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Abstract

Recent advances in financial econometrics have led to the development of new estimators of asset price variability using
frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on
a variety of different assumptions and take many different functional forms. Motivated by the empirical success of combination
forecasts, this paper presents a novel approach for combining individual realised measures to form new estimators of price
variability. In an application to high frequency IBM price data over the period 1996–2008, we consider 32 different realised
measures from 8 distinct classes of estimators. We find that a simple equally-weighted average of these estimators cannot
generally be out-performed, in terms of accuracy, by any individual estimator. Moreover, we find that none of the individual
estimators encompasses the information in all other estimators, providing further support for the use of combination realised
measures.
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1. Introduction

The development of new estimators of asset price
variability has been an active area of econometric
research in the past decade. These estimators,
known as “realised volatility estimators” or “realised
measures”, exploit the information in high frequency
data on asset prices (e.g., 5-min prices) to estimate the
variability of the price process over a longer period,

I The web appendix for this paper is available at http://www.
forecasters.org/ijf/.
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commonly one day. Older studies in this “realised
volatility” literature, such as French, Schwert, and
Stambaugh (1987), Merton (1980), and Zhou (1996),
recognised the benefits from such an approach in
increased accuracy, and recent work1 has built on
this to propose estimators that are more efficient,
are robust to market microstructure effects, and can
estimate the variation due to the continuous part of

1 See Andersen and Bollerslev (1998), Andersen, Bollerslev,
Diebold, and Labys (2001a, 2003), Aı̈t-Sahalia, Mykland, and
Zhang (2005), Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2008, in press), Barndorff-Nielsen and Shephard (2002, 2004,
2006), Christensen and Podolskij (2007), Bandi and Russell (2006,
2008), Christensen, Oomen, and Podolskij (2008), Hansen and
Lunde (2006a), Large (2005), Oomen (2006) and Zhang, Mykland,
and Aı̈t-Sahalia (2005) amongst others.

ters. Published by Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/ijforecast
http://www.forecasters.org/ijf/
http://www.forecasters.org/ijf/
http://www.forecasters.org/ijf/
http://www.forecasters.org/ijf/
http://www.forecasters.org/ijf/
mailto:andrew.patton@economics.ox.ac.uk
mailto:kevin.sheppard@economics.ox.ac.uk
http://dx.doi.org/10.1016/j.ijforecast.2009.01.011


A.J. Patton, K. Sheppard / International Journal of Forecasting 25 (2009) 218–238 219
the price process separately from the variation due to
the “jump” part of the price process. See Andersen,
Bollerslev, Christoffersen, and Diebold (2006) and
Barndorff-Nielsen and Shephard (2007) for recent
reviews of this rapidly-evolving body of literature.

This paper seeks to answer the following simple
question: do combinations of the above estimators
offer gains in average accuracy relative to individual
estimators? It has long been known in the forecasting
literature that combinations of individual forecasts
often out-perform even the best individual forecast,
see Becker and Clements (2008), Bates and Granger
(1969), Newbold and Granger (1974), and Stock and
Watson (2004), for example, and see Clemen (1989)
and Timmermann (2006) for reviews of this field.2

Timmermann (2006) summarises three explanations
for why combination forecasts work well in practice:
they combine the information contained in each
individual forecast; they average across differences in
the way individual forecasts are affected by structural
breaks; and they are less sensitive to possible mis-
specification of individual forecasting models (see
also Clements & Hendry, 1998, on forecast model
mis-specification). Each of these three points applies
equally to the problem of estimating price variability:
individual realised measures use different pieces of
information from high frequency data, they may be
differently affected by structural breaks (caused by,
for example, changes in the market microstructure),
and they may be affected by mis-specification to
various degrees. Thus, there is reason to believe
that a combination realised measure may out-perform
individual realised measures.

The theoretical contribution of this paper is to pro-
pose methods for constructing optimal combinations
of realised measures, where optimality is formally
defined below. The construction of combination es-
timators for asset price variability (measured by its
quadratic variation, QV) differs in an important way
from the usual forecast combination problem: the task
is complicated by the fact that QV is not observed,
even ex post. This means that measuring the accuracy
of a given estimator of QV, or constructing a combina-
tion estimator that is as accurate as possible, has to be

2 See Halperin (1961) and Reid (1968) for interesting early work
on combining different estimates of a mean, and different noisy
estimates of GDP, as opposed to combining forecasts.
done using proxies (or, in our case, instruments) for
the true latent QV. Our theoretical work extends the
data-based method for estimating the relative accuracy
of realised measures suggested by Patton (2008) to al-
low the estimation of optimal combination weights,
or optimal combination functional forms more gen-
erally. Our methods use the time series aspect of the
data (i.e., they are “large T ”), which enables us to
avoid making strong assumptions about the underly-
ing price process, but at the cost of having to employ
some assumptions (such as standard mixing and mo-
ment conditions) to ensure that a central limit theorem
can be invoked.

The main contribution of this paper is to apply
our combination methods to a collection of 32
different realised measures, across 8 distinct classes
of estimators, estimated using high frequency data
on IBM over the period 1996–2008. We present
results on the ranking of the individual estimators
and “simple” combination estimators such as the
arithmetic mean, the geometric mean and the median,
both over the full sample period and over three sub-
samples (1996–1999, 2000–2003, 2004–2008), using
two distance measures, the mean squared error (MSE)
and the QLIKE distance measure described below.
We use the step-wise hypothesis testing method of
Romano and Wolf (2005) to find the estimators
that are significantly better (and significantly worse)
than simple daily squared returns, the standard
5-min realised volatility estimator, or a simple equally-
weighted average of all estimators. We also use the
“model confidence set” (MCS) of Hansen, Lunde,
and Nason (2005) to find the set of estimators that
are not significantly different from the best estimator.
Using the Romano–Wolf test, we find that only 2 of
the 32 different realised measures significantly out-
perform the simple average in the full sample, under
QLIKE, but none significantly out-perform it under
MSE. Many individual realised measures significantly
under-perform the simple average estimator.

We also estimate optimal combination estimators,
under both MSE and QLIKE, and examine which
individual realised measures enter significantly into
the optimal combination forecast, or enter with non-
zero weight into an optimal constrained forecast.
We find that weight is given to a variety of
realised measures, including both simple and more
sophisticated estimators. Importantly, we find that no
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individual estimator encompasses the information in
all other estimators, providing further support for the
use of combination realised measures. Finally, we
conduct an out-of-sample forecasting experiment to
examine whether the gains in estimation accuracy
carry over to gains in volatility forecast performance.
Using the simple HAR model of Corsi (2004) to obtain
one-step-ahead forecasts, we find that, unsurprisingly,
better estimation accuracy generally leads to better
forecast accuracy, although the rankings are not
identical. We also find that a single forecast based
on a combination estimator significantly out-performs
a combination forecast based on many individual
estimators.

2. Combining realised measures

2.1. Notation

The latent target variable, generally the quadratic
variation (QV) or integrated variance (IV) of an as-
set price process, is denoted θt . We assume that θt is
a Ft -measurable scalar, where Ft is the information
set generated by the complete path of the log-price
process. The estimators (“realised measures” or “re-
alised volatility estimators”) of θt are denoted X i,t ,
i = 1, 2, . . . , n. In addition to being estimators with
different functional forms, these may include the same
type of estimator applied to data sampled at different
frequencies (e.g., standard RV estimated on 1-min or
5-min data). Let g (Xt ,w) denote a parametric combi-
nation estimator, where w is a finite-dimensional vec-
tor of parameters to be estimated from the data.

Defining an “optimal” combination estimator
requires a measure of accuracy for a given estimator.
Two popular measures in the volatility literature are
the MSE and QLIKE measures:

MSE L (θ, X) = (θ − X)2 (1)

QLIKE L (θ, X) =
θ

X
− log

(
θ

X

)
− 1. (2)

The QLIKE distance measure is a simple modification
of the familiar Gaussian log-likelihood, with the
modification being such that the minimum distance
of zero is obtained when X = θ . Our result below
will be shown to hold for a more general class
of distance measures, namely the class of “robust”
pseudo-distance measures proposed by Patton (2006):
L (θ, X) = C̃ (X)− C̃ (θ)+ C (X) (θ − X) , (3)

with C being some function that is decreasing and
twice-differentiable on the supports of both θ and
X , and where C̃ is the anti derivative of C . In this
class, each pseudo-distance measure L is completely
determined by the choice of C , and MSE and QLIKE
are obtained (up to location and scale constants) when
C (z) = −z and C (z) = 1/z respectively. Finally, it is
convenient to introduce the following quantities:

L∗ (w) ≡ E [L (θt , g (Xt ,w))] (4)

L̃∗ (w) ≡ E [L (Yt , g (Xt ,w))] (5)

L̄T (w) ≡
1
T

T∑
t=1

L (Yt , g (Xt ,w)) , (6)

where the dependence of L̄T , L̃∗ and L∗ on the
function g is suppressed for simplicity. Yt is an
observable proxy for the latent θt , and is further
discussed in the following section.

