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Abstract

We propose a new method to capture changes in hedge funds�exposures to risk factors, ex-

ploiting information from relatively high frequency conditioning variables. Using a consolidated

database of nearly 10,000 individual hedge funds between 1995 and 2008, we �nd substantial

evidence that hedge fund risk exposures vary signi�cantly across months. Our new method also

reveals that hedge fund risk exposures vary within months, and capturing this variation signi�-

cantly improves the �t of the model. The proposed method outperforms an optimal changepoint

approach to capturing time-varying risk exposures, and we �nd evidence that there are gains

from combining the two approaches. We �nd that the cost of leverage, movements in the VIX,

and recent performance are the most important drivers of changes in hedge fund risk exposures.
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1 Introduction

A signi�cant amount of research has been devoted to understanding the risk exposures and trading

strategies of hedge funds.1 Recently, several authors have highlighted that static analysis of these

risk exposures is likely to miss the rapid changes in hedge funds� strategies occasioned by their

trading �exibility and variations in their leverage ratios (see Fung and Hsieh (2004), Agarwal,

Fung, Loon, and Naik (2006) and Fung, Hsieh, Naik and Ramadorai (2008)). In a recent paper,

Bollen and Whaley (2009) propose using optimal changepoint regressions to estimate structural

breaks in hedge fund factor loadings, and �nd that this method o¤ers a signi�cant improvement

in statistical performance relative to a static factor model for hedge fund returns. An alternative

approach, employed by Mamaysky, Spiegel and Zhang (2007) for mutual funds and considered by

Bollen and Whaley (2009) for hedge funds, is to use a Kalman �lter-based model to track risk

exposures as latent random variables.

One of the distinguishing features of hedge funds is the speed with which their positions are

altered or turned over in response to changing market conditions. Previous approaches for capturing

hedge funds� time-varying risk exposures are limited to tracking changes only at the monthly

frequency, as this is the reporting frequency for all of the main hedge fund databases. However

it is quite likely that a hedge fund�s risk exposures change substantially within a month. We

propose a new method to capture intra-month variation in hedge fund risk exposures, which uses

as its starting point the widely-used Ferson and Schadt (1996) model to employ higher frequency

conditioning information. To overcome the lack of high frequency data on hedge fund performance,

we posit a daily factor model for returns and then aggregate it up to the monthly frequency for

estimation. We are thus able to employ monthly returns data and daily factor returns series to

shed light on higher frequency variation in hedge fund returns. Using simulations as well as daily

indices of hedge fund returns, we demonstrate that this technique enables us to track the dynamics

of daily variation in hedge fund risk exposures very precisely.

Employing returns data on a cross-section of 9,538 hedge funds and funds-of-funds over the

period 1995 to 2008, we �nd that our proposed method performs very well at describing the

1See Fung and Hsieh (1997, 2004 a,b), Ackermann, McEnally and Ravenscraft (1999), Liang (1999), Agarwal and

Naik (2004), Kosowski, Naik and Teo (2006), Chen and Liang (2007), Patton (2009) and Jagannathan, Malakhov

and Novikov (2009) for a partial list of examples.
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dynamics of hedge fund returns. In particular, we show that the proposed model generates R2

statistics that are a substantial improvement over those estimated using the optimal changepoint

approach of Bollen and Whaley (2009): the cross-sectional distribution of R2s is shifted to the right

by approximately 6%. We �nd that the inclusion of the higher frequency conditioning information is

an important contributor to the performance of our model: when we estimate the model using only

monthly conditioning variables, its performance is only slightly better than that of the changepoint

regression model.2 Furthermore, we almost double the number of funds for which statistically

signi�cant factor exposure variation is found when we include daily information as well as monthly

information. Thus variations in hedge fund risk exposures appear to occur at both the monthly

and intra-monthly frequencies.

We conduct a relatively wide search for conditioning variables that help us to capture daily vari-

ation in hedge fund risk exposures. As noted by Ferson and Schadt (1996), Sullivan, Timmermann

and White (1999), Ferson, Simin and Sarkissian (2008) and others, incorrect inferences about the

signi�cance of the �best�model will be obtained if this search process is ignored; this is the classic

data snooping problem. We follow Sullivan et al. and employ the bootstrap reality check of White

(2000) to control for this search. For comparison, we report the results of �naïve� tests, which

ignore the search across variables, and �nd large di¤erences in the number of funds that exhibit

apparent signi�cant variation in factor exposure.

