Does Beta Move with News?
Firm-Specific Information Flows and Learning about Profitability

Andrew J. Patton
Duke University

Michela Verardo
London School of Economics

We investigate whether stock betas vary with the release of firm-specific news. Using daily firm-level betas estimated from intraday prices, we find that betas increase on earnings announcement days and revert to their average levels two to five days later. The increase in betas is greater for earnings announcements that have larger positive or negative surprises, convey more information about other firms in the market, and resolve greater ex ante uncertainty. Our results are consistent with a learning model in which investors use information on announcing firms to revise their expectations about the profitability of the aggregate economy. (*JEL* G14, G12, C32)

The covariation of a stock’s return with the market portfolio, usually measured by its beta, is critically important for portfolio management and hedging decisions and is of interest more widely as a measure of the systematic risk of the stock. Prior empirical studies find significant evidence of variation in beta at monthly or quarterly frequencies, typically associated with variables related to the business cycle or with stock fundamentals.¹

Empirical work on variations in betas at higher frequencies has been hampered by a lack of reliable data and the econometric difficulties of studying such betas. However, the ability to detect variations in individual betas at higher frequencies is crucial to understanding the effect of information flows.

We thank the editor (Andrew Karolyi), two anonymous referees, and Torben Andersen, Tim Bollerslev, John Campbell, Serge Daulles, Daniel Ferrerera, Francesco Franzoni, Robin Greenwood, Ohad Kadan, Jonathan Lewellen, Nour Meddahi, Yves Nosbusch, Stavros Panageas, Christopher Polk, Neil Sheppard, Kevin Sheppard, Dimitri Vayanos, Grigory Vilkov, as well as seminar participants at CREATE, Aarhus, Duke, the 2009 EFA meetings, Erasmus University Rotterdam, Exeter, Humboldt, London School of Economics (LSE), Manchester, Montreal, NYU Stern, Piraeus, Princeton, Queen Mary University, the 2010 Rothschild Caesarea Center Conference, the 2009 SoFiE meetings, Toulouse School of Economics, and Warwick for helpful comments and suggestions. We thank the Financial Markets Group at the LSE for financial assistance and Runquan Chen for outstanding research assistance. Send correspondence to Michela Verardo, Department of Finance, London School of Economics, Houghton Street, London WC2A 2AE, UK. E-mail: m.verardo@lse.ac.uk.

© The Author 2012. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. doi:10.1093/rfs/hhs073 Advance Access publication July 3, 2012
on the covariance structure of stock returns. Furthermore, it can be valuable in
many applications, such as the implementation of trading strategies that involve
tracking portfolios or hedging market risks at high frequencies.

In this article we draw on recent advances in econometric theory to
investigate whether the daily betas of individual stocks vary with the release of
firm-specific news. The central question that we ask is whether firm-specific
information affects the market risk of a stock. We find that it does. The rich
cross-sectional and time-series heterogeneity in our estimates of daily betas
enables us to study the channels that link firm-specific information flows to
market-wide comovement in stock returns. To explain the behavior of betas
around information flows, we propose a simple learning model in which
investors use information from announcing firms to extract information on
the aggregate economy. Our model generates predictions that are consistent
with our empirical findings.

We focus on quarterly earnings announcements, which represent regular
and well-documented information disclosures and are ideal for investigating
comovement related to firm-specific news on fundamentals. We estimate daily
variations in betas around 17,936 earnings announcements for all stocks that
are constituents of the S&P 500 index over the period 1996–2006, a total
of 733 distinct firms. We uncover statistically significant and economically
important variations in betas around news announcements. These variations
are short-lived and thus difficult to detect using lower-frequency methods. We
find that betas increase on days of firm-specific news announcements by a
statistically and economically significant amount, regardless of whether the
news is “good” or “bad.” On average, betas increase by 0.16 (with a t-statistic
of 8.08) on announcement days. Betas drop by 0.03 on the day after the earnings
announcement (with a t-statistic of -3.21), before reverting to their average
level about five days after the announcement. Our estimation methodology
enables us to detect daily movements in beta for individual stocks, allowing us
to perform a disaggregated analysis of the behavior of beta across stocks with
different characteristics and across announcements taking place in different
information environments. To guide our cross-sectional analysis of individual
changes in betas around firm-specific information flows, we propose a simple
rational model of learning “across stocks.”

The intuition for our model is as follows. Since firms only announce their
earnings once per quarter, on the intervening days investors must infer their
profitability from other available information. If the earnings processes of
different firms contain a common component and an idiosyncratic component,
and if different firms announce on different days, then investors can use the
earnings announcement of a given firm to revise their expectations about the

2 See Andersen et al. (2003b) and Barndorff-Nielsen and Shephard (2004) for econometric theory underlying the
estimation of volatility and covariance using high-frequency data. Andersen et al. (2006a) and Barndorff-Nielsen
and Shephard (2007) provide recent surveys of this research area.
Does Beta Move with News?

profitability of nonannouncing firms and of the entire economy in general. This process of learning across firms drives up the covariance of the returns on the announcing stock with other stocks, regardless of whether the announcing firm reveals good or bad news: investors interpret good (bad) news from the announcing firm as partial good (bad) news for other firms, which drives up covariances on announcement days, leading to an increase in the market beta of the announcing stock. Our model predicts that the increase in beta is greater for larger earnings surprises, firms whose announcements allow investors to extract more marketwide information, and announcements that entail greater resolution of uncertainty.

Guided by the testable implications of this stylized model, we investigate the heterogeneity in our daily estimates of realized beta for individual stocks with respect to firm characteristics and the information environment that characterizes the announcements. We first examine the behavior of betas around earnings announcements with different information content, measured by the earnings surprise relative to the consensus forecast. We find that betas increase significantly for both positive and negative earnings surprises, whereas they increase only moderately for announcements with little information content. The spike in beta is 0.25 and 0.22 for good and bad news, respectively, and is only 0.10 when earnings surprises are close to zero. This result is consistent with an information spillover effect caused by learning: if news about a stock represents partial news for the remaining stocks in the market, then the covariance between the returns of the announcing stock and the market returns increases, regardless of whether the news is positive or negative, as investors incorporate the information contained in the announcement in the price of nonannouncing stocks.

We next investigate whether announcing firms that offer greater potential for learning about the rest of the economy are associated with greater changes in realized betas. In line with this prediction, we find that the spikes in realized betas on earnings announcement days are larger for companies whose fundamentals are more highly correlated with aggregate fundamentals (0.11 vs. 0.20), where the degree of correlation across stocks is measured by analyst earnings betas. Furthermore, we find that changes in beta on announcement days are larger for stocks with higher turnover (0.27 vs. 0.11) and broader analyst coverage (0.25 vs. 0.12), indicating that information releases about more visible stocks imply greater comovement with other stocks' returns. These findings suggest that investors learn more when the information comes from “bellwether” stocks, i.e., from stocks that are closely followed by traders and analysts, whose earnings are taken to represent information on the prospects of other firms in the market.

Also consistent with our stylized model, the increase in beta on announcement days is larger for announcements that resolve more uncertainty. Measuring ex ante uncertainty about fundamentals by the dispersion in analyst forecasts of earnings, we find that stocks with higher dispersion experience a
larger increase in beta around announcement dates (0.27 vs. 0.10). Furthermore, the increase in beta is larger for firms announcing earlier in the earnings season (0.20 for early announcers), compared with the middle of the earnings season (0.11).

We investigate the robustness of our results in a variety of different ways. First, we check whether the changes in betas documented in our study are driven by changes in liquidity or trading intensity that occur around information flows. We expand our regression specification to include controls for a stock’s lagged betas, firm volatility, market volatility, trading volume, and bid-ask spreads, and obtain results that are very similar to our baseline specification. We also test whether the behavior of betas around earnings announcements is related to cross-sectional differences or changes in liquidity commonality (see Hameed, Kang, and Viswanathan 2010; Karolyi, Lee, and van Dijk 2011). Our findings show neither evidence of significant changes in liquidity comovement around earnings announcements nor any evidence that cross-sectional differences in realized betas may be driven by ex ante differences in liquidity commonality across stocks. Using the econometric approach of Todorov and Bollerslev (2010), we further show that our results are not driven by jumps in prices occurring on announcement days. These robustness tests suggest that volatility, liquidity, or commonality in liquidity cannot be the main drivers of the increase in betas around earnings announcements.

We illustrate the economic importance of our findings through a portfolio management application. We first construct a set of portfolios representing either a number of randomly selected individual stocks or popular long-short strategies based on stock characteristics, such as market capitalization, value, and momentum. We then attempt to make these portfolios market neutral by taking a position in the market index to offset their beta. We obtain the predicted beta of the portfolios using different models and compare their ability to yield market-neutral portfolios. We find that a model that uses only information on changes in betas around earnings announcements is better able to yield market-neutral portfolios, i.e., portfolios with betas that are closer to zero in absolute value. This realized beta model beats not only a model in which betas are set to unity (market-adjusted model) but also a model in which betas are allowed to vary slowly over the sample period without exploiting information from high-frequency data or earnings announcement dates (rolling beta model).

Our article is related to a number of empirical studies that examine changes in the covariance structure of returns around a firm-specific event. Ball and Kothari (1991) estimate a daily average cross-sectional beta around earnings announcements during the period 1980–1988, documenting a moderate increase in beta of about 6.7% over a three-day window around announcements and no significant change in beta on announcement days. Our methodology allows us to add to this study by obtaining precise estimates of daily betas for individual stocks, thus enabling us to perform a disaggregate analysis of the behavior of beta at higher frequencies. We can then link variations in beta
Does Beta Move with News?

to firm and event characteristics to better understand the determinants of the
dynamics of beta around information flows. Other articles investigating changes
in the covariance of returns across stocks due to firm-specific events include
analyses of additions to an index (Vijh 1994; Barberis, Shleifer, and Wurgler
2005; Greenwood 2008), equity offerings and share repurchases (Denis and
Kadlec 1994), or stock splits (Green and Hwang 2009).

Our article also relates to the empirical literature on information spillovers
and contagion. Several studies analyze return comovement across markets in
relation to contagion or changes in macroeconomic conditions (e.g., Shiller
1989; Karolyi and Stulz 1996; Connolly and Wang 2003; Pindyck and
Rotemberg 1990, 1993). These comovements have been previously explained
by common news on fundamentals, information asymmetry, cross-market
portfolio rebalancing, wealth effects, category trading, preferred habitats, or
noninformational trade imbalances (King and Wadhwani 1990; Fleming, Kirby,
and Ostdiek 1998; Kyle and Xiong 2001; Kodres and Pritsker 2002; Yuan
2005; Barberis, Shleifer, and Wurgler 2005; Pasquariello 2007; Andrade et al.
2008). Our article adds to this literature by linking return comovement to the
release of firm-specific, intermittent information flows and providing a rich set
of disaggregated results on comovement conditional on stock characteristics
and on the features of the information environment in which the disclosure
takes place.

Finally, our study relates to previous articles on price discovery using high-
frequency data (Andersen et al. 2003a, 2007; Boyd, Jagannathan, and Hu 2005;
Piazzesi 2005; Faust et al. 2007). Our analysis differs from these articles in our
focus on the reaction of betas rather than prices or volatility, and firm-specific
news and individual stock returns rather than macroeconomic announcements
and aggregate indices or exchange rates. In common with those articles, though,
is the important role that price discovery plays: the changes in beta that we
document may be explained by price discovery and learning by investors across
different individual companies.

The remainder of the article is structured as follows. Section 1 briefly
reviews the econometric theory underlying our estimation of daily firm-level
beta using high-frequency data, and describes the data and our estimation
methodology. Section 2 presents a simple model of learning across stocks that
generates testable implications on the behavior of betas around information
flows. Section 3 presents our main empirical results on the cross-section of
changes in betas around earnings announcements. Section 4 illustrates the
economic importance of our findings with a portfolio management application.
Section 5 presents a variety of robustness tests, and Section 6 concludes.
Appendix 1 presents the theory underlying the use of high-frequency data
to estimate daily betas, and Appendix 2 presents the details of our learning
model.

1.1 The econometrics of realized betas

In this section, we briefly review the econometric theory underlying high-frequency beta estimation, and we present a more detailed description of this approach in Appendix 1. This theory enables us to obtain an estimate of beta for an individual stock on each day, which means we can analyze the dynamic behavior of beta with greater accuracy and at a higher frequency than was possible in earlier work on the dynamics of beta. Recent advances in the econometrics of high-frequency data show that the beta of stock i on day t can be estimated using “realized betas” as follows:

$$Rβ_{i,t}^{(S)} ≡ \frac{RCov_{i,m,t}^{(S)}}{RV_{m,t}^{(S)}} = \frac{\sum_{k=1}^{S} r_{i,t,k} r_{m,t,k}}{\sum_{k=1}^{S} r_{m,t,k}^2},$$ \hspace{1em} (1)

where $r_{i,t,k} = \log P_{i,t,k} - \log P_{i,t,k-1}$ is the return on asset i during the k^{th} intraday period on day t, and S is the number of intradaily periods. This estimator was studied by Barndorff-Nielsen and Shephard (2004) in the absence of jumps, and by Jacod and Todorov (2009) and Todorov and Bollerslev (2010) in the presence of jumps. For our main analysis, we assume the absence of jumps and rely on the theory of Barndorff-Nielsen and Shephard (2004). In Section 5 we consider the impact of jumps, using theoretical results from Todorov and Bollerslev (2010), and find that our empirical results are robust to possible jumps in our data.

When the sampling frequency is high (S is large) but not so high as to lead to problems coming from market microstructure effects (discussed in detail below), then we may treat our estimated realized betas as noisy but unbiased estimates of the true betas:

$$Rβ_{i,t}^{(S)} = β_{i,t} + ε_{i,t},$$

where $ε_{i,t} \sim N(0, W_{i,t}/S)$. \hspace{1em} (2)

With the above result from Barndorff-Nielsen and Shephard (2004), inference on true daily betas can be conducted using standard ordinary least squares regressions (though with autocorrelation and heteroskedasticity robust standard errors). Such an approach is based on more familiar “long-span” asymptotics ($T \to \infty$) rather than the “continuous-record” asymptotics ($S \to \infty$) of Barndorff-Nielsen and Shephard (2004). An important advantage of a regression-based approach is that it allows for the inclusion of control variables in the model specification, making it possible to control for the impact of changes in the economic environment (such as market liquidity or the state of the economy) or market microstructure effects related to various firm characteristics (such as return volatility or trading volume). We exploit this feature in a series of robustness checks in Section 5.4

3 Previous research employing high-frequency data to estimate betas includes Bollerslev and Zhang (2003), Bandi et al. (2006), and Todorov and Bollerslev (2010), though the focus and coverage of those articles differ from ours. Chang et al. (2012) and Buss and Vilkov (2011) study betas estimated from option prices at a daily frequency.

4 The one-factor market model is simple and widely used, and the estimation method and high-frequency econometric approach used in this article both generalize to multifactor models. The key difficulty in such
1.2 Data
The sample used in this study includes all stocks that were constituents of the S&P 500 index at some time between January 1996 and December 2006, a total of 2,770 trading days. Data on daily returns, volume, and market capitalization are from the Center for Research in Security Prices database; book-to-market ratios are computed from Compustat, and analyst forecasts are from the Thomas Reuters Institutional Brokers’ Estimate System (I/B/E/S). We use the TAQ database to compute daily betas, sampling quoted prices every twenty-five minutes between 9:45 a.m. and 4:00 p.m. We combine these high-frequency returns with the overnight return, computed between 4:00 p.m. on the previous day and 9:45 a.m. on the current day, to obtain a total of sixteen intraday returns per day.5

We choose a twenty-five-minute sampling frequency for intraday returns to balance the desire for reduced measurement error with the need to avoid the microstructure biases that arise at the highest frequencies. At very high frequencies, market microstructure effects can lead the behavior of realized variance and realized beta to differ from that predicted by econometric theory. One example of such an issue arises when estimating the beta of a stock that trades only infrequently relative to the market portfolio, which can lead to a bias toward zero, known as the “Epps effect” (see Epps 1979; Scholes and Williams 1977; Dimson 1979; Hayashi and Yoshida 2005). One simple way to avoid these effects is to use returns that are not sampled at the highest possible frequency (which is one second for U.S. stocks) but rather at a lower frequency, e.g., five minutes or twenty-five minutes. By lowering the sampling frequency, we reduce the impact of market microstructure effects at the cost of reducing the number of observations and thus the accuracy of the estimator. This is the approach taken in Bollerslev, Law, and Tauchen (2008) and Todorov and Bollerslev (2010) and is the one we follow in our main empirical analyses. In the robustness section, we analyze betas that are computed from five-minute returns and betas that are obtained using the more sophisticated estimator of Hayashi and Yoshida (2005).

