l . Unfortunately Lasso is not guaranteed to de-
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Table A.2 

Implementation cost estimates, liquidity Lasso. 

This table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfolios (third 

and fourth rows), domestic equity mutual funds (fifth row), and their difference (first two rows). Coefficients 

are the average cross-sectional slopes λ̄k across monthly regressions of excess returns r it on time series betas 
ˆ βik , 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes the four Carhart (1997) factors and λ� is defined as λS − λMF . First-stage regression esti- 

mates include these factors and all market and funding liquidity proxies in an adaptive Lasso regression with 

portfolio-specific penalty parameters chosen by ten-fold cross validation. Liquidity proxies and stock portfolio 

sets are described in Section 3 . All coefficients are annualized and reported in percent. Standard errors are 

Newey-West with three lags. t statistics are in parentheses. Parameters different from zero at the 10%, 5% or 

1% significance levels are marked with one, two or three asterisks. 

1970 – 2016 1993 – 2016 

N S MKT HML SMB UMD MKT HML SMB UMD 

Panel A: Value-weighted stock portfolios 

λ� 100 −0.22 4.97 ∗∗∗ 0.09 8.71 ∗∗∗ −0.02 3.85 ∗∗∗ −0.36 6.67 ∗∗∗

( −0.71) (6.16) (0.14) (6.14) ( −0.06) (4.17) ( −0.42) (3.48) 

λ� 269 −0.06 3.71 ∗∗∗ −0.30 8.57 ∗∗∗ 0.33 2.93 ∗∗∗ −1.13 7.18 ∗∗∗

( −0.24) (4.88) ( −0.54) (6.14) (1.32) (4.10) ( −1.56) (3.74) 

λS 100 6.70 ∗∗∗ 6.96 ∗∗∗ 1.11 8.61 ∗∗∗ 7.76 ∗∗ 5.34 ∗ 2.05 5.88 

(2.80) (3.64) (0.64) (3.67) (2.39) (1.80) (0.83) (1.56) 

λS 269 6.86 ∗∗∗ 5.70 ∗∗∗ 0.72 8.47 ∗∗∗ 8.10 ∗∗ 4.43 1.27 6.38 ∗

(2.86) (2.99) (0.42) (3.60) (2.50) (1.43) (0.52) (1.70) 

λMF — 6.92 ∗∗ 1.99 1.02 −0.10 7.78 ∗∗ 1.50 2.41 −0.79 

(2.83) (1.01) (0.58) ( −0.04) (2.39) (0.48) (0.97) ( −0.19) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

Panel B: Equal-weighted stock portfolios 

λ� 100 −0.27 5.15 ∗∗∗ 2.64 ∗∗∗ 8.26 ∗∗∗ 0.31 2.68 ∗∗ 2.22 6.05 ∗∗∗

( −0.58) (5.92) (2.65) (5.68) (0.51) (2.26) (1.61) (2.99) 

λ� 269 0.26 4.91 ∗∗∗ 2.50 ∗∗ 9.86 ∗∗∗ 1.07 2.03 ∗ 1.99 7.69 ∗∗∗

(0.5) (4.92) (2.26) (6.35) (1.60) (1.72) (1.34) (3.48) 

λS 100 6.65 ∗∗∗ 7.14 ∗∗∗ 3.66 ∗ 8.16 ∗∗∗ 8.09 ∗∗ 4.17 4.62 5.26 

(2.77) (3.69) (1.85) (3.46) (2.49) (1.43) (1.65) (1.38) 

λS 269 7.18 ∗∗∗ 6.90 ∗∗∗ 3.51 ∗ 9.76 ∗∗∗ 8.85 ∗∗∗ 3.52 4.40 6.89 ∗

(3.01) (3.25) (1.70) (4.03) (2.75) (1.10) (1.52) (1.76) 

λMF — 6.92 ∗∗∗ 1.99 1.02 −0.10 7.78 ∗∗ 1.50 2.41 −0.79 

(2.83) (1.01) (0.58) ( −0.04) (2.39) (0.48) (0.97) ( −0.19) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

38 Remarkably, Chetverikov et al. (2017) demonstrate that time series 

betas estimated using the cross-validated Lasso converge to the true be- 

tas at rate 
√ 

n , up to a negligible log term. Because the convergence rate 

is comparable to that of OLS, using (adaptive) Lasso in the first stage 

does not exacerbate the errors-in-variables problem endemic to Fama- 

MacBeth regressions. We therefore follow standard practice in taking be- 

tas as known inputs into the Fama-MacBeth cross-sectional regressions 

and adjusting standard errors for heteroskedasticity and serial correlation 
liver consistent estimates of β and γ , and it does not have 

the “oracle property” by which the variable selection step 

identifies the correct model and estimates converge at the 

optimal rate. By contrast, the Zou (2006) adaptive Lasso 

has these desirable features, which enables us to construct 

confidence intervals for cross-sectional slopes as though 

the first-stage regression were OLS. Adaptive Lasso differs 

from Lasso in placing higher penalties on parameters with 

little explanatory power by setting ω = | ̂  β| −γ . Our penal- 

ization weights use OLS ˆ βs (as in Zou, 2006 ) and a penalty 

exponent of γ = 1 . 