The advantages conferred by our approach are not merely statistical. Our model has the added

bene�t of aiding economic interpretation of the variation in factor loadings that we estimate. For

example, we �nd that two out of the three most frequently selected interaction variables are LIBOR

and changes in short-term interest rates. We interpret this as evidence of the signi�cant impact on

hedge fund risk exposures of variation in the costs of leverage. This adds to the growing evidence

(Liang (1999) and Lo and Khandani (2007)) on the role that leverage plays in explaining hedge

fund returns. We also �nd evidence that variations in VIX as well as daily and monthly liquidity

(measured as the percentage turnover on the NYSE stock market) signi�cantly impact hedge fund

factor loadings. Our results are thus complementary to those of Cao, Chen and Liang (2009),

who study hedge funds� liquidity timing abilities in-depth using the Ferson and Schadt (1996)

methodology, and Aragon (2006) and Sadka (2009), who connect measures of liquidity to hedge

2This �nding is related to that of Bollen and Busse (2005), who �nd that mutual funds do generate positive

risk-adjusted performance, but that the interval over which they do so is very short-lived.
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fund returns.

The outline of the paper is as follows. The remainder of this section situates our paper in the

literature on the dynamic performance evaluation of managed investments. Section 2 describes

our modelling approach and Section 3 describes the data used in our analysis. Section 4 presents

analyses which verify that our proposed method works well in practice, and Section 5 presents our

main empirical results. Finally, Section 6 concludes.

1.1 Related literature

Our paper contributes to the literature on dynamic performance measurement for actively managed

investment vehicles. An intellectual predecessor of our approach is Ferson and Schadt (1996), who

use well-known predictors of returns as proxies for publicly available information, and use these

instruments to estimate an unconditional version of their conditional model for the performance

evaluation of mutual funds.3 Their model uses only monthly data, and is related to Jagannathan

and Wang (1996), who focus on risk adjustments for equities rather than performance evaluation.

They motivate their method using the example of a hypothetical manager who wishes to keep fund

volatility stable over time in an economy in which expected excess market returns and market

volatility jointly covary with economic conditions. Their insight is that unconditional performance

evaluation of this manager will yield negative alpha estimates if the time-variation in fund risk

exposures is not properly accounted for. Using their method, they overturn the conclusion that the

alpha of the 67 mutual funds in their sample is negative; their conditional performance evaluation

reveals that the performance of these funds over the 1968 to 1990 period is broadly neutral.4 The

conditioning information used by Ferson and Schadt is lagged one month so as to capture only

predetermined information; the interpretation of the alphas that they estimate is as the excess

return earned by managers over and above that which could be generated by a managed portfolio

strategy that used only public information to generate returns. The approach in Ferson and Schadt

(1996) is extended by Christophersen, Ferson and Glassman (1998) to include the possibility of

3Chen and Knez (1996), in a contemporaneous paper, derive related insights about conditional performance

evaluation.
4The Ferson and Schadt result that measured performance looks better than the constant-parameter risk-adjusted

performance is also true in our analysis of hedge fund performance in Section 5. However this �nding must also be

interpreted with reference to the timing literature, as discussed below, since we include contemporaneous variables

in our regression.
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time-variation in alpha. These authors detect performance persistence amongst the most poorly

performing mutual funds with greater precision than static models.

An earlier set of related models also uses conditioning information to detect time-variation

in managerial risk exposures, but with a somewhat di¤erent goal. Treynor and Mazuy (1966)

proposed an extension to the standard single factor market model which included a quadratic term

in an e¤ort to detect whether fund volatility rose when the market was performing well. The

quadratic regression can be also motivated using the model of Admati, Bhattacharya, P�eiderer

and Ross (1986), in which a successful market-timing fund manager receives a noisy signal about

the one period ahead market return. Such quadratic regressions have also been used by Lehmann

and Modest (1987) in the context of mutual funds, and by Chen and Liang (2007) to describe

the market timing ability of hedge funds. The idea has also been generalized to consider private

signals about market attributes such as future market liquidity (see Cao, Chen and Liang (2009)).