We use national best bid and offer quotes, computed by examining all exchanges offering quotes on a given stock.6 The market return for our analysis is the Standard & Poor’s Composite Index return (S&P 500 index). We use the

5 The start of the trade day is 9:30 a.m., but to handle stocks that begin trading slightly later than this, we take our first observation at 9:45 a.m.

6 Using national best bid and offer (NBBO) quotes, rather than transaction prices or quotes from a single exchange, has the benefit that almost all data errors are identified during the construction of the NBBO. Such data errors are not uncommon in high-frequency prices, given the thousands of price observations per day for each stock. The cost of using NBBO quotes is the computational difficulty in constructing them, given the need to handle quotes from all exchanges and maintain a rolling best pair of quotes.
exchange-traded fund tracking the S&P 500 index (SPDR, traded on Amex with ticker SPY, and available in the TAQ database) to measure the market return, as in Bandi et al. (2006) and Todorov and Bollerslev (2010). This fund is very actively traded; since it can be redeemed for the underlying portfolio of S&P 500 stocks, arbitrage opportunities ensure that the fund’s price does not deviate from the fundamental value of the underlying index. We compute daily realized betas as the ratio of a stock’s covariance with the index to the variance of the index over a given day, as in Equation (1).

We identify quarterly earnings announcements using the announcement dates and times recorded in the Thomson Reuters I/B/E/S database. We only use announcement dates for which we have a valid time stamp (we delete observations with a time of announcement equal to 00:00, which limits our sample period to start in the year 1996). Announcements recorded as occurring at or after 4:00 p.m. on a given date are relabeled for the purposes of our empirical analysis to have the following trading day’s date, to reflect the fact that reactions to such announcements are impounded in the stock’s price only on the following trading day. This means that “day 0” in our event window is the day in which investors trading on a U.S. exchange can react to the earnings announcement.

Our final sample includes 733 different firms and a total of 17,936 earnings announcements. The number of firm-day observations used in the empirical analysis is 1,362,256. Table 1 shows descriptive statistics of our sample, computed as daily cross-sectional means or medians and then averaged within a given year. It also shows the number of earnings announcements per year across the firms in our sample. As can be seen from the table, the number of announcements is low in 1996 and 1997 and increases to 1,642 in 1998 and to almost 2,000 in the subsequent years of the sample.

1.3 Panel estimation method
To estimate the behavior of betas around earnings announcements, we regress realized betas on event day dummies using the following specification:

\[
R\hat{\beta}_{it} = \delta_{-10}I_{i,t-10} + \ldots + \delta_{0}I_{i,t} + \ldots + \delta_{10}I_{i,t+10} + \bar{\beta}_{1}D_{1,t} + \bar{\beta}_{2}D_{2,t} + \ldots + \bar{\beta}_{11}D_{11,t} + \epsilon_{it},
\]

where \(R\hat{\beta}_{it} \) is the estimated beta of stock \(i \) on day \(t \), and \(I_{i,t} \) are dummy variables defined over a twenty-one-day event window around earnings announcements.

7 See Elton et al. (2002) and Hasbrouck (2003) for studies of the SPDR.
8 About 33% of the announcements in our sample occur after 4:00 p.m., whereas 50% of announcements occur between midnight and 9:44 a.m., a total of about 83% of announcements occurring outside of trading hours. This proportion is similar to that in Bagnoli et al. (2005), who use the Reuters Forecast Pro database for a larger sample of firms over a shorter time period (4,000 firms over the period 2000–2003). Using their Table 1, we compute that 74.4% of the firms in their sample announce outside of trading hours.
Does Beta Move with News?

Table 1
Descriptive statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>Cap ($ billion)</th>
<th>B/M</th>
<th>Turn (%)</th>
<th>Anlst</th>
<th>Sur (%)</th>
<th>Disp (%)</th>
<th>Announcm (Sum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>6,899</td>
<td>0.42</td>
<td>0.21</td>
<td>9</td>
<td>0.01</td>
<td>2.94</td>
<td>120</td>
</tr>
<tr>
<td>1997</td>
<td>9,911</td>
<td>0.33</td>
<td>0.28</td>
<td>10</td>
<td>0.01</td>
<td>2.73</td>
<td>418</td>
</tr>
<tr>
<td>1998</td>
<td>7,603</td>
<td>0.34</td>
<td>0.33</td>
<td>9</td>
<td>0.01</td>
<td>3.76</td>
<td>1,642</td>
</tr>
<tr>
<td>1999</td>
<td>7,865</td>
<td>0.36</td>
<td>0.35</td>
<td>9</td>
<td>0.01</td>
<td>3.62</td>
<td>1,978</td>
</tr>
<tr>
<td>2000</td>
<td>7,746</td>
<td>0.40</td>
<td>0.43</td>
<td>8</td>
<td>0.02</td>
<td>3.35</td>
<td>1,959</td>
</tr>
<tr>
<td>2001</td>
<td>7,836</td>
<td>0.38</td>
<td>0.50</td>
<td>10</td>
<td>0.01</td>
<td>4.50</td>
<td>1,985</td>
</tr>
<tr>
<td>2002</td>
<td>7,559</td>
<td>0.41</td>
<td>0.52</td>
<td>10</td>
<td>0.02</td>
<td>4.23</td>
<td>1,983</td>
</tr>
<tr>
<td>2003</td>
<td>7,279</td>
<td>0.50</td>
<td>0.53</td>
<td>10</td>
<td>0.03</td>
<td>4.03</td>
<td>1,984</td>
</tr>
<tr>
<td>2004</td>
<td>9,222</td>
<td>0.43</td>
<td>0.48</td>
<td>10</td>
<td>0.04</td>
<td>3.85</td>
<td>1,980</td>
</tr>
<tr>
<td>2005</td>
<td>10,674</td>
<td>0.41</td>
<td>0.50</td>
<td>10</td>
<td>0.04</td>
<td>3.63</td>
<td>1,961</td>
</tr>
<tr>
<td>2006</td>
<td>12,365</td>
<td>0.40</td>
<td>0.55</td>
<td>11</td>
<td>0.05</td>
<td>4.04</td>
<td>1,926</td>
</tr>
</tbody>
</table>

This table presents descriptive statistics of the study’s sample. The sample includes all firms that were constituents of the S&P 500 during the period 1996–2006, a total of 733 different firms and 17,936 earnings announcements. The reported statistics are cross-sectional medians of variables measured before earnings announcements, by year, as specified in the description that follows. Cap is a firm’s market capitalization, measured fifteen trading days before the earnings announcement date. B/M is a firm’s book-to-market, measured fifteen trading days before the earnings announcement date. Turn is a stock’s average daily turnover (volume of trade/shares outstanding) measured over the two months that precede the earnings announcement month. Anlst is the number of analysts following a firm during the ninety-day interval before the earnings announcement date. Sur is the earnings surprise, measured as the difference between actual earnings and consensus forecast, standardized by share price. The consensus forecast is computed as the mean of all quarterly forecasts issued by analysts within ninety days before the earnings announcement day. Disp is the dispersion in analyst forecasts, computed as the ratio of the standard deviation of earnings forecasts to the absolute value of the mean forecast, where both variables are estimated during the ninety-day interval before the earnings announcement day. Announcm is the total number of quarterly earnings announcements across all firms in a given year.

$I_{i,t} = 1$ if day t is an announcement date for firm i and $I_{i,t} = 0$ otherwise. We include firm-year fixed effects through the parameters $\bar{\beta}_{i,y}$ to allow for differences in betas across stocks and to capture low-frequency changes in betas over time. The dummy variables $D_{1,t}$ to $D_{11,t}$ represent the eleven years in our sample (1996 to 2006). In Section 5, we confirm that our results are robust to including a number of control variables to this baseline regression specification. Realized betas are computed using twenty-five-minute intraday returns and the overnight return, as explained in Section 1.2. We allow for the observations to be clustered on any given day, obtaining standard errors that are robust to heteroskedasticity and arbitrary within-cluster correlation. This estimation procedure allows for different cluster sizes, as is the case in our unbalanced sample, and yields consistent standard errors, since the number of clusters is large relative to the number of within-cluster observations (Wooldridge 2002, 2003). Our sample consists of about 500 firms per day over a sample period of 2,770 days.9

From our regression specification in Equation (3), we can detect changes in betas during times of news announcements by simply examining the

9 For robustness, we use several alternative techniques to estimate the standard errors, and we obtain similar results. We cluster the residuals by firm, thus allowing for a given firm’s observations to be correlated over time. We also cluster the residuals along two dimensions, by firm and year, following the two-way clustering technique proposed by Petersen (2009) and Thompson (2011). Finally, we compute standard errors that are adjusted for heteroskedasticity and autocorrelation, according to Newey and West (1987).
Table 2
Changes in beta around information flows

<table>
<thead>
<tr>
<th>Event Day</th>
<th>Beta</th>
<th>Event Day</th>
<th>Beta</th>
<th>Event Day</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>0.007</td>
<td>-3</td>
<td>0.022</td>
<td>4</td>
<td>-0.024</td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td></td>
<td>(2.66)</td>
<td></td>
<td>(-2.77)</td>
</tr>
<tr>
<td>-9</td>
<td>0.014</td>
<td>-2</td>
<td>0.022</td>
<td>5</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>(1.47)</td>
<td></td>
<td>(2.77)</td>
<td></td>
<td>(-2.18)</td>
</tr>
<tr>
<td>-8</td>
<td>0.019</td>
<td>-1</td>
<td>0.027</td>
<td>6</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td>(2.22)</td>
<td></td>
<td>(2.97)</td>
<td></td>
<td>(-1.53)</td>
</tr>
<tr>
<td>-7</td>
<td>-0.015</td>
<td>0</td>
<td>0.162</td>
<td>7</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(-1.76)</td>
<td></td>
<td>(8.08)</td>
<td></td>
<td>(-0.68)</td>
</tr>
<tr>
<td>-6</td>
<td>0.008</td>
<td>1</td>
<td>-0.031</td>
<td>8</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(1.06)</td>
<td></td>
<td>(-3.21)</td>
<td></td>
<td>(-0.71)</td>
</tr>
<tr>
<td>-5</td>
<td>0.018</td>
<td>2</td>
<td>-0.031</td>
<td>9</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(2.35)</td>
<td></td>
<td>(-4.05)</td>
<td></td>
<td>(0.30)</td>
</tr>
<tr>
<td>-4</td>
<td>0.009</td>
<td>3</td>
<td>-0.034</td>
<td>10</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(1.02)</td>
<td></td>
<td>(-4.39)</td>
<td></td>
<td>(-0.96)</td>
</tr>
</tbody>
</table>

This table presents the estimated beta for twenty-one days around quarterly earnings announcements, computed as the difference with respect to the average nonannouncement beta. The estimates are obtained from a panel regression of daily realized betas on dummy variables for each of the twenty-one days around quarterly earnings announcements. Event day 0 is the earnings announcement date. The regressions account for firm and year fixed effects. \(t \)-statistics, shown in parentheses, are computed from standard errors that are robust to heteroskedasticity and arbitrary intraday correlation.

It is important to note the coefficients on the event day indicator variables, \(\delta_j, j = -10, -9, \ldots, 10 \). The average beta outside of the event window is captured by the firm-year fixed effects (which also allow beta to change through time), and the \(\delta_j \) parameters capture the deviation of beta from this average level on each event day. The significance of the change in beta can be determined simply by looking at the \(t \)-statistic on each of these \(\delta_j \) coefficients.

1.4 An initial analysis of the behavior of beta around announcements

We start our investigation with an analysis of the average behavior of beta across our entire sample of firms, which allows us to draw comparisons with previous studies. Table 2 and Figure 1 show that, on average, beta does not exhibit large deviations from its nonannouncement level during the first few days of the event window and experiences a slight increase on days \(-3\) to \(-1\), albeit relatively small in magnitude. On day 0, the earnings announcement day, beta experiences a sharp increase of 0.16 (with a \(t \)-statistic of 8.08), followed by an immediate drop on day 1 to 0.03 below its nonannouncement average level. Beta remains lower on days 2 to 5 at 0.03 to 0.02 below its average level. Over the next few days, beta reverts back to its non-event average and the estimated coefficients are not significantly different from zero after event day 5. Our estimate of the average change in beta around earnings announcements is comparable to the change in beta experienced by stocks added to the S&P 500: Vijh (1994)

Kothari, Lewellen, and Warner (2006) and G. Sadka and R. Sadka (2009) document a negative correlation between quarterly aggregate earnings growth and market returns. Our evidence of an increase in the covariance of an announcing stock with the market return is not inconsistent with their findings, as the daily variations in beta that we uncover are not detectable at quarterly frequencies.

Kothari, Lewellen, and Warner (2006) and G. Sadka and R. Sadka (2009) document a negative correlation between quarterly aggregate earnings growth and market returns. Our evidence of an increase in the covariance of an announcing stock with the market return is not inconsistent with their findings, as the daily variations in beta that we uncover are not detectable at quarterly frequencies.

Kothari, Lewellen, and Warner (2006) and G. Sadka and R. Sadka (2009) document a negative correlation between quarterly aggregate earnings growth and market returns. Our evidence of an increase in the covariance of an announcing stock with the market return is not inconsistent with their findings, as the daily variations in beta that we uncover are not detectable at quarterly frequencies.
Figure 1
Changes in beta around earnings announcements
This figure presents the estimated changes in beta for the twenty-one days around quarterly earnings announcements (where event day 0 is the announcement day) reported in Table 2. Point estimates are marked with a solid line, and 95% confidence intervals are marked with a dashed line.

finds that betas increase on average by 0.08 during the 1975–1989 sample period, and Barberis, Shleifer, and Wurgler (2005) find an increase in beta of 0.15 during the period 1976–2000. Our pooled results can also be broadly compared to Ball and Kothari (1991), who find an increase of 0.067 in average beta over a three-day window around earnings announcements for the period 1980–1988. However, these aggregate results mask substantial cross-sectional differences in the behavior of individual firm betas, which we can uncover with our estimation of high-frequency realized betas and which constitute the main focus of our study.

As an illustrative example of the heterogeneity in changes in betas across individual stocks, Figure 2 plots the estimation results for Hewlett-Packard (HPQ) and the New York Times Company (NYT). The figure shows a remarkable difference in the behavior of betas between the two stocks around the release of their earnings news. When HPQ announces its earnings, its beta increases on average by almost 2.4 on announcement days. It then reverts to slightly below the nonannouncement average level for the subsequent three days before returning to normal. On the other hand, the beta of NYT does not significantly change when NYT announces its earnings and is effectively constant throughout the announcement window. The contrast between the
results for HPQ and those for NYT is indicative of the heterogeneity in the behavior of individual firm betas around earnings announcements. It is this heterogeneity that motivates both our theoretical model below and our main empirical analysis in Section 3.

2. A Model of Earnings Announcements and Learning

We now consider a simple rational model of learning that can generate the average pattern in betas around earnings announcements documented in the previous section. We use this model to perform comparative statics that relate investors’ learning to several characteristics of the firm or the information environment of the earnings announcements, and we use these results to guide our main empirical analysis in Section 3. Our model illustrates how investors use a firm’s earnings announcements to revise their expectations about other firms and the entire economy, and shows how this process affects the beta of the announcing firm on announcement dates.