2.2. Estimating optimal combinations of realised
measures

In this section we provide the theory underlying
the estimation of optimal combination estimators,
building on the work of Patton (2008), who considered
rankings of realised measures. The ranking method
of Patton (2008) provides a means of consistently
estimating the difference in average accuracy of
two competing estimators. This method is based
on an instrumental variables-type approach, which
overcomes both the latent nature of the target variable
(θt ), and problems arising from correlations between
the errors in the competing estimators (X i t ) and the

proxy
(
θ̃t

)
for the latent target variable. We will

denote a generic combination estimator as g (Xt ,w).
A concrete example of a combination estimator is the
linear combination:

gL (Xt ,w) = ω0 +

n∑
i=1

ωi X i t . (7)

In volatility applications, multiplicative forecast
combinations may also be used:

gM (Xt ,w) = ω0 ×

n∏
i=1

Xωi
i t . (8)
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We will define the optimal combination parameter, w∗,
the feasible optimal combination parameter, w̃∗, and
the estimated combination parameter, ŵ∗T , as follows:

w∗ ≡ arg min
w∈W

L∗ (w) ,

w̃∗ ≡ arg min
w∈W

L̃∗ (w) ,

ŵ∗T ≡ arg min
w∈W

L̄T (w) , (9)

where W is the parameter space and L∗, L̃∗, and L̄T
are defined in Eqs. (4) to (6).

The difficulty in estimating optimal combinations
of realised measures lies in the fact that quadratic
variation is not observable, even ex post. Thus,
measuring the accuracy of a given estimator, or
constructing a combination estimator that is as
accurate as possible, is not straightforward. This
is related to the problem of volatility forecast
evaluation and comparison, where the target variable
is also unobservable. Andersen and Bollerslev (1998),
Andersen, Bollerslev, and Meddahi (2005), Hansen
and Lunde (2006b), Meddahi (2001), Patton (2006),
and Patton and Sheppard (in press) discuss this
problem in the context of volatility forecasting.
Unfortunately, the methods developed for volatility
forecasting are not directly applicable to the problem
of evaluating realised measure accuracy, or the
construction of combinations of realised measures,
due to a difference in the information set that is used:
in volatility forecasting applications, the estimate
of θt will be based on Ft−1, while in volatility
estimation applications, the estimate of θt will be
based on Ft . As discussed by Patton (2008), this subtle
change in information sets forces a substantial change
in methods for comparing and combining realised
measures. Ignoring this change leads to combination
estimators that are biased and inconsistent. These
problems arise because the error in the proxy for
θt is correlated with the error in the estimator, a
problem that does not arise in volatility forecasting
applications, under basic assumptions.

Following Patton (2008), we will consider the case
where an unbiased proxy for θt is known to be
available. An example of this is the daily squared
returns, which can plausibly be assumed to be free
from microstructure and other biases, and so is an
unbiased, albeit noisy, estimator of QV.
Assumption P1. θ̃t = θt + νt , with E
[
νt |Ft−1, θt

]
= 0.

Next, we need an assumption about the dynamics
of the target variable θt . Patton (2008) considers two
assumptions here, either that θt follows a (possibly
heteroskedastic) random walk, or that θt follows a
stationary AR(p) process.3 For the high frequency
IBM data studied below, Patton (2008) found that the
random walk approximation was satisfactory, and so
for simplicity we will focus on that case; the extension
to the AR(p) approximation is straightforward.

Assumption T1. θt = θt−1 + ηt , with E
[
ηt |Ft−1

]
= 0.

In order to overcome the problem of correlated
measurement errors in θ̃t and X i t , Patton (2008)
suggests using a lead, or combination of leads, of
θ̃t in the estimation of the optimal combination
weights. Denoting this as Yt , we make the following
assumption:

Assumption P2. Yt =
∑J

j=1 λ j θ̃t+ j , where 1 ≤ J

<∞, λ j ≥ 0 ∀ j and
∑J

j=1 λ j = 1.

In practice, there is a trade-off to be made in choos-
ing J and λ j . If the random walk Assumption (T1)
was literally true, then the optimal choice would be
to make the value of J large and use exponentially-
declining weights, see Muth (1960). If the random
walk assumption is merely an approximation, then us-
ing fewer lags is likely to lead to a better approxima-
tion than using longer lags, at the cost of a noisier
instrument. A simple and conservative choice for Yt ,
and the one we adopt in our empirical work below, is
to set Yt = θ̃t+1.

To obtain the asymptotic distribution of the
estimated optimal combination weights, we require
assumptions sufficient for a central limit theorem to
hold. Several different sets of assumptions may be
employed here; we use the high-level assumptions of
Gallant and White (1988), and refer the interested
reader there for more primitive assumptions that

3 The need for an assumption about the dynamics of the target
variable comes from the use of a lead of the proxy, θ̃t , see
Assumption P2, and the non-linear nature of the quantity being
estimated, namely the difference in average distance to the target
variable.
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may be used for non-linear, dynamic m-estimation
problems such as ours. See also Davidson and
MacKinnon (1993) for a concise and very readable
overview of asymptotic normality for m-estimators.

Assumption A1(a). L̄T (w) − L̃∗ (w)
p
→ 0 uniformly

on W .

Assumption A1(b). L̃∗ (w) has a unique minimiser
w̃∗.

Assumption A1(c). g is twice continuously differen-
tiable with respect to w.

Assumption A1(d). Let AT (w) ≡ ∇ww L̄T (w), then

AT (w) − A (w)
p
→ 0 uniformly on W , where A (w)

is a finite positive definite matrix of constants for all
w ∈ W .

Assumption A1(e). T−1/2
T∑

t=1
∇wL (Yt , g (Xt ,w))

D
→ N (0, B (w)), where B (w) is finite and positive
definite for all w ∈W .

With the above assumptions in hand, we now
present our main theoretical result.

Proposition 1. If the distance measure L is a member
of the class in Eq. (3), and if w̃∗ is interior to W , then
under Assumptions P1, P2, T1 and A1, we have:

V̂−1/2
T

√
T
(
ŵ∗T − w∗

) D
→ N (0, I )

where V̂T ≡ Â−1
T B̂T Â−1

T ,

ÂT ≡
1
T

T∑
t=1

∇wwL
(
Yt , g

(
Xt , ŵ∗T

))
,

BT ≡ V

[
1
√

T

T∑
t=1

∇wL
(
Yt , g

(
Xt , ŵ∗T

))]
and B̂T is some symmetric and positive definite

estimator of BT such that B̂T − BT
p
→ 0.

Proof. We first show that w∗ = w̃∗. This part
of the proof is a corollary to Proposition 2(a) of
Patton (2008). Consider a second-order mean-value
expansion of L (Yt , g (Xt ,w)) around θt :

L (Yt , g (Xt ,w)) = L (θt , g (Xt ,w))

+
∂L (θt , g (Xt ,w))

∂θ
(Yt − θt )
+
1
2

∂2L
(
θ̈t , g (Xt ,w)

)
∂θ2 (Yt − θt )

2

where θ̈t = δt Yt + (1− δt ) θt for some δt ∈ [0, 1].
Under Assumptions P1, P2 and T1, Patton (2008)
shows that the second term in this expansion has mean
zero, and so we obtain:

E [L (Yt , g (Xt ,w))] = E [L (θt , g (Xt ,w))]

+
1
2

E

[
∂2L

(
θ̈t , g (Xt ,w)

)
∂θ2 (Yt − θt )

2

]
.

Distance measures in the class in Eq. (3) yield
∂2L (θ, X) /∂θ2

= −C ′ (θ), and so

E [L (Yt , g (Xt ,w))] = E [L (θt , g (Xt ,w))]

−
1
2

E
[
C ′
(
θ̈t
)
(Yt − θt )

2
]
.

Notice that the second term above does not depend
on w, and thus the parameter that minimises
E [L (Yt , g (Xt ,w))] is the same as that which
minimises E [L (θt , g (Xt ,w))]. Thus w̃∗ = w∗.