Another popular timing speci�cation is that of Henriksson and Merton (1981), who extend the

standard single factor market model by including an interaction between the market return and an

indicator variable for when the market return is positive. The distinguishing feature of this class

of models relative to the conditional performance evaluation models discussed earlier is the use of

contemporaneous information on the conditioning variables. As a consequence of the use of this

information, these models have two measures of managerial ability. The �rst, which the literature

commonly refers to as �timing�, is the coe¢ cient on the interaction term between the factor and

the contemporaneous variable representing the signal (in the case of pure market timing, the signal

would just be the factor plus noise, giving rise to the quadratic model). The second is the intercept

that comes from the unconditional estimation of the conditional model. This is no longer the only

measure of performance, but rather the �selectivity�of the fund.5 Ferson and Schadt (1996) also

combine their approach with the Treynor-Mazuy and Henriksson-Merton speci�cations, generating

conditional versions of the market-timing models.

Our approach in this paper can be viewed as a conditional market-timing model, since we include

both contemporaneous and lagged conditioning information in our speci�cations. In this sense, the

5Holdings-based performance evaluation approaches have also been used to separate timing ability from selectivity

(See Daniel, Grinblatt, Titman and Wermers (1997), Chen, Jegadeesh and Wermers (2000), and Da, Gao and

Jagannathan (2009)). Graham and Harvey (1996) use asset allocation recommendations in investment newsletters

to evaluate whether they help investors to time the market.
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intercepts which we estimate in the unconditional versions of our conditional models are, strictly

speaking, �selectivity�measures. However, there are other possible interpretations. Jagannathan

and Korajczyk (1986) show that if the strategies followed by funds have option-like characteristics,

timing regressions admit alternative interpretations. For example, positive estimated selectivity

and negative estimated timing may simply be evidence that funds are following a strategy akin to

writing covered call options.

There have been other attempts to combine monthly returns and intra-monthly information to

ascertain the higher-frequency variation in risk factor loadings, following an in�uential paper by

Goetzmann, Ingersoll and Ivkovic (2000), which shows that Henriksson-Merton timing measures

estimated from monthly data are biased in the presence of daily timing ability. Goetzmann et al.

attempt to correct for this bias by cumulating daily put values on the S&P 500 for each month

in their sample, and incorporate it as an additional regressor in their market-timing speci�cations.

Ferson and Khang (2002) also present a conditional version of the holdings-based performance

evaluation method that avoids the Goetzmann et al. bias. Our approach provides a new alternative

to the methods followed in these papers; we posit a daily model for hedge fund returns, which we

time-aggregate and estimate at the monthly frequency. Our aggregation of a daily factor model up

to a monthly model is similar in spirit to Ferson, Henry and Kisgen (2006), who study government

bond funds and consider an underlying continuous-time process for the term structure of interest

rates. We evaluate the performance of our method using both simulations as well as available daily

data on hedge fund indices and �nd that it is successful at accurately capturing estimated daily

risk exposures.

Our use of daily returns on hedge fund indices to validate our technique (see Section 4) adds

to the sparse literature which uses daily data on investment managers�returns to measure their

performance. Busse (1999) �nds that mutual funds have signi�cant volatility timing ability using

daily returns data. Bollen and Busse (2001), also using daily data, con�rm that mutual funds have

signi�cant market timing ability. Chance and Hemler (2001) use daily executed recommendations

of market-timers, and �nd that they have signi�cant daily timing ability which vanishes when their

performance is evaluated at the monthly frequency.

Finally, in addition to Bollen and Whaley (2009), other papers in this area use a variety of

innovative approaches to infer unobserved risk-taking: A recent example is Kacperczyk, Sialm and

Zheng (2007), who use the di¤erence between mutual fund holdings-based imputed returns and
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reported returns to predict future mutual fund returns. Mamaysky, Spiegel and Zhang (2007), cited

above, allow betas to evolve as latent random variables and track their changes using the Kalman

�lter. The next section presents our method for modelling time-varying hedge fund exposures.