2.1 Structure of the model

We start by assuming that the daily returns of a given stock are driven by changes in expectations of earnings, according to the following relation:

\[R_{i,t} = (E_t[\log X_{i,t}] - E_{t-1}[\log X_{i,t-1}]) + \epsilon_{i,t}, \]

(**4**)
Does Beta Move with News?

where $X_{i,t}$ is the level of earnings of stock i on day t.\(^{11}\) That is, the return on day t is driven by the change in investors' expectations of the earnings of the firm from day $t - 1$ to day t, plus other effects reflected in the residual. The earnings of firm i are only observable on its announcement days; on all other days, investors must form expectations of the current level of earnings of firm i using both previous earnings of firm i and information on the current and lagged earnings of other firms. This "cross-asset" learning is possible because the innovations to earnings ($w_{i,t}$) are assumed to have a common component and an idiosyncratic component:

$$
\Delta \log X_{i,t} = g_i + w_{i,t},
$$

\[\begin{align*}
w_{i,t} &= \gamma_i Z_t + u_{i,t},
\end{align*}\]

where g_i is the average growth rate in earnings for firm i, $w_{i,t}$ are innovations in the earnings process for firm i, Z_t is the common component of the earnings innovations, and $u_{i,t}$ is the idiosyncratic component of the innovations. The parameter γ_i captures the importance of the common component for stock i.\(^ {12}\) This mechanism implies that the earnings announcements of a given firm contain information not only on the profitability of the announcing firm but also on the fundamentals of the entire economy and thus allow for "cross-asset" learning from announcements.\(^ {13}\)

The evolution of investors' expectations over time and across firms is key to determining whether this channel can explain the observed behavior in betas around earnings announcement dates. Upon receiving the earnings news of the announcing firm i, investors attempt to infer the common component (Z_t) of that news, which can then be used to revise their expectations both on firm i and on the rest of the firms in the economy. We model this signal extraction problem using a simple Kalman filter, adapted to a setting with multiple assets and intermittent information flows. We then simulate this model to obtain sixteen returns per trade day (corresponding to the twenty-five-minute sampling frequency we use in the empirical analysis), which are then used to compute realized betas. We present the details of the model in Appendix 2.

There are three key parameters that determine the degree to which investors can learn about the prospects of the aggregate economy using information from an announcing firm. The first parameter is the correlation of a firm’s earnings innovations with aggregate earnings innovations (a higher correlation implies that the announcement of a given firm is more revealing of the prospects of other firms, thus offering investors more potential for learning across firms); the

\[\begin{align*}
\text{11} & \quad \text{The equation above is equivalent to the well-known relation between returns and realized unexpected earnings (see Ball and Brown 1968 and Collins and Kothari 1989, among many others).} \\
\text{12} & \quad \text{This structure for the innovations to earnings is related to recent work by Da and Warachka (2009), who model revisions of analyst forecasts of earnings for a given firm as a function of aggregate revisions.} \\
\text{13} & \quad \text{In an article subsequent to ours, Savor and Wilson (2012) adopt a similar modeling approach.}
\end{align*}\]
second parameter is the variability of a firm’s earnings process (more volatile earnings mean more information is revealed on announcement dates, thus resolving more uncertainty); the third parameter is the proportion of variability in returns explained by changes in expectations about future earnings (a closer link between earnings expectations and returns implies larger reactions in returns for a given update in earnings expectations). In our simulations, we model the correlation between earnings processes by assuming the above simple one-factor model for earnings; we set the proportion of variation in earnings that is attributable to the common component, denoted R^2_z, to 0.05, and vary it between zero and 0.10 to study the impact of learning. A higher value for R^2_z means more of the variability of the earnings innovation can be learned from other firms’ earnings announcements. We set the volatility of the earnings process at the median value observed in our sample, and the proportion of variability in observed returns that is explained by changes in expectations about future earnings at 2%, which is close to the estimates documented by Imhoff and Lobo (1992).

2.2 Predictions from the model

Figure 3 presents the changes in beta for this stylized model. This figure qualitatively matches the features observed in our pooled estimate in Figure 1: relative to betas outside our announcement period (the announcement date ± 10 days), betas spike upward on event dates, drop on the day immediately after the event date, and slowly return to their nonannouncement average level.14 This increase in beta is a result of learning. When firm i has an announcement that represents good (bad) news, its price moves up (down). In the absence of an announcement for firm j, expectations about earnings for firm j are updated using the information contained in the announcement of firm i, so its price moves in the same direction as firm i. This leads to an increase in the covariance between the returns on stock i and stock j on firm i’s announcement date.

The drop in beta immediately after the announcement date and its slow increase on subsequent dates are also the result of learning. The day after an earnings announcement for firm i, investors are reasonably certain about the level of earnings for firm i and have observed only few other earnings announcements (namely, those that announced on day +1). Thus, they revise their expectations for firm i by less than on an average day, which lowers their beta on that day. As time progresses, firm i’s earnings announcement is further in the past, and more announcements from other firms are observed. The estimates of earnings are then less precise, and more open to revisions from day to day. Whereas the reaction in beta to earnings announcements presented in Figure 3 is reminiscent of work on stock market overreactions,

14 We use this stylized model to obtain qualitative predictions on the behavior of betas around earnings announcements, and do not attempt to match the magnitudes observed in the data. Matching more closely these magnitudes may be possible, but requires greatly increasing the complexity of the model.
these (optimal) revisions of expectations are what drives the increase in beta, its subsequent drop, and its slow increase over the following days. These results constitute the first prediction from our model: in the presence of intermittent announcements and cross-sectional correlation between firms’ fundamentals, the beta of an announcing firm increases on announcement dates, declines immediately afterward, and then reverts to its long-run average.

With this theoretical model in place, we can also conduct some comparative statics to gain some insights into why we observe different variations in betas for different stocks, as in our results for Hewlett-Packard (HPQ) and the New York Times Company (NYT) presented in Figure 2. We first examine whether the behavior of betas around earnings announcements varies with the amount and sign of the earnings news. In Figure 4, we vary the magnitude of the earnings surprise considering negative news, no news, and positive news, measured as earnings surprises that were in the bottom, middle, and top quintile of the simulated distribution of earnings surprises. The simulation shows that the spike in beta is greater in the presence of large earnings surprises, both positive and negative, and is smaller for surprises that are relatively uninformative. This result generates the second prediction from the model: the increase in beta on announcement dates is greater for announcements with larger information content, irrespective of the sign of the news.
In Figure 5, we consider the patterns that arise for announcements that are more or less informative about the aggregate economy by varying the proportion of a firm’s earnings variation that is explained by the common factor. In the left panel of Figure 5, we set this to zero eliminating learning from the model, whereas in the right panel we set it to 0.10. In the left panel, we see that beta spikes sharply on day 0 (the announcement date), but this spike is purely due to an increase in the variance of the announcing firm’s stock returns (a “mechanical" component). The magnitude of the change in beta follows from the magnitude of the change in return volatility on that date and the weight of the stock in the market index. When R_z^2 is increased to 0.10, we observe a larger spike in beta, with only a part of this being attributable to the “mechanical" component. Thus, more correlated earnings processes, which allow for more cross-stock learning, lead to a larger response in betas. This leads to the third testable implication of the model: the increase in beta on announcement dates is greater for firms whose announcements are more informative about the remaining firms in the market.

In Figure 6, we change the variance of the innovations to the earnings process, σ_w^2, with the motivation that a more variable earnings process implies a greater resolution of uncertainty on announcement dates. In the left panel, with low
Does Beta Move with News?

Figure 5
Changes in beta from simulated returns, low and high levels of learning
Changes in beta around event dates for low and high values of the ratio of the variance of the common component in earnings innovations to total variance, \(R^2_z = \sigma^2_z / \sigma^2_w \), based on 1,000 simulated trading days.

Figure 6
Changes in beta from simulated returns, low and high variance of earnings
Changes in beta around event dates for low and high values of the variance of earnings innovations, \(\sigma^2_w \), based on 1,000 simulated trading days.

variance of the earnings innovation process, we see a smaller change in beta on announcement dates. In the right panel, with a high value for the earnings innovation variance, we observe a much larger spike in beta. Thus, more volatile earnings processes lead to larger spikes in beta. This yields the fourth testable implication of the model: the increase in beta on announcement dates is greater for announcements that resolve more uncertainty.
Some additional comparative statics are presented in Appendix 2, along with technical details for this model.

3. Empirical Results on Betas Around News Announcements

In addition to matching the observed average pattern in betas around earnings announcements, the simple theoretical model of learning presented above also provides testable predictions on the types of firms and the characteristics of the information release leading to greater or smaller changes in beta. In particular, the model predicts that the change in beta is greater for larger earnings news irrespective of its sign, firms whose announcements are more informative for the rest of the economy (i.e., firms that allow for more cross-firm learning), and announcements that resolve a greater amount of uncertainty. We study these predictions using a variety of proxies for the degrees of cross-firm learning and uncertainty resolution.

3.1 Size and sign of the news

We start our cross-sectional analysis of changes in betas around earnings announcements by examining the link between the behavior of betas and the sign and magnitude of the earnings news. The second prediction of our stylized model is that the increase in beta on announcement dates is greater for announcements with larger information content, irrespective of the sign of the news. To test this prediction, we sort stocks into quintiles based on earnings surprise, defined as the scaled difference between actual and expected earnings:

$$s_{uir_{1,t}} = \frac{e_{i,t} - E_{t-1}[e_{i,t}]}{P_{i,t-15}},$$

where \(e_{i,t}\) is the earnings per share of company \(i\) announced on day \(t\), and \(E_t-1[e_{i,t}]\) is the expectation of earnings per share, measured by the consensus analyst forecast. We scale the surprise using the firm’s stock price measured fifteen trading days before the announcement (i.e., outside of the event window). We define the consensus analyst forecast as the mean of all analyst forecasts issued during a period of ninety days before the earnings announcement date. If analysts revise their forecasts during this interval, we use only their most recent forecasts. We use this variable to test whether changes in beta around earnings announcements vary with the sign and the magnitude of the earnings news. By grouping stocks into quintiles of earnings surprise, we can test for the impact of good, bad, and no news on realized betas.

Table 3 and Figure 7 report estimates of changes in betas for quintiles of stocks with different earnings news: from very bad news (large and negative surprise, quintile 1) to no news (quintile 3) to very good news (large and positive surprise, quintile 5). The results show that changes in betas are stronger in the presence of large surprises (positive or negative) than following relatively uninformative news releases. Deviations of beta from its non-event level are,
This table presents the estimated beta for twenty-one days around quarterly earnings announcements, computed as the difference with respect to the average nonannouncement beta. Beta is estimated for stocks grouped into quintiles of earnings surprise, where earnings surprise is defined as the difference between actual quarterly earnings and the consensus analyst forecast, scaled by price. The estimated beta is obtained from a panel regression of daily realized betas on dummy variables for each of the twenty-one days around quarterly earnings announcements. Event day 0 is the earnings announcement date. The regressions account for firm and year fixed effects. *t*-statistics, shown in parentheses, are computed from standard errors that are robust to heteroskedasticity and arbitrary intraday correlation.

<table>
<thead>
<tr>
<th>Day</th>
<th>1 (Low)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 (High)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−10</td>
<td>0.051 (1.58)</td>
<td>−0.006 (−.43)</td>
<td>−0.017 (−1.22)</td>
<td>0.006 (0.41)</td>
<td>0.016 (0.96)</td>
</tr>
<tr>
<td>−9</td>
<td>0.029 (1.49)</td>
<td>−0.002 (−.14)</td>
<td>−0.028 (−1.82)</td>
<td>0.032 (2.00)</td>
<td>0.041 (1.25)</td>
</tr>
<tr>
<td>−8</td>
<td>0.046 (2.11)</td>
<td>−0.004 (−.27)</td>
<td>0.027 (1.90)</td>
<td>0.000 (−0.01)</td>
<td>0.033 (1.88)</td>
</tr>
<tr>
<td>−7</td>
<td>−0.005 (−0.26)</td>
<td>−0.001 (−.08)</td>
<td>−0.022 (−1.64)</td>
<td>−0.022 (−1.33)</td>
<td>−0.023 (−1.34)</td>
</tr>
<tr>
<td>−6</td>
<td>0.013 (0.74)</td>
<td>−0.007 (−.48)</td>
<td>0.003 (0.18)</td>
<td>0.004 (0.24)</td>
<td>0.047 (2.60)</td>
</tr>
<tr>
<td>−5</td>
<td>0.048 (2.57)</td>
<td>0.009 (0.63)</td>
<td>−0.010 (−0.66)</td>
<td>0.005 (0.37)</td>
<td>0.032 (2.01)</td>
</tr>
<tr>
<td>−4</td>
<td>0.006 (0.33)</td>
<td>0.018 (1.22)</td>
<td>0.012 (0.86)</td>
<td>0.012 (0.79)</td>
<td>−0.004 (−0.23)</td>
</tr>
<tr>
<td>−3</td>
<td>−0.016 (−0.92)</td>
<td>0.019 (1.30)</td>
<td>0.036 (2.37)</td>
<td>0.059 (3.67)</td>
<td>0.014 (0.77)</td>
</tr>
<tr>
<td>−2</td>
<td>0.051 (2.61)</td>
<td>0.016 (1.05)</td>
<td>0.010 (0.69)</td>
<td>0.007 (0.44)</td>
<td>0.031 (1.81)</td>
</tr>
<tr>
<td>−1</td>
<td>0.048 (2.06)</td>
<td>0.019 (1.22)</td>
<td>0.003 (0.21)</td>
<td>0.016 (0.93)</td>
<td>0.059 (2.88)</td>
</tr>
<tr>
<td>0</td>
<td>0.216 (3.24)</td>
<td>0.144 (3.80)</td>
<td>0.104 (2.82)</td>
<td>0.135 (3.21)</td>
<td>0.250 (4.47)</td>
</tr>
<tr>
<td>1</td>
<td>−0.035 (−1.53)</td>
<td>−0.040 (−2.29)</td>
<td>−0.040 (−2.60)</td>
<td>−0.033 (−1.76)</td>
<td>−0.009 (−0.45)</td>
</tr>
<tr>
<td>2</td>
<td>−0.019 (−1.06)</td>
<td>−0.062 (−4.50)</td>
<td>−0.033 (−2.25)</td>
<td>−0.025 (−1.68)</td>
<td>−0.012 (−0.65)</td>
</tr>
<tr>
<td>3</td>
<td>−0.020 (−1.11)</td>
<td>−0.025 (−1.84)</td>
<td>−0.043 (−2.96)</td>
<td>−0.025 (−1.69)</td>
<td>−0.035 (−2.25)</td>
</tr>
<tr>
<td>4</td>
<td>−0.024 (−0.82)</td>
<td>0.046 (3.33)</td>
<td>−0.036 (−2.87)</td>
<td>−0.031 (−2.02)</td>
<td>0.014 (0.88)</td>
</tr>
<tr>
<td>5</td>
<td>−0.018 (−0.98)</td>
<td>−0.021 (−1.58)</td>
<td>−0.010 (−0.74)</td>
<td>−0.026 (−1.81)</td>
<td>−0.002 (−0.10)</td>
</tr>
<tr>
<td>6</td>
<td>−0.012 (−0.75)</td>
<td>−0.015 (−1.01)</td>
<td>−0.027 (−2.12)</td>
<td>0.008 (0.57)</td>
<td>−0.008 (−0.51)</td>
</tr>
<tr>
<td>7</td>
<td>0.008 (0.45)</td>
<td>0.017 (1.24)</td>
<td>−0.001 (−0.05)</td>
<td>−0.008 (−0.58)</td>
<td>−0.012 (−0.69)</td>
</tr>
<tr>
<td>8</td>
<td>−0.002 (−0.12)</td>
<td>−0.001 (−0.07)</td>
<td>0.010 (0.80)</td>
<td>−0.014 (−0.79)</td>
<td>−0.022 (−1.30)</td>
</tr>
<tr>
<td>9</td>
<td>0.030 (1.78)</td>
<td>0.005 (0.39)</td>
<td>−0.019 (−1.16)</td>
<td>−0.010 (−0.62)</td>
<td>0.011 (0.62)</td>
</tr>
<tr>
<td>10</td>
<td>0.015 (0.91)</td>
<td>−0.020 (−1.60)</td>
<td>−0.010 (−0.76)</td>
<td>0.000 (−0.04)</td>
<td>−0.007 (−0.41)</td>
</tr>
</tbody>
</table>

This table presents the estimated beta for twenty-one days around quarterly earnings announcements, computed as the difference with respect to the average nonannouncement beta. Beta is estimated for stocks grouped into quintiles of earnings surprise, where earnings surprise is defined as the difference between actual quarterly earnings and the consensus analyst forecast, scaled by price. The estimated beta is obtained from a panel regression of daily realized betas on dummy variables for each of the twenty-one days around quarterly earnings announcements. Event day 0 is the earnings announcement date. The regressions account for firm and year fixed effects. *t*-statistics, shown in parentheses, are computed from standard errors that are robust to heteroskedasticity and arbitrary intraday correlation.

on average, 0.22 for bad news, 0.10 for no news, and 0.25 for good news (with *t*-statistics of 3.24, 2.82, and 4.47, respectively). These results lend support to our model of learning across firms: irrespective of the sign of the earnings news, announcements with larger information content are associated with an increase in beta, consistent with investors learning from the newly released information and revising their expectations about nonannouncing stocks and the rest of the economy. In contrast, earnings announcements with no information content cause a smaller change in the degree of covariation of returns across stocks in the market index.

