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1 Forecast evaluation in economics and �nance

� Tests of market e¢ ciency and investor rationality are usually done by testing
properties of forecast errors:

� Relating to the e¢ cient markets hypothesis: Cargill and Meyer (JF,
1980), De Bondt and Thaler (JFQA, 1992), Mishkin (AER, 1981), inter
alia.

� Relating to rationality of decision-makers: Brown and Maital (EMA,
1981), Figlewski and Watchel (REStat, 1981), Keane and Runkle (AER,
1990), Lakonishok (JF, 1980), inter alia.

� Forecasts of key economic variables (in�ation, GDP growth, unemployment,
etc) are an important input to decisions by central banks, �scal authorities,
international organisations.

� A large majority of past work on testing forecast optimality assumes squared
error loss.



2 Is MSE the right loss function?

� The assumption of MSE loss in economics has been questioned in the
(mostly) recent literature:

� Granger (1969), Granger and Newbold (1986), West, Edison and Cho
(1996), Granger and Pesaran (2000), Pesaran and Skouras (2001).

� For example: equity analysts�forecasts have been found to be biased up-
wards

� A result of analyst irrationality, or simply that the analyst is penalised
more heavily for under-predictions than over-predictions?

� Elliott et al. (2004) show that macroeconomic forecasters may be ra-
tional, but not under MSE loss.

� Patton and Timmermann (2004) we show that none of the standard proper-
ties of optimal forecasts withstand the move to asymmetric loss, in general.



3 What we do in this paper

1. We present new testable properties of optimal forecasts that can be ob-
tained when L is unknown, subject to restrictions on the data generating
process (DGP):

(a) the variable exhibits dynamics only in its conditional mean and variance

(b) the loss function can be approximated using a spline of some sort (ex-
tending Elliott, et al., 2004).

2. We study the Federal Reserve�s �greenbook� quarterly forecasts of GDP
growth over the period 1968Q4 to 1999Q4.

(a) These forecasts are rejected for a broad class of loss functions based
solely on the forecast error (including MSE)

(b) We �nd optimality of the Fed forecasts only when we allow for a �con-
servative� loss function and when the degree of conservatism increases
when growth is moderate or low.



4 Standard properties of optimal forecasts

� The properties of optimal forecasts in the standard framework are, see
Diebold and Lopez (1996) for example:

1. Optimal forecasts are unbiased: Et
h
e�t+h;t

i
= 0

2. Optimal h -step forecast errors are serially correlated only to lag (h� 1)

� So one-step forecast errors are white noise

3. Optimal forecast error variance is a non-decreasing function of the forecast
horizon



5 Testable implications under MSE loss

� The most common tests of forecast optimality under MSE loss is the
�Mincer-Zarnowitz� regression:

Yt+h = �+ �Ŷt+h;t + ut+h

H0 : � = 0 \ � = 1
vs Ha : � 6= 0 [ � 6= 1

� The results of this test for the Fed forecasts were:

Yt = 1:253
(0:451)

+ 0:710
(0:106)

Ŷt + ut:

R2 = 0:218

A Wald test of the joint restriction on the intercept and the slope yields
a �22-statistic of 8.57 and a p-value of 0.01. Thus we reject the null of
forecast optimality under MSE loss.
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Figure 1: Real GDP growth (annualized), and the Federal Reserve�s �Green-
book� forecasts of real GDP growth, over the period 1968Q4 to 1999Q4.
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Figure 2: Forecast and realized real GDP growth (annualized) over the period
1968Q4 to 1999Q4, with OLS �tted line.



6 Testable implications under unknown loss

� In the vast majority of empirical situations, we have only a sequence of
forecasts and realisations, with little idea of the loss function of the fore-
caster. Without knowledge of the forecaster�s loss function testing forecast
optimality may appear an impossible task, but this is not the case.

� We will now present results that provide testable implications of forecast
optimality that may be applied when the forecaster�s loss function is un-
known, but testable restrictions may be placed on the DGP.

� A rejection of optimality in this section constitutes a rejection of fore-
cast optimality not merely under a single loss function, but under any
member of an entire class of loss functions.



7 Conditional mean dynamics only

Assumption D1: The DGP satis�es: Yt+h = �t+h;t + "t+h,

"t+hjFt s F";h
�
0; �2";h

�
:

� Though restrictive, notice that this class of DGPs includes all types of
conditional mean speci�cations, linear or nonlinear. Also note that it makes
no statement about stationarity (though this will need to be considered
when implementing a test).