The obvious concern when using Lasso is the selection 

of the penalization parameter κ . Following standard prac- 

tice (e.g., Bühlmann and van de Geer, 2011; Hastie et al., 

2015 ), we use k -fold cross-validation to select κ . Cross- 

validation works as follows. First, select a candidate value 

of κm 

and partition the sample into k equal “folds’.’ We 

choose the MATLAB default of k = 10 . Next, for each fold, 

estimate the model on the set difference of the full sam- 
ple and the partition. Then, calculate the mean squared 

error (MSE) of the estimated model on the fold that was 

set aside. This procedure provides k pseudo-out-of-sample 

(POOS) MSEs as a function of κm 

. Finally, repeat this pro- 

cedure for a range of κm 

, and select κ as the value κm 

that 

maximizes the average POOS MSE. Intuitively, this process 

tames overfitting by selecting the model with the best out- 

of-sample predictive properties. 38 

Table A.2 presents results using the adaptive Lasso first 

stage described by Eq. (D.1) . Most importantly, the coeffi- 
by Newey-West. 
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Table A.3 

Implementation cost estimates for ETFs in Fama-MacBeth regressions. 

This table reports Fama-MacBeth estimates of domestic equity exchange traded fund implementation costs (Panel 

A) and compensation for factor exposure (Panel B). Coefficients are the average cross-sectional slopes λ̄k across 

monthly regressions of excess returns r it on time series betas ˆ βik , 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λETF 
kt 

ˆ βik 1 i ∈ ETF + εit , t = 1 , . . . , T, 

where k indexes the four Carhart (1997) factors and λ� is defined as λS − λETF . The top table uses our baseline 

specification, and the bottom panel uses the liquidity principal-component augmented specification. Stock port- 

folio sets are described in Section 3 . All coefficients are annualized and reported in percent. Standard errors are 

Newey-West with three lags. t statistics are reported in parentheses. Parameters different from zero at the 10%, 

5% or 1% significance levels are marked with one, two or three asterisks. 

Baseline Specification Liquidity principal components 

N S MKT HML SMB UMD MKT HML SMB UMD 

Panel A: Value-weighted stock portfolios 

λ� 100 0.02 4.60 ∗∗∗ −1 . 91 ∗∗ −8.67 −0.34 4.47 ∗∗∗ −1 . 70 ∗ −13 . 48 ∗∗

(0.04) (3.13) ( −2.04) ( −1.49) ( −0.64) (3.09) ( −1.67) ( −2.14) 

λ� 269 0.09 3.91 ∗∗∗ −2 . 40 ∗∗∗ −7.27 −0.29 3.89 ∗∗∗ −2 . 11 ∗∗ −12 . 26 ∗∗

(0.23) (2.80) ( −2.78) ( −1.27) ( −0.68) (2.74) ( −2.13) ( −2.03) 

λETF — 9.58 ∗∗ −1.94 4.27 ∗∗ 9.60 10.07 ∗∗ −1.92 4.01 ∗ 14.65 ∗

(2.36) ( −0.58) (2.01) (1.26) (2.54) ( −0.59) (1.86) (1.94) 

Panel B: Equal-weighted stock portfolios 

λ� 100 0.15 4.44 ∗∗ −2 . 59 ∗∗ −5.54 −0.46 3.68 ∗ −2.20 −16 . 77 ∗∗

(0.22) (2.23) ( −2.22) ( −0.92) ( −0.60) (1.82) ( −1.65) ( −2.27) 

λ� 269 0.25 6.06 ∗∗∗ −3 . 82 ∗∗∗ −3.26 −0.43 5.39 ∗∗∗ −3 . 23 ∗∗ −14 . 77 ∗∗

(0.50) (3.43) ( −3.47) ( −0.61) ( −0.73) (2.82) ( −2.42) ( −2.26) 

λETF — 8.41 −2.92 5.11 ∗∗ 5.26 10.07 ∗∗∗ −1.92 4.01 ∗ 14.65 ∗

(1.45) ( −0.64) (2.02) (0.55) (2.54) ( −0.59) (1.86) (1.94) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39 See Deutsche Bank Markets Research “ETF Annual Review and Outlook ”. 
40 See, e.g., page 14633 of the proposed rule for exchange-traded funds 

