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Abstract

Using recently proposed estimators of the variation of positive and negative returns (“realized semi-

variances”), and high frequency data for the S&P 500 index and 105 individual stocks, this paper sheds

new light on the predictability of equity price volatility. We show that future volatility is much more

strongly related to the volatility of past negative returns than to that of positive returns, and this effect

is stronger than that implied by standard asymmetric GARCH models. We also find that the impact of

a jump on future volatility critically depends on the sign of the jump, with negative (positive) jumps in

prices leading to significantly higher (lower) future volatility. A simple model exploiting these findings

leads to significantly better out-of-sample forecast performance, across forecast horizons ranging from

1 day to 3 months.
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1 Introduction

The development of estimators of volatility based on high frequency (intra-daily) information has lead to

great improvements in our ability to measure financial market volatility. Recent work in this area has yielded

estimators that are robust to market microstructure effects, feasible in multivariate applications, and which

can accommodate the presence of jumps in asset prices1, see Andersen, Bollerslev, and Diebold (2009)

for a recent survey of this growing literature. A key application of these new estimators of volatility is in

forecasting: better measures of volatility enable us to better gauge the current level of volatility and to better

understand its dynamics, both of which lead to better forecasts of future volatility.2

This paper uses high frequency data to shed light on another key aspect of asset returns: the “leverage

effect”, and the impact of signed returns on future volatility more generally. The observation that negative

equity returns lead to higher future volatility than positive returns is a well-established empirical regularity

in the ARCH literature3, see the review articles by Bollerslev, Engle, and Nelson (1994) and Andersen, Boller-

selv, Christoffersen, and Diebold (2006) for example. Recent work in this literature has also found evidence

of this relationship using high frequency returns, see Bollerslev, Litvinova, and Tauchen (2006), Barndorff-

Nielsen, Kinnebrock, and Shephard (2010), Visser (2008) and Chen and Ghysels (2011). We build on these

papers to exploit this relationship to obtain improved volatility forecasts.

We use a new estimator proposed by Barndorff-Nielsen, Kinnebrock, and Shephard (2010) called “re-

alized semivariance”, which decomposes the usual realized variance into a component that relates only to

positive high frequency returns and a component that relates only to negative high frequency returns.4 Pre-

vious studies have almost exclusively employed even functions of high frequency returns (squares, absolute

values, etc) which of course eliminate any information that may be contained in the sign of these returns.

1See Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and Labys (2003), Barndorff-Nielsen and
Shephard (2004), Barndorff-Nielsen and Shephard (2006), Zhang, Mykland, and Aït-Sahalia (2005), Aït-Sahalia, Mykland, and
Zhang (2005), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), amongst others.

2A partial list of papers on this topic includes Andersen, Bollerslev, Diebold, and Labys (2000),Andersen, Bollerslev, Diebold, and
Labys (2003),Fleming, Kirby, and Ostdiek (2003), Corsi (2009), Liu and Maheu (2005), Lanne (2006b), Lanne (2006a), Chiriac and
Voev (2007), Andersen, Bollerslev, and Diebold (2007), Visser (2008) and Chen and Ghysels (2011).

3Common ARCH models with a leverage effect include GJR-GARCH (Glosten, Jagannathan, and Runkle, 1993), TARCH (Zakoian,
1994), and EGARCH (Nelson, 1991).

4Semivariance, and the broader class of downside risk measures, have a long history in finance. Application of semivariance in
finance include Hogan and Warren (1974) who study semivariance in a general equilibrium framework, Lewis (1990) who examined
its role in option performance, and Ang, Chen, and Xing (2006) who examined the role of semivariance and covariance in asset
pricing. For more on semivariance and related measures, see Sortino and Satchell (2001).
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High frequency returns are generally small, and it might reasonably be thought that there is little informa-

tion to be gleaned from whether they happen to lie above or below zero. Using a simple autoregressive

model, as in Corsi (2009), Andersen, Bollerslev, and Diebold (2007) and Corsi, Pirino, and Renò (2010), and

high frequency data on the S&P 500 index and 105 of its constituent firms over the period 1997-2008, we

show that this is far from true.

We present several novel findings about the volatility of equity returns. Firstly, we find that negative

realized semivariance is much more important for future volatility than positive realized semivariance, and

disentangling the effects of these two components significantly improves forecasts of future volatility. This

is true whether the measure of future volatility is realized variance, bipower variation, negative realized

semivariance or positive realized semivariance. Moreover, it is true for horizons ranging from one day to

three months. Second, we use realized semivariances to obtain a measure of signed jump variation and we

find that is important for predicting future volatility, with volatility attributable to negative jumps leading to

significantly higher future volatility, and positive jumps leading to significantly lower volatility. Thus, while

jumps of both signs are indicative of volatility, their impacts on current returns and on future volatility might

lead one to label them “good volatility” and “bad volatility”. Previous research, see Andersen, Bollerslev,

and Diebold (2007), Forsberg and Ghysels (2007) and Busch, Christensen, and Nielsen (2011), reported that

jumps were of only limited value for forecasting future volatility. Our finding that the impact of jumps

depends critically upon the sign of the jump helps explain these results: averaging across both positive and

negative jump variation the impact on future volatility is around zero.5

Bollerslev, Litvinova, and Tauchen (2006) were perhaps the first to note that the sign of high frequency

returns contains useful information for future volatility, even several days into the future. They show that

several standard stochastic volatility models are unable to match this feature. Chen and Ghysels (2011) pro-

pose a semiparametric model for aggregated volatility (e.g., daily or monthly) as a function of individual

high frequency returns. The coefficient on lagged high frequency returns is the product of a parametric

function of the lag (related to the MIDAS model of Ghysels, Santa-Clara, and Valkanov (2006)) and a non-

parametric function of the return. With this model, the authors obtain nonparametric “news impact curves”,

5Corsi, Pirino, and Renò (2010) find that jumps have a significant and positive impact on future volatility, when measured using
a new threshold-type estimator for the integrated variance.
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and document evidence that these curves are asymmetric for returns on the S&P 500 and Dow Jones indices.

A forecasting model based on realized semivariances avoids some of the difficulties of the semiparametric

MIDAS model of Chen and Ghysels (2011), such as the fact that estimation of news impact curves requires

either a local estimator of spot volatility (a difficult empirical problem) or a method for dealing with the

persistence in large returns, which makes estimation of the curve for larger values difficult. Realized semi-

variances are simple daily statistics and require no choice of bandwidth or other smoothing parameters,

and no nonlinear, nonparametric estimation.

We complement and extend existing work in a number of directions. First, we look at the leverage effect

and forecasting for a large set of assets – 105 individual firms as well as the S&P 500 index – and verify that

the usefulness of realized semivariances relative to realized variances is not restricted only to broad stock

indices. We introduce a fixed-effect panel HAR to aid inference on the importance of realized semivariance

in the individual stocks. Second, we show that negative semivariances are useful for predicting a variety

of different measures of volatility: realized volatility, bipower variation, and both realized semivariances,

and we relate realized variance to the two realized semivariance components in a novel Vector Heteroge-

neous Autoregression (VHAR). Third, we show the usefulness of simple HAR-type models that we use, all

of which can be estimated using least squares, across horizons ranging from one day to three months. We

also present results on the information in signed jump variation, a measure that does not fit into existing

frameworks, and which helps us reconcile our findings with earlier findings in the extant literature. In par-

ticular, we show that the impact of jumps on future volatility depends critically upon the sign of the jump;

averaging across both positive and negative jumps the impact is around zero, while separating the jumps

by sign leads to significant predictive gains.

The remainder of the paper is organized as follows. Section 2 describes the volatility estimators that we

use in our empirical analysis. Section 3 discusses the high frequency data for the 106 assets that we study,

and introduces the models that we employ. Section 4 presents empirical results on the gains from using

realized semivariances for forecasting, and Section 5 presents results from using signed jump variation for

volatility forecasting. Section 6 presents results for individual stocks, and out-of-sample forecasting appli-

cation, and a description of the time series properties of the new measure of jump variability. Section 7
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concludes.

2 Decomposing realized variance using signed returns

In this section we briefly describe the estimators that are used in our analysis, including the new estimators

proposed by Barndorff-Nielsen, Kinnebrock, and Shephard (2010).

Consider a continuous-time stochastic process for log-prices, p t , which consists of a continuous com-

ponent and a pure jump component,

p t =
ˆ t

0
µs ds +

ˆ t

0
σs dWs + Jt , (1)

where µ is a locally bounded predictable drift process, σ is a strictly positive cádlág process and J is a pure

jump process. The quadratic variation of this process is:

[
p , p

]
=
ˆ t

0
σ2

s ds +
∑

0<s≤t

(
∆ps

)2
, (2)

where∆ps = ps − ps− captures a jump, if present.