Next we obtain the asymptotic distribution of ŵ∗T .
This part of the proof uses standard results from
m-estimation theory; see Gallant and White (1988),
for example. Under Assumption A1(a) and A1(b),
Theorem 3.3 of Gallant and White (1988) yields ŵ∗T −

w̃∗
p
→ 0. Combining this with the fact that w̃∗ = w∗

yields consistency of ŵ∗T for the parameter of interest:

ŵ∗T − w∗
p
→ 0. Under Assumption A1, Theorem 5.1

of Gallant and White (1988) yields the asymptotic
normality of ŵ∗T , centered around w̃∗. Combining
this with w̃∗ = w∗ from above yields the desired
result. �

The above proposition shows that it is possible
to consistently estimate the optimal combination
weights from the data, by employing a “robust”
loss function of the form in Eq. (3), and using a
lead (or a combination of leads) of a conditionally
unbiased proxy for θt . This proposition further shows
how to compute standard errors on these estimated
optimal weights. The use of a proxy, Yt , for the
true quadratic variation, θt , means that these standard
errors will generally be larger than those that would
be obtained if θt was observable; nevertheless, these
standard errors can be estimated using the expressions
above.
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Fig. 1. This figure plots IBM price and volatility over the period January 1996 to July 2008. The price is adjusted for stock splits, and the
volatility is computed using realised volatility based on 5-min calendar-time trade prices, annualised using the formula σt =

√
252× RVt .
3. Application to estimating stock return volatility

3.1. Data description

In this section we consider the problem of
estimating the quadratic variation of the open-to-
close (9:45am to 4pm) continuously-compounded
return on IBM, using a variety of different estimators
and sampling frequencies. We use data on NYSE
trade prices from the TAQ database over the period
from January 1996 to July 2008, yielding a total
of 3168 daily observations.4 Fig. 1 reveals that the

4 We use trade prices from the NYSE only, between 9:45am and
4:00pm, with a g127 code of 0 or 40, a corr code of 0 or 1, positive
size, and cond not equal to “O”, “Z”, “B”, “T”, “L”, “G”, “W”,
“J”, or “K”. Further, the data were cleaned for outliers and related
problems (e.g. prices of zero were dropped). The average proportion
of observations lost each day by such cleaning was 0.28%, i.e., just
over one quarter of one percent. Further, if more than one price was
sample includes periods of rising prices and moderate-
to-high volatility (roughly 1996–1999), of slightly
falling prices and relatively high volatility (roughly
2000–2003), and of mostly stable prices and relatively
low volatility (2004–2008). In addition to considering
the full sample estimates of optimal combination
estimators, we will consider the results for each of
these three sub-samples.

3.2. Description of the individual estimators

The motivation for our study of realised measures
is that the various forms of realised measures that
have been proposed in the literature to date, and the
different pieces of information captured by each, may

observed with the same time stamp then we used the median of these
prices. See Barndorff-Nielsen et al. (in press) for a discussion of
cleaning high frequency data.
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allow for the construction of combination estimators
that out-perform any given individual estimator. With
this in mind, we consider a large collection of different
realised measures. We follow the implementation
of the authors of the original paper as closely as
possible (and in most cases, exactly). We omit detailed
definitions and descriptions of each estimator in the
interests of space, and instead refer the interested
reader to the original papers.

We firstly consider the standard realised variance,
defined as:

RV (m)
t =

m∑
j=1

r2
t, j (10)

where m is the number of intra-daily returns used, and
rt, j is the j th return on day t . The number of intra-
daily returns used can vary between 22,500 (if we
sample prices every second between 9:45am and 4pm)
and 1 (if we sample just the open and close prices).
To keep the number of estimators tractable, and with
the high degree of correlation between RV estimators
with similar sampling frequencies in mind, we select
six sampling frequencies: 1 s, 5 s, 1 min, 5 min,
62.5 min (which we will abbreviate as “1 h”), and 1
trade day (375 min). The first set of RV estimators is
based on prices sampled in “calendar time” using last-
price interpolation, meaning that we construct a grid
of times between 9:45am and 4pm with the specified
number of minutes between each point, and use the
most recent price as the one for a given grid point.

Next we consider RV estimators computed using
the same formula, but with prices sampled in “tick
time” (also known as “business time” or “trade time”).
In this sampling scheme, a price series for each day
is constructed by skipping every x trades: this leads
to prices that are evenly spaced in “event time”, but
generally not in calendar time. If the trade arrival rate
is correlated with the level of volatility, then tick-time
sampling produces high-frequency returns which are
approximately homoskedastic. Theory suggests that
this should improve the accuracy of RV estimation,
see Hansen and Lunde (2006a) and Oomen (2006).
We consider average sampling frequencies in tick-time
that correspond to those used in calendar time: 1 s, 5 s,
1 min, 5 min, 62.5 min and 375 min. The highest and
lowest of these frequencies lead to estimators that are
numerically identical to calendar-time RV, and so we
drop these from the analysis.
We then draw on the work of Bandi and Russell
(2006, 2008), who provide a method of estimating the
optimal (calendar-time) sampling frequency, for each
day, for realised variance in the presence of market
microstructure noise. This formula relies on estimates
of the variance and kurtosis of the microstructure
noise, as well as preliminary estimates of the inte-
grated variance (IV) and integrated quarticity (IQ) of
the price process. We follow Bandi and Russell (2008),
who also study IBM stock returns, and estimate
the moments of the microstructure noise using 1s
returns, and use 15-min returns to obtain preliminary
estimates of the IV and IQ. Bandi and Russell
(2008) also propose a bias-corrected realised variance
estimator, which removes the estimated impact of
the microstructure noise; we consider the Bandi-
Russell RV estimator both with

(
RVBR,bc

)
and without(

RVBR
)

this bias correction.
Our second class of realised volatility estimators is

the first-order autocorrelation-adjusted RV estimator
(RVAC1) presented by French et al. (1987) and Zhou
(1996), and studied by Bandi and Russell (2008)
and Hansen and Lunde (2006a), amongst others. We
implement this estimator on 1-min and 5-min prices
sampled in calendar time.

Our third class of estimators includes the two-scale
estimator (TSRV) of Zhang et al. (2005) and the multi-
scale estimator (MSRV) of Zhang (2006). As their
names suggest, these estimators use realised variances
computed using more than one sampling frequency,
which is shown, under certain conditions, to lead to
consistency of the estimator in the presence of noise,
and to efficiency gains. Following the theoretical
suggestions in those papers, we implement these
estimators at the highest possible frequency (1 tick),
and for comparison we also implement them on one-
minute tick-time prices.

The fourth set of estimators are the “realised
kernels” (RK) of Barndorff-Nielsen et al. (2008),
BNHLS henceforth. This is a broad class of
estimators, which nests the RVAC1 estimator, and we
consider several variations. Firstly, we consider RK
with the Bartlett kernel, as this estimator was shown
by BNHLS to be asymptotically equivalent to TSRV.
Second, we consider RK with the “cubic” kernel,
which was shown to be asymptotically equivalent to
MSRV. For both RKbart and RKcubic we consider
both 1-tick sampling and 1-min tick-time sampling,
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and in all cases we use the optimal bandwidth for
a given kernel, as provided by Barndorff-Nielsen
et al. (2008).5 Next we consider the “modified Tukey-
Hanning2” (TH2) kernel, following their empirical
application to General Electric stock returns. They
suggest using 1-min tick-time sampling, which we
implement here, and we also implement 1-tick
sampling for comparison. Finally, we consider the
“non-flat-top Parzen” kernel of Barndorff-Nielsen
et al. (in press), which is designed to guarantee non-
negativity of the estimator (which is not ensured
for the other RK estimators considered above). We
implement this with their optimal bandwidth formula,
and, following their application to Alcoa stock returns,
use 1-min tick-time sampling, as well as 1-tick
sampling for comparison.

Our fifth type of realised measure is the “realised
range-based variance” (R RV ) of Christensen and
Podolskij (2007) and Martens and van Dijk (2007). We
follow Christensen and Podolskij’s implementation
of this estimator and use 5-min blocks. Rather than
estimate the number of prices to use within each block
from the number of non-zero return changes, as was
done by Christensen and Podolskij (2007), we simply
use 1-min prices within each block, giving us 5 prices
per block, compared with around 7 in their application
to General Motors stock returns. We implement RRV
using tick-time sampling.

The next three types of estimators we consider
estimate the part of the quadratic variation that is
due to the continuous semimartingale, that is, the
integrated variance, IV. The previous five types of
estimators all estimate QV, which differs from IV in
the presence of jumps. If jumps are unpredictable (or
less predictable than IV), as was found by Andersen,
Bollerslev, and Diebold (2007), then there may be
benefits in using estimators that focus on IV rather
than QV in forecasting applications.

The sixth set of realised measures is the “bi-power
variation” (BPV) of Barndorff-Nielsen and Shephard
(2006). These authors implemented their estimator
using 5-min calendar-time returns; however, this was
presumably partially dictated by their data (indicative
quotes for the US dollar/German Deutsche mark and

5 These optimal bandwidths, like the RVBR sampling frequencies,
are estimated for each day in the sample, and so can change with
market conditions, the level of market microstructure noise, etc.
US dollar/Japanese yen exchange rates), for which this
was the highest frequency. We thus implement BPV at
both the 5-min and 1-min frequencies, using calendar-
time sampling.