( https://www.sec.gov/rules/proposed/2008/33-8901fr.pdf) , also referenced 

in Chinco and Fos (2018) . 
cients on λ� are of similar size and statistical significance

as they are in the preceding two tables. Using the adap-

tive Lasso results in one key change from Table 3 , how-

ever: the point estimate for UMD compensation for mu-

tual funds becomes negligible in the full sample and neg-

ative in the recent sample. This feature is consistent with

mutual funds earning compensation for momentum expo-

sure only to the extent that momentum also embeds liq-

uidity risk. By including a rich set of liquidity and liquidity

risk proxies rather than two principal components, we al-

low this source of compensation to be spanned in the first

stage, thereby effectively kicking out UMD as a compen-

sated factor for mutual funds. 

Appendix E. Implementation costs for exchange traded 

products 

Our analysis focuses exclusively on implementation

costs of mutual funds. The methodology can be applied to

other asset classes, as well. In this appendix we consider

a relatively new but increasingly important asset class, ex-

change traded funds. The primary hurdle to implementing

this analysis is that ETFs are a relatively new innovation,

and factor loadings are not sufficiently diverse to identify

cross-sectional slopes until recently. The first US-listed ETF,

the Standard & Poors Depositary Receipt (SPDR) S&P 500

(SPY), was introduced in 1993, and value, growth, small-

cap, and large-cap ETFs were only introduced by iShares in

June 20 0 0. By 20 03, there were only 123 US ETFs, with a

total AUM of only $151 billion, about 2% of aggregate mu-
tual fund AUM at the time. 39 Of these, the vast majority

were large-cap and market trackers. 

The early and mid-20 0 0s saw the addition of ETFs split

by market capitalization, style, and sector. Prior to this

time, identifying factor premia and implied implementa-

tion costs are not possible with (non-)market factor load-

ings clustered so tightly around (zero) one. In 20 08–20 09

the Securities and Exchange Commission (SEC) freed ETF

providers from tracking pre-defined indexes. 40 This rule

change opened the floodgates to the proliferation of ETFs

that are evident today. Our sample runs from 2003 to the

present to balance sample length and cross-sectional diver-

sity in ETF factor exposures. 

We source ETF data from the CRSP mutual fund

database. We retain funds that have the “ET_Flag” vari-

able equal to “F” (for exchange-traded funds) or “N”

(for exchange-traded notes). We then filter the data as

in Appendix A . Table A.3 reports implementation costs

and compensation for factor exposure for exchange-traded

funds and notes. As was true for mutual funds, exchange-

traded funds suffer negligible costs for market factor ex-

posure. Also like mutual funds, the costs for value-factor

exposure are high, and they eliminate the return to value.

This finding is not to say that value ETFs do not earn a

value premium but, rather, that differences in value beta

between ETFs are not compensated (or even negatively

http://www.n3d.eu/_medias/n3d/files/etude_deutsche_am_etf.pdf
https://www.sec.gov/rules/proposed/2008/33-8901fr.pdf)
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Fig. A.2. Cross-sectional dispersion in exchange traded fund betas over time. This figure plots the cross-sectional dispersion in exchange traded fund betas 

(for active funds) over time. Betas are estimated using time series regressions for a Carhart (1997) four-factor model. Panel A plots betas in the baseline 

regression specification and Panel B adds the first principal components of market and funding liquidity proxies. NBER recessions are in gray. 

 

 

compensated). Size appears to be rewarded in ETFs, even 

more so than in stocks. 

In contrast with mutual funds, ETFs appear to earn 

a substantial momentum premium. This result, however, 

is illusory. Point estimates in the baseline, large as they 

are, are insignificant. The point estimates are even larger 

in the liquidity-augmented regression, however in both 

cases these coefficients are not well identified because the 

cross-sectional variation in momentum betas among ETFs 

is small, and especially so after netting out the liquidity 

principal components. Despite the sharp increase in the 

number of ETFs during this period, not enough momen- 

tum and contrarian ETFs exist for a long enough span to 

recover a meaningful estimate for λ̄ET F 
UMD 

or its difference 

from λ̄S 
UMD 

. 

Fig. A.2 highlights the limited dispersion in the cross 

section of momentum betas. The SEC ETF rule change man- 

ifests as a marked increase in variation in market betas and 

a moderate increase in spread of value and size factor be- 

tas. Throughout, momentum factor betas exhibit far less 

variation, especially when liquidity principal components 

are included. While we do not have a formal criterion for 

sufficient dispersion to identify λET F 
UMD 

, it is apparent that 

we do not have enough for our estimates for momentum 

compensation or costs to be reliable. 