Andersen, Bollerslev, Diebold, and Labys (2001) introduced a natural estimator for the quadratic varia-

tion of a process as the sum of frequently sampled squared returns which is commonly known as realized

variance (RV ). For simplicity, suppose that prices p0, . . . , pn are observed at n + 1 times, equally spaced

on [0, t ]. Using these returns, the n-sample realized variance, RV, is defined below, and can be shown to

converge in probability to the quadratic variation as the time interval between observations becomes small

(Andersen, Bollerslev, Diebold, and Labys, 2003).

RV =
n∑

i=1

r 2
i (3)

p→
[

p , p
]

, a s n →∞,
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where ri = p i − p i−1. Barndorff-Nielsen and Shephard (2006) extended the study of estimating volatility

from simple estimators of the quadratic variation to a broader class which includes bipower variation (BV).

Unlike realized variance, the probability limit of BV only includes the component of quadratic variation due

to the continuous part of the price process, the integrated variance

BV = µ−2
1

n∑
i=2

|ri | |ri−1| (4)

p→
ˆ t

0
σ2

s ds , a s n →∞,

whereµ1 =
√

2/π. The difference of the above two estimators of price variability can be used to consistently

estimate the variation due to jumps of quadratic variation:

RV − BV
p→
∑

0≤s≤t

∆p 2
s . (5)

Barndorff-Nielsen, Kinnebrock, and Shephard (2010) recently introduced new estimators which can

capture the variation only due to negative or positive returns using an estimator named “realized semivari-

ance”. These estimators are defined as

RS− =
n∑

i=1

r 2
i I [ri<0] (6)

RS+ =
n∑

i=1

r 2
i I [ri>0]

These estimators provide a complete decomposition of RV , in that RV = RS+ + RS−. This decomposition

holds exactly for any n , as well as in the limit. We use this decomposition of realized volatility extensively in

our empirical analysis below.6

Barndorff-Nielsen, Kinnebrock, and Shephard (2010) show that, like realized variance, the limiting behavior

of realized semivariance includes variation due to both the continuous part of the price process a well as the

6Visser (2008) considers a similar estimator based on powers of absolute values of returns rather than squared returns. For one-
step forecasts of the daily volatility of the S&P 500 index, he finds that using absolute returns (i.e., a power of 1) leads to the best
in-sample fit. We leave the consideration of different powers for future research and focus on simple realized semivariances.
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jump component. The use of the indicator function allows the signed jumps to be extracted, with each of

the realized semivariances converging to one-half of the integrated variance plus the sum of squared jumps

with a negative/positive sign:

RS+
p→1

2

ˆ t

0
σ2

s ds +
∑

0≤s≤t

∆p 2
s I [∆ps>0] (7)

RS−
p→1

2

ˆ t

0
σ2

s ds +
∑

0≤s≤t

∆p 2
s I [∆ps<0]

by Corollary 1 of Barndorff-Nielsen, Kinnebrock, and Shephard (2010). An interesting consequence of the

limit of realized semivariances is that the variation due to the continuous component can be removed by

simply subtracting one RS from the other, and the remaining part is what we define as the signed jump

variation:

∆J 2 ≡ RS+ − RS− (8)

p→
∑

0≤s≤t

∆p 2
s I [∆ps>0] −

∑
0≤s≤t

∆p 2
s I [∆ps<0].

In our analysis below we use RS+, RS−and ∆J 2 to gain new insights into the empirical behavior of

volatility as it relates to signed returns.

3 Data and Models

The data used in this paper consist of high-frequency prices on all stocks that were ever a constituent of the

S&P 100 index between June 23, 1997 and July 31, 2008. The start date corresponds to the first day that U.S.

equities traded with a spread less than 1
8 of a dollar.7

We also study the S&P 500 index exchange traded fund (ETF), with ticker symbol SPDR, over this same

7Trading volume and the magnitude of microstructure noise that affects realized-type estimators both changed around this
date, see (Aït-Sahalia and Yu, 2009), and so we start our sample after this change took place.
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period for comparison. Of the total of 154 distinct constituents of the S&P 100 index over this time period,

we retain for our analysis the 105 that were continuously available for at least four years.

All prices used were transactions taken from NYSE TAQ. Trades were filtered to include only those occur-

ring between 9:30:00 and 16:00:00 (inclusive) and were cleaned according to the rules detailed in Appendix

A. As we focus on price volatility over the trade day, overnight returns are excluded, and we avoid the need

to adjust prices for splits or dividends.

3.1 Business Time Sampling and Sub-Sampling

All estimators were computed daily, using returns sampled in “business time” rather than the more famil-

iar calendar time sampling. That is, rather than sample prices every, say, 5 minutes, we sample prices so

that there are an even number of transactions between each observation. (This implies, of course, that

we sample more often during periods with greater activity, and less often in quieter periods.) Under some

conditions business-time sampling can be shown to produce realized measures with superior statistical

properties, see Oomen (2005), and this sampling scheme is now common in this literature, see Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008) and Bollerslev and Todorov (2010) for example.

We elect to sample prices 79 times per day, which corresponds to an average interval of 5 minutes. We

use the first and last prices of the day as our first and last observations, and sample evenly across the inter-

vening prices to obtain the remaining 77 observations. The choice to sample prices using an approximate

5-minute window is a standard one, and is motivated by the desire to avoid bid-ask bounce type microstruc-

ture noise.

Since price observations are available more often than our approximate 5-minute sampling period,

there are many possible “grids” of approximate 5-minute prices that could be used, depending on which

observation is used for the first sample. We use 10 different grids of 5-minute prices to obtain 10 different

estimators, which are correlated but not identical, and then average these to obtain our final estimator. This

approach is known as “sub-sampling” and was first proposed by Zhang, Mykland, and Aït-Sahalia (2005).

This procedure should produce a mild decrease in variance, and has been shown to be a reasonable choice

for modeling the time-series properties of volatility in Andersen, Bollerslev, and Meddahi (2011).
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3.2 Volatility Estimator Implementation

Denote the observed log-prices on a given trade day as p0, p1, . . . , pn where n + 1 is the number of unique

time stamps between 9:30:00 and 16:00:00 that have prices. Setting the number of price samples to 79

(which corresponds to sampling every 5 minutes on average), RV computed uniformly in business time

starting from the j t h observation equals

RV (j ) =
78∑

i=1

(
pbi k+jδc − pb(i−1)k+jδc

)2
(9)

where k = n/78, δ = n/78 × 1/10 and b·c rounds down to the next integer. Prices outside of the trading

day are set to the close price. The sub-sampled version is computed by averaging over 10 uniformly spaced

windows,

RV =
1

10

9∑
j=0

RV (j ) (10)

Realized semivariances, RS+ and RS−, are constructed in an analogous manner.

In addition to sub-sampling, the estimator for bipower variation was computed by averaging multi-

ple “skip” versions. Skip versions of other estimators, particularly those of higher-order moments (such as

fourth moments, or “integrated quarticity”), were found to possess superior statistical properties than re-

turns computed using adjacent returns in Andersen, Bollerslev, and Diebold (2007). The “skip-q ” bipower

variation estimator is defined as

BVq = µ−2
1

78∑
i=q+2

∣∣∣pbi kc − pb(i−1)kc

∣∣∣ ∣∣∣pb(i−1−q )kc − pb(i−2−q )kc

∣∣∣ . (11)

where µ1 =
√

2/π. The usual BV estimator is obtained when q = 0. We construct our estimator of bipower

variation by averaging the skip-0 through skip-4 estimators, which represents a tradeoff between locality

(skip-0) and robustness to both market microstructure noise and jumps that are not contained in a single

sample (skip-4).8 Using a skip estimator was advocated in Huang and Tauchen (2005) as an important

8Events which are often identified as jumps in US equity data correspond to periods of rapid price movement although these
jumps are usually characterized by multiple trades during the movement due to price continuity rules faced by market makers.
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correction to bipower which may be substantially biased in small samples, although to our knowledge the

use of an average over multiple skip-q estimators is novel.9

3.3 Model Estimation and Inference

We analyze the empirical features of these new measures of volatility using the popular Heterogeneous Au-

toregression (HAR) model, see Corsi (2009) and Müller, Dacorogna, Dav, Olsen, Pictet, and von Weizsacker

(1997). HARs are parsimonious restricted versions of high-order autoregressions. The standard HAR in the

realized variance literature regresses realized variance on three terms, the past 1-day, 5-day and 22-day av-

erage realized variances. To ease interpretation, we use a numerically identical reparameterization where

the second term consists of only the realized variances between lags 2 and 5, and the third term consists of

only the realized variances between lag 6 and 22,

yt+h = µ + φ1yt + φ5

(
1

4

5∑
i=2

yt−i

)
+ φ22

(
1

17

22∑
i=6

yt−i

)
+ εt (12)

where y denotes the volatility measure (RV, BV, etc). This reparameterization allows for direct interpretation

of the effect of yt on yt+h through φ1. Throughout we will use ȳ5 to indicate the average value over lags 2

to 5, and ȳ22 to denote the average value between lags 6 and 22. We estimate the model above for forecast

horizons ranging from h =1 to 66 days, and we set the dependent variable to either the h-day average

cumulative volatility measure, ȳh,t+h = 1
h

∑h
i=1 yt+i , or the h-day ahead volatility measure, yt+h .