Our seventh class of realised measures is the
“quantile-based realised variance” (QRV) of Chris-
tensen et al. (2008). For implementation, we follow
Christensen et al.’s application to Apple stock returns,
and use quantiles of 0.85, 0.90 and 0.96, and prices
sampled every 1 min, using tick-time sampling, with
the number of subintervals (“n” in their notation) set
to one.

Our eighth and final class of realised measures is
the MedRV and MinRV estimators of Andersen, Do-
brev, and Schaumburg (2008), which were designed to
overcome some of the practical difficulties suffered by
BPV, and also to provide some robustness to market
microstructure noise. Following the empirical results
presented by Andersen et al. (2008), we implement
these estimators using 1-min tick-time sampling.

In total, we have 32 different realised measures,
from 8 different classes of estimators, with a variety
of sampling frequencies and sampling schemes. To the
best of our knowledge, this is the largest collection
of realised measures considered in a single empirical
study to date.

Table 1 presents some summary statistics for these
32 estimators. RVBR,bc has the smallest average value,
1.425, and RV1 s has the largest average, 3.158. More
familiar estimators, such as RV1 day and RV5 min, have
average values of around 2.4, corresponding to 24.6%
annualised standard deviation. Whilst RV1day has a
reasonable average value, it performs poorly on the
other summary statistics: it has the highest standard
deviation, skewness, and kurtosis of all 32 estimators.
RVBR,bc is the estimator with the lowest standard
deviation, while QRV has the lowest skewness and
kurtosis. RV1day and RVBR,bc are the only estimators
which generate estimates of QV that are not strictly
positive: RV1day’s minimum value is zero, which it
attains on 32 days (around 1% of the sample), while
RVBR,bc’s minimum value is −8.10, and it is non-
positive on 68 days (around 2.1% of the sample).
The bias-correction term in this estimator is clearly
too large on these days, causing the estimator to
go below zero. None of the other estimators have
a minimum value that is non-positive (including the
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Table 1
Summary statistics of the realised measures.

Standard mean Deviation Skewness Kurtosis Minimum

RV1 s 3.158 3.005 2.940 22.270 0.168
RV5 s 3.023 2.853 2.998 23.977 0.157
RV1 min 2.438 2.387 3.647 34.193 0.116
RV5 min 2.366 2.901 6.863 113.221 0.098
RV1h 2.307 3.699 7.315 111.988 0.018
RV1day 2.403 6.228 10.638 193.816 0.000
RVtick,5 s 3.147 3.010 2.940 22.220 0.169
RVtick,1 min 2.427 2.425 4.019 42.059 0.107
RVtick,5 min 2.383 2.912 7.060 118.930 0.072
RVtick,1h 2.346 3.813 7.588 110.325 0.014
RVBR 2.345 2.511 3.711 31.423 0.079
RVBR,bc 1.425 1.573 5.942 100.202 −8.103
RVAC1,1 min 2.440 2.392 3.592 32.743 0.117
RVAC1,5 min 2.363 2.896 6.702 107.095 0.098
TSRVtick 2.177 2.202 3.994 39.384 0.081
TSRVtick,1 min 2.398 2.947 7.501 141.857 0.084
MSRVtick 2.181 2.287 5.572 85.553 0.081
MSRVtick,1 min 2.441 2.972 7.771 152.748 0.112
RKbart 2.362 2.747 7.618 153.602 0.104
RKbart,1 min 2.362 2.963 7.103 121.566 0.073
RKcubic 2.409 2.910 7.473 143.174 0.119
RKcubic,1 min 2.258 2.950 6.751 100.064 0.061
RKT H2 2.381 2.784 7.761 158.827 0.109
RKT H2,1 min 2.332 2.970 7.000 113.749 0.062
RKNFP 2.361 2.932 7.214 126.027 0.094
RKNFP,1 min 2.257 2.931 6.424 87.273 0.052
RRV 2.310 2.537 4.647 52.061 0.123
BPV1 min 2.105 2.075 2.632 12.867 0.077
BPV5 min 2.202 2.563 3.945 29.413 0.099
QRV 2.441 2.273 2.430 11.563 0.104
MedRV 2.260 2.157 2.600 13.216 0.109
MinRV 2.226 2.156 2.583 12.697 0.120

Notes: This table presents basic summary statistics on the 32 different realised measures considered in this paper.
TSRV, MSRV and RK estimators, which do not ensure
non-negativity of the estimates).6

Table 2 presents a subset of the correlation
matrix of these estimators. We present the corre-
lation of each estimator with two standard estima-
tors in the literature (RV5 min and RV1day), a naı̈ve
choice given high frequency data (RV1 s), an early

6 Before ranking and averaging the estimators in the following
section, we put them through a simple “insanity filter”: if an
estimator had a value less than 0.001 on a given day, that value was
replaced with the value of the estimator on the previous day. As
Table 1 reveals, this insanity filter was only needed for RV1day and
RVBR,bc . This filter is required for the use of the QLIKE distance
measure, which assumes that the estimators are all strictly positive.
modification of the standard RV (RVAC1,1 min), and
two recently-proposed estimators (RKT H2,1 min and
QRV). This table shows that these estimators are
generally highly correlated, which is to be expected,
since they are all influenced by the long-run com-
ponent of IBM volatility. The average correlation
across all elements of their correlation matrix is
0.879. This should be kept in mind when inter-
preting the estimated optimal combination weights
in Section 3.4. The highest correlation between
any two estimators is between RV1 s and RVtick,5 s,
which is 0.9998. The lowest correlation between
any two estimators is between RV1day and RVBR,bc,
at 0.314.
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Table 2
Correlation between the realised measures.

RV1 s RV5 min RV1day RVAC1,1 min RKT H2,1 min QRV

RV1 s 1 0.855 0.431 0.939 0.839 0.906
RV5 s 0.999 0.869 0.441 0.950 0.853 0.915
RV1 min 0.938 0.948 0.517 0.997 0.939 0.956
RV5 min 0.855 1 0.570 0.947 0.985 0.872
RV1h 0.643 0.788 0.728 0.743 0.804 0.712
RV1day 0.431 0.570 1 0.514 0.593 0.483
RVtick,5 s 1.000 0.855 0.431 0.938 0.838 0.905
RVtick,1 min 0.935 0.951 0.522 0.993 0.943 0.947
RVtick,5 min 0.852 0.979 0.583 0.944 0.988 0.875
RVtick,1h 0.653 0.802 0.697 0.751 0.815 0.711
RVBR 0.902 0.951 0.522 0.978 0.951 0.936
RVBR,bc 0.794 0.734 0.314 0.820 0.711 0.744
RVAC1,1 min 0.939 0.947 0.514 1 0.939 0.955
RVAC1,5 min 0.854 0.997 0.576 0.948 0.986 0.874
TSRVtick 0.913 0.938 0.507 0.983 0.931 0.935
TSRVtick,1 min 0.866 0.979 0.559 0.958 0.982 0.881
MSRVtick 0.904 0.952 0.519 0.980 0.945 0.913
MSRVtick,1 min 0.859 0.979 0.570 0.957 0.984 0.877
RKbart 0.877 0.974 0.546 0.968 0.973 0.888
RKbart,1 min 0.849 0.986 0.580 0.947 0.998 0.874
RKcubic 0.862 0.980 0.564 0.958 0.985 0.879
RKcubic,1 min 0.818 0.976 0.604 0.921 0.993 0.854
RKT H2 0.874 0.975 0.550 0.967 0.974 0.885
RKT H2,1 min 0.839 0.985 0.593 0.939 1 0.867
RKNFP 0.854 0.986 0.582 0.951 0.997 0.876
RKNFP,1 min 0.819 0.973 0.613 0.921 0.990 0.859
RRV 0.902 0.984 0.550 0.982 0.974 0.933
BPV1 min 0.912 0.878 0.478 0.960 0.871 0.974
BPV5 min 0.848 0.952 0.533 0.932 0.935 0.914
QRV 0.906 0.872 0.483 0.955 0.867 1
MedRV 0.919 0.882 0.487 0.961 0.874 0.980
MinRV 0.917 0.873 0.478 0.954 0.864 0.973

Notes: This table presents a sub-set of the correlation matrix of the 32 different realised measures considered in this paper. The estimators in
the columns correspond to standard choices in the extant literature (RV1day and RV5 min), a naı̈ve choice given high frequency data (RV1 s),
and three other estimators from our empirical analysis (RVAC1,1 min, RKT H2,1 min and QRV).
3.3. Results using simple combination estimators

In Table 3 we present the first set of empirical
results of the paper. These tables present the estimated
accuracy of each of the estimators using the ranking
methodology of Patton (2008). We use the QLIKE
distance measure for the analysis below, and report
corresponding results using the MSE distance measure
in a web appendix to this paper.7 We use the
random walk approximation (Assumption T1), with a

7 The main conclusions of this paper hold under both the MSE
and QLIKE distance measures. The results under MSE are less
one-period lead of the RV5 min as the instrument for
the latent quadratic variation to obtain these estimates.