Assumption L1: The loss function is a function solely of the forecast error:

L (y; ŷ) = L (y � ŷ) = L (e)

� Assumption L1 is satis�ed for many common loss functions: MSE, MAE,
lin-ex, lin-lin, asymmetric quadratic.



8 Conditional mean dynamics only, cont�d

Proposition 1: Let the DGP and loss function satisfy D1 and L1. Then:

(1) The optimal forecast takes the form:

Ŷ �t+h;t = �t+h;t + �
�
h

where ��h is a constant that depends on L and F";h, but not on Ft: (This is
due to Granger 1969.)

(2) The optimal forecast error e�t+h;t is independent of all Zt 2 Ft. In partic-
ular,

Cov
h
e�t+h;t; e

�
t+h�j;t�j

i
= 0 8 j � h

if the covariance exists.



9 Implications

� Without knowledge of the loss function we cannot (and should not) test
that the forecast errors have mean zero.

� But under assumptions D1 and L1 we can still test for serial correlation in
the forecast errors, and for correlation between the forecast errors and the
forecasts, without needing to know L:

et+h;t = �+ �Zt + ut+h

H0 : � = 0

Ha : � 6= 0



10 Conditional mean and variance dynamics

Assumption D2: The DGP satis�es: Yt+h = �t+h;t + �t+h;t�t+h,
�t+hjFt s F�;h (0; 1) :

� This class of DGPs is very broad and includes most common volatility
proceses, eg ARCH, stochastic volatility, etc.

Assumption L2: The loss function is a homogeneous function solely of the
forecast error:

L (y; ŷ) = L (y � ŷ) = L (e)
and L (ae) = g (a) � L (e) 8 a 6= 0; for some positive function g

� L2 is satis�ed by many common loss function families: MSE, MAE, lin-lin,
asymmetric quadratic, but not lin-ex.



11 Conditional mean and variance dynamics

Proposition 2: Let the DGP and loss function satisfy D2 and L2, and de�ne
d�t+h;t � e

�
t+h;t=�t+h;t: Then:

(1) The optimal forecast takes the following form:

Ŷ �t+h;t = �t+h;t + �t+h;t � 

�
h

where 
�h is a constant, depending only on F�;h and the loss function L.

(2) d�t+h;t is independent of all Zt 2 Ft. In particular,

Cov
h
d�rt+h;t; d

�s
t+h�j;t�j

i
= 0 8j � h

for all (r; s) such that the covariance exists.



12 Conditional mean and variance dynamics

Proof: Let us represent a forecast as Ŷt+h;t = �t+h;t + �t+h;t � 
̂t+h;t.

Ŷ �t+h;t � argmin
ŷ

Z
L (y � ŷ) dFt+h;t (y)

= argmin
ŷ

Z
g

 
1

�t+h;t

!
L

 
1

�t+h;t
(y � ŷ)

!
dFt+h;t (y)

= argmin
ŷ

Z
L

 
1

�t+h;t
(y � ŷ)

!
dFt+h;t (y)

= �t+h;t + �t+h;t � argmin

̂

Z
L
�
�t+h � 
̂

�
dF�;h (�)

� �t+h;t + �t+h;t � 
�h

So d�t+h;t �
Yt+h � Ŷ �t+h;t

�t+h;t
= �t+h � 
�h

which is independent of all elements in Ft though not mean zero. �



13 Conditional mean and variance dynamics

� We can test optimality by estimating the following for example:

d�t+h;t = �0 + �1d
�
t;t�h + ut+h

ut+h = �2u;t+hvt+h, vt+h s (0; 1)

�2u;t+h = !0 + !1u
2
t�1, and then testing

H0 : !0 = 1 \ �1 = !1 = 0

� This test is easily computed, but requires that an estimate of �2t+h;t is
available. An estimate of this conditional variance may be obtained from
the observed Yt process either by means of a parametric model (eg, a
GARCH-type model) or by nonparametric methods, using a realised volatil-
ity estimator.

� No estimate of �t+h;t is required. This is helpful particularly in �nance.



14 Linked conditional mean and variance

� Often no reliable estimate of �t+h;t is available, and so it is of interest to
establish results that do not require such an estimate.

Assumption D2�: The DGP satis�es: Yt+h = ��t+h;t + �t+h;t�t+h,
where � 2 R, and �t+hjFt s F�;h (0; 1).