2 Modelling time-varying hedge fund risk exposures

A variety of methods have been proposed in the literature for capturing time-varying risk exposures

of hedge funds, see Bollen andWhaley (2009) for a recent review. In this section we �rst describe the

modelling approach advocated by Bollen and Whaley (2009), an �optimal changepoint�model, and

then introduce our method to capture time-variation in factor loadings. To simplify the discussion

of the various approaches we consider a simple one-factor model for capturing risk exposures,

although in our empirical results in Section 5 we allow for multiple factors.

2.1 Changepoint models for hedge fund returns

A simple but e¤ective approach for capturing dynamic hedge fund risk exposures used by Bollen and

Whaley (2009) is optimal changepoint regression, see Andrews, et al. (1996). This approach models

beta as constant between changepoints, with abrupt changes to a new value at the changepoints.

The theory in Andrews, et al. (1996) allows the researcher to consider many changepoints but in the

interests of parsimony Bollen and Whaley (2009) allow for the presence of just a single changepoint

for each fund (although the time of the changepoint can di¤er across funds). Thus this model for

hedge fund returns is:

rit = �i + �
0
i � 1 (t � ��i ) + �ift + �0i ft � 1 (t � ��i ) + "it (1)

where rit is the return on hedge fund i in month t; ft is the return on the factor in month t, and

1 (t � ��i ) is an indicator for whether the time period t is before the changepoint ��i : Testing for

the signi�cance of the change in risk exposures in a changepoint regression is complicated by the

fact that the date of the change, ��i ; is estimated at the same time as the pre- and post-change

parameters. Having searched across all possible dates for the most likely date of a change, it is

no longer appropriate to use a standard F -test to test for the signi�cance in the change in the

parameters. Instead, non-standard asymptotic critical values or bootstrap critical values must be

used to determine the signi�cance of the change. We describe a bootstrap approach in Section 2.4
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below.

2.2 Models with monthly variation in risk exposures

A simple but economically interpretable alternative to the change-point approach discussed above

is a model for time-varying betas based on observable conditioning variables, which as discussed

above is used by Ferson and Schadt (1996) for mutual funds, and by Cao, et al. (2009) in their

study of hedge fund liquidity. In this approach, the betas are speci�ed to evolve as a linear function

of observable variables measured monthly:

rit = �i + �itft + "it

where �it = �i + 
iZt

That is, the return on fund i is driven by a factor, ft, with the factor loading varying according to

some zero-mean variable Zt:6 Substituting in the model for �it we obtain the following:

rit = �i + �ift + 
iftZt + "it (2)

which is easily estimated using OLS regression (although standard errors that are robust to het-

eroskedasticity and non-Normality should be used in place of the usual OLS standard errors, to

account for these features of hedge fund returns). Note that the constant-beta model is nested in

the above speci�cation, and the signi�cance of time variation in beta for the ith fund can be tested

via a standard Wald test of the following hypothesis:

H
(i)
0 : 
i = 0 vs. H(i)

a : 
i 6= 0 (3)

As discussed above, Ferson and Schadt (1996) �nd that capturing variation in risk exposures via

observable variables at the monthly frequency improves the accuracy of factor models such as

those above. Mamaysky, et al. (2008) also �nd that adding observable variables to their model

for mutual fund returns improves its performance, relative to a model solely with a latent factor

driving variation in risk exposures. Cao, et al. (2009) �nd that monthly measures of liquidity are

able to explain some of the changes in the market exposures of hedge funds.

6The distinction between using Zt and Zt�1 is discussed in detail in Section 1.1.
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2.3 Models with daily variation in risk exposures

As mentioned earlier, one of the distinguishing features of hedge funds, compared with other asset

managers, is the speed with which positions are altered or turned over. Thus, unlike mutual funds

for example, it is likely that a hedge fund�s risk exposures change substantially within a month.

This observation necessitates an extension of the above approach to modelling time-varying risk

exposures. Consider the daily returns on hedge fund i; denoted r�id; and a corresponding daily

factor model for these returns:

r�id = �i + �idf
�
d + "

�
id

Let us assume that the factor loadings for this fund vary as a function of some factor, Z; which is

observable at a daily frequency. Let Z�d denote this variable measured at the daily frequency and

Zt denote this variable measured at the monthly frequency (that is, Zt will be constant within each

month and jump to a new level at the start of each month).