The ranking method of Patton (2008) can only
estimate the accuracy of an estimator relative to some
other estimator, and in Table 3 we use RV5 min as the
base estimator; this choice is purely a normalisation
and has no effect on the conclusions. Negative values
in the first columns of Table 3 indicate that a given

precise, however, due to the heteroskedastic nature of volatility
estimation. This leads to lower power in tests using this distance
measure, see Patton (2006) and Patton and Sheppard (in press), for
example.
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Table 3
Performance of the realised measures.

Avg ∆QLIKE Rank In MCS?
Full Full 96–99 00–03 04–08 Full 96–99 00–03 04–08

RV1 s
−0.013 14 6 28 21 – – – –

RV5 s
−0.021 7 5 25 11 – 3 – –

RV1 min
−0.040 2 3 3 1 3 3 3 3

RV5 min 0 23 13 23 25 – – – –
RV1h 0.596 33 33 34 33 – – – –
RV1day 29.191 35 35 35 35 – – – –
RVtick,5 s

−0.014 13 7 29 17 – – – –
RVtick,1 min

−0.039 3 1 1 5 3 3 3 –
RVtick,5 min

−0.010 16 10 21 24 – – – –
RVtick,1h 0.526 32 32 33 34 – – – –
RVBR

−0.004 18 21 19 14 – – – –
RVBR,bc 1.126 34 34 32 32 – – – –
RVAC1,1 min

−0.040 1 2 2 2 3 3 3 3

RVAC1,5 min 0.001 25 14 22 27 – – – –
TSRVtick

−0.001 22 27 15 20 – – – –
TSRVtick,1 min

−0.004 19 20 16 22 – – – –
MSRVtick

−0.003 21 26 17 19 – – – –
MSRVtick,1 min

−0.005 17 25 14 12 – – – –
RKbart

−0.015 11 17 10 7 – – – –
RKbart,1 min 0.006 26 18 24 26 – – – –
RKcubic

−0.004 20 24 18 13 – – – –
RKcubic,1 min 0.051 31 29 30 31 – – – –
RKT H2

−0.014 12 16 11 9 – – – –
RKT H2,1 min 0.015 27 22 26 28 – – – –
RKNFP 0.001 24 23 20 23 – – – –
RKNFP,1 min 0.044 30 28 31 30 – – – –
RRV −0.016 9 15 8 16 – – – –
BPV1 min 0.029 28 31 12 8 – – – –
BPV5 min 0.040 29 30 27 29 – – – –
QRV −0.035 4 4 5 4 – 3 3 –
MedRV −0.024 6 9 6 10 – – – –
MinRV −0.010 15 19 9 15 – – – –

RVMean
−0.030 5 8 4 3 – – 3 –

RVGeo-mean
−0.015 10 12 13 18 – – – –

RVMedian
−0.020 8 11 7 6 – – – –

Notes: The first column of this table presents the average difference in QLIKE distance of each realised measure, relative to RV5 min, with
negative (positive) values indicating that the estimator was on average closer to (further from) the target variable than RV5 min. Columns 2–5
present the rank of each estimator using the QLIKE distance, for the full sample period and for three sub-samples, 1996–1999, 2000–2003 and
2004–2008. The most accurate estimator is ranked 1, and the least accurate estimator is ranked 35. Columns 6–9 present an indicator of whether
the estimator was in the “model confidence set” at the 90% confidence level (equal to 3 if in, – if not) in the full sample and each of the three
sub-samples.
estimator has a lower average distance to the latent
QV (i.e., greater accuracy) than RV5 min, while positive
values indicate a higher average distance than RV5 min.

We consider the 32 individual realised measures
discussed in the previous section, as well as three
simple combination estimators: the equally-weighted
arithmetic mean, the equally-weighted geometric
mean, and the median, leading to a total of 35
estimators. The most accurate estimator of QV is the
simple RVAC1,1 min, which is ranked in the top 2 in
all three sub-periods. The top 5 estimators in the
full sample are RVAC1,1 min (top), RV1 min (second),
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RVtick,1 min (third), Q RV (fourth) and RVMean (fifth).
It is interesting that two of the top five estimators are
simple RV applied to one-minute returns (in tick-time
and calendar-time). Also noteworthy is the fact that
simple combination estimators perform well: under
QLIKE, the simple mean and median estimators are
both in the top ten, with the mean being ranked
fifth on the full sample. (Under the MSE the simple
combination estimators are all ranked around 10th,
with the best being the geometric mean, see Table 3A
in the web appendix.)

The discussion of rankings of average accuracy is
a useful initial look at the results, but a more formal
analysis is desirable. We use two approaches. The
first is the “model confidence set” (MCS) of Hansen
et al. (2005), which was developed to obtain a set
of forecasting models that contains the true “best”
model out of the entire set of forecasting models
with some specified level of confidence. It allows the
researcher to identify the sub-set of models that are
“not significantly different” from the unknown true
best model. Patton (2008) shows that this methodology
may be adapted to the problem of identifying the most
accurate realised measures, under the assumptions
discussed in Section 2. The last four columns of
Table 3 show the results of the MCS procedure on
the full sample and on three sub-samples.8 Under
QLIKE, the full-sample MCS, at the 90% confidence
level, contains just 3 estimators: RV1 min, RVtick,1 min

and RVAC1,1 min, and does not include either more
sophisticated estimators or the simple combination
estimators.9, 10

The second formal analysis of the individual
estimators and simple combination estimators uses

8 The MCS is implemented via a bootstrap re-sampling scheme.
We use Politis and Romano’s (1994) stationary bootstrap with an
average block length of 10 days and 1000 bootstrap replications for
each test.

9 Under the MSE distance, the MCS contains 11 estimators:
RV1 min, RVtick,1 min, RVAC1,1 min, TSRV1tick , MSRV1tick ,
RKbart , BPV1 min, QRV, MedRV, MinRV, and RVGeo-mean. The
difference in the number of estimators in the MCS under these
two distance measures reflects the power to distinguish between
competing estimators.
10 As noted by a referee, the MCS could be used to form an optimal

“trimmed” combination estimator, where only those estimators that
are contained in the MCS are included in the combination estimator.
Such an estimator will certainly perform well in the sample period
used to construct the MCS, and an out-of-sample analysis could
be used to determine whether it also performs well on a different
sample.
the stepwise multiple testing method of Romano and
Wolf (2005). This method identifies the estimators that
are significantly either better or worse than a given
benchmark estimator, while controlling the family-
wise error rate of the complete set of hypothesis
tests.11 We consider three choices of benchmark
estimator: RV1day, which is the standard estimator in
the absence of high frequency data; RV5 min, which
is based on a rule-of-thumb from earlier papers in
the RV literature (see Andersen, Bollerslev, Diebold,
& Ebens, 2001b, and Barndorff-Nielsen & Shephard,
2002, for example); and RVMean, which is the standard
simple combination estimator. The results of these
tests are presented in Table 4.

The results of the Romano–Wolf test reveal some
interesting patterns. Firstly, at the 10% level of
significance, every estimator significantly outperforms
RV1day, in the full sample and in all three sub-samples.
This is clearly a strong signal that high frequency data,
when used in any one of the 34 other estimators in this
study, yields more precise estimates of QV than daily
data can. When RV5 min is taken as a benchmark we
see more variation in the results: some estimators are
significantly better, others are significantly worse, and
some are not significantly different. Broadly stated,
the estimators that out-perform RV5 min include RV
sampled at the 1-min frequency (either in tick time
or calendar time), RVAC1,1 min, RK with the Bartlett
or TH kernel (when sampled every tick), and RRV,
QRV and MedRV, as well as all three combination
estimators. The estimators that under-perform RV5 min

include RV sampled at the 1 h or 1 day frequency
(either in tick time or calendar time), RVBR,bc, RK
with the cubic, TH or NFP kernel (when sampled at
the one-minute frequency), and BPV when sampled at
the 5-min frequency.

Finally, when RVMean is taken as the benchmark
estimator in the Romano–Wolf testing method a
very clear conclusion emerges: only two estimators
significantly out-perform RVMean in the full sample,
namely RV1 min and RVAC1,1 min, and no individual
estimator significantly out-performs RVMean in any
of the three sub-samples. A few estimators are not
significantly different, and most individual estimators

11 The Romano–Wolf testing method is also implemented using
Politis and Romano’s (1994) stationary bootstrap with an average
block length of 10 days, and we again use 1000 bootstrap
replications for each test.
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Table 4
Romano–Wolf tests on the realised measures.