Corollary 1: Let the DGP and loss function satisfy assumptions D2�and L2,
and assume that � 6= �
�h: De�ne d̂

�
t+h;t �

�
Yt+h � Ŷ �t+h;t

�
=Ŷ �t+h;t.

Then d̂�t+h;t is independent of any element Zt 2 Ft:



15 A conditional quantile representation

� Under the conditions given for Propositions 1 or 2, we can show that the
optimal forecast is a conditional quantile of the variable of interest.

Proposition 3: Let the DGP and loss function satisfy D1 and L1 or assump-
tions D2 and L2. Then:

(1) The optimal forecast is such that, for all t,

Ft+h;t
�
Ŷ �t+h;t

�
= qh

where qh 2 (0; 1) depends only on the forecast horizon and the loss function.
If Ft+h;t is continuous and strictly increasing then we obtain:

Ŷ �t+h;t = F
�1
t+h;t (qh)

(2) I�t+h;t � 1
�
Yt+h � Ŷ �t+h;t

�
is independent of all Zt 2 Ft.



16 A conditional quantile representation

Proof: (1) Under assumptions D1 and L1, or assumptions D2 and L2, we know
from above that

Y �t+h;t = �t+h;t + �t+h;t � 

�
h

with �t+h;t constant under assumption D1. 

�
h depends only upon the loss

function and the forecast horizon. Now notice that

Ft+h;t
�
Ŷ �t+h;t

�
� Pr

h
Yt+h � Ŷ �t+h;tjFt

i
= Pr

h
�t+h;t + �t+h;t�t+h � �t+h;t + �t+h;t � 
hjFt

i
= Pr

h
�t+h � 
hjFt

i
� q�h 8 t

Thus Ŷ �t+h;t is the q
�
h conditional quantile of Yt+hjFt 8 t: Note that q

�
h is only

a function of the loss function and the forecast horizon.

(2) Since I�t+h;t is a binary random variable and Pr
h
I�t+h;t = 1jFt

i
= q�h 8 t,

we thus have that I�t+h;t is independent of all Zt 2 Ft: �



17 A conditional quantile representation

� The conditional quantile representation of the optimal forecast enables us
to test forecast optimality in this case without the need for an estimate of
�t+h;t or �

2
t+h;t.

� We can obtain a simple test of forecast optimality in two ways:

1. A regression of I�t+h;t on elements of Ft :

I�t+h;t = �+ �0Zt + ut+h
H0 : � = 0 vs. Ha : � 6= 0

2. Via the test of Christo¤ersen (1998), who proposes modelling I�t+h;t as
a �rst-order Markov process, with transition matrix"

1� �01 �01
1� �11 �11

#
H0 : �01 = �11 ( = q

�
h) vs. Ha : �01 6= �11



18 General DGPs and �exible parametric loss

� We now consider a test that may be implemented when the assumptions
required for the above tests do not hold.

� We base this test on a �exible parametric estimate of the �rst derivative of
the loss function, using the FOC: 0 = Et

h
@L

�
Yt+h; Ŷ

�
t+h;t

�
=@ŷ

i
:

Let � (y; ŷ) � @L (y; ŷ)

@ŷ

� We will approximate � using a linear spline.

� Say � = � (e), let (�1; :::; �K) be the nodes and impose that one of
the nodes is zero. We impose that the spline is continuous, though not
necessarily di¤erentiable, except possibly at zero. We could allow further
discontinuities in � at the cost of introducing more parameters to estimate.



19 A linear spline for @L=@ŷ

� With just a few nodes this class is quite �exible, and nests both MSE and
MAE, as well as the �quad-quad�, �lin-lin�, and the symmetric, non-convex
loss function of Granger (1969).

� If we impose that the spline is continuous at zero then MSE loss is nested
without the boundary of the parameter space being hit. In this case the
resulting estimated loss function is a quadratic spline, and is continuous
and di¤erentiable everywhere:

@� (e; �)

@e
=

8><>:

1; for e � �1

i; for �i�1 < e � �i, i = 2; :::;K


K+1; for e > �K

:

� � (e; �) and L (e; �) are constructed from the above speci�cation by im-
posing that � (0; �) = L (0; �) = 0 and that both � (e; �) and L (e; �)
are continuous in e.



20 A linear spline for @L=@ŷ, cont�d

� � (e; �) is only identi�ed up to a multiplicative constant, so some normal-
isation is required to identify the parameters.