Appendix F. Errors-in-variables and other biases in 

estimated mutual fund factor compensation 

Section 4.1 motivates the use of static betas to resolve 

the errors-in-variables problem in Fama-MacBeth regres- 

sion. In this appendix, we conduct three analyses to ver- 

ify that this approach succeeds. First, as suggested by a 

referee, we report the average standard errors for betas 

across the stock portfolio and mutual fund samples. Within 

each date, we compute the average and median standard 

error for stock and mutual fund portfolios. We then aver- 

age these values across dates. Table A.4 reports these val- 

ues. Mutual fund betas are typically measured with less 

precision than stock portfolio betas, but differences in at- 
tenuation are usually mild, in the 3%–5% range. Momen- 

tum coefficients are somewhat more attenuated for mu- 

tual funds, but even there, differences in attenuation can 

explain at most (roughly) a 10% reduction in the esti- 

mated compensation to momentum. To illustrate, in our 

baseline specification in Table 2 , we find 

ˆ λS 
UMD 

= 8 . 85 and 

ˆ λMF 
UMD 

= 1 . 54 , leading to ˆ λ�
UMD 

= 7 . 31 . If we use the atten-

uation factors in Table A.4 to “undo” the bias in these esti- 

mates, ˜ λS 
UMD 

= 

1 
1 −0 . 02 8 . 85 = 9 . 03 and 

˜ λMF 
UMD 

= 

1 
1 −0 . 14 1 . 54 =

1 . 79 . Consequently, ˜ λ�
UMD = ̃

 λS 
UMD 

− ˜ λMF 
UMD = 7 . 24 , which is 

only marginally smaller than our initial estimate of ˆ λ�
UMD 

= 

7 . 31 . 

Second, to address concerns about attenuation or bias 

in estimated mutual fund compensation, we run regres- 

sions allowing for nonzero mutual fund alphas. To do this, 

we reestimate our mutual fund compensation regressions 

with a constant term in the cross-sectional regression step 

for the mutual fund portfolios. We tabulate values for our 

baseline specification and the principal-component aug- 

mented specification in Table A.5 . 

Comparing mutual fund compensation estimates with 

and without an included constant, we observe that all 

λMF coefficients are virtually the same. The one exception 

is that full-sample (second-half) compensation for market 

risk is about 20 basis points (bps) higher (60 bps smaller) 

on a base of 7%–8% in the baseline specification. No evi- 

dence exists of meaningful bias in mutual fund compensa- 

tion associated with forcing expected returns through the 

origin. 

Third, we use the new instrumental variable technique 

of Jegadeesh et al. (2019) to undo the effects of measure- 

ment error in our generated regressors. As a first step, 

we estimate betas twice: once using only data from even- 

numbered months, and once using only data from odd- 

numbered months. We then instrument even-month betas 

with the preceding odd-month betas, and vice versa. For 

example, for odd months, this step consists of regressing 

β( od d ) 
ik 

= a t + 

∑ 

k 

b kt β
( e v en ) 
ik 

+ εikt (F.1) 
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Table A.4 

Average and median standard errors of time series betas for stock and mutual fund portfolios. 

This table reports averages of the mean and median standard errors of betas within each cross- 

section. The estimated attenuation factor is the percent reduction in cross-sectional slope estimates 

assuming all other factor betas are measured perfectly, that is, A = 1 − 1 / 

(
1 + SE 2 

k 
/ v ar 

(
ˆ βk 

))
. Time 

series betas are estimated using the four Carhart (1997) factors. Stock portfolio sets are described 

in Section 3 , and we use the more expansive N S = 269 portfolio set. 

1970 – 2016 1993 – 2016 

MKT HML SMB UMD MKT HML SMB UMD 

Panel A: Baseline specification 

Mean SE 
(
βMF 

k 

)
0.03 0.05 0.05 0.03 0.04 0.05 0.05 0.03 

Mean SE 
(
βS 

k 

)
0.02 0.03 0.03 0.02 0.03 0.05 0.04 0.03 

Median SE 
(
βMF 

k 

)
0.03 0.04 0.04 0.02 0.03 0.04 0.04 0.03 

Median SE 
(
βS 

k 

)
0.02 0.03 0.02 0.02 0.03 0.04 0.03 0.02 

Attenuation (MF) 0.04 0.06 0.05 0.14 0.03 0.04 0.04 0.12 

Attenuation (S) 0.04 0.02 0.01 0.02 0.05 0.03 0.01 0.03 

Panel B: Including liquidity principal components 

Mean SE 
(
βMF 

k 

)
0.04 0.05 0.05 0.03 0.04 0.06 0.05 0.03 

Mean SE 
(
βS 

k 

)
0.02 0.03 0.03 0.02 0.04 0.05 0.04 0.03 

Median SE 
(
βMF 

k 

)
0.03 0.04 0.04 0.03 0.03 0.05 0.04 0.03 

Median SE 
(
βS 

k 

)
0.02 0.03 0.02 0.02 0.03 0.04 0.03 0.02 

Attenuation (MF) 0.04 0.07 0.05 0.14 0.03 0.06 0.04 0.14 

Attenuation (S) 0.04 0.03 0.01 0.02 0.06 0.04 0.01 0.04 

Table A.5 

Mutual fund compensation estimates with and without a constant. 