3.2 Informativeness of the News for the Aggregate Economy

We next test whether changes in betas are larger for firms whose earnings announcements are more informative about the rest of the economy, which is the third prediction of our stylized model. To test for differences in the behavior of betas across firms that offer different potentials to learn about the prospect of other firms in the market, we examine cross-sectional differences in realized betas around earnings announcement conditional on several firm characteristics. First, we consider a firm’s visibility and investor recognition (Merton 1987). We test whether information releases of more visible and followed companies imply a larger degree of updating across stocks by
investors, leading to greater changes in betas around earnings announcements. We use share turnover and analyst coverage as proxies for the liquidity and visibility of a stock (see, e.g., Gervais et al. 2001 for turnover and Brennan, Jegadeesh, and Swaminathan 1993 for analyst coverage). We first sort stocks into quintiles based on share turnover, measured during a period of two months prior to the earnings announcement window, and we analyze cross-sectional differences in realized betas around announcement days. Table 4 and Figure 8 show that turnover is strongly associated with changes in beta: low-turnover stocks show a smaller increase in beta (0.11 with a t-statistic of 3.68) than do stocks characterized by high turnover (0.27 with a t-statistic of 5.07). These findings are consistent with the intuition that high-turnover stocks, being more liquid and visible, are more likely to be followed by investors and thus to present the characteristics of bellwether stocks, from which investors learn about other stocks in the market.\footnote{In Section 5.6 we analyze the impact of liquidity on our results. Gervais, Kaniel, and Mingelgrin (2001) and Kaniel, Ozoguz, and Starks (2012) show that the high-volume return premium is not explained by liquidity premia.}
This table presents the estimated beta for the twenty-one days around quarterly earnings announcements, grouped into quintiles of average turnover, defined as the average daily turnover during the two months that precede the earnings announcement month. The estimated beta is obtained from a panel regression of daily realized betas on dummy variables for each of the twenty-one days around quarterly earnings announcements. Event day 0 is the earnings announcement date. The regressions account for firm and year fixed effects. t-statistics, shown in parentheses, are computed from standard errors that are robust to heteroskedasticity and arbitrary intraday correlation.

<table>
<thead>
<tr>
<th>Day</th>
<th>1 (Low)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 (High)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>0.012 (0.99)</td>
<td>0.012 (0.88)</td>
<td>0.009 (0.59)</td>
<td>-0.017 (-1.18)</td>
<td>0.020 (0.58)</td>
</tr>
<tr>
<td>-9</td>
<td>-0.009 (-0.70)</td>
<td>0.016 (1.14)</td>
<td>0.025 (0.83)</td>
<td>0.010 (0.55)</td>
<td>0.026 (1.09)</td>
</tr>
<tr>
<td>-8</td>
<td>0.000 (0.00)</td>
<td>0.003 (0.17)</td>
<td>0.019 (1.33)</td>
<td>0.018 (1.02)</td>
<td>0.053 (2.11)</td>
</tr>
<tr>
<td>-7</td>
<td>-0.001 (-0.09)</td>
<td>-0.009 (-0.69)</td>
<td>-0.023 (-1.47)</td>
<td>-0.021 (-1.27)</td>
<td>-0.022 (-0.94)</td>
</tr>
<tr>
<td>-6</td>
<td>0.003 (0.25)</td>
<td>0.009 (0.69)</td>
<td>-0.029 (-2.01)</td>
<td>0.029 (1.92)</td>
<td>0.029 (1.29)</td>
</tr>
<tr>
<td>-5</td>
<td>-0.003 (-0.21)</td>
<td>0.012 (0.87)</td>
<td>-0.001 (-0.11)</td>
<td>0.041 (2.55)</td>
<td>0.041 (1.68)</td>
</tr>
<tr>
<td>-4</td>
<td>-0.005 (-0.37)</td>
<td>0.004 (0.33)</td>
<td>0.011 (0.85)</td>
<td>0.011 (0.67)</td>
<td>0.021 (0.84)</td>
</tr>
<tr>
<td>-3</td>
<td>0.020 (1.45)</td>
<td>-0.001 (-0.04)</td>
<td>0.026 (1.82)</td>
<td>0.032 (1.92)</td>
<td>0.029 (1.24)</td>
</tr>
<tr>
<td>-2</td>
<td>0.006 (0.46)</td>
<td>0.027 (2.05)</td>
<td>0.017 (1.16)</td>
<td>0.018 (1.03)</td>
<td>0.042 (1.83)</td>
</tr>
<tr>
<td>-1</td>
<td>0.010 (0.76)</td>
<td>0.029 (1.91)</td>
<td>0.006 (0.34)</td>
<td>0.025 (1.28)</td>
<td>0.069 (2.71)</td>
</tr>
<tr>
<td>0</td>
<td>0.113 (3.68)</td>
<td>0.092 (2.42)</td>
<td>0.156 (3.95)</td>
<td>0.176 (3.67)</td>
<td>0.275 (5.07)</td>
</tr>
<tr>
<td>1</td>
<td>-0.008 (-0.58)</td>
<td>-0.014 (-0.74)</td>
<td>-0.056 (-3.14)</td>
<td>-0.033 (-1.76)</td>
<td>-0.044 (-1.65)</td>
</tr>
<tr>
<td>2</td>
<td>-0.009 (-0.71)</td>
<td>-0.049 (-3.46)</td>
<td>-0.028 (-2.02)</td>
<td>-0.040 (-2.30)</td>
<td>-0.029 (-1.29)</td>
</tr>
<tr>
<td>3</td>
<td>-0.018 (-1.52)</td>
<td>-0.025 (-1.89)</td>
<td>-0.023 (-1.55)</td>
<td>-0.053 (-3.13)</td>
<td>-0.053 (-2.33)</td>
</tr>
<tr>
<td>4</td>
<td>-0.019 (-1.56)</td>
<td>-0.026 (-2.00)</td>
<td>-0.025 (-1.75)</td>
<td>-0.036 (-2.32)</td>
<td>-0.015 (-0.45)</td>
</tr>
<tr>
<td>5</td>
<td>-0.023 (-1.85)</td>
<td>-0.023 (-1.70)</td>
<td>-0.020 (-1.53)</td>
<td>-0.029 (-2.00)</td>
<td>0.010 (0.48)</td>
</tr>
<tr>
<td>6</td>
<td>0.010 (0.81)</td>
<td>-0.016 (-1.20)</td>
<td>-0.035 (-2.56)</td>
<td>-0.005 (-0.34)</td>
<td>-0.013 (-0.62)</td>
</tr>
<tr>
<td>7</td>
<td>0.005 (0.37)</td>
<td>-0.023 (-1.72)</td>
<td>-0.002 (-0.15)</td>
<td>-0.002 (-0.11)</td>
<td>-0.005 (-0.24)</td>
</tr>
<tr>
<td>8</td>
<td>0.000 (0.03)</td>
<td>-0.013 (-0.74)</td>
<td>-0.004 (-0.33)</td>
<td>-0.025 (-1.59)</td>
<td>0.015 (0.63)</td>
</tr>
<tr>
<td>9</td>
<td>0.008 (0.59)</td>
<td>-0.016 (-1.21)</td>
<td>0.020 (1.37)</td>
<td>0.000 (-0.02)</td>
<td>0.000 (-0.02)</td>
</tr>
<tr>
<td>10</td>
<td>0.005 (0.39)</td>
<td>-0.020 (-2.37)</td>
<td>-0.009 (-0.71)</td>
<td>-0.018 (-1.21)</td>
<td>0.018 (0.87)</td>
</tr>
</tbody>
</table>

This table presents the estimated beta for the twenty-one days around quarterly earnings announcements, computed as the difference with respect to the average nonannouncement beta. Beta is estimated for stocks grouped into quintiles of average turnover, defined as the average daily turnover during the two months that precede the earnings announcement month. The estimated beta is obtained from a panel regression of daily realized betas on dummy variables for each of the twenty-one days around quarterly earnings announcements. Event day 0 is the earnings announcement date. The regressions account for firm and year fixed effects. t-statistics, shown in parentheses, are computed from standard errors that are robust to heteroskedasticity and arbitrary intraday correlation.

We consider analyst coverage as a second variable of stock visibility. Since the number of analysts covering a stock is well known to be positively correlated with a stock’s market capitalization, we control for market capitalization by estimating each quarter the following cross-sectional regression:

\[
\ln(1 + na_{i,t}) = \alpha_t + \beta_t \ln(cap_{i,t-15}) + \varepsilon_{i,t},
\]

where \(na_{i,t} \) is the number of analysts who have issued a forecast for stock \(i \) in the ninety days leading to the announcement on day \(t \), and \(cap_{i,t-15} \) is the market capitalization of stock \(i \) measured fifteen trading days before the announcement. Given estimates of the parameters \(\alpha_t \) and \(\beta_t \), we obtain estimates of \(\varepsilon_{i,t} \), the “residual analyst coverage.” The estimates in Table 5 and Figure 9 reveal that the change in beta on news announcement days is 0.12 (t-statistic of 3.02) for stocks with low analyst coverage and 0.25 (t-statistic of 4.73) for stocks in the top quintile of residual coverage. This finding confirms the intuition that information releases on stocks that are more visible and more
followed by analysts offer investors greater potential to learn about the rest of the economy.16

Finally, we examine differences in the behavior of betas around earnings announcements for stocks whose fundamentals exhibit different degrees of connectedness with market-wide fundamentals. If investors indeed use a firm’s earnings news to revise their expectations about the prospects of the other nonannouncing firms in the market, and thus about the entire economy, then firms with stronger links to market-wide fundamentals provide investors with a greater opportunity to learn. We measure the link in fundamentals between a given firm and the market by estimating the firm’s analyst earnings beta, which captures the degree of correlation of the firm’s cash-flow innovations with those of the market (similar to Da and Warachka 2009). To account for seasonalties, we compute revisions in consensus quarterly forecasts as changes

16 Since both turnover and analyst coverage are imperfect proxies for a stock’s visibility, we also consider a third proxy. We construct a measure of a stock’s breadth of ownership by computing the fraction of institutional investors that hold a given stock in a given quarter (in the spirit of Sias, Starks, and Titman 2006 and Chen, Hong, and Stein 2002). Each quarter, we sort stocks into quintiles based on their breadth of ownership, and we estimate differences in the behavior of realized betas around earnings announcement across these quintiles. We find that betas increase by 0.137 and 0.123 for stocks with breadth of ownership in the first two quintiles and exhibit increasing spikes that reach 0.194 for stocks with more diffused institutional ownership (top quintile).
This table presents the estimated beta for the twenty-one days around quarterly earnings announcements, analyst earnings betas by regressing individual quarterly forecast revisions on we scale these revisions by stock price. Aggregate revisions are computed as in consensus between a given quarter and the same quarter in the previous year; does Beta Move with News?

−10 0.008 (0.55) 0.010 (0.70) 0.032 (1.08) 0.008 (0.53) −0.012 (−0.58)

−9 0.025 (1.81) −0.023 (−1.60) 0.039 (1.31) 0.020 (1.18) 0.010 (0.44)

−8 0.016 (1.13) 0.016 (0.99) 0.013 (0.82) 0.011 (0.61) 0.044 (1.95)

−7 0.006 (0.44) 0.006 (0.38) −0.015 (−0.90) −0.041 (−2.50) −0.030 (−1.44)

−6 0.036 (2.53) −0.019 (−1.37) 0.013 (0.81) −0.008 (−0.47) 0.037 (1.85)

−5 0.001 (0.09) 0.008 (0.59) −0.010 (−0.71) 0.007 (0.39) 0.077 (3.69)

−4 0.012 (0.83) −0.005 (−0.32) 0.007 (0.49) 0.010 (0.65) 0.020 (0.96)

−3 0.027 (1.96) 0.011 (0.65) 0.028 (1.90) 0.027 (1.66) 0.020 (1.03)

−2 0.002 (0.14) 0.022 (1.42) 0.019 (1.27) 0.017 (1.06) 0.052 (2.74)

−1 −0.011 (−0.58) 0.033 (2.12) 0.036 (2.08) 0.037 (1.88) 0.048 (2.11)

0 0.124 (3.02) 0.112 (2.77) 0.142 (3.45) 0.216 (5.82) 0.248 (4.73)

1 −0.015 (−0.70) −0.030 (−1.76) −0.036 (−1.92) −0.041 (−2.22) −0.037 (−1.72)

2 −0.038 (−2.46) −0.007 (−0.45) −0.044 (−3.23) −0.032 (−2.31) −0.031 (−1.46)

3 −0.015 (−1.04) −0.004 (−0.24) −0.040 (−2.93) −0.046 (−3.09) −0.043 (−2.22)

4 −0.024 (−1.71) −0.022 (−1.64) −0.047 (−1.73) 0.010 (0.67) −0.042 (−2.14)

5 −0.008 (−0.60) −0.011 (−0.83) −0.007 (−0.54) −0.034 (−2.35) −0.016 (−0.84)

6 0.002 (0.12) −0.034 (−2.50) 0.012 (0.89) −0.016 (−1.17) −0.018 (−0.99)

7 0.002 (0.14) −0.024 (−1.69) 0.013 (0.93) −0.014 (−0.93) −0.007 (−0.36)

8 −0.020 (−1.04) −0.020 (−1.21) 0.006 (0.42) −0.016 (−0.92) 0.021 (1.06)

9 0.017 (1.21) −0.009 (−0.65) −0.006 (−0.39) −0.004 (−0.28) 0.017 (0.78)

10 −0.014 (−1.09) −0.014 (−1.01) 0.011 (0.77) −0.008 (−0.56) 0.002 (0.08)

This table presents the estimated beta for the twenty-one days around quarterly earnings announcements, computed as the difference with respect to the average nonannouncement beta. Beta is estimated for stocks grouped into quintiles of residual analyst coverage, defined as the residual from a cross-sectional regression of analyst coverage on market capitalization. The estimated beta is obtained from a panel regression of daily realized betas on dummy variables for each of the twenty-one days around quarterly earnings announcements. Event day 0 is the earnings announcement date. The regressions account for firm and year fixed effects. The increase in beta on announcement days is at Fuqua School of Business Library on August 29, 2012 http://rfs.oxfordjournals.org/ Downloaded from
Figure 9
Changes in beta by residual analyst coverage
This figure presents the estimated changes in beta for the twenty-one days around quarterly earnings announcements (where event day 0 is the announcement day), for the lowest and highest quintiles by residual analyst coverage, as reported in Table 7.

3.3 Amount of uncertainty resolved by the news
The fourth prediction from our stylized model implies that the increase in beta on announcement dates is greater for announcements that resolve more uncertainty. We measure investors’ ex ante uncertainty about future earnings by the dispersion in analyst forecasts of earnings before the announcement date:

\[disp_{i,t} = \sqrt{V_{t-1}[e_{i,t}]} / \sqrt{E_{t-1}[e_{i,t}]} \]

where \(V_{t-1}[e_{i,t}] \) is the variance of all the forecasts of earnings that analysts issue for company \(i \) within an interval of ninety days before the announcement.

17 We also use an alternative and more indirect measure of a company’s ex ante correlation with aggregate fundamentals, namely, the \(R^2 \) from a market model regression of a firm’s returns on the market’s returns during a pre-event window of about forty days. Each quarter, we rank firms based on this measure of ex ante connectedness, and we estimate panel regressions of realized betas on event-day dummies during the twenty-one-day window around earnings announcements. The results from this test confirm those obtained using analyst earnings betas. Realized betas increase by 0.13 and 0.10 in the bottom two \(R^2 \) quintiles, and they increase by 0.21 and 0.20 in the top two \(R^2 \) quintiles.
We find further support for these results when we use an alternative measure of ex ante uncertainty about a firm’s innovations in consensus quarterly earnings forecasts on aggregate innovations in consensus forecasts. Changes in beta around information flows by correlation in fundamentals does Beta Move with News? does Beta Move with News?