� Further, we must impose constraints on � so that the resulting estimate of
� satis�es the assumptions required for it to be the �rst derivative of some
valid loss function; eg: � (y; ŷ) � (�) 0 for y � (�) ŷ:

� If L1 does not hold, then we must approximate � (y; ŷ) rather than � (e) :
We choose to model � (e; y) rather than � (y; ŷ) as it is simpler to impose
the required conditions.

@� (e; y; �)

@e
=

8>><>>:

1 � � ('01 + '11y � lnK) ;


i �
�
1�Pi�1

j=1 
j
�
� � ('0i + '1iy � lnK) ;


K+1 = 1�
PK
j=1 
j;

where � (x) �
�
1 + e�x

��1
is the logistic transformation.
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Figure 3: Spline-based loss functions



21 A test from over-identifying restrictions

� Under standard conditions the parameter vector of the approximating func-
tion can be estimated via GMM, in a similar fashion to Elliott, et al. (2002):

�̂T � arg min
�2�

gT (�)
0WgT (�)

gT (�) � 1

T

TX
t=1

�
�
et+h;t; Yt+h; �

�
� Zt;

whereW is a weighting matrix, � is a compact set, and Zt 2 Ft:

� A test of forecast optimality can be obtained from a test of over-identifying
restrictions if we ensure we have more moment restrictions, k, than para-
meters, p:

TgT
�
�̂n
�0
Ŵ�
TgT

�
�̂T
�
) �2k�p, as T !1

where Ŵ�
T is a consistent estimate of the optimal weight matrix, c.f. Newey

and McFadden (1994).



22 Empirical tests of Fed forecast optimality

� We study the Federal Reserve�s �greenbook� quarterly forecasts of GDP
growth over the period 1968Q4 to 1999Q4: 125 observations.

� Homoskedasticity (assumption D1) was rejected for this series, but assump-
tion D2 was not rejected by some simple tests. Thus the quantile-based
test from Proposition 3 was employed. Recall It � 1

�
Yt � Ŷt

�
:

It = 0:346
(0:071)

+ 0:036
(0:016)

Ŷt + ut

� The t-statistic on Ŷt is 2.27, which is signi�cant at the 0.05 level, indicating
that forecast optimality under any loss function satisfying assumption L2
is rejected.

� This suggests that the assumption that L (y; ŷ) = L (e) is not reasonable
for the Fed�s GDP forecasts.



23 Flexible estimation of the loss function

� Finally, we estimate the loss function using the linear spline model discussed
previously.

� We used three nodes: [�2; 0; 2] ; which correspond to the [0:17; 0:44; 0:70]
empirical quantiles of the forecast errors, and thus have 3 parameters to
estimate.

� As instruments we used a constant, the forecast, and one lag each of the
forecast error, the realisation and the generalised forecast error.

� We estimated the parameters by GMM, iterated using an estimate of the
optimal weighting function.

� The test of over-identifying restrictions is �22 under the null. Our test
stat and p-value were 5:57 and 0:06, and so we marginally fail to reject
optimality.



24 Flexible estimation of the loss function

� The above results suggest that the restriction that L (y; ŷ) = L (e) is not
reasonable for these forecasts. We next estimate the more general loss
function to gain a better understanding of the forecasters�behaviour.

� We used the same three nodes, and thus have 6 parameters to estimate.

� As instruments we used a constant, the forecast, and two lags each of the
forecast error, the realisation and the generalised forecast error.

� The test of over-identifying restrictions is �22 under the null. Our test stat
and p-value were 0:02 and 0:99, and so we fail to reject optimality.
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Figure 4: The estimated loss function of the Federal Reserve for real GDP
growth forecasts, based on a quadratic spline.
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25 Conclusion

� This paper provides new tests of forecast optimality that are applicable
when the loss function is of the forecaster is unknown.

� Our �rst set of tests trades o¤ restrictions on the loss function with
testable restrictions on the DGP.

� Our second set of tests are based on �exible parametric approximations
of the unknown loss function estimated via GMM. These tests extend
Elliott, et al. (2004).

� We applied these tests to the Fed�s �greenbook� forecasts of GDP growth
and found optimality of the Fed forecasts only when we allow for a �conser-
vative� loss function and when the degree of conservatism increases when
growth is moderate or low.

� The Fed�s forecasts are not optimal under MSE, or any loss function
that is homogeneous in the forecast error.