�id = �i + 
iZt + �iZ
�
d

Substituting in we obtain a simple interaction model for daily hedge fund returns:

r�id = �i + �if
�
d + 
iZtf

�
d + �iZ

�
df

�
d + "

�
id (4)

Returns on individual hedge funds are currently only available monthly, and so to estimate this

model we need to aggregate returns from the daily frequency up to the monthly frequency. De�ne

the monthly return on fund i as:

rid �
nX
j=1

r�i;d+1�j , for d = n; 2n; 3n; :::

where n is the number of days in month t; and similarly for ft and Zt:7 Then the speci�cation for

monthly hedge fund returns becomes:

rit = n�i + �ift + 
iZtft + �i

nX
j=1

Z�22t�jf
�
22t�j + "it (5)

Note that the dependent variable above is now the monthly return on hedge fund i; and all variables

on the right-hand side are also measured monthly. The new variable that appears in this speci�-

cation relative to the Ferson-Schadt style speci�cation discussed in the previous section is of the
7Of course, the number of trading days in each month varies and so should more accurately be denoted nt: We

omit the subscript t for simplicity.
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form
X

Z�df
�
d : This is a monthly aggregate of a daily interaction term, and it captures variations

in hedge fund risk exposures at the daily frequency. (Ferson, Henry and Kisgen (2006) also obtain

a monthly aggregate factor in their study of bond fund performance.) If the factor, f�d ; and the

conditioning variable, Z�d ; are both available at the daily frequency, then under the assumption

that "�id is serially uncorrelated and uncorrelated with f
�
s for all (d; s) we are able to estimate the

coe¢ cients of this model using standard OLS. As above, for valid statistical inference we need to

account for potential heteroskedasticity and non-normality in the residuals. In Section 4 we present

analyses based on real daily hedge fund index returns and on simulated returns that con�rm that

this modeling approach works well in realistic applications.

The constant-beta model is nested in the above speci�cation, and the signi�cance of time

variation in beta can be tested via a standard Wald test of the following hypothesis:

H
(i)
0 : 
i = �i = 0 vs. H(i)

a : 
i 6= 0 [ �i 6= 0 (6)

Furthermore, we can test whether we �nd signi�cant evidence of daily variation in hedge fund risk

exposures, controlling for monthly variation, by testing that the coe¢ cient on the daily interaction

term is zero:

H
(i)
0 : �i = 0 vs. H(i)

a : �i 6= 0 (7)

While it is anticipated that hedge funds do adjust their risk exposures within the month, our

ability to detect those changes depends on whether we can �nd observable daily factors, f�d ; that

are correlated with those changes.

2.4 Bootstrap tests

Inference on the above models involves non-standard econometric methods. The optimal change-

point model is estimated by searching over all possible dates for the changepoint, invalidating

standard F -tests for the signi�cance of the changepoint. As discussed in detail in Section 3 below,

the models based on observable conditioning information also involve searches, this time across an

array of possible conditioning variables. The approach of searching for the best-�tting conditioning

variable and then testing its signi�cance via a standard F -test su¤ers from data snooping bias, see

White (2000) for example. To obtain valid critical values for tests for these models we employ a

bootstrap approach.
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2.4.1 Testing the signi�cance of the changepoint

To test the signi�cance of the optimal changepoint, we use a parametric bootstrap with samples

drawn according to the stationary bootstrap of Politis and Romano (1994). To bootstrap data

under the null hypothesis of no signi�cant changepoint we �rst estimate the constant-parameter

factor model on a hedge fund�s returns, and save the estimated parameter vector and the regression

residuals. We then create bootstrap samples of returns for this hedge fund imposing the null of no

change in the parameter vector

r
(b)
i;sb(t)

� �̂i + �̂ifsb(t) + "i;sb(t)

where (�̂i; �̂i) are the parameter estimates from the original data, b is an indicator for the bootstrap

number (running from b = 1 to B) and sb (t) is the new time index which is a random draw from the

original set f1; ::; Tg : Serial dependence in returns is captured by drawing returns data in blocks

with starting point and length both random. Following Politis and Romano (1994), the block length

is drawn from a geometric distribution, with a parameter qSB that controls the average length of

each block. In our empirical work we set qSB = 3. Each bootstrap sample is the same length

as the original sample for the fund. For each set of bootstrapped data we compute the �avgF�

statistic of Andrews, et al. (1996).8 The 90th percentile of the distribution of this statistic across

the B = 1; 000 bootstrap samples serves as the 0:10 level critical value for the test of no signi�cant

changepoint. If the avgF statistic for a given fund is larger than this fund-speci�c critical value,

then we have signi�cant evidence of a change in the parameters of this model for that fund.