As the dependent variable in all of our regressions is a volatility measure, estimation by OLS has the

unfortunate feature that the resulting estimates focus primarily on fitting periods of high variance, and

place only little weight on more tranquil periods. This is an important drawback in our applications as

the level of variance changes substantially across our sample period, and the level of the variance and the

volatility in the error are known to have a positive relationship. To overcome this, we estimate our models

using simple weighted least squares (WLS). To implement this we first estimate the model using OLS, and

9We also conducted our empirical analysis using the MedRV estimator of Andersen, Dobrev, and Schaumburg (2010), which
is an alternative jump-robust estimator of integrated variance. The resulting estimates and conclusions were almost identical to
using BV and so we omit them in the interest of brevity.
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then construct weights as the inverse of the fitted value from that model.10

The left-hand side variable includes leads of multiple days and so we use a Newey and West (1987) HAC

to make inference on estimated parameters. The bandwidth used was 2(h − 1)where h is the lead length of

the left-hand-side variable.

3.4 A Panel HAR for Volatility Modeling

Separate estimation of the models on the individual firms’ realized variance is feasible (results for individual

stocks are presented in Section 6.1), but does not provide a direct method to assess the significance of the

average effect, and so we fit a pooled unbalanced panel HAR with a fixed effects to facilitate inference on

the average value of parameters. To illustrate, in the simplest specification the panel HAR is given by

y h,i ,t+h = µi + φ1yi ,t + φ5y 5,i ,t + φ22y 22,i ,t + εi ,t , i = 1, . . . , n t , t = 1, . . . , T,

where µi is a fixed effect which allows each firm to have different levels of long-run volatility. Let Yi ,t =

[yi ,t , ȳ5,i ,t , ȳ22,i ,t ]′, then the model for each firm’s realized variance can be compactly expressed as:

y h,i ,t+h = µi + φ′Yi ,t + εi ,t , i = 1, . . . , n t , t = 1, . . . , T.

Define ỹh,i ,t+h = y h,i ,t+h − ȳ h,i and Ỹi ,t = Yi ,t − Ȳi where ȳ h,i and Ȳi are the WLS estimates of the mean of

y and Y , respectively. The pooled parameters are then estimated by

φ̂ =

(
T−1

T∑
t=1

(
n−1

t

n t∑
i=1

w i ,t Ỹi ,t Ỹ ′i ,t

))−1(
T−1

T∑
t=1

(
n−1

t

n t∑
i=1

w i ,t Ỹi ,t ỹi ,t

))
. (13)

where w i ,t are the weights and n t are the number of firms in the cross section at date t .11

Inference can be conducted using the asymptotic distribution

10All models were estimated using an alternative weighting scheme constructed using an EWMA with a smoothing parameter of
0.94 in place of the HAR and were found to be robust to the choice of weighting.

11Our analysis takes the cross-section size, n t , as finite. If a form of factor structure holds in the returns we study, which
is empirically plausible, then the same inference approach could be applied even if n t → ∞, as in that case we would find
plimn t→∞V

[
n−1

t

∑n t
i=1 w i ,t Ỹi ,t εi ,t

]
→ τ2 > 0. A similar result was found in the context of composite likelihood estimation, and

this asymptotic distribution can be seem as a special case of Engle, Shephard, and Sheppard (2008).
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√
T
(
φ̂ − φ0

) d→ N
(

0,Σ−1ΩΣ−1
)

as T →∞ (14)

w he r e Σ = plimT→∞T−1
T∑

t=1

(
n−1

t

n t∑
i=1

w i ,t Ỹi ,t Ỹ ′i ,t

)

Ω = avar

(
T−1/2

T∑
t=1

zt

)

zt = n−1
t

n t∑
i=1

w i ,t Ỹi ,t εi ,t .

In addition to the results from the panel estimation, we also fit the models to each series individually and

summarize the results as aggregates in the tables below.

4 Predicting Volatility using Realized Semivariances

Before moving into models which decompose realized volatility into signed components, it is useful to es-

tablish a set of reference results. We fit a reference specification

RV t+h = µ + φ1RVt + φ5RV 5,t + φ22RV 22,t + εt (15)

to both the S&P 500 ETF and the panel where RV 5,t is the average between lags 2 and 5 and RV 22,t is the

average value using lags 6 through 22. This model is identical to the specification studied in Andersen,

Bollerslev, and Diebold (2007). The panel version of this model is identical except for the inclusion fixed

effects to permit different long-run variances for each asset. Tables 1a and 1b each contain four panels,

one for each horizon 1, 5, 22 and 66. The first line of each panel contains the estimated parameters and

t -statistic for this specification. These results are in line with that has been previously documented in the

literature: substantial persistence with φ1 + φ5 + φ22 close to 1 and where the role of recent information,

captured byφ1, diminishes as the horizon increases. The results for both the SPDR and the Panel are similar,

although the SPDR has somewhat larger coefficients on recent information. The final column reports the

R2 which is computed using WLS parameter estimates and the original data.
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Tables 2a and 2b contain the parameters estimated using a model which fits the day-h realized variance

instead of the cumulative realized variance. The specification only differs in the left-hand side variables,

and is given by

RVt+h = µ + φ1RVt + φ5RV 5,t + φ22RV 22,t + εt . (16)

(The h = 1 results are identical to those in Tables 1a and 1b and so are omitted.) The results in Table 2 reveal,

as expected, that much, but not all, of the predictive power in the model for cumulative realized variance

occurs at short horizons.

[INSERT TABLES 1a, 1b , 2a AND 2b ABOUT HERE ]

4.1 Decomposing Recent Quadratic Variation

Given the exact decomposition of RV into RS+ and RS−, we extend eq. (15) to obtain a direct test of whether

signed realized variance is informative for future volatility. We initially only decompose the most recent

volatility (RVt ), and in the next section we decompose all three volatility terms. Applying this decomposition

produces the specification

RV t+h = µ + φ+1 RS+t + φ
−
1 RS−t + φ5RV 5,t + φ22RV 22,t + εt . (17)

The panel specification of the above model includes fixed effects but is otherwise identical. To makeφ+and

φ− directly comparable to φ we multiply RS+ and RS− by a factor of two. If the decomposition of RV into

RS+and RS− added no information we would expect to findφ+1 = φ
−
1 = φ1.

Our first new empirical results using realized semivariances are presented in the second row of each panel

of Tables 1a and 1a. In the models for the SPDR (left panels), we find that the coefficient on negative semi-

variance is larger and more significant than that on positive semivariance for all horizons. In fact, the coef-

ficient on positive semivariance is not significantly different from zero for h = 1, 5 and 22, while it is small

and significantly negative for h = 66. The semivariance model explains 10-20% more of the variation in

future volatility than the model which contains only realized variance. The effect of lagged RV implied by
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this specification is φ+1 + φ
−
1 , and we see that it is similar in magnitude to the coefficient found in the ref-

erence specification where we only include lagged RV , which indicates that models which only use RV are

essentially averaging the vastly different effects of good and bad news. The results for the panel of individ-

ual volatility series also find that negative semivariance has a larger and more significant impact on future

volatility, although in these results we also find that positive semivariance has significant coefficients. The

difference in the results for the index and for the panel points to differences in the persistence of idiosyn-

cratic jumps in the individual firms’ volatility, which we explore in the next section.

Figure 1 contains the point estimates of φ+1 and φ−1 from eq. 17 for all horizons between 1 and 66

along with pointwise confidence intervals. For the SPDR, positive semivariance plays essentially no role

at any horizon. The effect of negative semivariance is significant and positive, but declines as the horizon

increases. In the panel both positive and negative semivariances are significant although the coefficients

differ substantially in magnitude for all horizons. The effect of positive semivariance is economically small

from horizon 15. The smoothness indicated in both curves is a feature of the estimated parameters – no

additional smoothing was used to produce these figures.

As noted above, if the decomposition of RV into RS+ and RS− added no new information, then we

would expect to seeφ+1 = φ
−
1 = φ1. We reject this restriction at the 0.05 level for all but 3 out of 66 horizons

(h=36,43,48) for the SPDR, and in the panel this null is rejected for all horizons.12We interpret these findings

as strong evidence that decomposing RV into its signed components significantly improves the explanatory

power of this model.

[ INSERT FIGURE 1 ABOUT HERE ]

Tables 2a and 2b contain results for the same model using the day-h realized variance as the left-hand-

side variable. These results show the effect on the variance on a particular day ahead and so the magnitude

of the coefficients is predictably smaller. The coefficient on negative semivariance remains positive and

strongly statistically significant at all horizons for both the SPDR and the panel. The coefficient on positive

semivariance for the SPDR is not significant at short horizons, and significantly negative for horizons h = 22

and 66, while for the panel it is significantly positive at short horizons and not significantly different from

12Detailed test results for each horizon are omitted in the interests of brevity, but are available from the authors upon request.
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zero at the longer horizons. The models with semivariance also appear to improve predictability, in terms

of R2, at all horizons, and are particularly important in the model for the market variance.