This table reports Fama-MacBeth estimates of the compensation for factor exposure for domestic 

equity mutual funds. Coefficients are the average cross-sectional slopes λ̄k across monthly regres- 

sions of excess returns r it on time series betas ˆ βik , 

r it = αMF 
t 1 i ∈ MF + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes the four Carhart (1997) factors. First-stage regression estimates in both tables in- 

clude these factors, and the second table also includes the first principal component of market liq- 

uidity proxies and the first principal component of funding liquidity proxies. Liquidity proxies and 

stock portfolio sets are described in Section 3 . The first row allows αMF 
t to be estimated freely and 

the second row sets αMF 
t to be zero, as in the main text. All coefficients are annualized and reported 

in percent. Standard errors are Newey-West with three lags. t statistics are reported in parentheses. 

Parameters different from zero at the 10%, 5% or 1% significance levels are marked with one, two or 

three asterisks. 

1970 – 2016 1993 – 2016 

αt MKT HML SMB UMD MKT HML SMB UMD 

Panel A: Baseline specification 

λMF � = 0 7.18 ∗∗∗ 2.64 1.02 1.47 7.24 ∗∗ 2.18 2.27 1.67 

(2.94) (1.56) (0.60) (0.60) (2.26) (0.80) (0.95) (0.43) 

λMF = 0 6.98 ∗∗∗ 2.62 1.01 1.54 7.78 ∗∗ 2.31 2.20 1.73 

(2.86) (1.51) (0.59) (0.63) (2.38) (0.83) (0.92) (0.45) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

Panel B: Including liquidity principal components 

λMF � = 0 6.99 ∗∗∗ 2.64 0.90 1.28 7.80 ∗∗ 2.09 2.22 0.76 

(2.87) (1.51) (0.53) (0.52) (2.41) (0.74) (0.92) (0.20) 

λMF = 0 6.98 ∗∗∗ 2.62 1.01 1.54 7.78 ∗∗ 2.31 2.20 1.73 

(2.86) (1.51) (0.59) (0.63) (2.38) (0.83) (0.92) (0.45) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 
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Table A.6 

Implementation cost estimates, baseline specification with instrumental variables. 

This table reports instrumented Fama-MacBeth estimates of the compensation for factor exposure for stock 

portfolios (third and fourth rows), domestic equity mutual funds (fifth row), and their difference (first two 

rows). Coefficients are the average cross-sectional slopes λ̄k across monthly regressions of excess returns r it 
on time series betas ˆ βik , 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes the four Carhart (1997) factors, λ� is defined as λS − λMF , and ˆ βs are estimated using alter- 

nating months as in Jegadeesh et al. (2019) . Stock portfolio sets are described in Section III. All coefficients 

are annualized and reported in percent. Standard errors are Newey-West with three lags. t statistics are re- 

ported in parentheses. Parameters different from zero at the 10%, 5% or 1% significance levels are marked 

with one, two or three asterisks. 

1970 – 2016 1993 – 2016 

N S MKT HML SMB UMD MKT HML SMB UMD 

Panel A: Value-weighted stock portfolios 

λ� 100 -0.43 4.79 ∗∗∗ 0.00 8.68 ∗∗∗ 0.03 3.77 ∗∗∗ -0.51 6.45 ∗∗∗

(-1.42) (5.24) (0.00) (4.58) (0.10) (3.71) (-0.58) (2.62) 

λ� 269 -0.30 3.48 ∗∗∗ -0.33 8.54 ∗∗∗ 0.28 2.44 ∗∗∗ -0.94 7.04 ∗∗∗

(-1.24) (4.09) (-0.60) (4.62) (1.21) (3.27) (-1.27) (3.00) 

λS 100 6.60 ∗∗∗ 7.03 ∗∗∗ 1.04 9.36 ∗∗∗ 7.83 ∗∗ 5.72 ∗ 1.65 7.50 ∗

(2.74) (3.64) (0.60) (3.66) (2.40) (1.89) (0.66) (1.74) 

λS 269 6.72 ∗∗∗ 5.72 ∗∗∗ 0.70 9.22 ∗∗∗ 8.08 ∗∗ 4.38 1.21 8.09 ∗∗

(2.80) (3.05) (0.41) (3.90) (2.49) (1.47) (0.50) (2.15) 