2.4.2 Controlling for the search across potential conditioning variables

As noted by Ferson and Schadt (1996), Sullivan, Timmermann and White (1999), and Ferson, Simin

and Sarkissian (2008), it is critical to take into account the search across potential conditioning

variables when conducting tests of the signi�cance of the �best� model. We follow Sullivan, et

al. (1999) and test the signi�cance of the best-�tting conditioning variable by using the �reality

check�of White (2000), again employing the stationary bootstrap of Politis and Romano (1994).

The test statistic for this approach is the smallest p-value, across all potential conditioning variables,

from a joint test of the signi�cance of all coe¢ cients on interaction variables, as in the hypotheses
8 In our empirical work we also computed the �supF�, and �expF� statistics and found little di¤erence in the

results of the tests when applied to our hedge fund data.
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in equation (6). To obtain critical values that are valid in the face of our search across many

possible interaction variables we bootstrap both the hedge fund return and the factor returns, and

estimate the interaction model in equation (5). To impose the null hypothesis that the interaction

terms have zero coe¢ cients, we then re-center the parameters estimated on the bootstrap data

by subtracting the actual estimated values of these parameters. We then compute p-values for

the joint test of signi�cance of the interaction terms, and store the smallest of these across all

interaction variables considered. The 10th percentile of the distribution of this statistic across

the 1; 000 bootstrap samples serves as the 0:10 level critical value for the test of no signi�cant

interaction variables. If the smallest p-value observed on our real data is smaller than this critical

value then we have evidence of a signi�cant interaction variable, controlling for our search across

many possible variables.

3 Data

3.1 Hedge fund and fund of funds data

We use a large cross-section of hedge funds and funds-of-funds over the period from 1995 to 2008,

which is consolidated from data in the HFR, CISDM and TASS hedge fund databases. The appendix

contains details of the process followed to consolidate these data. The funds in the combined

database come from a broad range of vendor-classi�ed strategies, which are consolidated into nine

main strategy groups: Security Selection, Global Macro, Relative Value, Directional Traders, Funds

of Funds, Multi-Process, Emerging Markets, Fixed Income, and Other. Table A.1. in Appendix A

shows the mapping from the vendor classi�cations to these nine strategy groups. The set contains

both live and dead funds, the percentage of the funds in the data that are live and dead is reported

in Table A.2. in the Appendix. The distribution of live versus defunct funds is roughly similar

across the databases, and the total percentage of defunct funds is 46%, which is comparable to the

ratio reported in Agarwal, Daniel and Naik (2009) of 48%, although their sample period ends in

2002.

Table 1 reports summary statistics on the hedge fund data. To overcome the well-known problem

of return smoothing in monthly reported hedge fund returns, we use �unsmoothed�returns in our

analysis, which are estimated from the raw returns using the Getmansky, Lo and Makarov (2004)

moving average model. The parameters of this model are estimated separately for each individual

11



fund, and as in Getmansky, et al. (2004) we use two lags. The means of the reported returns

and unsmoothed returns are similar, but as expected the distribution of the �unsmoothed�returns

is slightly more disperse.9 The median fund has assets under management of USD 32MM, while

the mean is much larger, at USD 167MM, re�ecting the signi�cantly skewed size distribution that

several other studies (Getmansky (2005), Teo (2009)) have highlighted. The median management

fee is 1:5%, and the median incentive fee is 20%, consistent with earlier literature (Agarwal, Daniel

and Naik (2009)); and the withdrawal restrictions (lockup & redemption notice periods) are also

comparable to earlier literature (Aragon (2006)). Panel B of the table shows that the lengths

of the return histories for the funds in the sample correspond closely to that reported by Bollen

and Whaley (2009), with around half of our funds having 5 or more years of data available, and

around 17% of our funds having less than 3 years of data. The mean and median sample sizes

across all funds in our study are 62 and 51 observations respectively. Finally, Panel C reports the

distribution of funds across strategies: the two largest strategies are Security Selection (28.7%) and

Funds of Funds (22.2%), while the two smallest strategies are Relative Value (3.3%) and Global

Macro (6.0%), similar to that reported in Ramadorai (2009). Given that our complete sample

contains 9,538 individual funds, even the smallest strategy group has 312 distinct hedge funds,

which enables us to undertake relatively precise strategy-level analyses.