Table 6

| Changes in beta around information flows by correlation in fundamentals |
|-----------------|---|---|---|---|---|
| Day | 1 (Low) | 2 | 3 | 4 | 5 (High) |
| -10 | -0.027 (-1.42) | -0.003 (-0.22) | -0.046 (-3.09) | 0.011 (0.68) | 0.067 (1.91) |
| -9 | 0.041 (2.36) | 0.007 (0.20) | -0.001 (-0.06) | 0.004 (0.23) | 0.021 (0.93) |
| -8 | -0.020 (-1.25) | 0.006 (0.37) | 0.006 (0.35) | 0.026 (1.39) | 0.043 (1.90) |
| -7 | -0.022 (-1.28) | -0.013 (-0.94) | -0.009 (-0.44) | -0.012 (-0.68) | -0.046 (-2.10) |
| -6 | -0.022 (-1.41) | -0.017 (-1.18) | 0.008 (0.57) | 0.035 (1.89) | -0.068 (-0.38) |
| -5 | 0.009 (0.55) | 0.000 (-0.02) | 0.005 (0.32) | 0.007 (0.38) | 0.054 (2.43) |
| -4 | 0.019 (1.05) | -0.002 (-0.12) | 0.021 (1.21) | 0.002 (0.14) | 0.010 (0.46) |
| -3 | 0.036 (2.04) | 0.001 (0.10) | 0.015 (0.91) | 0.029 (1.58) | 0.011 (0.50) |
| -2 | 0.031 (1.93) | -0.020 (-1.38) | 0.033 (1.87) | 0.008 (0.46) | 0.029 (1.27) |
| -1 | 0.069 (3.14) | -0.016 (-1.02) | -0.014 (-0.73) | 0.024 (1.26) | 0.044 (1.72) |
| 0 | 0.116 (2.46) | 0.098 (2.75) | 0.147 (3.56) | 0.203 (4.44) | 0.193 (3.71) |
| 1 | -0.015 (-0.71) | -0.019 (-1.13) | -0.038 (-1.84) | -0.079 (-4.18) | 0.016 (0.62) |
| 2 | -0.008 (-0.42) | -0.038 (-2.73) | -0.051 (-3.35) | -0.008 (-0.41) | -0.055 (-1.64) |
| 3 | -0.009 (-0.45) | -0.032 (-2.26) | -0.048 (-3.11) | -0.018 (-1.09) | -0.063 (-3.05) |
| 4 | -0.010 (-0.57) | -0.022 (-1.51) | -0.040 (-2.97) | -0.004 (-0.23) | 0.000 (0.01) |
| 5 | -0.016 (-0.99) | -0.004 (-0.30) | -0.023 (-1.58) | 0.005 (0.27) | -0.022 (-1.16) |
| 6 | -0.018 (-1.11) | -0.024 (-1.67) | -0.020 (-1.31) | 0.006 (0.34) | 0.028 (1.47) |
| 7 | 0.008 (0.45) | -0.006 (-0.43) | -0.012 (-0.77) | 0.019 (1.20) | 0.021 (0.95) |
| 8 | 0.025 (1.52) | 0.010 (0.71) | 0.006 (0.35) | -0.015 (-0.84) | -0.003 (-0.13) |
| 9 | 0.012 (0.68) | 0.005 (0.25) | -0.006 (-0.44) | 0.005 (0.30) | -0.005 (-0.26) |
| 10 | -0.004 (-0.26) | 0.003 (0.19) | -0.008 (-0.52) | -0.003 (-0.16) | -0.010 (-0.55) |

This table presents the estimated beta for the twenty-one days around quarterly earnings announcements, computed as the difference with respect to the average nonannouncement beta. Beta is estimated for stocks grouped into quintiles of analyst earnings beta. Analyst earnings beta is the slope coefficient from a regression of a firm’s innovations in consensus quarterly earnings forecasts on aggregate innovations in consensus forecasts. The estimated beta is obtained from a panel regression of daily realized betas on dummy variables for each of the twenty-one days around quarterly earnings announcements. Event day 0 is the earnings announcement date. The regressions account for firm and year fixed effects. t-statistics, shown in parentheses, are computed from standard errors that are robust to heteroskedasticity and arbitrary intraday correlation.

We find strong evidence that the increase in beta on announcement days is larger for stocks characterized by higher forecast dispersion, as can be seen from Table 7 and Figure 11. Stocks with low dispersion of forecasts experience a larger increase in beta of 0.10, whereas stocks with large forecast dispersion show a larger increase in beta of 0.27. Consistent with the predictions of our model in Section 2, learning is stronger for announcements that resolve greater ex ante uncertainty and is reflected in a significant increase in realized beta.

To further test the fourth prediction from our model on the link between changes in betas and the amount of uncertainty resolution, we investigate whether firms that announce their earnings earlier in the earnings season exhibit larger spikes in betas than do firms that announce later. If earlier announcements convey information for the rest of the firms in the market, they resolve greater

18 We find further support for these results when we use an alternative measure of ex ante uncertainty about a firm’s earnings, namely, the standard deviation of the growth rate of quarterly earnings. Earnings growth is measured by the log change of a firm’s quarterly earnings, scaled by analyst coverage; the standard deviation is computed each quarter over the previous six quarters. We find that, as the standard deviation of earnings growth increases, the spike in beta increases from 0.10 (bottom quintile of earnings uncertainty) to 0.24 (fourth quintile) and 0.15 (fifth quintile).
Figure 10
Changes in beta by correlation in fundamentals
This figure presents the estimated changes in beta for the twenty-one days around quarterly earnings announcements (where event day 0 is the announcement day), for the lowest and highest quintiles by correlation of fundamentals, as reported in Table 8.

aggregate uncertainty than do later announcements and thus provide investors with greater opportunities to revise their expectations about the economy. We should then observe a greater increase in betas for stocks that disclose information sooner after the end of a fiscal quarter.19

We restrict our analysis to the subsample of firms with March, June, September, or December fiscal quarter-ends20 to avoid confusing late and early announcers with different fiscal quarter-ends (e.g., a late announcing December quarter-end firm and an early announcing January quarter-end firm). The average “delay” between the fiscal quarter-end and the announcement date

19 This analysis is related to the literature on the lead-lag effect in stock returns and gradual information diffusion. For example, Hou (2007) finds a significant intra-industry lead-lag effect between big and small firms and relates it to post-announcement drift of small firms following earnings releases of big firms. The higher frequency of our investigation allows us to complement this evidence by capturing patterns in return comovement that may not be revealed at lower frequencies. Hou and Moskowitz (2005) show that market frictions related to investor recognition drive the delay with which stock prices react to market-wide news. In contrast, our analysis focuses on the delay with which companies release firm-specific information, and on the differential degree of learning that such delay implies across stocks.

20 These firms represent the bulk of the earnings announcements in our sample (85%). Estimating our baseline specification on this subsample of firms yields very similar results to those in Table 2, confirming that the two samples of firms do not present any systematic difference in the behavior of betas around earnings announcements.
Table 7
Changes in beta around information flows by forecast dispersion

<table>
<thead>
<tr>
<th>Day</th>
<th>1 (Low)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 (High)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−10</td>
<td>0.002</td>
<td>−0.16</td>
<td>0.013</td>
<td>(0.90)</td>
<td>−0.030</td>
</tr>
<tr>
<td>−9</td>
<td>−0.019</td>
<td>−1.37</td>
<td>0.015</td>
<td>(1.07)</td>
<td>−0.005</td>
</tr>
<tr>
<td>−8</td>
<td>0.008</td>
<td>(0.58)</td>
<td>0.022</td>
<td>(1.56)</td>
<td>0.009</td>
</tr>
<tr>
<td>−7</td>
<td>−0.011</td>
<td>−0.73</td>
<td>0.002</td>
<td>(0.14)</td>
<td>0.009</td>
</tr>
<tr>
<td>−6</td>
<td>0.002</td>
<td>(0.16)</td>
<td>0.017</td>
<td>(1.16)</td>
<td>0.030</td>
</tr>
<tr>
<td>−5</td>
<td>−0.009</td>
<td>−0.70</td>
<td>0.005</td>
<td>(0.35)</td>
<td>0.015</td>
</tr>
<tr>
<td>−4</td>
<td>0.004</td>
<td>(0.29)</td>
<td>0.010</td>
<td>(0.67)</td>
<td>−0.001</td>
</tr>
<tr>
<td>−3</td>
<td>0.030</td>
<td>(2.13)</td>
<td>0.038</td>
<td>(2.29)</td>
<td>0.041</td>
</tr>
<tr>
<td>−2</td>
<td>0.002</td>
<td>(0.17)</td>
<td>0.012</td>
<td>(0.78)</td>
<td>0.003</td>
</tr>
<tr>
<td>−1</td>
<td>0.026</td>
<td>(1.70)</td>
<td>0.023</td>
<td>(1.42)</td>
<td>0.013</td>
</tr>
<tr>
<td>0</td>
<td>0.101</td>
<td>(2.93)</td>
<td>0.119</td>
<td>(2.56)</td>
<td>0.187</td>
</tr>
<tr>
<td>1</td>
<td>−0.021</td>
<td>(−1.29)</td>
<td>−0.060</td>
<td>(−3.63)</td>
<td>−0.027</td>
</tr>
<tr>
<td>2</td>
<td>−0.031</td>
<td>(−2.38)</td>
<td>−0.039</td>
<td>(−2.69)</td>
<td>−0.030</td>
</tr>
<tr>
<td>3</td>
<td>−0.007</td>
<td>(−0.52)</td>
<td>−0.021</td>
<td>(−1.61)</td>
<td>−0.024</td>
</tr>
<tr>
<td>4</td>
<td>−0.045</td>
<td>(−3.31)</td>
<td>−0.030</td>
<td>(−2.23)</td>
<td>−0.026</td>
</tr>
<tr>
<td>5</td>
<td>0.001</td>
<td>(0.10)</td>
<td>−0.017</td>
<td>(−1.23)</td>
<td>0.001</td>
</tr>
<tr>
<td>6</td>
<td>−0.009</td>
<td>(−0.64)</td>
<td>−0.013</td>
<td>(−1.08)</td>
<td>−0.010</td>
</tr>
<tr>
<td>7</td>
<td>−0.023</td>
<td>(−1.67)</td>
<td>0.008</td>
<td>(0.60)</td>
<td>−0.020</td>
</tr>
<tr>
<td>8</td>
<td>−0.010</td>
<td>(−0.80)</td>
<td>0.003</td>
<td>(0.21)</td>
<td>−0.026</td>
</tr>
<tr>
<td>9</td>
<td>−0.002</td>
<td>(−0.14)</td>
<td>0.000</td>
<td>(−0.02)</td>
<td>−0.030</td>
</tr>
<tr>
<td>10</td>
<td>−0.009</td>
<td>(−0.76)</td>
<td>0.012</td>
<td>(1.02)</td>
<td>−0.007</td>
</tr>
</tbody>
</table>

This table presents the estimated beta for the twenty-one days around quarterly earnings announcements, computed as the difference with respect to the average nonannouncement beta. Beta is estimated for stocks grouped into quintiles of forecast dispersion, where forecast dispersion is defined as the coefficient of variation of analyst forecasts of quarterly earnings (the ratio of the standard deviation of forecasts to the absolute value of their mean). The estimated beta is obtained from a panel regression of daily realized betas on dummy variables for each of the twenty-one days around quarterly earnings announcements. Event day 0 is the earnings announcement date. The regressions account for firm and year fixed effects. t-statistics, shown in parentheses, are computed from standard errors that are robust to heteroskedasticity and arbitrary intraday correlation.

for each quintile of stocks is 15, 20, 23, 27, and 36 calendar days, respectively. Table 8 presents the regression results, and Figure 12 illustrates the patterns in betas. The average change in beta is 0.20 for early announcers, and decreases gradually for firms that announce later in the earnings season, with firms in the middle quintile of “delay” experiencing a modest increase in beta of 0.11. Interestingly, the latest announcers exhibit relatively large changes in beta of 0.18, which is difficult to explain via a pure learning story. We repeat this test by considering only announcements of December quarter-end earnings. We find that the spike in beta on announcement days is 0.37 for the earliest announcers, drops to 0.03 for firms in the middle quintile, and is 0.19 for the latest announcers. Overall, these findings suggest that investors learn more from the disclosures that occur earlier in the earnings season.

In summary, our cross-sectional analysis reveals interesting economic links between the behavior of betas around earnings announcements and the characteristics of the information environment in which information flows take place. These results are all consistent with a simple framework in which investors use firm-specific information signals to extract information about the rest of the firms in the economy, thus generating comovement in returns. Changes in beta are greatest when the announcement conveys
Figure 11
Changes in beta by forecast dispersion
This figure presents the estimated changes in beta for the twenty-one days around quarterly earnings announcements (where event day 0 is the announcement day), for the lowest, middle, and highest quintiles by analyst forecast dispersion, as reported in Table 4.

more information (bigger earnings surprise), provides investors with a greater potential for learning about the prospects of other firms in the economy (a firm’s fundamentals are more correlated with aggregate fundamentals; the firm is more widely followed by analysts and investors), and resolves more uncertainty (occurring earlier in the earnings season or relating to greater ex ante analyst dispersion).

The learning channel that we propose in our model is not the only possible source of comovement, as information spillover and contagion effects have been previously attributed to a number of different hypotheses based on rational or behavioral arguments. In the robustness section, we show that channels related to volatility or liquidity cannot be the main drivers of our results. Though we do not test explicitly for other potential alternative hypotheses that may lead to an increase in market betas around earnings announcements, we note that any alternative hypothesis would need to predict the patterns in betas that we find in our disaggregated analysis based on the characteristics of the announcing firms and the features of the information environment in which the earnings disclosures take place.
4. Application to Market-neutral Portfolios

In this section we show that the statistically significant variations in beta documented above have economically significant implications for portfolio decisions. Consider the problem faced by a portfolio manager or hedge fund manager who wishes to incorporate a trading strategy devised by one of her traders into her portfolio, but who has a predetermined target for her exposure to a broad market index. If the returns generated by the trader’s strategy are not zero beta, then incorporating that strategy into the portfolio will move its beta away from the target. Worse, if the beta of the trading strategy is time-varying, then the beta of the overall portfolio may change in ways that do not line up with the portfolio objectives. This problem can be overcome if it is possible to make the trading strategy market neutral, by taking a position in the market index that offsets the beta of the strategy (this is related to the construction of so-called “portable alpha” strategies). We use this example to illustrate the importance of capturing daily variations in beta attributable to information flows around quarterly earnings announcements.

We consider both completely random trading strategies (which are unlikely to be profitable but which represent a varied set of strategies for us to attempt to
neutralize) and simple trading strategies based on size, value, and momentum. For the random strategies, we consider strategies that involve $N=2, 5, 10, \text{ or } 25$ stocks (thus ranging from a simple pairs-trading strategy, up to a more sophisticated strategy involving dozens of stocks), and we randomly select the N stocks from our universe of 733 stocks and then assign each stock an equal weight or a random weight uniform on the interval $[0, 2/N]$. For the simple characteristic strategies, we sort stocks into quintiles based on their market capitalization, book-to-market ratio, or past twelve months’ performance and then randomly select ten stocks from the top quintile to hold long and ten stocks from the bottom quintile to hold short. We form the quintiles at the start of each year and rebalance at that time. In all studies, if a given stock is not in the sample on a particular day, then we reallocate its weight across the remaining stocks. We repeat the random draws of stocks and weights 1,000 times.