4.2 Comparison with a Simple Leverage Effect Variable

The classic leverage effect, whether due to varying firm leverage as in Christie (1982) or volatility-feedback

in Campbell and Hentschel (1992), is usually modeled using a lagged squared return interacted with an in-

dicator for negative returns. In this section we determine whether our approach using information from

realized semivariances adds anything beyond this simple approach. To do so, we augment the regressions

from the previous section with a term that interacts the lagged realized variance with an indicator for nega-

tive lagged daily returns, RVt I[rt<0].
13

RV t+h = µ + φ+1 RS+t + φ
−
1 RS−t + γRVt I[rt<0] + φ5RV 5,t + φ22RV 22,t + εt (18)

Like realized semivariances, we multiply the interaction variance by a factor of two so that its coefficient is of

a similar magnitude to that on RV. If realized semivariance adds no new information beyond the interaction

variable then we expectφ+1 = φ
−
1 and γ to be significant.

The final row in each panel of Tables 1a and 1b contain the parameter estimates from this model. In all

cases the magnitude of the coefficient on the interaction term is small. In models based on the SPDR, the

interaction term has the opposite sign at h = 22 and 66 from what is commonly found, and is insignificant

at the 1-day horizon. This coefficient in the panel model is significantly positive but small, generally only

10% of the magnitude the coefficient on negative realized semivariance, and in all cases the gain in R2 from

including this interaction variable is just 0.001. Similar results are reported in Tables 2a and 2b where the

day-h realized variance as the left-hand-side variable.

The results in this section show that negative semivariance captures the asymmetric impact of negative

and positive past returns on future volatility better than the usual method of using an indicator for the sign

of the lagged daily return. This is true across all horizons considered (1, 5, 22 and 66 days). Thus there

13We interact the indicator variable with the lagged realized variance rather than the lagged squared return as the latter is a
noisier measure of volatility than the former. The results using the usual version of this interaction variable, r 2

t I[rt <0] were even
weaker than those discussed here.
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is more information about future volatility in the high frequency negative variation of returns than in the

direction of the price over a whole day.

4.3 Completely Decomposing Quadratic Variation

The specification in eq. (17) restricts the coefficients on the weekly and monthly realized semivariance to

be identical. This restriction can be relaxed by decomposing the RV terms at all lags. With this modification

we obtain:

RV t+h = µ + φ+1 RS+t + φ
−
1 RS−t + φ

+
5 RS

5+
t + φ

−
5 RS

5−
t + φ+22RS

22+
t + φ−22RS

22−
t + εt (19)

where RS j− is the j -day average of negative semivariance and RS j+ is the j -day average of positive semi-

variance.14

Results from this extended specification are presented in the first row of each column of Table 3a. In both

sets of results, those using the SPDR and those based on the panel, the negative semivariance dominates the

positive semivariance. In the models using the SPDR, the coefficients on positive semivariance are always

either significantly negative or insignificantly different from zero. The coefficient on the terms involving

negative semivariance are uniformly positive and significant. In the panel the same general pattern ap-

pears, although some of the coefficients on positive semivariance, especially at short horizons and lag 1,

are significantly positive. Interestingly as the horizon increases the persistence of the volatility in the panel

shifts to the negative semivariance, particularly at the longer lags.

[ INSERT TABLES 3a AND 3b HERE ]

Decomposing realized variance at all lags allows us to consider a “Vector HAR” (VHAR) for the two semi-

variances. Such a model allows us to determine whether lagged realized semivariances of the same sign as

the dependent variable are more useful than lagged semivariances of the opposite sign.

14We continue to use the rotated parametrization where the lag-5 term includes the average between lags 2 and 5, and the 22-lag
term contains the average between lags 6 and 22. Chen and Ghysels (2011), when a jump variable is also included, call this model
the “HAR-S-RV-J” model, and use it as one of the benchmarks in their study.
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 RS
+
t+h

RS
−
t+h

 =
 µ+
µ−

 + φ1

 RS+t

RS−t

 + φ5

 RS
5+
t

RS
5−
t

 + φ22

 RS22+
t

RS22−
t

 +
 ε+t
ε−t

 (20)

where

φ j =

 φ+j+ φ−j+

φ+j− φ−j−

 .

Results of the VHAR are presented in the two lower rows of each panel of Tables 3a and 3b. The esti-

mates for both semivariances are virtually identical, with small or negative coefficients on lagged positive

semivariance and large, significant coefficients on lagged negative semivariance. The results in the panel

are similar with parameter estimates on negative semivariance uniformly large and highly significant. Thus

negative semivariance is useful for predicting both positive and negative future semivariance. This is a novel

and somewhat surprising result.

This leads us to test whether positive semivariance is actually needed in the VHAR models. We perform

these tests on the individual models for the SPDR and the 105 constituent volatility series. The left-most

sub-panel of Table 4 reports the rejection frequency for two nulls on the complete VHAR and on each semi-

variance.15 The first null is that positive semivariance can be excluded, H0 : φ+1 = φ
+
5 = φ

+
22 = 0, and

the other tests whether negative semivariance can be excluded. We find that positive semivariance can be

excluded from 19.1.% of the joint models, 19.1% of the models for positive semivariance, and 25.7% of the

models which just contained negative semivariance. Negative semivariance can only be excluded in 1 of

the 105 volatility series. Thus while most of the predictability for future semivariance appears to come from

lagged negative semivariance, the lagged positive semivariance also carries some information.

[ INSERT TABLE 4 HERE ]

We next test whether the sum of the coefficients on the positive semivariance is equal to the sum of

the coefficients on the negative semivariance, H0 : φ+1 + φ
+
5 + φ

+
22 = φ

−
1 + φ

−
5 + φ

−
22 in each of the two

semivariance models. The second panel of Table 4 reveals that the null can be rejected in almost all cases,

15All hypothesis tests were implemented using a Wald test where the parameter covariance matrix was estimated using a HAC as
described in section 3.3.
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and when rejected, indicated that the sum of the coefficients on the negative semivariance was larger than

the sum of the coefficient on the positive semivariance. We next test for equality only at lag 1, H0 : φ+1 = φ
−
1 .

As shown in Table 4, this null is rejected in 61% of the positive semivariance models and 78% of the negative

semivariance models, and when rejected typically indicates that the coefficient on negative semivariance

is larger than the coefficient on positive semivariance. Thus negative semivariances get greater weight in

these predictive models in almost all cases.

Finally, we test whether the persistence of each series, as measured by the maximum eigenvalue of the

companion form of a HAR, is equal for the two semivariances. This is done by restricting the off-diagonal

elements in eq. 20 to be zero, and estimating the remaining parameters and the (joint) asymptotic covari-

ance matrix. The asymptotic distribution is used to simulate 1,000 draws of the parameters, each one is

then transformed into companion form, and the maximum eigenvalue of the companion matrix is com-

puted. The null is tested using the percentage of times where λ− > λ+, were λ+ is the largest eigenvalue

from the companion matrix for HAR for positive semivariance. The null is rejected if λ− is greater than λ+

in more than 97.5% or in less than 2.5% of the simulations. The final column of Table 4 shows that equality

is rejected in 89.6% of the series, and negative semivariance is found to be more persistent in 91.6% of the

rejections.

These results indicate that negative semivariance is more useful for predicting realized variance and

both realized semivariances, and that negative semivariance is more persistent than positive semivariance.

5 Signed Jump Information

All of the models estimated thus far examined the role that decomposing realized variances into positive and

negative realized semivariance can play in explaining future volatility. These results consistently demon-

strated that the information content of negative realized semivariance was substantially larger than that of

positive realized semivariance. While the theory of BNKS shows that the difference in these two can be at-

tributed to differences in jump variation, the direct effect of jumps is diluted since realized semivariances

also contain half of the integrated variance.
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In this section we use signed jump variation, ∆J 2
t ≡ RS+t − RS−t , as a simple method to isolate the in-

formation from signed jumps. This difference eliminates the common integrated variance term produces a

measure that is positive when a day is dominated by an upward jump and negative when a day is dominated

by a downward jump. This measure has the added advantage that a jump-robust estimator of integrated

variance, such as MedRV or BV, is not needed; we obtain the measure simply as the difference between RS+t

and RS−t . If jumps are rare, as is often found in the stochastic volatility literature, then this measure should

broadly correspond to the jump variation when there a jump occurs and be mean zero noise otherwise.