λMF — 7.02 ∗∗∗ 2.24 1.03 0.68 7.80 ∗∗ 1.95 2.15 1.05 

(2.87) (1.23) (0.60) (0.25) (2.38) (0.68) (0.89) (0.25) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 

Panel B: Equal-weighted stock portfolios 

λ� 100 -0.27 5.64 ∗∗∗ 1.93 ∗ 9.24 ∗∗∗ 0.31 4.47 ∗∗∗ 1.86 7.11 ∗∗∗

(-0.55) (5.79) (1.94) (4.80) (0.49) (3.96) (1.29) (2.79) 

λ� 269 0.31 4.50 ∗∗∗ 1.61 10.37 ∗∗∗ 1.10 3.18 ∗∗∗ 1.66 9.19 ∗∗∗

(0.59) (4.15) (1.45) (5.45) (1.63) (2.71) (1.04) (3.64) 

λS 100 6.76 ∗∗∗ 7.88 ∗∗∗ 2.96 9.92 ∗∗∗ 8.10 ∗∗ 6.41 ∗∗ 4.02 8.16 ∗

(2.81) (4.14) (1.48) (3.93) (2.49) (2.17) (1.37) (1.91) 

λS 269 7.33 ∗∗∗ 6.74 ∗∗∗ 2.65 11.06 ∗∗∗ 8.90 ∗∗∗ 5.13 ∗ 3.81 10.23 ∗∗∗

(3.05) (3.35) (1.26) (4.51) (2.72) (1.67) (1.27) (2.58) 

λMF — 7.02 ∗∗∗ 2.24 1.03 0.68 7.80 ∗∗ 1.95 2.15 1.05 

(2.87) (1.23) (0.60) (0.25) (2.38) (0.68) (0.89) (0.25) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1286 1286 1286 1286 2123 2123 2123 2123 
for each factor k . We reestimate this specification for each 

date t to account for potential time-variation in attenua- 

tion associated with changes in the cross section of active 

mutual funds. Funds that do not exist in both months t 

and t − 1 are dropped. Jegadeesh et al. (2019) demonstrate 

in a multifactor setting that once predicted betas are used 

in place of full-sample betas, cross-sectional slopes are no 

longer attenuated and the Fama-MacBeth procedure and 

standard error construction otherwise can be applied un- 

changed. 

Table A.6 reports instrumented estimates of implemen- 

tation costs. Compared with Table 2 , the point estimate 

for mutual funds’ compensation is smaller for all four fac- 

tors in the instrumented analysis. Implied implementation 

costs rise as a consequence for HML and UMD , although 

the greater noise in cross-sectional slopes leads to an am- 

biguous net effect on the statistical significance of these 

compensation differentials. In short, as before, we find that 

implementation costs eliminate real-world compensation 

to value and momentum factors and have no effect on 

compensation for market and size factors. 
Appendix G. Compensation and costs of factor-targeting 

mutual funds 

In this appendix we consider the implementation costs 

of mutual funds that specifically target factors. We do so 

because the compensation to incidental factor exposures 

incurred as part of other strategies can differ from the 

compensation accruing to funds whose primary objective 

is to harvest particular factor premia. 

Evaluating the costs of targeting funds faces two chal- 

lenges. The first is how to identify whether funds target a 

factor. While funds that exclusively target the market are 

readily identified by their high R 2 s in time series regres- 

sions of their returns on the market return, funds that tar- 

get other factors with different implementations from the 

academic one have lower R 2 s, and Lettau et al. (2018) note 

that “even funds with an explicit ‘value’ objective hold 

a larger share of low [book-to-market ratio] stocks than 

high-BM stocks.” Similarly, self-designated benchmarks are 

often wrong, and perhaps intentionally so to give rise 

to higher apparent relative performance ( Sensoy, 2009 ). 
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Table A.7 

Implementation cost estimates, baseline specification with | t | ≥ 2 . 

This table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfolios 

(third and fourth rows), domestic equity mutual funds (fifth row), and their difference (first two rows). 

Coefficients are the average cross-sectional slopes λ̄k across monthly regressions of excess returns r it on 

time series betas ˆ βik , 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes the four Carhart (1997) factors and λ� is defined as λS − λMF . We run K separate re- 

gressions using only mutual funds with | t k | ≥ 2 and report average compensation and compensation dif- 

ferentials in the corresponding column. Stock portfolio sets are described in Section 3 . All coefficients are 

annualized and reported in percent. Standard errors are Newey-West with three lags. t statistics are re- 

ported in parentheses. Parameters different from zero at the 10%, 5% or 1% significance levels are marked 

with one, two or three asterisks. 