RV1day RV5 min RVMean

Full 96–99 00–03 04–08 Full 96–99 00–03 04–08 Full 96–99 00–03 04–08

RV1 s 3 3 3 3 – – – 3 × – × ×

RV5 s 3 3 3 3 – – – 3 × – × –
RV1 min 3 3 3 3 3 3 – 3 3 – – –
RV5 min 3 3 3 3 F F F F × × × ×

RV1h 3 3 3 3 × × × × × × × ×

RV1day F F F F × × × × × × × ×

RVtick,5 s 3 3 3 3 – – – 3 × – × –
RVtick,1 min 3 3 3 3 3 3 – 3 – – – –
RVtick,5 min 3 3 3 3 – – – – × × × ×

RVtick,1h 3 3 3 3 × × × × × × × ×

RVBR 3 3 3 3 – × – 3 × × × ×

RVBR,bc 3 3 3 3 × × – × × × × ×

RVAC1,1 min 3 3 3 3 3 3 – 3 3 – – –
RVAC1,5 min 3 3 3 3 – – – – × × × ×

TSRVtick 3 3 3 3 – × – 3 × × × ×

TSRVtick,1 min 3 3 3 3 – × – 3 × × × ×

MSRVtick 3 3 3 3 – × – 3 × × × ×

MSRVtick,1 min 3 3 3 3 – × – 3 × × × ×

RKbart 3 3 3 3 3 – – 3 × × × –
RKbart,1 min 3 3 3 3 – × – – × × × ×

RKcubic 3 3 3 3 – × – 3 × × × ×

RKcubic,1 min 3 3 3 3 × × × × × × × ×

RKT H2 3 3 3 3 3 – – 3 × × × –
RKT H2,1 min 3 3 3 3 × × – × × × × ×

RKNFP 3 3 3 3 – × – 3 × × × ×

RKNFP,1 min 3 3 3 3 × × × × × × × ×

RRV 3 3 3 3 3 – 3 3 × × × ×

BPV1 min 3 3 3 3 × × – 3 × × × –
BPV5 min 3 3 3 3 × × × × × × × ×

QRV 3 3 3 3 3 – – 3 – – – –
MedRV 3 3 3 3 3 – – 3 × – – ×

MinRV 3 3 3 3 – – – 3 × × × ×

RVMean 3 3 3 3 3 3 3 3 F F F F
RVGeo-mean 3 3 3 3 3 – – 3 × × × ×

RVMedian 3 3 3 3 3 – – 3 × × × –

Notes: This table presents the results of the Romano–Wolf “stepwise” test for three different choices of benchmark estimator. Columns 1–4
present indicators for when the benchmark is set to RV1day: using the QLIKE distance, the indicator is set to 3if the estimator is significantly
more accurate than RV1day, to× if the estimator is significantly less accurate than RV1day, and to – if the estimator’s accuracy is not significantly
different from RV1day. The four columns refer to the full sample period and three sub-samples, 1996–1999, 2000–2003 and 2004–2008.
Columns 5–8 present corresponding results when the benchmark estimator is set to RV5 min, and columns 9–12 present results when the
benchmark estimator is set to RVMean. The benchmark estimator in each column is indicated with aF.
are significantly worse.12 This is a strong endorsement
of using this simple combination estimator in practice.

12 When using the MSE distance (see Table 4A in the web
appendix), there are fewer significant results: all estimators are still
found to significantly out-perform RV1day, but in the comparisons
3.4. Results using optimal combination estimators

In this section we present our estimated optimal
combination estimators. We consider a standard

with RV5 min or RVMean as the benchmark there are few rejections
of the null hypothesis.
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parametric combination estimator, namely a linear
combination:

X̂∗t = ŵ0 +

n∑
i=1

ŵi X i t , (11)

estimated using Proposition 1 above. We consider both
unconstrained combination estimators, which satisfy
the condition that the unknown weights all lie in
the interior of the parameter space, thus permitting
us to compute standard errors using Proposition 1,
and constrained combination estimators, with the
constraint being that all weights must be non-
negative. The constrained estimation acts as a model
selection procedure, and makes obtaining standard
errors difficult (which is why we do not pursue
this here), but provides additional information on
the individual estimators that are most useful in a
combination estimator.

Table 5 presents the results for optimal linear
combinations under the QLIKE distance. In the
optimal constrained combination estimator we see
substantial weight on both QRV and RVtick,5 min, and
we also see non-zero weights on a collection of simple
RVs, with sampling frequencies from 5 s up to and
including 1 day. The unconstrained combination has
few individually significant coefficients, though there
are significant coefficients on BPV sampled at the 1-
min frequency, RVBR,bc and RVAC1,1 min, and simple
RV with sampling frequencies of 1 h and 1 day.

Often of interest in the forecasting literature
is the question of whether the estimated optimal
combination is significantly different from a simple
equally-weighted average. If we let w∗i denote the
optimal linear combination weights, the hypotheses of
interest are:

H0 : w
∗

0 = 0 ∩ w∗1 = w
∗

2 = · · · = w
∗
n = 1/n (12)

vs. Ha : w
∗

0 6= 0 ∪ w∗i 6= 1/n

for some i = 1, 2, . . . , n.

Using Proposition 1 these hypotheses can be tested
using Wald tests, and we find, for the full sample
of data, that the null that the optimal combination
is an equally-weighted combination can be rejected
with a p-value of less than 0.001, under both the
MSE and the QLIKE distance. Thus, while Section 3.3
revealed that the simple mean was not consistently
beaten by any individual estimator, it can still be
improved: an optimally formed linear combination is
significantly more accurate than an equally-weighted
average.

Finally, we conduct a set of tests related to idea of
forecast encompassing; see Chong and Hendry (1986)
and Fair and Shiller (1990). We test the null hypothesis
that a single realised measure (i) encompasses the
information in all other estimators:

H i
0 : w

∗

i = 1 ∩ w∗j = 0 ∀ j 6= i (13)

vs. H i
a : w

∗

i 6= 1 ∪ w∗j 6= 0 for some j 6= i,

i = 1, 2, . . . , n. We find that the null hypothesis
is rejected for every single estimator, under both the
MSE and the QLIKE distance, with all p-values being
less than 0.001. This is strong evidence that there
are gains from considering combination estimators of
quadratic variation: no single estimator dominates all
others. This result is new to the realised volatility
literature, but is probably not surprising to those
familiar with forecasting in practice.

3.5. Results from an out-of-sample forecasting exper-
iment

Our results above suggest that there are gains from
using combination estimators of the volatility of IBM
stock returns, in terms of average accuracy. In this sec-
tion we study whether these gains in estimation ac-
curacy translate into gains in forecast accuracy. We
do this via a simple out-of-sample forecasting exper-
iment. We use each of the individual estimators, as
well as the combination estimators, in a heterogeneous
autoregressive (HAR) model (see Corsi, 2004, and
Müller et al., 1997), which has been shown to work
well in volatility forecasting problems, see Andersen
et al. (2007), for example. This model is designed to
capture some of the long memory-type properties of
volatility in a simple autoregressive framework, by us-
ing estimates of volatility over the past day, week (5
trading days) and month (22 trading days) as predic-
tors of future volatility. The model is specified as:

θ̃t = β0i + βDi X i t−1 + βWi
1
5

5∑
j=1

X i,t− j

+βMi
1

22

22∑
j=1

X i,t− j + εi t . (14)
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Table 5
Optimal linear combination weights.