We then attempt to make each portfolio “beta neutral” by taking a position in the market to offset the predicted beta of this portfolio. The predicted beta for the portfolio comes from one of four models. The first two beta models we consider are the “zero beta” and the “unit beta” models, which assume that the portfolio beta is identically zero or identically one every day. The former case corresponds to not neutralizing the portfolio, whereas the latter

![Figure 12: Changes in beta by announcement delay](image-url)
case corresponds to a simple “market-adjusted model,” in which the portfolio is neutralized by simply subtracting the market return. The third model is the familiar “rolling beta” model, in which the beta for each stock is estimated via a regression using the most recent 100 daily returns. This allows beta to vary slowly over the sample period but does not exploit information from high-frequency data or earnings announcement dates. Our fourth model is the “realized beta” model, in which the daily beta for each stock is allowed to vary within a window of ten days around earnings announcements, as in Equation (3). If the dates of information flows, such as earnings announcements, were unimportant for beta, then this model would simply return a constant beta for each stock, and we would expect to see no improvement in the market neutralization from using the realized beta model relative to the rolling beta model. If, on the other hand, the changes in beta documented above are important for market neutralization, then we would expect to see this reflected in a “more neutral” portfolio based on the realized beta model.21

We evaluate the performance of each model by computing the realized beta of each market-neutral portfolio and comparing it with that of the rolling beta market-neutral portfolio. Better models should lead to market-neutral portfolios with betas that are closer to zero in absolute value. We test whether a given model is better than the rolling beta model by using a Diebold and Mariano (1995) test on the difference in absolute realized betas. We run this test for each of the 1,000 replications and report the proportion of times that a given model was significantly better or significantly worse than the rolling beta model at the 5% level.

The results of this analysis are reported in Table 9. This table reveals that the rolling beta model significantly outperforms the zero beta (no neutralization) model. Across portfolio sizes (N) the zero beta model almost never beats the rolling beta model, and it is significantly beaten by the rolling beta model in almost all cases. This is true for the equal-weighted, random-weighted, and characteristic-based portfolios. A similar result is also found for the unit beta model. The unit beta model outperforms the rolling beta model in only 1%–3% of cases, whereas it significantly underperforms in 87%–100% of cases. These results reveal that the rolling beta model is a serious benchmark model for constructing market-neutral portfolios; it represents a substantial improvement on these two simple neutralizing methods.

Table 9 shows that the realized beta model significantly outperforms the rolling beta model in almost all of the replications; it “neutralizes” the portfolios significantly better than does the rolling beta model in approximately 80%–90%
Table 9
Market-neutral portfolio application

<table>
<thead>
<tr>
<th></th>
<th>Equal weights (%)</th>
<th>Random weights (%)</th>
<th>Size (%)</th>
<th>Value (%)</th>
<th>Mom (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 2</td>
<td>N = 5</td>
<td>N = 10</td>
<td>N = 25</td>
<td>N = 2</td>
</tr>
<tr>
<td>Zero beta beats rolling beta</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Zero beta loses to rolling beta</td>
<td>99.3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Unit beta beats rolling beta</td>
<td>2.9</td>
<td>2.2</td>
<td>1.6</td>
<td>0.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Unit beta loses to rolling beta</td>
<td>87.5</td>
<td>87.2</td>
<td>90.8</td>
<td>91.7</td>
<td>87.3</td>
</tr>
<tr>
<td>Realized beta beats rolling beta</td>
<td>91.6</td>
<td>95.2</td>
<td>94.9</td>
<td>93.7</td>
<td>91.7</td>
</tr>
<tr>
<td>Realized beta loses to rolling beta</td>
<td>0.6</td>
<td>0.7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

This table presents the results of a market-neutral portfolio application. In the first two panels, we randomly choose N stocks to include in a portfolio (with N = 2, 5, 10, or 25) and we assign each stock either an equal weight (first panel) or a random weight (middle panel), in both cases imposing that the weights sum to unity. In the last three columns, we consider long-short portfolios based on market capitalization (size), book-to-market ratio (value), or past performance (momentum), with ten stocks long from the top quintile and ten stocks short from the bottom quintile, all with equal weights. We then attempt to make each portfolio “beta neutral” by taking a position in the market to offset the predicted beta of this portfolio. The predicted beta for the portfolio comes from one of four models: “Rolling beta,” where the beta for each stock is estimated via a regression using the most recent 100 daily returns; “Zero beta,” where all portfolios have a beta equal to zero, so neutralization is not needed; “Unit beta,” where all portfolios have identical unit beta; and “Realized beta,” where the daily beta for each stock is allowed to vary within a window of twenty-one days around earnings announcements. We then compute the realized beta of the “market-neutral” portfolio constructed using each of these four beta models, which should be near zero for a well-specified model of beta. We consider 1,000 random portfolios for each case. For each beta model, we report the proportion of the 1,000 random portfolios for which a Z test rejects the null, at the 5% level, of equal absolute beta in favor of the “Rolling beta” model versus each of the other three models. For example, for N = 2, the “Zero beta” model significantly beats the “Rolling beta” model in only 0.3% of cases, whereas it is significantly beaten by the “Rolling beta” model in 99.3% of cases.
Does Beta Move with News?

of cases and underperforms in less than 1% of cases. The outperformance of the realized beta model holds across all choices of portfolio size (2, 5, 10, and 25 stocks) and across equal- and random-weighted strategies, as well as the characteristic strategies. This finding offers strong empirical support for the importance of changes in beta around times of information flows. Note also that these results average across all stocks in our sample, including those with characteristics (such as low trading volume, low analyst dispersion, or low correlation in fundamentals) that tend to lead to smaller changes in beta. The outperformance of the realized beta model in this market neutralization application would presumably be even greater if we focused on trading strategies involving stocks with characteristics associated with larger changes in beta.

5. Robustness Tests

In this section we perform a series of robustness tests of the changes in beta that we report in Section 1. First, we check the sensitivity of our results to the choice of sampling frequency and to the methodology used in constructing realized betas. We then modify our regression specification to include controls for lagged realized betas, realized volatility, trading volume, and bid-ask spreads. Furthermore, we check the robustness of our results to a modified measure of beta that is constructed after excluding the announcing stock from the market index. We also consider the impact of potential jumps in prices on our estimates of realized betas. Finally, we investigate whether comovement in liquidity before and during earnings announcements could give rise to the pattern in realized betas that we uncover in this study. We verify that our results are robust to the clustering of earnings announcements on event days and to the potential cross-listing of S&P 500 stocks on non-U.S. markets.

22 The mean number of announcements per day is 6.6, and the median is two. When we control for the number of other announcements occurring on any given day, the increase in realized betas on day 0 is 0.169, compared with 0.162 in our baseline results. When we exclude from the sample all days with a number of announcements higher than four (the median number of announcements on days with at least one announcement), the increase in beta is 0.218. This result is also consistent with our learning story: on days with many announcements, the unique information content of any given announcement is lower, leading to less learning from any single announcement. In contrast, if the announcing company is the only announcer on a given day, then there is more potential for learning from that individual firm, leading to a bigger change in its beta.

23 See Albuquerque (2012) for a link between heterogeneity in announcement dates and skewness in aggregate returns.

24 To control for the potential influence of cross-listing on our results on comovement (Bailey, Karolyi, and Salva 2006; Gagnon and Karolyi 2009) we replicate our analysis after excluding from our sample those stocks that are also traded in foreign exchanges. We obtain the data set of foreign equity listings used by Sarkissian and Schill (2004, 2009), which comprises cross-listings in international markets as of December 1998. We match the list of companies in their data set with our sample of S&P 500 companies, and find an overlap of 126 firms (about 17% of our sample). We reestimate our panel regression of realized betas around earnings announcements after excluding these stocks. We find that the behavior of betas around earnings announcements is very similar to our baseline case, with a spike in realized beta of 0.17 on announcement days.
5.1 Higher-frequency beta

In our main set of empirical results, we follow earlier research on estimating covariances and betas from high-frequency data (see, e.g., Bollerslev, Law, and Tauchen 2008 and Todorov and Bollerslev 2010) and use a sampling frequency of twenty-five minutes. This choice reflects a trade-off between using all available high-frequency data and avoiding the impact of market microstructure effects, such as infrequent trading or nonsynchronous trading.

In Table 10, we present results based on realized betas computed from five-minute intraday prices following the same estimation methodology adopted in Table 2 for twenty-five-minute betas. These results reveal that the behavior of five-minute betas is very similar to the patterns observed for twenty-five-minute betas (0.12 vs. 0.16). The similarity of our results for five- and twenty-five-minute betas is likely to be related to our focus on deviations of beta from its average level, which provides some built-in protection against level biases arising from market microstructure effects.

5.2 An alternative estimator of beta

We next analyze changes in betas around earnings announcements using a measure of covariance developed by Hayashi and Yoshida (2005; henceforth HY) to handle the problem of nonsynchronous trading. Nonsynchronous trading leads realized covariances and thus betas to be biased toward zero and motivates the use of lower-frequency data. The HY estimator of the covariance takes into account the nonsynchronous nature of high-frequency data and corrects this bias. We implement the HY estimator on sixteen different sampling frequencies, ranging from one second to thirty minutes, and choose the optimal sampling frequency for each firm as the one that generates the HY covariance that is closest in absolute value to the covariance computed from daily returns (i.e., the one that minimizes the bias in the HY estimator). This is almost always not the highest frequency, consistent with Griffin and Oomen (2011). We combine our “optimal” HY estimator of the covariance with the realized variance of the market using five-minute prices and use these HY-betas in the same estimation methodology adopted in Table 2 for twenty-five-minute betas. The results are presented in Table 10. The estimated changes in beta over the event window are remarkably similar to those obtained from the basic regression using twenty-five-minute betas. Changes in betas are slightly smaller relative to our main empirical results (e.g., 0.14 vs. 0.16 on day 0) but not uniformly or substantially. We thus conclude that our initial results using twenty-five-minute betas are not much changed by using a more sophisticated estimator of beta.

25 The HY estimator is similar to the familiar Scholes and Williams (1977) estimator, although it is adapted to high-frequency data and is based on an alternative statistical justification.
This table presents robustness results for the estimated beta for the twenty-one days around quarterly earnings announcements, computed as the difference with respect to the average nonannouncement beta. In the baseline specification, the estimates are obtained from a panel regression of daily realized betas on dummy variables for each of twenty-one days around quarterly earnings announcements. Event day 0 is the earnings announcement date. In the first regression (Five-min Beta), the dependent variable is the realized daily beta computed from five-minute returns. In the second regression (HY Beta), the dependent variable is the realized daily beta computed with the T method, where the tick frequency is optimized for individual stocks. In the third regression (Lags), the dependent variable is the twenty-five-minute realized beta as in Table 2: the specification includes five lags of realized beta. In the fourth regression (V Controls), the dependent variable is the the twenty-five-minute realized beta as in Table 2; the specification adds control variables, which include five lags of realized beta, realized firm volatility, trading volume, the square and cube of trading volume, adjusted daily bid-ask spread, and realized market volatility. In the fifth regression (Betaj), the dependent variable is a modified measure of beta computed as the beta of stock i with respect to a market index, which excludes the return of stock i. In the last regression (Jumps), we test the robustness of changes in realized betas to the possible presence of jumps in prices around announcement days. The regressions account for firm and year fixed effects. t-statistics, shown in parentheses, are computed from standard errors that are robust to heteroskedasticity and arbitrary intraday correlation.

<table>
<thead>
<tr>
<th>Day</th>
<th>Five-min Beta</th>
<th>HY Beta</th>
<th>Lags</th>
<th>V Controls</th>
<th>Beta(j)</th>
<th>Jumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>0.003 (0.51)</td>
<td>0.007 (0.79)</td>
<td>0.009 (0.85)</td>
<td>0.007 (0.67)</td>
<td>0.008 (0.76)</td>
<td>0.008 (0.81)</td>
</tr>
<tr>
<td>-9</td>
<td>0.007 (0.91)</td>
<td>0.010 (1.14)</td>
<td>0.015 (1.44)</td>
<td>0.013 (1.24)</td>
<td>0.019 (1.50)</td>
<td>0.017 (1.71)</td>
</tr>
<tr>
<td>-8</td>
<td>0.013 (2.05)</td>
<td>0.012 (1.30)</td>
<td>0.015 (1.62)</td>
<td>0.013 (1.38)</td>
<td>0.019 (2.15)</td>
<td>0.018 (2.02)</td>
</tr>
<tr>
<td>-7</td>
<td>-0.017 (-2.62)</td>
<td>-0.016 (-1.77)</td>
<td>-0.017 (-1.82)</td>
<td>-0.019 (-1.99)</td>
<td>-0.016 (-1.84)</td>
<td>-0.015 (-1.70)</td>
</tr>
<tr>
<td>-6</td>
<td>0.007 (1.08)</td>
<td>0.010 (1.16)</td>
<td>0.008 (0.90)</td>
<td>0.005 (0.64)</td>
<td>0.008 (1.01)</td>
<td>0.011 (1.40)</td>
</tr>
<tr>
<td>-5</td>
<td>0.018 (2.83)</td>
<td>0.016 (1.82)</td>
<td>0.017 (2.02)</td>
<td>0.014 (1.65)</td>
<td>0.018 (2.30)</td>
<td>0.022 (2.76)</td>
</tr>
<tr>
<td>-4</td>
<td>-0.002 (-0.23)</td>
<td>0.002 (0.25)</td>
<td>0.003 (0.36)</td>
<td>0.001 (0.07)</td>
<td>0.008 (0.95)</td>
<td>0.009 (0.99)</td>
</tr>
<tr>
<td>-3</td>
<td>0.015 (2.35)</td>
<td>0.019 (2.11)</td>
<td>0.019 (2.19)</td>
<td>0.017 (1.90)</td>
<td>0.021 (2.48)</td>
<td>0.020 (2.39)</td>
</tr>
<tr>
<td>-2</td>
<td>0.019 (3.04)</td>
<td>0.026 (2.76)</td>
<td>0.019 (2.16)</td>
<td>0.015 (1.75)</td>
<td>0.020 (2.53)</td>
<td>0.023 (2.76)</td>
</tr>
<tr>
<td>-1</td>
<td>0.014 (2.07)</td>
<td>0.025 (2.62)</td>
<td>0.027 (2.69)</td>
<td>0.019 (1.89)</td>
<td>0.025 (2.68)</td>
<td>0.029 (3.07)</td>
</tr>
<tr>
<td>0</td>
<td>0.125 (7.47)</td>
<td>0.136 (7.43)</td>
<td>0.171 (7.62)</td>
<td>0.122 (5.48)</td>
<td>0.142 (7.00)</td>
<td>0.172 (8.43)</td>
</tr>
<tr>
<td>1</td>
<td>-0.034 (-4.68)</td>
<td>-0.028 (-2.94)</td>
<td>-0.036 (-3.90)</td>
<td>-0.042 (-4.10)</td>
<td>-0.034 (-3.51)</td>
<td>-0.030 (-3.10)</td>
</tr>
<tr>
<td>2</td>
<td>-0.031 (-5.13)</td>
<td>-0.022 (-2.77)</td>
<td>-0.037 (-4.33)</td>
<td>-0.037 (-4.41)</td>
<td>-0.031 (-4.09)</td>
<td>-0.030 (-3.89)</td>
</tr>
<tr>
<td>3</td>
<td>-0.030 (-4.81)</td>
<td>-0.018 (-2.00)</td>
<td>-0.032 (-4.01)</td>
<td>-0.032 (-4.00)</td>
<td>-0.035 (-4.48)</td>
<td>-0.034 (-4.26)</td>
</tr>
<tr>
<td>4</td>
<td>-0.020 (-2.73)</td>
<td>-0.014 (-1.73)</td>
<td>-0.026 (-2.71)</td>
<td>-0.026 (-2.72)</td>
<td>-0.024 (-2.78)</td>
<td>-0.022 (-2.59)</td>
</tr>
<tr>
<td>5</td>
<td>-0.017 (-3.02)</td>
<td>-0.014 (-1.74)</td>
<td>-0.018 (-2.18)</td>
<td>-0.018 (-2.18)</td>
<td>-0.017 (-2.15)</td>
<td>-0.016 (-2.00)</td>
</tr>
<tr>
<td>6</td>
<td>-0.014 (-2.58)</td>
<td>-0.008 (-1.03)</td>
<td>-0.007 (-0.80)</td>
<td>-0.007 (-0.79)</td>
<td>-0.012 (-1.51)</td>
<td>-0.012 (-1.50)</td>
</tr>
<tr>
<td>7</td>
<td>-0.016 (-2.69)</td>
<td>-0.002 (-0.21)</td>
<td>0.002 (0.19)</td>
<td>0.002 (0.27)</td>
<td>-0.006 (-0.72)</td>
<td>-0.004 (-0.47)</td>
</tr>
<tr>
<td>8</td>
<td>-0.012 (-1.86)</td>
<td>0.003 (0.33)</td>
<td>-0.002 (-0.21)</td>
<td>-0.001 (-0.15)</td>
<td>-0.006 (-0.74)</td>
<td>-0.006 (-0.74)</td>
</tr>
<tr>
<td>9</td>
<td>0.001 (0.17)</td>
<td>0.006 (0.67)</td>
<td>0.003 (0.38)</td>
<td>0.004 (0.46)</td>
<td>0.002 (0.26)</td>
<td>0.002 (0.21)</td>
</tr>
<tr>
<td>10</td>
<td>-0.013 (-3.22)</td>
<td>-0.011 (-1.32)</td>
<td>-0.008 (-1.06)</td>
<td>-0.007 (-0.96)</td>
<td>-0.007 (-0.96)</td>
<td>-0.006 (-0.88)</td>
</tr>
</tbody>
</table>
5.3 Adding control variables
We check the robustness of our results on twenty-five-minute beta by adding a number of control variables in the regression specification. First, we include lagged realized betas in the regression to account for autocorrelation in realized betas (see, e.g., Andersen et al. 2006b). We include five lags of daily realized betas. The results from this estimation are presented in Table 10 (Lags) and are similar to those obtained in our baseline specification. The change in beta on day 0 is 0.17, with a t-statistic of 7.62.