To explore the role that signed jumps play in future variance we formulate a model which contains

signed jump variation as well as an estimator of the variation due to the continuous part using bipower

variation:

RV t+h = µ + φJ∆J 2
t + φC BVt + φ5RV 5,t + φ22RV 22,t + εt . (21)

The panel specification includes fixed effects but is otherwise identical.16

Results from the model with signed jumps are presented in the top row of each of the four panels in

Tables 5a and 5b. Signed jump variation,∆J 2
t , has a uniformly negative sign and is significant for all forecast

horizons. This reveals that days dominated by negative jumps lead to higher future volatility, while days with

positive jumps lead to lower future volatility. This result is quite different from that of Andersen, Bollerslev,

and Diebold (2007), who found that (unsigned) jumps lead to only a slight decrease in future variance in the

S&P 500.17 By including information about the sign of the jump, we find that the jump variable does indeed

help predict future volatility.

We next modify this model to use BV as the dependent variable, in order to see whether signed jump

variation is useful for predicting future continuous variation. The results from this model are presented in

the second row of Tables 5a and 5b, and reveal that using BV as the dependent variable resulted in virtually

identical estimates to those obtained using RV. Thus signed jump variation is indeed useful for predicting

16It is worth noting that while this specification is similar to our baseline model (eq. 17) it is not nested by it, as it is not possible
to construct a measure of the continuous component of variation from the two realized semivariance alone.

17It should be noted, however, that Andersen, Bollerslev, and Diebold (2007) pretest for jumps and so on days where no jump
component is detected their jump measure is exactly zero. Since we do not pretest, we may have a noisier jump measure, although
it remains consistent for the object of interest.
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the continuous part of volatility. This is a novel finding, and one that cannot be detected without drawing

on information about the sign of the high frequency returns.

[ INSERT TABLES 5a AND 5b ABOUT HERE ]

The final specification we consider allows for the coefficient on positive jump variation to differ from

that of negative jump variation, which enables us to test whether the impact of jumps is driven more by pos-

itive or negative jump variation. To do this, we need a method to estimate
∑
∆p 2

s I [∆ps>0] and
∑
∆p 2

s I [∆ps<0]

separately. One option would be to subtract (one half of) a consistent estimator of the IV, for example to use

RS+t − 1
2 BVt . We opt instead for a simpler specification which uses an indicator for which realized semivari-

ance was larger. This model is:

RV t+h =µ + φ J+∆J 2+
t + φ J−∆J 2−

t + φC BVt + φ5RV 5,t + φ22RV 22,t + εt (22)

where ∆J 2+
t =

(
RS+t − RS−t

)
I[
(RS+t −RS−t )>0

]
∆J 2−

t =
(

RS+t − RS−t
)

I[
(RS+t −RS−t )<0

]

If the signed jump components have equal predictive power then we expect to findφ J+ = φ J− = φ J .

The bottom row of each panel in Table 5a contains estimates for the extended jump specification. For the

SPDR we find that both signed jump components have a negative sign, and for the longest two horizons

(h = 22 and h = 66) the coefficients are almost equal. For the shorter two horizons the coefficient on the

negative jump component is larger, in magnitude, than on the positive jump component, indicating that

negative jumps increase future volatility by more than the amount by which positive jumps lower future

volatility, and we test the null H0 : φ J+ = φ J− we only reject at the one-step-ahead horizon (h = 1). In the

panel, both types of jumps lead to higher future volatility for the h = 1 horizon, although the magnitude of

the coefficient differs by a factor of 10, and negative jumps have a larger effect. At longer horizons the “good”

jumps lead to lower volatility while “bad” jumps lead to higher volatility, consistent with the restriction that

φ J+ = φ J−. Figure 2 contains a plot of the coefficients for all 66 leads for both the SPDR and the panel. Aside

from some mixed evidence for very short term effects, both sets of coefficients are negative and significant.
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[ INSERT FIGURE 2 ABOUT HERE ]

6 Further Analysis

This section presents additional analysis of our results. First, we present results from estimating our main

empirical specifications on individual stock returns, rather than on the index or via panel regressions. Sec-

ond, we look at an out-of-sample forecasting application to see whether the in-sample gains documented

above lead to better forecasts out-of-sample. Finally, we take a detailed look at the new time series studied

in this paper, the signed jump variation series.

6.1 Results for Individual Stocks

In this section we examine whether the significant findings from the previous sections that realized semi-

variances contain useful information for predicting future volatility also hold at the individual stock level.

We do so by estimating our three main models, the baseline specifications (eq. (17)) and the jump specifi-

cations (eqs. (21) and (22)) for each of the 105 individual firm variances.

To facilitate presentation of these results, we report only the proportion of significant coefficients and

their sign, using 2-sided tests with sizes of 5%. In the baseline specification, the left panel of Table 6 shows

that the negative realized semivariance is significant and positive for all but one of the series. Positive re-

alized semivariance is only broadly significantly positive for the shortest horizons, and the percentage of

series which reject the null declines from 84% for h = 1 to 26% for h = 66 days. These results are in line

with the results from the panel specification.

[ INSERT TABLE 6 HERE ]

The jump and the extended jump specifications, in the middle and right panels of Table 6, also confirm

that the findings in the pooled panel model are pervasive in the individual variance series. For example, no

series have a significant and positive coefficient on the signed jump variable, ∆J 2
t , while between 62% and

85% have significant and negative coefficients on this variable.

Figure 3 contains a plot of the estimated coefficients on the 105 individual firms from the jump specifi-
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cation. The y-value indicated the magnitude of the coefficient where solid bars are statistically significant.

The most striking feature of this plot is the pervasiveness of the negative sign on signed jump variation –

even in cases where it is insignificant – coupled with the presence of no significantly positive coefficients in

either plot.

[ INSERT FIGURE 3 ABOUT HERE ]

6.2 Out-of-Sample Forecast Performance

We now present a forecasting application to assess the out-of-sample predictive power of realized semi-

variance. Two models using realized variance are specified. The first, denoted R̂V 1, is the standard RV-HAR

containing lags 1, 5 and 22 (eq. (15). The second, denoted R̂V
′
1, augments the standard HAR with an interac-

tion term which allows for asymmetry in persistence when the previous daily return was negative, RVt I[rt<0].

The performance of these models is compared to that of two models based on realized semivariances. The

first, denoted R̂V 2, is the specification which decomposes recent realized variance into positive and neg-

ative semivariance (e.g. 17). The second, denoted R̂V
′
2, is a restricted version of the first where positive

realized semivariance is excluded from the model, motivated by the limited significance of this variable in

Table 1a. All forecasts are generated using rolling WLS regressions based on 1,004 observations (4 years), and

parameter estimates are updated daily. Only series which contained at least 500 out-of-sample data points

were included, reducing the number of assets from 105 to 83 (in addition to the market index, SPDR). No re-

strictions on the parameters were imposed and forecasts were occasionally negative (approximately .004%),

and so an “insanity filter” was used which ensured that the forecast was no smaller than the smallest value

observed in the estimation window.

Forecasting performance was evaluated using unconditional Diebold-Mariano-Giacomini-White tests

(Diebold and Mariano (1995) and Giacomini and White (2006)) using the negative of the Gaussian quasi-

likelihood as the loss function,

L
(

R̂V t+h,h|t , RV t+h,h

)
= ln

(
R̂V t+h,h|t

)
+

RV t+h,h

R̂V t+h,h|t
.
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This “QLIKE” loss function has been shown to be robust to noise in the proxy for volatility in Patton (2011),

and to have good power properties in Patton and Sheppard (2009).

Table 7 contains results from the forecasting exercise. Each of the three panels contains results from

comparing one set of forecasting models. Within each panel, the left-most column contains the value of

the DM test statistic and the two right columns contain the percentage of the 83 series which favor the re-

alized semivariance based model or realized variance model using a 2-sided 5% test. The left-most panel

compares the standard HAR with a semivariance-based model which decomposes the first lag. The DM test

statistic is uniformly positive indicating superior performance of the semivariance model for the S&P 500

ETF, and rejects the null of equal performance in favor of the semivariance-based model in 20 to 30% of

series. The middle panel compares the standard HAR to a model which includes only negative semivari-

ance at the first lag. This is our preferred specification in light of the weak evidence of significant of positive

semivariance, and this model has the same number of parameters as the standard HAR. The restricted semi-

variance model outperforms the standard HAR at all horizons for the S&P 500, and provides better perfor-

mance for individual stocks than the less parsimonious specification. The right-most panel compares the

parsimonious realized semivariance specification to the realized variance HAR which includes the interac-

tion variable using the sign of the lagged return. The interaction variable appears to help at short horizons,

with the performance of that model being not significant different from our preferred semivariance spec-

ification, however the asymmetry-augmented HAR is significantly outperformed at longer horizons by the

semivariance-based forecast.

[ INSERT TABLE 7 ABOUT HERE ]

6.3 Signed Jump Variation

The time series of percentage signed jump variation, %∆J 2
t = (RS+t − RS−t )/RVt , is also of direct interest. If

jumps are rare (one or none a day) then this series contains either jumps or noise. Figure 4 contains the time

series plot of the SPDR signed jump variation series. This series appears consistent with a heteroskedastic

white noise process. The first 5 autocorrelations are -0.111, -0.022, -0.037, 0.015 and 0.0212 and each is indi-

vidually insignificantly different from zero using heteroskedasticity robust inference. Signed jump variation
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comprises 15% of total variance, although the absolute percentage due to signed jump variation has some

persistence.