Full 96–99 00–03 04–08 Full 96–99 00–03 04–08

Constant 0.181 1.084 0.181 0.267 0.154 0.994 0.154 0.223
RV1 s 0.023 0.269 −0.020 0.865 0.031 0.004 0.030 0.000
RV5 s 0.154 −0.499 0.119 0.517 0.080 0 0.112 0.079
RV1 min 0.408 −0.274 −0.169 0.765 0.036 0 0 0.067
RV5 min 0.168 0.045 −0.103 0.927 0.054 0 0 0.032
RV1h

−0.075 −0.071 −0.101 −0.025 0 0 0 0
RV1day 0.049 0.088 0.028 0.034 0.048 0.074 0.005 0.037
RVtick,5 s 0.044 0.200 0.061 −1.223 0.105 0.016 0.123 0
RVtick,1 min 0.081 −0.312 0.554 −0.169 0.064 0 0.148 0
RVtick,5 min 0.082 0.463 −0.122 0.170 0.150 0.196 0 0
RVtick,1h 0.037 0.008 0.002 0.055 0 0 0 0.017
RVBR 0.077 0.247 −0.049 0.366 0 0.039 0 0.262
RVBR,bc

−0.229 −0.006 −0.189 −0.124 0 0 0 0
RVAC1,1 min 0.408 0.714 0.604 −0.714 0.096 0.192 0.080 0
RVAC1,5 min

−0.004 −0.101 0.035 −0.264 0.008 0 0 0
TSRVtick 0.069 −0.060 0.043 −0.033 0 0 0 0.042
TSRVtick,1 min 0.252 0.380 0.463 0.292 0 0.052 0.119 0.022
MSRVtick

−0.026 0.192 −0.234 0.099 0 0.002 0 0.070
MSRVtick,1 min

−0.103 0.191 −0.507 −0.469 0 0 0 0
RKbart

−0.034 −0.119 0.107 0.473 0 0 0 0
RKbart,1 min 0.023 −0.298 0.151 0.477 0 0 0.051 0
RKcubic 0.079 0.025 −0.122 0.179 0 0 0 0
RKcubic,1 min 0.020 −0.220 0.273 0.116 0 0 0.064 0
RKT H2

−0.144 −0.460 −0.021 −0.229 0 0 0 0
RKT H2,1 min 0.011 0.100 0.037 −0.443 0.013 0 0 0
RKNFP

−0.014 −0.387 0.038 −0.319 0 0 0 0
RKNFP,1 min

−0.061 0.479 −0.196 −0.316 0 0 0 0
RRV −0.173 0.300 −0.292 −1.163 0 0 0 0
BPV1 min

−0.535 0.314 −0.430 1.380 0 0.005 0 0.062
BPV5 min

−0.081 −0.314 0.357 −0.060 0 0 0.128 0
QRV 0.056 0.266 0.260 0.127 0.192 0.073 0 0.046
MedRV 0.234 −0.427 0.364 0.424 0 0 0 0
MinRV −0.098 −0.094 −0.159 −1.111 0 0 0 0

Notes: This table presents the QLIKE optimal linear combination weights. Columns 1–4 present these weights for the unconstrained case, with
estimates that are significantly different from zero at the 0.10 level highlighted in bold. (Standard errors were computed using Proposition 1,
with Newey & West, 1987, estimates of the covariance matrix, BT , but are not reported here in the interests of space.) The four columns refer
to the full sample period and three sub-samples, 1996–1999, 2000–2003 and 2004–2008. Columns 5–8 present the optimal linear combination
weights, using the QLIKE distance, imposing the constraint that each weight must be weakly positive. Weights that were on the boundary at
zero are reported as “0”, while those away from the boundary are reported to three decimal places.
We estimate this model for each of our 32 individ-
ual estimators, and our 3 simple combination estima-
tors. We use the period from January 1996 to De-
cember 1999 (1011 trading days) as the initial esti-
mation period, and re-estimate the model each day
using a rolling window of 1011 days of data. For
each day, we construct a one-step-ahead forecast using
the estimated parameters for that day,13 thus replicat-
ing the real-time forecasting problem faced in prac-
tice. With the volatility forecasts based on each of
the 35 estimators, and an unbiased proxy for the true

13 For simplicity we focus on one-step-ahead forecasts, and leave
the interesting extension to multi-step-ahead forecasts for future
work.
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latent quadratic variation, we can then conduct com-
parison tests of forecast accuracy similar to those
used in the previous sections for comparing estimation
accuracy.

In Table 6 we present the first results from our
out-of-sample forecasting experiment. These tables
present the average difference in QLIKE distance,
relative to the forecast based on RV5 min, as well as the
ranks of the various forecasts for the full sample and
for two sub-samples, 2000–2003 and 2004–2008. (The
first sub-sample, 1996–1999, is used for the initial
estimation of the models, and thus cannot be used
in the comparison of forecast accuracy.) In addition
to the 32 individual realised measures and the 3
simple combination estimators, we also consider 3
combination forecasts, based on an equally-weighted
arithmetic mean of the forecasts, an equally-weighted
geometric mean of the forecasts, and the median of the
forecasts, leading to a total of 38 different forecasts.14

Table 6 shows that the best forecast overall is
that based on RVAC1,1 min, followed by RVGeo-mean

and RV1 min. It is interesting to note that RVAC1,1 min

performs quite a bit worse in the second sub-sample
than in the first sub-sample, while RVGeo-mean displays
the opposite behaviour. The deterioration in the
performance of RVAC1,1 min in the second sub-sample
may be related to the increased amount of trading
in this sub-sample, which presumably reduces the
impact of market microstructure effects at the one-
minute frequency. The simple RV1 min and B PV 5 min

estimators both exhibit good and stable performance
over the two sub-samples. We again estimate the
model confidence set of Hansen et al. (2005), and find
that it contains just 7 out of the 38 total forecasts for
the full sample. Interestingly, it contains two forecasts
based on combination estimators (RVMean and
RVGeo-mean), but none of the combination forecasts.
Also noteworthy is the fact that in the 2004–2008
sub-sample, the MCS contains just a single forecast,
namely that based on RVGeo-mean. Overall, the results
in Table 6 again support the use of combination
estimators of volatility. The rankings are similar to
those based directly on estimation accuracy in Table 3,
though they are not identical: QRV, for example, does

14 Table 6A of the web appendix presents corresponding results
for differences in MSE distances for these forecasts.
worse in terms of forecast accuracy than in terms of
estimation accuracy, while B PV 5 min does better.

In Tables 7 and 8 we present the results of
Romano and Wolf (2005) tests for determining the
forecasts that are significantly better or worse than
a given benchmark forecast. As in the previous
section, we initially consider three choices of
benchmark forecasts: those based on RV1day,RV5 min

and RVMean. Table 7 shows that every forecast
significantly out-performs RV1day. The results with
RV5 min show more variation: several forecasts are
found to be significantly worse than RV5 min, several
are not significantly different, and a number are
significantly better. The better forecasts include
RV1 min,RVBR, RVAC1,1 min, R RV, B PV 5 min and all
6 combinations (3 based on combination estimators,
and 3 based on combinations of forecasts). With
RVMean as the benchmark (see Table 8), we find that
most forecasts are significantly worse, and none are
significantly better in the full sample. These tables
thus provide further evidence in support of the use of
combination estimators of volatility.

In Table 8 we also conduct Romano–Wolf tests,
with the equally-weighted arithmetic mean of the
forecasts, FCASTMean, as the benchmark. We find that
most individual forecasts are significantly worse, and
a few are significantly better.15 These better forecasts
include RV1 min,RVBR, RVAC1,1 min and R RV , as
well as all three forecasts based on combination
estimators, RVMean, RVGeo-mean and RVMedian. This
reveals that significantly better forecasts could be
obtained by building a single forecast based on
a combination estimator, rather than by combining
many forecasts based on individual estimators. This
is a novel finding. We investigate it further by
conducting simple Diebold and Mariano (1995)
tests of equal predictive accuracy for the pair-wise
comparison of RVi with FCASTi , where i =

{Mean,Geo-mean,Median}. These tests allow us to
more directly answer the question of whether it is
better to combine estimators and then forecast, or
to combine forecasts based on many estimators. In
these tests, positive (negative) t-statistics indicate that
FCASTi had a larger (smaller) average forecast error
than RVi , and t-statistics greater than 1.64 in absolute

15 Under the MSE, we find little evidence that any forecast is
significantly different, see Table 8A in the web appendix.
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Table 6
Performance of the out-of-sample forecasts.