Next, we add realized firm volatility, realized market volatility, trading volume, and adjusted spreads (described in Section 5.6) as additional control variables in the regression specification. We control for firm volatility, given the existing empirical evidence that volatility can affect covariance estimates (Forbes and Rigobon 2002). We also control for potential variations in market volatility, caused by clustering of earnings announcements or other factors, over the event window. We control for volume, given the evidence that nonsynchronous trading can cause a downward bias in realized covariances (see Epps 1979; Scholes and Williams 1977; Dimson 1979; Hayashi and Yoshida 2005). Since nonsynchronous trading is less important on days with high trading intensity, and given that earnings announcement dates are generally characterized by greater than average trading volume, it may be important to account for the possibility that an observed increase in realized beta on announcement dates is due to a decrease in the bias related to nonsynchronous trading (see also Denis and Kadlec 1994). We control for this effect by including a stock’s trading volume in our regression specification. We also include the square and cube of volume as control variables, allowing for a nonlinear relation between volume and any biases present in the beta estimates. Table 10 (V Controls) shows that the estimates of beta are similar to our base specification (with a day 0 change of 0.12), providing further confidence in our empirical results.

5.4 A modified measure of beta
In this section we estimate the behavior of beta around earnings announcements using a modified measure of beta. This new measure, labeled \(\beta_{i}^{(j)} \), is the beta of stock \(i \) with a reweighted market index that places zero weight on stock \(i \) and only uses the remaining \(N-1 \) stocks. Given that the firms in our sample are constituents of the index used as the market portfolio (the S&P 500 index), an increase in the return variance of a given stock can mechanically increase its beta with the market. We thus compute this new measure of beta to exclude any possible mechanical variations in beta due to using a market portfolio that places nonzero weight on the announcing stock. To obtain this modified measure of beta, we first define \(r_{mt}^{i} \), the reweighted market index, which places zero weight on stock \(i \), as a simple function of the return on the original market index, the return on stock \(i \), and the weight on stock \(i \):

\[
r_{mt}^{(i)} = \frac{1}{1-\omega_{it}} \sum_{j=1, j \neq i}^{N} \omega_{jt} r_{jt} = \frac{1}{1-\omega_{it}} \left(r_{mt} - \omega_{it} r_{it} \right). \tag{6}
\]
The beta of stock i with respect to this reweighted market index is then given by

$$\beta_{it}(i) \equiv \frac{\text{Cov}(r_{it}, r_{m(i)})}{V[r_{m(i)}]} = \frac{(1 - \omega_{it})}{1 - \omega_{it}} \beta_{it} + \beta_{it}^{(\text{cov})},$$

(7)

where $\beta_{it}^{(\text{cov})} = \sum_{j=1, j \neq i}^{N} \omega_{jt} \frac{\text{Cov}(r_{it}, r_{jt})}{V[r_{m(j)}]} \approx \beta_{it} - \omega_{it} \frac{V[r_{it}]}{V[r_{m(j)}]}.$

(8)

The penultimate column in Table 10 presents estimates of our baseline panel regression using this modified measure of beta. The results show that the pattern documented in this article for the behavior of beta around earnings announcements does not depend on the mechanical component that is related to the weight of the announcing stock in the market index. Beta spikes upward on announcement days by 0.14, a magnitude that is very similar to our baseline result.

5.5 Possible jumps in prices

We use the recent work of Todorov and Bollerslev (2010) to consider the impact of potential jumps in prices on our main findings. Like us, Todorov and Bollerslev (2010) consider a one-factor model, and they decompose the factor return into a part attributable to a continuous component and a part attributable to jumps. In the most general case, each of the factor components has a separate loading (β^c and β^d), and when these two loadings are equal, the model simplifies to a standard one-factor model. Todorov and Bollerslev (2010) provide a method for estimating the continuous and jump betas, which we implement here. The first step in their analysis is to test for the presence of a jump in the market price on each day, and we do so using the same test (the “ratio” jump test of Barndorff-Nielsen and Shephard 2006), sampling frequency (five minutes), and critical value (3.09). On days with no jumps in the market, the usual realized beta is an estimate of the continuous beta. On days with jumps in the market, one can use the estimator in Todorov and Bollerslev (2010) to estimate the jump and continuous betas separately, and then look at the reaction in each of these around earnings announcements.

In our sample, however, we have too few jump days that intersect with earnings announcement days (less than one per firm on average), so we do not attempt to estimate reactions in “jump betas.” In contrast, we have sufficient observations to study the reactions in “continuous betas.”

The test for jumps in the market factor reveals a significant jump on 4.04% of days. Excluding these days from our analysis and estimating the reaction of “continuous betas” around announcements yields the results presented in the

26 There is no need to test for a jump in the individual stock price, as the estimates of the continuous and jump betas depend only on whether the factor was continuous or experienced a jump.
last column in Table 10. In the table, we see that the results excluding jump days are very similar to our baseline results, with the spike in beta on announcement days estimated at 0.17 with a t-statistic of 8.43. In unreported analysis, we also consider using a less conservative critical value of 1.65 for the jump test, which leads to a proportion of 21.4% of days with a jump, and find very similar results to those presented in Table 10. Thus, we conclude that our findings are not driven by the presence of jumps.

5.6 Comovement in liquidity

In this section we test whether the changes in realized beta around earnings announcements can be driven by comovement in liquidity innovations. A large and growing body of literature shows both evidence of commonality in stock liquidity (e.g., Chordia, Roll, and Subrahmanyam 2000) and that comovement of a stock’s liquidity with market liquidity is priced (Pástor and Stambaugh 2003; Acharya and Pedersen 2005; Sadka 2006). Recent work documents that liquidity comovement varies over time. For example, Hameed, Kang, and Viswanathan (2010) find that the comovement in spreads tends to increase in down markets, whereas Karolyi, Lee, and van Dijk (2011) show that commonality in liquidity is greater in countries with, and during times of, high market volatility, a larger presence of international investors, and more correlated trading activity. Our goal is to test whether comovement in liquidity has an effect on return comovement during the release of firm-specific information. To the extent that variations in the covariance of a stock’s liquidity with market liquidity are priced and translate into a liquidity premium, they may also drive a stock’s return comovement with the rest of the market and thus be captured by our measure of realized beta. We test whether comovement in liquidity is related to changes in realized beta around earnings announcements in two different ways. First, we test for variations in liquidity comovement during earnings announcements directly, using a proxy for daily comovement in liquidity. Second, we test for differences in the behavior of realized betas during earnings announcements across stocks with different ex ante liquidity comovement.

We start by constructing a daily measure of liquidity for each stock in our sample using bid-ask spreads. We compute the daily proportional quoted spread (the difference between bid and ask quotes as a proportion of the midquote, in percent) from five-minute bid and ask quotes. As in Hameed, Kang, and Viswanathan (2010) and Chordia, Sarkar, and Subrahmanyam (2005), we then adjust spreads for time-series variations due to seasonality and deterministic changes, such as time trends and changes in tick size. We regress a stock’s daily spread on day of the week dummies, month dummies, tick change dummies, and a trend variable capturing the age of the stock in our data set.27

27 In particular, we estimate the following regression for each stock i in our sample:

$$QSPR_{i,t} = \sum_{k=1}^{4} \gamma_{i,k}^{1} \text{Day}_k + \sum_{k=1}^{11} \gamma_{i,k}^{2} \text{Month}_k + \gamma_{i}^{3} \text{Tick}_{1,t} + \gamma_{i}^{4} \text{Tick}_{2,t} + \gamma_{i}^{5} \text{Trend}_{t} + \epsilon_{i,t},$$

2826
The residuals that we obtain from this regression are the adjusted proportional quoted spreads, \(ASP_{it} \). Innovations in liquidity are defined as daily changes in adjusted spreads, \(\Delta ASP_{it} = ASP_{it} - ASP_{i(t-1)} \), and market innovations in liquidity are obtained by averaging individual stock innovations on any given day.

To test whether liquidity comovement varies with the release of firm-specific news, we construct a proxy for the daily covariance of a stock’s liquidity innovations with the market’s liquidity innovations. This proxy is the product of the daily liquidity innovations for the stock (\(\Delta ASP_{i,t} \)) and for the market (\(\Delta ASP_{M,t} \)), scaled by the variance of the market innovations:

\[
LC_{i,M,t} = \frac{\Delta ASP_{i,t} \times \Delta ASP_{M,t}}{V_{t-1}[\Delta ASP_{M,t}]}.
\]

where \(V_{t-1}[\Delta ASP_{M,t}] \) is the variance of the market innovations in liquidity and is measured during the non-event days that precede the earnings announcement window. The results are presented in Panel A of Table 11. We find that liquidity comovement does not vary significantly on earnings announcement days. Liquidity comovement is significantly lower than the average during event days -6 to +1, on days +4 to +6, and from day +8 onward. The lack of a clear change in comovement on the announcement day (day 0) suggests that daily variations in liquidity comovement cannot drive the pattern in realized betas that we uncover in this study.

As a second test of the impact of liquidity comovement, we exploit the cross-sectional heterogeneity in realized betas in our sample and test whether stocks with different ex ante levels of liquidity comovement exhibit different patterns in realized betas around announcements. We estimate ex ante liquidity comovement using a method similar to Hameed, Kang, and Viswanathan (2010). We regress daily individual liquidity innovations on daily market liquidity innovations during a pre-event window of about forty trading days before the earnings announcement window:

\[
\Delta ASP_{i,t} = a_L^i + b_L^i \Delta ASP_{M,t} + \epsilon_{i,t}.
\]

The \(R^2 \) from this regression represents the measure of comovement in liquidity between stock \(i \) and the market. Each quarter, we rank stocks into quintiles based on this ex ante measure of liquidity comovement and evaluate the behavior of realized betas around earnings announcements for these different portfolios. Panel B of Table 11 presents the results. We find that the increase in realized betas is similar across all quintiles of liquidity comovement. The lack of substantial differences in realized betas across stocks exhibiting different levels of liquidity comovement further confirms that commonalities in liquidity innovations do not drive the behavior of realized betas around firm-specific information flows.

where \(Day_{k,j} \) are day of the week dummies from Monday to Thursday; \(Month_{k,j} \) are month dummies from January to November; \(Tick_{k,1} \) captures the tick change on 24 June 1997 and \(Tick_{k,2} \) captures the tick change on 29 January 2001; and \(Trend_{k} \) is the difference between the current year and the year in which the stock appears in our sample.
Table 11
Robustness tests controlling for liquidity comovement

<table>
<thead>
<tr>
<th>Panel A</th>
<th>Panel B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>1 (Low)</td>
</tr>
<tr>
<td>-10</td>
<td>0.021</td>
</tr>
<tr>
<td>0.182</td>
<td>0.016</td>
</tr>
<tr>
<td>-9</td>
<td>-0.001</td>
</tr>
<tr>
<td>0.023</td>
<td>(1.12)</td>
</tr>
<tr>
<td>-8</td>
<td>-0.037</td>
</tr>
<tr>
<td>-6</td>
<td>-0.019</td>
</tr>
<tr>
<td>-5</td>
<td>-0.001</td>
</tr>
<tr>
<td>-4</td>
<td>-0.022</td>
</tr>
<tr>
<td>-3</td>
<td>-0.001</td>
</tr>
<tr>
<td>-2</td>
<td>-0.005</td>
</tr>
<tr>
<td>-1</td>
<td>0.030</td>
</tr>
<tr>
<td>0</td>
<td>0.182</td>
</tr>
<tr>
<td>1</td>
<td>-0.030</td>
</tr>
<tr>
<td>2</td>
<td>-0.042</td>
</tr>
<tr>
<td>3</td>
<td>-0.041</td>
</tr>
<tr>
<td>4</td>
<td>-0.028</td>
</tr>
<tr>
<td>5</td>
<td>-0.017</td>
</tr>
<tr>
<td>6</td>
<td>-0.035</td>
</tr>
<tr>
<td>7</td>
<td>-0.015</td>
</tr>
<tr>
<td>8</td>
<td>-0.002</td>
</tr>
<tr>
<td>9</td>
<td>-0.034</td>
</tr>
<tr>
<td>10</td>
<td>-0.003</td>
</tr>
</tbody>
</table>

This table presents robustness tests to control for the effect of liquidity comovement. Panel A reports estimates of liquidity comovement around announcement days, defined as the product of individual stock daily liquidity innovations and market daily liquidity innovations, scaled by the variance of market liquidity innovations. Liquidity innovations are computed from daily adjusted bid-ask spreads. Panel B presents estimated realized betas for stocks grouped into quintiles of ex ante liquidity comovement, computed as the R² from regressions of individual daily liquidity innovations on market liquidity innovations during the 40-day window before earnings announcements. Event day 0 is the earnings announcement date. The regressions account for firm and year fixed effects. t-statistics, shown in parentheses, are computed from standard errors that are robust to heteroskedasticity and arbitrary intraday correlation.
Does Beta Move with News?

6. Conclusions

In this article we investigate variations in daily individual stock betas around the release of firm-specific news. Using high-frequency price data for all companies in the S&P 500 index and their quarterly earnings announcements over the period 1996–2006 (a total of 17,936 events), we find that betas increase on announcement days by a statistically and economically significant amount and decline on post-announcement days before reverting to their long-run average levels. The variations that we document are short-lived (lasting around two to five days) and thus difficult to detect using the lower-frequency methods employed in most previous studies. Our methodology moreover enables us to uncover a large degree of cross-sectional heterogeneity in the behavior of betas.

To understand the channels that link firm-specific information flows to marketwide comovement in stock returns, we propose a simple learning model in which investors use information from announcing firms to revise their expectations on the profitability of nonannouncing firms and, more generally, about the entire economy. We show that, in the presence of intermittent earnings announcements and cross-sectional correlation in earnings innovations, good (bad) news for an announcing firm is interpreted as partial good (bad) news for nonannouncing firms and, in general, for the entire economy. This signal extraction process by investors raises the average covariance of the return on the announcing firm with the returns on the other firms in the market, leading to an increase in its beta. Our model can match our aggregate result and generates several cross-sectional predictions: the increase in beta is strongest for large earnings surprises, firms whose announcements allow investors to extract more market-wide information, and announcements that entail a greater resolution of uncertainty.

Our empirical results confirm the implications from our model. We study cross-sectional differences in changes in beta for stocks with different characteristics and for earnings announcements with different information content and different degrees of uncertainty. We find that changes in betas are strongest for earnings announcements that represent large (positive or negative) surprises. We also find that the increase in betas is greater for stocks whose fundamentals are more connected with market-wide fundamentals and stocks with higher turnover and greater analyst following, i.e., for more visible stocks. Furthermore, changes in beta are greatest for announcements with greater ex ante uncertainty (measured by analyst dispersion) or that occur earlier in the earnings season.