While it is tempting to interpret the heteroskedasticity as evidence of increased jump activity, it can-

not be directly interpreted since the asymptotic variance of signed jump variation is proportional to the

integrated quarticity which will be high in periods of high volatility. Figure 5 also highlights six days, the

three largest and three smallest on the previous graph. The first two positive and first two negative both

have large, obvious jumps. The third panel of each have period of large moves although the obviousness

off the jumps is less apparent. The two largest jumps, the positive one on September 18, 2007 and the neg-

ative jump on December 11, 2007, both correspond to Federal Reserve rate cuts. On September 18, 2007

the Fed reduced the federal funds rate 50 basis points which triggered a rally. The December 11, 2007 drop

also corresponded to an cut by the Fed – 25 basis points – which was interpreted as an ominous sign of an

impending recession.

7 Conclusion

This paper shows the sizable and significant gains for predicting equity volatility by incorporating signed

high frequency volatility information. Our analysis is based on the “realized semivariance” estimators re-

cently proposed by Barndorff-Nielsen, Kinnebrock, and Shephard (2010). These simple estimators allow us

to decompose realized volatility into a part coming from positive high frequency returns and a part coming

from negative high frequency returns. For both an equity market index and set of 105 individual stocks,

we find that negative realized semivariance is much more important for future volatility than positive real-

ized semivariance, and disentangling the effects of these two components significantly improves forecasts

of future volatility. This is true whether the measure of future volatility is realized variance, bipower varia-

tion, negative realized semivariance or positive realized semivariance, and holds for horizons ranging from

one day to three months. We also find that jump variation is important for predicting future volatility, with

volatility attributable to negative jumps leading to significantly higher future volatility, while positive jumps

lead to significantly lower volatility. This may explain earlier results in this literature, see Andersen, Boller-
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slev, and Diebold (2007) and Busch, Christensen, and Nielsen (2011) for example, who found that jumps are

of limited use for forecasting future volatility; only by including the jump size and sign are the gains from

jumps realized.

A Data Cleaning

Only transaction data were taken from the NYSE TAQ. All series were automatically cleaned according to a

set of 6 rules:

1. Transactions outside of 9:30:00 AM and 16:00:00 were discarded

(a) Transactions with a 0 price or volume were discarded

(b) Each day the most active exchange was determined. Only transactions from this exchange were

retained.

(c) Only trades with conditions E, F or blank were retained.

(d) Transaction prices outside of the CRSP high or low were discarded.

(e) Trade with immediate reversals more than 5 times a 50-sample moving window - excluding the

transaction being tested - were discarded.

These rules are similar to those of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009), and prices

were not manually cleaned for problems not addressed by these rules.
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Figure 1: Estimated coefficients from the levels model that decomposed realized variance into its signed
components, RV h,i ,t+h = µi +φ+1 RS+i ,t +φ

−
1 RS−i ,t +φ5RV 5,i ,t +φ22RV 22,i ,t + εt . 95% confidence intervals

indicated using dashed lines. The top panel contains results for the S&P 500 SPDR and the bottom panel
contains results for the panel of individual firm realized variances.
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Figure 2: Fit coefficients from the levels model that included both signed jump variation and bipower vari-

ation, RV h,i ,t+h = µi + φ J+
(

RS+i ,t − RS−i ,t

)
I i ,t + φ J−

(
RS+i ,t − RS−i ,t

) (
1− I i ,t

)
+ φC BV−i ,t + φ5RV 5,i ,t +

φ22RV 22,i ,t +εi ,t ., along with 95% confidence intervals for the panel of individual volatilities. The top panel
contains the estimated parameters for the S&P 500 SPDR and the bottom panel contains the estimated pa-
rameters in the panel of individual firms. 95% confidence intervals are indicated using dashed lines.
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Figure 3: Sorted effects of the signed jump variation in the individual firm volatilities. The magnitude of the
coefficient on ∆J 2 is indicated as distance from the horizontal axis. Solid bars indicate significance at the
5% level.
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SPDR. Green (red) highlighting corresponds to the “good” (”bad”) volatility days depicted in Figure 5.

32



10 11 12 13 14 15 16

148

149

150

151

152

153

Dec 11, 2007

10 11 12 13 14 15 16
148

149

150

151

152

Sep 18, 2007

10 11 12 13 14 15 16

113

113.5

114

114.5

115

115.5
Jan 28, 2004

10 11 12 13 14 15 16

121

122

123

124

125

126

Apr 18, 2001

10 11 12 13 14 15 16

113

113.5

114

114.5

115

115.5
Apr 13, 2004

10 11 12 13 14 15 16
93

93.5

94

94.5

95

95.5

96

May 27, 2003
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row corresponds to “good volatility” where the leftmost figure had the highest %∆J 2
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HAR estimation results for the SPDR, cumulative volatility

RV h,i ,t+h = µi + φ1RVi ,t + φ+1 RS+i ,t + φ
−
1 RS−i ,t + γRVi ,t I [ri ,t−1<0] + φ5RV 5,i ,t + φ22RV 22,i ,t + εi ,t

φ1 φ+1 φ−1 γ φ5 φ22 R2

h = 1 0.607
(17.0)

0.268
(8.1)

0.120
(4.9)

0.532

−0.012
(−0.3)

0.591
(13.0)

0.291
(9.3)

0.120
(4.9)

0.611

0.018
(0.4)

0.532
(7.4)

0.025
(1.4)

0.293
(9.3)

0.121
(5.0)

0.611

h = 5 0.425
(14.7)

0.409
(8.6)

0.158
(4.0)

0.563

−0.015
(−0.7)

0.431
(13.4)

0.421
(8.8)

0.155
(4.0)

0.620

0.036
(1.1)

0.325
(6.6)

0.046
(2.5)

0.424
(8.8)

0.157
(4.0)

0.619

h = 22 0.305
(11.8)

0.357
(7.7)

0.265
(4.8)

0.468

−0.005
(−0.3)

0.314
(9.9)

0.359
(7.5)

0.261
(4.8)

0.508

−0.006
(−0.2)

0.317
(5.8)

−0.001
(−0.1)

0.359
(7.6)

0.261
(4.8)

0.508

h = 66 0.203
(8.4)

0.256
(7.4)

0.299
(5.3)

0.282

−0.033
(−2.2)

0.250
(7.3)

0.253
(6.8)

0.294
(5.3)

0.313

−0.060
(−1.8)

0.311
(4.1)

−0.027
(−1.3)

0.251
(6.8)

0.292
(5.2)

0.315

Table 1a: Reference, base and asymmetric model parameter estimates using h-day cumulative variance as
the dependent variance (t -statistics in parentheses). Each of the four panels contains results for the forecast
horizon indicated in the left most column. Each panel contains 3 models: the first model corresponds to the
reference model using only realized variance, the second decomposes realized variance into positive and
negative realized semivariance at the first lag, and the third specification adds an asymmetric term where
the sign of the most recent daily return is used. The R2 measure is constructed using the WLS parameter
estimates and the original data.
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HAR estimation results for the panel of 105 individual stocks, cumulative volatility

RV h,i ,t+h = µi + φ1RVi ,t + φ+1 RS+i ,t + φ
−
1 RS−i ,t + γRVi ,t I [ri ,t−1<0] + φ5RV 5,i ,t + φ22RV 22,i ,t + εi ,t

φ1 φ+1 φ−1 γ φ5 φ22 R2

h = 1 0.488
(39.7)

0.315
(28.1)

0.172
(16.2)

0.550

0.134
(15.6)

0.352
(24.5)

0.317
(28.7)

0.172
(16.4)

0.560

0.158
(17.1)

0.304
(18.9)

0.023
(6.8)

0.317
(28.7)

0.172
(16.5)

0.561

h = 5 0.357
(23.2)

0.357
(16.3)

0.247
(10.2)

0.616

0.079
(11.4)

0.276
(19.0)

0.359
(16.4)

0.247
(10.3)

0.630

0.105
(14.5)

0.222
(19.6)

0.026
(7.7)

0.359
(16.5)

0.248
(10.3)

0.631

h = 22 0.241
(14.8)

0.312
(11.9)

0.360
(10.3)

0.544

0.045
(7.3)

0.194
(12.8)

0.314
(11.9)

0.360
(10.4)

0.556

0.063
(9.4)

0.157
(13.8)

0.018
(5.1)

0.314
(11.9)

0.360
(10.4)

0.557

h = 66 0.161
(12.2)

0.236
(10.7)

0.431
(12.0)

0.451

0.022
(3.9)

0.138
(8.8)

0.238
(10.6)

0.431
(12.1)

0.462

0.031
(5.9)

0.117
(8.5)

0.010
(3.8)

0.238
(10.6)

0.432
(12.1)