Avg. ∆QLIKE Rank In MCS?
Full 00–03 04–08 Full 00–03 04–08

RV1 s 0.006 33 29 33 – – –
RV5 s 0.001 28 17 30 – – –
RV1 min

−0.012 3 5 6 3 – –
RV5 min 0 18 20 19 – – –
RV1h 0.024 36 36 35 – – –
RV1day 0.070 38 38 38 – – –
RVtick,5 s 0.006 34 30 34 – – –
RVtick,1 min

−0.010 8 7 12 – – –
RVtick,5 min 0.001 21 25 21 – – –
RVtick,1h 0.022 35 35 36 – – –
RVBR

−0.010 9 13 3 3 – –
RVBR,bc 0.040 37 37 37 – – –
RVAC1,1 min

−0.013 1 3 9 3 3 –
TSRVAC1,5 min 0.001 25 24 23 – – –
TSRVtick

−0.002 17 19 13 – – –
MSRVtick,1 min 0.000 19 22 18 – – –
MSRVtick 0.001 23 31 14 – – –
RVtick,1 min 0.004 31 34 29 – – –
RKbart 0.001 27 28 17 – – –
RKbart,1 min 0.001 20 18 24 – – –
RKcubic 0.001 22 27 16 – – –
RKcubic,1 min 0.004 32 32 32 – – –
RKT H2 0.003 30 33 25 – – –
RKT H2,1 min 0.002 29 23 27 – – –
RKNFP 0.001 24 26 20 – – –
RKNFP,1 min 0.001 26 21 26 – – –
RRV −0.011 7 9 7 3 – –
BPV1 min

−0.007 10 6 15 – – –
BPV5 min

−0.011 5 8 5 3 – –
QRV −0.007 13 1 31 – 3 –
MedRV −0.007 12 2 28 – 3 –
MinRV −0.007 11 4 22 – – –

RVMean
−0.012 4 10 2 3 – –

RVGeo-mean
−0.013 2 11 1 3 – 3

RVMedian
−0.011 6 12 4 – – –

FCASTMean
−0.006 15 15 10 – – –

FCASTGeo-mean
−0.007 14 14 8 – – –

FCASTMedian
−0.005 16 16 11 – – –

Notes: The first column of this table presents the average difference in QLIKE of the forecast based on each realised measure relative to the
forecast based on RV5 min, with negative (positive) values indicating that the forecast was on average closer to (further from) to the target
variable than RV5 min. Columns 2–4 present the rank of each forecast using QLIKE, for the full sample period and for two sub-samples,
2000–2003 and 2004–2008. The most accurate forecast is ranked 1, and the least accurate is ranked 38. Columns 5–7 present an indicator for
whether the estimator was in the “model confidence set” at the 90% confidence level (equal to 3 if in, – if not) in the full sample and each of
the two sub-samples.
value indicate that the difference is significant at
the 0.10 level. We found that the t-statistics for the
full-sample were 7.66, 7.10 and 6.49 for the Mean,
Geo-mean and Median, and that the corresponding t-
statistics in the sub-samples were all greater than 3.50.
Thus, we find strong evidence that forecasts based



A.J. Patton, K. Sheppard / International Journal of Forecasting 25 (2009) 218–238 235
Table 7

Romano–Wolf tests on forecasts, with RV1day and RV5 min as benchmarks.

RV1day RV5 min

Full 00–03 04–08 Full 00–03 04–08

RV1 s 3 3 3 – – –
RV5 s 3 3 3 – – –
RV1 min 3 3 3 3 3 –
RV5 min 3 3 3 F F F
RV1h 3 3 3 × × –
RV1day F F F × × ×

RVtick,5 s 3 3 3 – – –
RVtick,1 min 3 3 3 3 3 –
RVtick,5 min 3 3 3 – – –
RVtick,1h 3 3 3 × × ×

RVBR 3 3 3 3 3 3

RVBR,bc 3 3 3 × × ×

RVAC1,1 min 3 3 3 3 3 –
RVAC1,5 min 3 3 3 × – ×

TSRVtick 3 3 3 – – –
TSRVtick,1 min 3 3 3 – – –
MSRVtick 3 3 3 – – –
MSRVtick,1 min 3 3 3 × × –
RKbart 3 3 3 – – –
RKbart,1 min 3 3 3 – – –
RKcubic 3 3 3 – – –
RKcubic,1 min 3 3 3 × – ×

RKT H2 3 3 3 – – –
RKT H2,1 min 3 3 3 – – –
RKNFP 3 3 3 – – –
RKNFP,1 min 3 3 3 – – –
RRV 3 3 3 3 3 3

BPV1 min 3 3 3 – 3 –
BPV5 min 3 3 3 3 3 3

QRV 3 3 3 – 3 –
MedRV 3 3 3 – 3 –
MinRV 3 3 3 – 3 –

RVMean 3 3 3 3 3 3

RVGeo-mean 3 3 3 3 3 3

RVMedian 3 3 3 3 3 3

FCASTMean 3 3 3 3 – 3

FCASTGeo-mean 3 3 3 3 – 3

FCASTMedian 3 3 3 3 – 3

Notes: This table presents the results of the Romano–Wolf “stepwise” test for two different choices of benchmark forecast. Columns 1–3 present
indicators for when the benchmark is set to forecasts based on RV1day: using the QLIKE distance, the indicator is set to 3if the forecast is
significantly more accurate than RV1day, to × if the forecast is significantly less accurate than RV 1day, and to – if the forecast’s accuracy is
not significantly different from RV1day. The three columns refer to the full sample period and two sub-samples, 2000–2003 and 2004–2008.
Columns 4–6 present corresponding results when the benchmark forecast is based on RV5 min. The benchmark forecast in each column is
indicated by aF.
on combination RV estimators are significantly better
than the corresponding combination forecasts.16

16 Under the MSE the results were mixed; in no case do we find
that the differences are significant.
Overall, this study of out-of-sample forecast
accuracy yields two main conclusions. Firstly (and
unsurprisingly), better estimation accuracy generally
leads to better forecast accuracy. The rankings based
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Table 8

Romano–Wolf tests on forecasts, with RVMean and FCASTMean as benchmarks.

RVMean FCASTMean

Full 00–03 04–08 Full 00–03 04–08

RV1 s
× × × × – ×

RV5 s
× × × × – ×

RV1 min – – – 3 3 –
RV5 min

× × × × – ×

RV1h
× × × × × ×

RV1day
× × × × × ×

RVtick,5 s
× × × × – ×

RVtick,1 min – – × 3 3 –
RVtick,5 min

× × × × – ×

RVtick,1h
× × × × × ×

RVBR – – – 3 – –
RVBR,bc

× × × × × ×

RVAC1,1 min – 3 – 3 3 –
RVAC1,5 min

× × × × – ×

TSRVtick
× × × – – –

TSRVtick,1 min
× × × × × ×

MSRVtick
× × × × × ×

MSRVtick,1 min
× × × × × ×

RKbart
× × × × × ×

RKbart,1 min
× × × × – ×

RKcubic
× × × × × ×

RKcubic,1 min
× × × × × ×

RKT H2
× × × × × ×

RKT H2,1 min
× × × × – ×

RKNFP
× × × × × ×

RKNFP,1 min
× × × × – ×

RRV – – × 3 3 –
BPV1 min – – × – 3 –
BPV5 min – – – – 3 –
QRV – – × – 3 –
MedRV – – × – 3 –
MinRV – – × – 3 –

RVMean F F F 3 3 3

RVGeo-mean – – 3 3 3 3

RVMedian – – × 3 3 –
FCASTMean

× × × F F F
FCASTGeo-mean

× × × 3 3 –
FCASTMedian

× × × – – ×

Notes: This table presents the results of the Romano–Wolf “stepwise” test for two different choices of benchmark forecast. Columns 1–3 present
indicators for when the benchmark is set to forecasts based on RVMean: using the QLIKE distance, the indicator is set to 3if the forecast is
significantly more accurate than RVMean, to × if the forecast is significantly less accurate than RVMean, and to – if the forecast’s accuracy is
not significantly different from RV1day. The three columns refer to the full sample period and two sub-samples, 2000–2003 and 2004–2008.
Columns 4–6 present corresponding results when the benchmark forecast is based on FCASTMean. The benchmark forecast in each column is
indicated by aF.
on estimation accuracy are not identical to those
based on forecast accuracy, however, with the move to
forecasting benefiting some estimators but not others.
Secondly, forecasts based on combinations of RV
estimators significantly out-perform combinations of
forecasts based on individual RV estimators.



A.J. Patton, K. Sheppard / International Journal of Forecasting 25 (2009) 218–238 237
4. Summary and conclusion

Recent advances in financial econometrics have
led to the development of new estimators of asset
price variability using high frequency price data.
These estimators are based on a variety of different
assumptions and take many different functional forms.
Motivated by the success of combination forecasts
over individual forecasts in a range of forecasting
applications (see Clemen, 1989, and Timmermann,
2006, for example), this paper sought to answer the
question: do combinations of individual estimators
offer accuracy gains relative to individual estimators?
The answer is a resounding “yes”.

This paper presents a novel method for combining
individual realised measures to form new estimators
of price variability, overcoming the obstacle that
the quantity of interest is not observable, even ex
post. We applied this method to a collection of 32
different realised measures, across 8 distinct classes
of estimators, estimated on high frequency IBM price
data over the period 1996–2008. Using the Romano
and Wolf (2005) test, we find that, in terms of average
accuracy, only two individual realised measures
significantly out-perform a simple equally-weighted
average. In terms of out-of-sample forecast accuracy,
with forecasts based on a simple HAR model, we
find that no individual estimator can significantly out-
perform a forecast based on a simple equally-weighted
average. Further, we find that none of the individual
estimators encompasses the information in all other
estimators, providing further support for the use of
combination realised measures. Overall, our results
suggest that there are indeed benefits from combining
the information contained in the array of different
volatility estimators proposed in the literature to date.
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