Our findings are robust to using alternative measures of beta that address potential market microstructure biases and controlling for changes in firm volatility, market volatility, and jumps in prices around announcements. Furthermore, the results in this article are not driven by changes in liquidity comovement before or during the announcement window.
The patterns of time variation in betas that we uncover in this study are relevant for portfolio management applications that involve hedging risks at daily frequencies. We provide a simple application to illustrate the relevance of our findings for neutralizing a portfolio’s exposure to a market index. More generally, the analysis in this article establishes that firm-specific information flows have a significant impact on the covariance structure of stock returns, thus contributing to our understanding of learning by investors, return comovement, and time-varying systematic risk.

Appendix

1. Details on the Estimation of Realized Betas

The use of high-frequency data for estimating daily betas in this article is based on recent econometric work on the estimation of volatility and covariance using high-frequency data (see, e.g., Andersen et al. 2003b and Barndorff-Nielsen and Shephard 2004). These analyses are based on an underlying multivariate stochastic volatility diffusion process for the $N \times 1$ vector of returns on a collection of assets, denoted $d \log P(t)$:

$$d \log P(t) = dM(t) + \Theta(t)dW(t)$$

where $M(t)$ is a $N \times 1$ term capturing the drift in the log-price, $W(t)$ is a standard vector Brownian motion, and $\Sigma(t)$ is the $N \times N$ instantaneous or “spot” covariance matrix of returns. The process given above assumes the absence of jumps in the stock price process; this assumption can be relaxed using the framework of Todorov and Bollerslev (2010) as outlined below.

The quantity of interest in our study is not the instantaneous covariance matrix (and the corresponding “instantaneous betas”) but rather the covariance matrix for the daily returns, a quantity known as the “integrated covariance matrix”:

$$IC_{\tau} = \int_{\tau - 1}^{\tau} \Sigma(t) d\tau.$$

(A2)

As in standard analyses, the beta of an asset is computed as the ratio of its covariance with the market return to the variance of the market return:

$$\beta_{it} = \frac{ICov_{imt}}{IV_{mt}},$$

(A3)

where $ICov_{imt}$ is the (i,j) element of the matrix $ICov_t$, IV_{mt} is the integrated variance of the market portfolio, $ICov_{imt}$ is the integrated covariance between asset i and the market, and β_{it} is the beta of asset i (sometimes known as the “integrated beta” in this literature). The integrated covariance matrix can be consistently estimated (as the number of intradaily returns diverges to infinity) by the $N \times N$ “realized covariance” matrix:

$$RCov_{\tau} = \sum_{k=1}^{S} r_{t,k} r_{t,k}' \rightarrow ICov_{\tau} \text{ as } S \rightarrow \infty,$$

where

$$r_{t,k} = \log P_{t,k} - \log P_{t,k-1}$$

is the $N \times 1$ vector of returns on the N assets during the kth intraday period on day t, and S is the number of intraday periods. Barndorff-Nielsen and Shephard (2004) provide a central limit theorem for the realized covariance estimator:

$$\sqrt{S} \left(vec(RCov_{\tau}) - vec(ICov_{\tau}) \right) \rightarrow D N(0, \Omega_t) \text{ as } S \rightarrow \infty,$$

(A5)
Does Beta Move with News?

where Ω_t can be consistently estimated using intradaily returns. Combining the above asymptotic distribution result with the “delta method” yields the asymptotic distribution of realized beta, defined in Equation (1), for stock i on day t:

$$\sqrt{S} \left(R^{(S)}_{it} - \beta_i \right) \overset{D}{\rightarrow} N(0, W_{it}), \text{ as } S \rightarrow \infty, \quad (A6)$$

which implies that $R^{(S)}_{it} = \beta_i + \epsilon_{it}$, where $\epsilon_{it} \overset{D}{\rightarrow} N(0, W_{it}/S)$, as in Equation (2).

To allow for the presence of jumps in the price process, Todorov and Bollerslev (2010) consider the following specification \(^{28}\) for stock i:

$$d \log P_i(t) = \alpha_i d(t) + \beta_{ci}(t) \sigma_{cm}(t) dW_{m}(t) + \beta_{di}(t) J_m(t) + \sigma_i(t) dW_i(t) + J_i(t), \quad (A7)$$

In this framework, $[\beta_{ci}(t), \beta_{di}(t)]$ is assumed constant throughout each day but can change from day to day. Aggregating the above process to the daily frequency yields

$$r_i = \alpha_i + \beta_{ci} r_m + \beta_{di} J_m + \epsilon_{it}.$$

That is, the daily return on stock i has exposure to both the continuous part of the market return (r_m) and the jump part of the market return (J_m) and has an idiosyncratic term (ϵ_{it}), which is also made up of a continuous and jump component. When $J_m(t) = J_i(t) = 0$, this framework collapses to that of Barndorff-Nielsen and Shephard (2004). When $\beta_{ci}(t) = \beta_{di}(t)$, this model collapses to the usual one-factor model for stock returns. A key contribution of Todorov and Bollerslev (2010) is a method for consistently estimating $\beta_{ci}(t)$ and $\beta_{di}(t)$ using high-frequency data and conducting inference on these estimates.

2. Details on the Model in Section 2

2.1 Earnings innovations and intermittent earnings announcements

The log-earnings process is assumed to follow a random walk with drift, as in Equation (5). To measure the information released on announcement dates and temporarily ignoring that earnings announcements only occur once per quarter, we consider an earnings announcement, $y_{i,t}$, made every day, which reports the (overlapping) growth in earnings over the past M days:

$$y_{i,t} = \frac{M-1}{\Delta} \sum_{j=0}^{M-1} \log X_{i,t-j} + \eta_{i,t}. \quad (A8)$$

The earnings announcement relates to the earnings growth over the past M days (rather than to the level of earnings over the past M days), as this simplifies subsequent calculations. The presence of the measurement error, $\eta_{i,t}$, in the above equation allows for the feature that earnings announcements may only imperfectly represent the true earnings of a firm because of numerical or accounting errors or perhaps manipulation. Of course, earnings are not reported every day, and we next consider earnings announcements that occur only intermittently, namely, once per quarter.

Following Sinopoli et al. (2004), we adapt the above framework to allow $y_{i,t}$ to be observed only every M days, so the earnings announcement simply reports the earnings growth since the previous announcement, M days earlier. We accomplish this by setting the measurement error variable, $\eta_{i,t}$, to have an extreme form of heteroskedasticity:

$$V[\eta_{i,t}|I_{i,t}] = \sigma_{\eta_i}^2 I_{i,t} + \sigma_j^2(1 - I_{i,t}). \quad (A9)$$

where $I_{i,t} = 1$ if day t is an announcement date for firm i and $I_{i,t} = 0$ else, and $\sigma_j^2 \to \infty$. If day t is an announcement date, then quarterly earnings $\sum_{j=0}^{M-1} \Delta \log X_{i,t-1+j}$ are observed with only a moderate

\(^{28}\) The notation here is simplified relative to that in Todorov and Bollerslev (2010) see their article for a more general description.
amount of measurement error, whereas if day \(t \) is not an announcement date, then quarterly earnings are observed with an infinitely large amount of measurement error, i.e., they effectively are not observed.

Stacking the above equations for all \(N \) firms, we obtain the equations for a state-space model for all stocks, with the vector of daily earnings forming our state equation, and the (noisy) earnings announcements our measurement equation:

\[
\Delta \log X_t = g + \gamma Z_t + \varepsilon_t, \quad (A10)
\]

\[
y_i = \sum_{j=0}^{M-1} \Delta \log X_{t-j} + \eta_i, \quad (A11)
\]

where \(\Delta \log X_t = [\Delta \log X_{1,t}, \ldots, \Delta \log X_{N,t}]' \), \(g = [g_1, \ldots, g_N]' \), \(\gamma = [\gamma_1, \ldots, \gamma_N]' \), \(\varepsilon_t = [\varepsilon_{1,t}, \ldots, \varepsilon_{N,t}]' \), and \(\eta_t = [\eta_{1,t}, \ldots, \eta_{N,t}]' \). Extending the approach of Sinopoli et al. (2004) to the multivariate case is straightforward, and the heteroskedasticity in \(\eta_t \) becomes

\[
V(\eta_t[I_t]) = R \Gamma_t + \sigma^2 \eta_t(I_t - \Gamma_t), \quad (A12)
\]

where \(I_N \) is an \(N \times N \) identity matrix, \(R = \text{diag} \left(\sigma^2_g, \sigma^2_\gamma, \ldots, \sigma^2_N \right) \) and \(\Gamma_t = \text{diag} [I_t] \), where \(\text{diag} [a] \) is a diagonal matrix with the vector \(a \) on the main diagonal.

Expectations of future (and past) earnings can be estimated in this framework using a standard Kalman filter (see, e.g., Hamilton 1994), where the usual information set is extended to include both lags of the observed variable, \(y_t \), and lags of the indicator vector for announcement dates, \(I_t \), so \(F_t = \sigma (y_{t-j}, I_{t-j}; j \geq 0) \). The Kalman filter enables us to easily conduct the signal extraction and compute expectations of earnings of firm \(i \) for each day in the sample: \(\hat{E}[X_{it}|F_t] \). This estimate will be quite accurate on earnings announcement dates (depending on the level of \(\sigma^2_{\eta_i} \)), whereas between announcement dates it will efficiently combine information on firm \(i \)’s earlier announcements with information on announcements by other firms.

There are numerous models for linking expectations about future dividends and earnings to stock prices (see Campbell, Lo, and MacKinlay 1997 for a review). For example, using a standard present-value relation for stock prices, we can express daily returns as the change in expectations of the log-earnings process:

\[
R^*_i,t = \log P_{i,t+1} - \log P_{i,t} = \hat{E}_{t+1} \left[\log X_{i,t+1} \right] - \hat{E}_t \left[\log X_{i,t} \right]. \quad (A13)
\]

2.2 High-frequency returns

To match our use of high-frequency returns in our empirical analysis, we now consider simulating this model to obtain \(S \) observations per trade day, and then computing realized betas from the resulting simulated returns. To do this, we assume that each intradaily return is comprised of a component arising from the revision in expectations about earnings and a “noise” component that is unrelated to earnings information and is governed by

\[
e_{i,t} \sim i.i.d \quad N \left(0, \sigma^2_e / S \right), \quad j = 1, 2, \ldots, T \times S \quad (A14)
\]

so that the variance of the noise cumulated over one day is equal to \(\sigma^2_e \). To simplify the computations, we assume that all earnings announcements take place during the “overnight” period (in our data, 83% of announcements occur during the overnight period, so this assumption is not unreasonable). Thus, the simulated return for the \(j^{th} \) intradaily period follows:

\[
R_{i,t} = R^*_i,t + \varepsilon_{i,t}, \quad (A15)
\]

and the realized beta for stock \(i \) on day \(t \) is computed as:

\[
R_{i,t} = \frac{\sum_{j=1}^{S} R_{i,(t-1)S+j} R_{m,(t-1)S+j}}{\sum_{j=1}^{S} R_{m,(t-1)S+j}}, \quad (A16)
\]

where the market return is defined as the equal-weighted average of all individual stock returns, \(R_{m,j} \equiv N^{-1} \sum_{i=1}^{N} R_{i,j} \). With the simulated realized betas and the earnings announcement indicator...
variables, we can run the regressions described in Section 1 on the simulated data and conduct comparative static analyses by varying some of the key parameters of this model.

Our empirical analysis is based on twenty-five-minute returns, which provides us with 5/16 observations per day. In the simulation, we make the simplifying assumption that all S intraday periods are of equal length and abstract away from the fact that in practice the overnight period is longer than the other intraday periods. Allowing for a “longer” overnight period could be accommodated by increasing the variance of the noise term for that period. As we show in Figure 14 below, increasing the variance of the noise reduces the magnitude of the change in beta around announcements, but does not affect the shape of the changes in beta through the event window; thus, this assumption is not critical to the results of this simulation study. In an earlier version of this article, Patton and Verardo (2009), we used the model to simulate only daily returns and found very similar results to those presented here.

2.3 Numerical results and analysis

The structure of our model is such that we cannot obtain analytical expressions for individual firm betas. To overcome this difficulty, we use simulation methods to obtain estimates of how market betas change around earnings announcements.

We set the number of firms (N) to 100 and the number of days between earnings announcements (M) to twenty-five.29 Below, we also present the reactions in beta to news when M = 12 and M = 6 to see how this choice affects the results. In all cases, we simulate T = 1,000 days, each with S = 16 observations per day, and we assume that earnings announcements are evenly distributed across the sample period. Given that the variance of the common component, \(\sigma^2_c \), is not separately identifiable from the loadings on the common component, \(y_t \), we fix \(y_t = 1 \) ∀ t for all of our simulations.

From our sample, the volatility of the innovation to quarterly earnings, \(\sigma^2_e \), has a median (across firms) of 0.33; the 25% and 75% quantiles of its distribution are 0.16 and 0.59. We use \(\sigma^2_e = 0.33/66 \) as our value for the daily variance of earnings innovations in our base scenario, and vary it between 0.15\(\sigma^2_e / 66 \) and 0.62\(\sigma^2_e / 66 \) across simulations. As noted in Section 2, we set the proportion of \(\sigma^2_c \) attributable to the common component, \(R^2 = \sigma^2_c / \sigma^2_e \), to 0.05, and vary it between 0 and 0.10 to study the impact of learning. We set \(\sigma^2_c \) (the variance of the component of returns that is not attributable to changes in expectations about earnings) so that 2% of the variability in returns is explained by changes in the rate of growth in earnings (\(g \)) or the variance of measurement errors on reported earnings (\(\sigma^2_e \)), so we set both of these parameters to zero for simplicity.

The results from the base case simulation are discussed in Section 2, as are the results related to variations in the amount of learning from other firms’ earnings announcements and the results on variations in the variance of the earnings process. We discuss here two other comparative statics. In Figure 13, we vary the number of days between earnings announcements. We are computationally constrained to keep \(M \) no larger than twenty-five, and in this figure we consider reducing it to twelve or six days. Of course, with fewer days between announcements, our “event window” must also decrease to ±5 and ±2 days around announcements, respectively. This figure

29 We are forced to use values for \(N \) and \(M \) that are smaller than in our empirical application by computational limitations; however, these are representative of realistic values. Using a smaller \(N \) means that each firm has a higher weight in the index (1/100 rather than around 1/500), which will inflate the impact of the “mechanical” component of beta around earnings announcements.

30 Straightforward calculations reveal that the impact of \(\epsilon \) on the estimates of changes in beta is a simple shrinkage of these changes toward zero. That is, the shape of the changes in beta through the event window does not change for \(\sigma^2_e > 0 \), but the magnitudes of such changes are brought closer to zero for larger values of \(\sigma^2_e \). See Karolyi (1995) for a study applying shrinkage methods to obtain better forecasts of betas.
shows that more frequent announcements lead to less reactions in beta around announcements, which is consistent with the intuition that in such environments earnings announcements carry less information; earnings news is released in frequent small quantities, rather than in infrequent larger “lumps.”

In Figure 14 we present the results from changing the amount of variation in returns that is explained by variation in earnings expectations. In the left panel, with a low value of noise,
Does Beta Move with News?

Figure 15
Empirical and model-implied correlations
Correlation between returns on the announcing firm and on the market around event dates. The left panel presents the estimated correlation from data, as in Figure 1 for betas. Point estimates are marked with a solid line, and 95% confidence intervals are marked with a dashed line. The right panel presents model-implied correlations using the model presented in Section 2 and is based on 1,000 simulated trading days.

we observe a larger spike in beta on announcement dates, around 1.6 in this simulation. This is not so surprising: when daily returns are more closely linked to changes in expectations about future earnings, large updates in investors’ expectations are more revealed in the observed prices. Conversely, when noise is high, the response of beta to earnings announcements is smaller, around 0.6 in this simulation.

Finally, in Figure 15, we present the behavior of correlation around earnings announcements. In the left panel, we present the empirical estimate, using the exact same approach as for the beta estimates presented in Figure 1. Perhaps surprisingly, we see that realized correlation falls on announcement days, in contrast with the movement in beta. This is due to the almost doubling of the volatility of the announcing firm’s returns on announcement days (from 36% to 69%), which leads to a fall in correlation even though both the covariance and the beta of the firm increase on announcement days. In the right panel, we present the plot for correlation implied by our theoretical model, in a scenario with relatively high cross-stock learning and relatively low noise, which qualitatively matches the features of the empirical estimates.

References
The Review of Financial Studies / v 25 n 9 2012

Does Beta Move with News?

Does Beta Move with News?