0.463

Table 1b: Reference, base and asymmetric model parameter estimates using h-day cumulative variance as
the dependent variance (t -statistics in parentheses). Each of the four panels contains results for the forecast
horizon indicated in the left most column. Each panel contains 3 models: the first model corresponds to the
reference model using only realized variance, the second decomposes realized variance into positive and
negative realized semivariance at the first lag, and the third specification adds an asymmetric term where
the sign of the most recent daily return is used. The R2 measure is constructed using the WLS parameter
estimates and the original data and are the average of the 105 R2s for the individual assets.
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HAR estimation results for the SPDR, one-day volatility

RVi ,t+h = µi +φ1RVi ,t +φ+1 RS+i ,t +φ
−
1 RS−i ,t +γI [ri ,t−1<0]RVi ,t +φ5I [ri ,t−1<0]RV 5,i ,t +φ22I [ri ,t−1<0]RV 22,i ,t +εi ,t

φ1 φ+1 φ−1 γ φ5 φ22 R2

h = 5 0.270
(6.5)

0.526
(6.0)

0.177
(3.3)

0.327

−0.007
(−0.3)

0.279
(6.1)

0.528
(6.1)

0.173
(3.3)

0.341

0.036
(1.0)

0.185
(2.7)

0.042
(1.9)

0.532
(6.1)

0.175
(3.3)

0.340

h = 22 0.148
(3.2)

0.410
(4.1)

0.250
(2.5)

0.128

−0.052
(−1.5)

0.220
(4.0)

0.401
(4.0)

0.245
(2.5)

0.138

−0.055
(−1.1)

0.225
(2.5)

−0.002
(−0.1)

0.401
(4.0)

0.245
(2.5)

0.138

h = 66 0.038
(1.9)

0.159
(2.7)

0.257
(3.2)

0.021

−0.053
(−1.7)

0.110
(2.6)

0.150
(2.6)

0.253
(3.2)

0.022

−0.066
(−1.8)

0.143
(2.5)

−0.015
(−0.8)

0.149
(2.6)

0.252
(3.1)

0.022

Table 2a: Reference, base and asymmetric model parameter estimates using day-h variance as the depen-
dent variable (t -statistics in parentheses). Each of the four panels contains results for the forecast hori-
zon indicated in the left most column. Each panel contains 3 models: the first model corresponds to the
reference model using only realized variance, the second decomposes realized variance into positive and
negative realized semivariance at the first lag, and the third specification adds an asymmetric term where
the sign of the most recent daily return is used. The R2 measure is constructed using the WLS parameter
estimates and the original data.
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HAR estimation results for the panel of 105 individual stocks, one-day volatility

RVi ,t+h = µi +φ1RVi ,t +φ+1 RS+i ,t +φ
−
1 RS−i ,t +γI [ri ,t−1<0]RVi ,t +φ5I [ri ,t−1<0]RV 5,i ,t +φ22I [ri ,t−1<0]RV 22,i ,t +εi ,t

φ1 φ+1 φ−1 γ φ5 φ22 R2

h = 5 0.273
(14.3)

0.376
(11.4)

0.299
(8.9)

0.389

0.059
(5.2)

0.212
(13.1)

0.377
(11.4)

0.299
(8.9)

0.393

0.081
(7.1)

0.167
(13.1)

0.022
(4.6)

0.378
(11.4)

0.299
(9.0)

0.394

h = 22 0.161
(7.2)

0.242
(5.6)

0.453
(8.2)

0.217

0.010
(0.8)

0.150
(7.6)

0.243
(5.7)

0.453
(8.2)

0.220

0.024
(2.2)

0.118
(6.3)

0.016
(3.7)

0.244
(5.7)

0.454
(8.2)

0.221

h = 66 0.109
(7.7)

0.173
(5.0)

0.424
(6.7)

0.116

0.003
(0.2)

0.105
(5.5)

0.174
(5.0)

0.423
(6.7)

0.117

0.011
(1.1)

0.086
(6.3)

0.010
(1.5)

0.174
(5.0)

0.424
(6.7)

0.118

Table 2b: Reference, base and asymmetric model parameter estimates using day-h variance as the depen-
dent variable (t -statistics in parentheses). Each of the four panels contains results for the forecast hori-
zon indicated in the left most column. Each panel contains 3 models: the first model corresponds to the
reference model using only realized variance, the second decomposes realized variance into positive and
negative realized semivariance at the first lag, and the third specification adds an asymmetric term where
the sign of the most recent daily return is used. The R2 measure is constructed using the WLS parameter
estimates and the original data and are the average of the 105 R2s for the individual assets.
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Forecasting measures of future volatility using realized semivariances, results for the SPDR

RM h,i ,t+h = µi + φ+1 RS+i ,t + φ
+
5 RS

+
5,i ,t + φ

+
22RS

+
22,i ,t + φ

−
1 RS−i ,t + φ

−
5 RS

−
5,i ,t + φ

−
22RS

−
22,i ,t + εi ,t

RM φ+1 φ−1 φ+5 φ−5 φ+22 φ−22 R2

h = 1 RV −0.044
(−1.3)

0.581
(12.7)

−0.090
(−2.5)

0.394
(9.1)

−0.116
(−1.9)

0.268
(3.4)

0.621

RS+ −0.084
(−1.9)

0.644
(10.0)

−0.110
(−2.9)

0.404
(8.1)

−0.069
(−1.0)

0.219
(2.3)

0.539

RS− −0.003
(−0.1)

0.518
(14.9)

−0.069
(−1.7)

0.384
(8.0)

−0.163
(−2.3)

0.317
(3.6)

0.621

h = 5 RV −0.035
(−1.5)

0.418
(13.4)

0.005
(0.1)

0.408
(5.9)

−0.237
(−2.4)

0.440
(3.7)

0.642

RS+ −0.049
(−1.9)

0.447
(12.6)

0.015
(0.2)

0.405
(5.8)

−0.207
(−2.0)

0.403
(3.2)

0.635

RS− −0.022
(−0.9)

0.389
(13.6)

−0.004
(−0.1)

0.410
(5.9)

−0.267
(−2.6)

0.477
(3.9)

0.623

h = 22 RV −0.029
(−1.3)

0.291
(10.3)

−0.109
(−1.3)

0.454
(5.9)

−0.460
(−1.8)

0.804
(2.6)

0.565

RS+ −0.031
(−1.3)

0.301
(10.2)

−0.107
(−1.2)

0.451
(5.5)

−0.494
(−1.9)

0.851
(2.6)

0.583

RS− −0.027
(−1.3)

0.282
(10.3)

−0.110
(−1.4)

0.457
(6.1)

−0.425
(−1.7)

0.756
(2.5)

0.538

h = 66 RV −0.060
(−2.7)

0.224
(7.9)

−0.206
(−2.5)

0.466
(5.0)

−0.418
(−1.3)

0.790
(2.3)

0.364

RS+ −0.064
(−2.8)

0.235
(8.0)

−0.218
(−2.5)

0.488
(5.0)

−0.444
(−1.3)

0.819
(2.3)

0.378

RS− −0.055
(−2.7)

0.212
(7.8)

−0.193
(−2.4)

0.444
(5.0)

−0.392
(−1.3)

0.761
(2.4)

0.347

Table 3a: Extended model where RV at all lags is decomposed into positive and negative semivariance
(t -statistics in parentheses). Each of the four panels contains results for the forecast horizon indicated at
the left. RM indicates which variable is the dependent variable, realized variance (RV ), positive realized
semivariance (RS+) or negative realized semivariance (RS−). The R2 measure is constructed using the WLS
parameter estimates and the original data.
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Forecasting measures of future volatility using realized semivariances, results for the panel of 105
individual stocks.

RM h,i ,t+h = µi + φ+1 RS+i ,t + φ
+
5 RS

+
5,i ,t + φ

+
22RS

+
22,i ,t + φ

−
1 RS−i ,t + φ

−
5 RS

−
5,i ,t + φ

−
22RS

−
22,i ,t + εi ,t

RM φ+1 φ−1 φ+5 φ−5 φ+22 φ−22 R2

h = 1 RV 0.131
(15.3)

0.348
(24.3)

0.053
(5.5)

0.265
(25.1)

0.033
(2.5)

0.145
(11.0)

0.564

RS+ 0.144
(14.5)

0.339
(18.3)

0.061
(6.0)

0.253
(22.6)

0.058
(4.1)

0.118
(8.3)

0.520

RS− 0.118
(13.5)

0.357
(28.7)

0.045
(4.1)

0.277
(23.4)

0.007
(0.5)

0.172
(11.1)

0.519

h = 5 RV 0.076
(10.7)

0.271
(19.2)

0.068
(3.7)

0.289
(16.5)

0.017
(0.5)

0.239
(7.9)

0.638

RS+ 0.079
(11.0)

0.272
(18.0)

0.079
(4.3)

0.279
(16.4)

0.038
(1.3)

0.214
(7.6)

0.636

RS− 0.073
(10.0)

0.270
(20.0)

0.058
(3.1)

0.298
(15.9)

−0.005
(−0.2)

0.265
(7.8)