1970 – 2016 1993 – 2016 

N S MKT HML SMB UMD MKT HML SMB UMD 

Panel A: Value-weighted stock portfolios 

λ� 100 -0.36 3.61 ∗∗∗ 0.34 6.58 ∗∗∗ -0.11 3.35 ∗∗∗ 0.03 4.16 ∗∗

(-1.21) (4.53) (0.56) (5.10) (-0.32) (4.04) (0.03) (2.54) 

λ� 269 -0.19 2.38 ∗∗∗ 0.01 6.71 ∗∗∗ 0.28 2.32 ∗∗∗ -0.70 4.93 ∗∗∗

(-0.79) (3.36) (0.02) (5.01) (1.25) (3.66) (-1.03) (2.78) 

λS 100 6.60 ∗∗∗ 6.43 ∗∗∗ 1.27 8.72 ∗∗∗ 7.67 ∗∗ 5.43 ∗ 1.96 6.01 

(2.75) (3.51) (0.75) (3.74) (2.35) (1.93) (0.81) (1.60) 

λS 269 6.77 ∗∗∗ 5.20 ∗∗∗ 0.94 8.85 ∗∗∗ 8.06 ∗∗ 4.40 1.23 6.78 ∗

(2.82) (2.84) (0.56) (3.80) (2.49) (1.54) (0.51) (1.83) 

λMF — 6.96 ∗∗∗ 2.82 0.93 2.14 7.78 ∗∗ 2.08 1.93 1.84 

(2.85) (1.63) (0.53) (0.88) (2.38) (0.75) (0.81) (0.48) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1279 941 919 711 2106 1580 1520 1131 

Panel B: Equal-weighted stock portfolios 

λ� 100 -0.34 4.27 ∗∗∗ 2.42 ∗∗ 6.23 ∗∗∗ 0.07 3.40 ∗∗∗ 2.41 ∗ 3.61 ∗∗

(-0.72) (5.03) (2.54) (4.81) (0.12) (3.47) (1.77) (2.12) 

λ� 269 0.27 3.11 ∗∗∗ 2.30 ∗∗ 7.92 ∗∗∗ 0.95 2.25 ∗∗ 2.31 5.93 ∗∗∗

(0.54) (3.27) (2.17) (5.67) (1.45) (2.17) (1.54) (3.03) 

λS 100 6.62 ∗∗∗ 7.09 ∗∗∗ 3.35 ∗∗∗ 8.37 ∗∗∗ 7.85 ∗∗ 5.48 ∗∗ 4.34 5.45 

(2.75) (3.91) (1.70) (3.59) (2.39) (1.99) (1.53) (1.44) 

λS 269 7.23 ∗∗∗ 5.93 ∗∗∗ 3.23 10.06 ∗∗∗ 8.73 ∗∗∗ 4.33 4.25 7.78 ∗∗

(3.02) (3.03) (1.56) (4.17) (2.69) (1.47) (1.43) (1.98) 

λMF — 6.96 ∗∗∗ 2.82 0.93 2.14 7.78 ∗∗ 2.08 1.93 1.84 

(2.85) (1.63) (0.53) (0.88) (2.38) (0.75) (0.81) (0.48) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1279 941 919 711 2106 1580 1520 1131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Funds can target multiple factors or none at all. For these

reasons, we take a regression-based approach to assessing

whether funds target factors as in Sharpe (1992) and Fung

and Hsieh (1997) . We denote a fund as targeting a factor if

the t -statistic of its beta with respect to a factor exceeds

two in absolute value. We use the t -statistic to capture

whether a fund reliably loads on a factor in a long or short

direction, that is, whether it has more factor exposure than

would be expected by chance. 

The second challenge to focusing on funds that target a

factor is that different funds target different factors. Run-

ning a multivariate regression using only the funds that

target a factor identifies factor compensation well for the

targeted factor but not necessarily for the other factors.

Nevertheless, a multivariate specification is necessary to

clean up residual exposures to non-targeted factors that

may otherwise explain differences in compensation. For

this reason, we run separate regressions for the subsam-

ples of funds that target MKT, HML, SMB , and UMD , and we
retain coefficients only for the targeted factor. For example,

only 55% of funds in the 1970–2016 have momentum betas

statistically distinguishable from zero, and we tabulate the

estimated momentum compensation only for this group of

funds (and comparable stock portfolios). 

With these adjustments made, Tables A.7 and A.8 re-

port implementation costs and factor compensations for

targeting mutual funds. Relative to the baseline factor com-

pensation estimates, factor compensation for this set of

funds is about 20 bps larger for HML and up to 60 bps

larger for UMD in Table A.7 ; including liquidity principal

components in Table A.8 has minimal incremental effect.

The resulting implementation costs remain economically

large and correspond with significant or near-complete at-

tenuation of factor premia, respectively. Statistical signifi-

cance drops slightly for non-market factors because sam-

ple sizes shrink when restricting only to targeting mutual

funds and, consequently, realized factor premia are esti-

mated with less precision. In short, we see little difference
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Table A.8 

Implementation cost estimates, liquidity principal components with | t | ≥ 2 . 