0.609

h = 22 RV 0.042
(6.4)

0.189
(13.2)

0.029
(1.3)

0.281
(11.9)

0.011
(0.2)

0.362
(5.2)

0.579

RS+ 0.045
(6.8)

0.189
(12.8)

0.035
(1.6)

0.275
(11.9)

0.015
(0.3)

0.358
(5.2)

0.591

RS− 0.039
(5.9)

0.188
(13.5)

0.022
(1.0)

0.286
(11.8)

0.008
(0.1)

0.366
(5.2)

0.558

h = 66 RV 0.019
(2.9)

0.133
(9.4)

−0.000
(−0.0)

0.234
(7.1)

0.060
(0.7)

0.385
(4.7)

0.490

RS+ 0.020
(3.1)

0.134
(9.2)

0.004
(0.1)

0.233
(7.0)

0.066
(0.8)

0.378
(4.5)

0.497

RS− 0.017
(2.6)

0.132
(9.5)

−0.005
(−0.2)

0.235
(7.2)

0.053
(0.7)

0.392
(4.9)

0.478

Table 3b: Extended model where RV at all lags is decomposed into positive and negative semivariance
(t -statistics in parentheses). Each of the four panels contains results for the forecast horizon indicated at
the left. RM indicates which variable is the dependent variable, realized variance (RV ), positive realized
semivariance (RS+) or negative realized semivariance (RS−). The R2 measure is constructed using the WLS
parameter estimates and the original data and is the average across the R2s of the 105 individual assets.
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Tests on parameters of the vector HAR model

No RS+ No RS− φ+ = φ− % Neg. φ+1 = φ
−
1 % Neg. λ+1 = λ

−
1 % Neg.

Both 81.9 99.0 – – – – 89.6 91.6
RS+ 81.9 99.0 97.2 98.2 61.9 96.9 – –
RS− 74.3 99.0 76.2 98.8 78.1 95.1 – –

Table 4: Results from the VHAR fit to the two semivariance components of realized variance. All values rep-
resent the percentage of nulls rejected using a 5% test. The left column indicates the dependent variable
used in the test. The first panel contains results from a test that one of the realized semivariance measures
could be excluded. The second panel tests equality of the sum of the coefficients on the two realized semi-
variance measures and % Neg. reports the percentage of the rejections where the sum of coefficients on the
positive semivariance was smaller than on the negative semivariance. The third panel contains the same
test only using the first lag coefficient. The final panel contains results of a test of equal persistence and
the percentage of rejections where positive realized semivariance is less significant than negative realized
semivariance.
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The impact of signed jump variation on future volatility, results for the SPDR

RM h,i ,t+h = µi + φJ∆J 2
i ,t + φJ+∆J 2+

i ,t + φJ−∆J 2−
i ,t + φC BVi ,t + φ5RV 5,i ,t + φ22RV 22,i ,t + εi ,t

RM φJ φJ+ φJ− φC φ5 φ22 R2

h = 1 RV −0.286
(−7.7)

0.610
(18.4)

0.282
(9.0)

0.120
(5.0)

0.613

BV −0.275
(−9.5)

0.596
(20.4)

0.278
(10.2)

0.098
(5.0)

0.663

RV −0.095
(−2.1)

−0.482
(−5.5)

0.545
(16.8)

0.289
(9.4)

0.120
(5.0)

0.621

h = 5 RV −0.204
(−9.0)

0.449
(13.6)

0.406
(8.5)

0.154
(4.0)

0.622

BV −0.196
(−9.2)

0.440
(15.0)

0.389
(8.6)

0.137
(3.9)

0.633

RV −0.142
(−3.9)

−0.272
(−6.1)

0.426
(11.9)

0.409
(8.6)

0.154
(4.0)

0.622

h = 22 RV −0.138
(−7.3)

0.342
(11.2)

0.342
(7.1)

0.260
(4.8)

0.512

BV −0.132
(−7.0)

0.333
(10.9)

0.330
(6.8)

0.243
(4.7)

0.505

RV −0.150
(−3.8)

−0.124
(−2.3)

0.346
(10.0)

0.341
(7.0)

0.260
(4.8)

0.513

h = 66 RV −0.122
(−5.4)

0.240
(9.6)

0.240
(6.3)

0.293
(5.3)

0.312

BV −0.117
(−5.1)

0.232
(9.2)

0.231
(6.1)

0.279
(5.3)

0.304

RV −0.123
(−3.1)

−0.121
(−1.9)

0.240
(8.3)

0.240
(6.0)

0.293
(5.3)

0.312

Table 5a: Models that includes signed jump information where quadratic variation has been decom-
posed into signed jump variation, ∆J 2, and its continuous component using bipower variation, BV (t -
statistics in parentheses). Each of the four panels contains results for the forecast horizon indicated at the
left. RM indicates which variable is the dependent variable, realized variance (RV ) or bipower variation
(BV ). ∆J 2+

i ,t and ∆J 2−
i ,t decompose ∆J 2

i ,t using an indicator variable for the sign of the difference where
∆J 2+

i ,t = ∆J 2
i ,t I [RS+−RS−>0]. The R2 measure is constructed using the WLS parameter estimates and the

original data. R2 values in the final column are the average across the R2s of the 105 individual assets.
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The impact of signed jump variation on future volatility, results for the panel of 105 individual stocks

RM h,i ,t+h = µi + φJ∆J 2
i ,t + φJ+∆J 2+

i ,t + φJ−∆J 2−
i ,t + φC BVi ,t + φ5RV 5,i ,t + φ22RV 22,i ,t + εi ,t

RM φJ φJ+ φJ− φC φ5 φ22 R2

h = 1 RV −0.108
(−10.5)

0.563
(40.0)

0.327
(29.1)

0.182
(17.2)

0.564

BV −0.089
(−10.9)

0.488
(41.9)

0.258
(28.3)

0.136
(16.2)

0.572

RV 0.024
(2.5)

−0.246
(−12.2)

0.502
(38.1)

0.330
(29.5)

0.182
(17.3)

0.566

h = 5 RV −0.097
(−11.5)

0.411
(23.0)

0.366
(16.5)

0.255
(10.5)

0.633

BV −0.080
(−11.6)

0.358
(23.6)

0.293
(16.0)

0.196
(10.1)

0.633

RV −0.058
(−5.2)

−0.139
(−12.2)

0.392
(20.9)

0.367
(16.6)

0.255
(10.5)

0.634

h = 22 RV −0.073
(−8.7)

0.279
(13.9)

0.318
(12.1)

0.366
(10.4)

0.558

BV −0.060
(−8.6)

0.244
(13.8)

0.256
(11.4)

0.287
(10.0)

0.553

RV −0.061
(−5.3)

−0.086
(−7.8)

0.273
(13.0)

0.319
(12.1)

0.366
(10.4)

0.559

h = 66 RV −0.057
(−5.6)

0.180
(11.5)

0.244
(10.7)

0.437
(12.1)

0.461

BV −0.046
(−5.4)

0.158
(11.4)

0.194
(10.0)

0.348
(12.4)

0.457

RV −0.040
(−4.3)

−0.075
(−4.9)

0.171
(11.5)

0.245
(10.6)

0.437
(12.1)

0.463

Table 5b: Models that includes signed jump information where quadratic variation has been decom-
posed into signed jump variation, ∆J 2, and its continuous component using bipower variation, BV (t -
statistics in parentheses). Each of the four panels contains results for the forecast horizon indicated at the
left. RM indicates which variable is the dependent variable, realized variance (RV ) or bipower variation
(BV ). ∆J 2+

i ,t and ∆J 2−
i ,t decompose ∆J 2

i ,t using an indicator variable for the sign of the difference where
∆J 2+

i ,t = ∆J 2
i ,t I [RS+−RS−>0]. The R2 measure is constructed using the WLS parameter estimates and the

original data. R2 values in the final column are the average across the R2s of the 105 individual assets.

Results for models of individual stock volatility

Baseline Jumps Extended Jumps
RS+ RS− J+ J−

h Sig. + Sig - Sig + Sig - Sig + Sig - Sig + Sig - Sig + Sig -
1 84.8 0.0 99.0 0.0 0.0 79.2 7.5 2.8 0.0 82.1
5 77.1 0.0 99.0 0.0 0.0 84.9 0.9 35.8 0.9 65.1

22 47.6 0.0 99.0 0.0 0.0 81.1 0.9 33.0 0.9 43.4
66 26.7 1.0 99.0 0.0 0.0 62.3 0.9 17.9 0.9 35.8

Table 6: This table contains percentage of null hypotheses rejected for the Baseline, Jump, and Extended
Jump model for individually fit models for the 105 S&P 100 constituents. Two columns are presented for
each term, the left of which indicates the percentage of parameters that are significantly positive, the other
indicating the percentage significantly negative. For example, for 5-step ahead forecasts in the baseline
specification (equation 17) the negative realized semivariance was significantly positive in 99% of the series
while the positive realized semivariance was significantly positive in 77.1% of the series.
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