This table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfolios (third 

and fourth rows), domestic equity mutual funds (fifth row), and their difference (first two rows). Coefficients 

are the average cross-sectional slopes λ̄k across monthly regressions of excess returns r it on time series betas 
ˆ βik , 

r it = 

∑ 

k 

λS 
kt 

ˆ βik 1 i ∈ S + 

∑ 

k 

λMF 
kt 

ˆ βik 1 i ∈ MF + εit , t = 1 , . . . , T, 

where k indexes the four Carhart (1997) factors and λ� is defined as λS − λMF . We run K separate regressions 

using only mutual funds with | t k | ≥ 2 and report average compensation and compensation differentials in the 

corresponding column. First-stage regression estimates include these factors, the first principal component of 

market liquidity proxies, and the first principal component of funding liquidity proxies. Liquidity proxies 

and stock portfolio sets are described in Section 3 . All coefficients are annualized and reported in percent. 

Standard errors are Newey-West with three lags. t statistics are reported in parentheses. Parameters different 

from zero at the 10%, 5% or 1% significance levels are marked with one, two or three asterisks. 

1970 – 2016 1993 – 2016 

N S MKT HML SMB UMD MKT HML SMB UMD 

Panel A: Value-weighted stock portfolios 

λ� 100 −0.42 3.73 ∗∗∗ 0.29 7.99 ∗∗∗ −0.12 3.50 ∗∗∗ −0.04 5.87 ∗∗∗

( −1.38) (4.50) (0.47) (6.19) ( −0.37) (4.05) ( −0.05) (3.48) 

λ� 269 −0.20 2.48 ∗∗∗ −0.08 8.05 ∗∗∗ 0.27 2.50 ∗∗∗ −0.73 6.48 ∗∗∗

( −0.83) (3.31) ( −0.15) (6.10) (1.21) (3.86) ( −1.05) (3.64) 

λS 100 6.55 ∗∗∗ 6.71 ∗∗∗ 1.26 8.77 ∗∗∗ 7.68 ∗∗ 5.38 ∗ 1.98 5.99 

(2.74) (3.63) (0.74) (3.76) (2.37) (1.90) (0.82) (1.59) 

λS 269 6.77 ∗∗∗ 5.47 ∗∗∗ 0.89 8.84 ∗∗∗ 8.08 ∗∗ 4.39 1.30 6.60 ∗

(2.83) (2.94) (0.53) (3.78) (2.51) (1.51) (0.54) (1.78) 

λMF — 6.97 ∗∗∗ 2.98 ∗ 0.97 0.78 7.81 ∗∗ 1.89 2.02 0.12 

(2.86) (1.70) (0.56) (0.33) (2.41) (0.67) (0.83) (0.03) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1279 908 914 709 2104 1527 1505 1118 

Panel B: Equal-weighted stock portfolios 

λ� 100 −0.51 4.14 ∗∗∗ 2.63 ∗∗∗ 7.42 ∗∗∗ 0.00 2.88 ∗∗∗ 2.51 ∗ 4.65 ∗∗∗

( −1.08) (4.73) (2.76) (5.62) (0.00) (2.73) (1.88) (2.65) 

λ� 269 0.07 3.30 ∗∗∗ 2.58 ∗∗ 9.03 ∗∗∗ 0.74 2.13 ∗∗ 2.49 ∗ 6.37 ∗∗∗

(0.13) (3.36) (2.45) (6.28) (1.09) (1.99) (1.73) (3.14) 

λS 100 6.46 ∗∗∗ 7.12 ∗∗∗ 3.60 ∗ 8.20 ∗∗∗ 7.81 ∗∗ 4.76 ∗ 4.54 4.76 

(2.70) (3.88) (1.84) (3.51) (2.40) (1.73) (1.63) (1.26) 

λS 269 7.04 ∗∗∗ 6.28 ∗∗∗ 3.55 ∗ 9.82 ∗∗∗ 8.55 ∗∗∗ 4.01 4.51 6.49 

(2.97) (3.14) (1.73) (4.05) (2.66) (1.35) (1.57) (1.64) 

λMF — 6.97 ∗∗∗ 2.98 ∗ 0.97 0.78 7.81 ∗∗ 1.89 2.02 0.12 

(2.86) (1.70) (0.56) (0.33) (2.41) (0.67) (0.83) (0.03) 

T 564 564 564 564 282 282 282 282 

N̄ MF 1279 908 914 709 2104 1527 1505 1118 

 

 

 

 

 

in costs between factor-targeting mutual funds and the full 

set of mutual funds. 
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