3.2 Hedge fund factors

The second set of data that we employ is on factor returns. Throughout our analysis, we model the

risks of hedge funds using the seven-factor model of Fung and Hsieh (2004a). These seven factors

have been shown to have considerable explanatory power for fund-of-fund and hedge fund returns,

see Fung and Hsieh (2001,2002,2004a,b), and have been used in numerous previous studies, see

Bollen and Whaley (2009), Teo (2009) and Ramadorai (2009). The set of factors comprises the

excess return on the S&P 500 index (SNPMRF); a small minus big factor (SCMLC) constructed as

the di¤erence between the Wilshire small and large capitalization stock indices; the excess returns

on portfolios of lookback straddle options on currencies (PTFSFX), commodities (PTFSCOM),

and bonds (PTFSBD), which are constructed to replicate the maximum possible return to trend-

9The use of reported returns does not qualitatively a¤ect the results that we report in this paper.

12



following strategies on their respective underlying assets;10 the yield spread of the U.S. 10-year

Treasury bond over the 3-month T-bill, adjusted for the duration of the 10-year bond (BD10RET);

and the change in the credit spread of Moody�s BAA bond over the 10-year Treasury bond, also

appropriately adjusted for duration (BAAMTSY).

3.3 Variables associated with changes in risk exposures

We consider a variety of di¤erent variables that may be associated with hedge fund managers�deci-

sions to increase or decrease their exposure to systematic risks. These variables can be categorized

into four broad groups, corresponding to the underlying drivers of liquidity, funding and leverage,

sentiment and performance.

3.3.1 Liquidity factors

There is a growing recognition of the impact of liquidity on hedge fund and mutual fund per-

formance. Pollet and Wilson (2008) document that mutual funds rarely diversify in response to

increases in their asset base, and associate their result with limits to the scalability of fund port-

folios, such as price impact or liquidity constraints. Sadka (2009) �nds that liquidity risk is an

important determinant of hedge fund returns, and one that is not captured by the Fung-Hsieh

(2004a) seven factors.

Following the recent work of Cao, et al. (2009) we consider the case that managers may attempt

to time their exposure to risk factors in such a manner as to mitigate the in�uence of price impact.

As liquidity rises (falls), the absolute magnitude of risk exposures will rise (fall) as funds more

(less) frequently enter or exit positions. This feature is documented in Cao, et al. (2009) for hedge

fund exposures to the CRSP value-weighted index, and we also consider it, amongst other possible

conditioning variables, for the other Fung-Hsieh hedge fund factors. To capture systematic time-

series variation in asset market liquidity at both monthly and daily frequencies we employ NYSE

turnover, measured as the ratio of the aggregate volume traded in dollars each day or month,

divided by the aggregate market capitalization of the stocks at the close of the day or month,

and detrended using an exponentially weighted moving average. Gri¢ n, Nardari and Stulz (2007)

10See Fung and Hsieh (2001) for a detailed description of the construction of these primitive trend-following (PTF)

factors.
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employ a similar measure of liquidity, and Hasbrouck (2009) provides evidence that volume-based

liquidity measures are able to capture time-variation in liquidity better than price-based measures.

3.3.2 Funding and leverage

Mechanically, hedge fund managers�exposures to systematic risk factors will vary with the level of

leverage that they employ, if their long and short positions do not exactly o¤set one another along

the dimension of factor exposure (see Rubin, Greenspan, Levitt and Born (1999) who document

that hedge funds take on signi�cant leverage). The leverage available to hedge funds will vary

with the costs of borrowing, which we capture using several measures. First, we include both

contemporaneous and lagged LIBOR rates, and contemporaneous and lagged certi�cate of deposit

secondary market rates (the latter as a proxy for the one-month T-bill rate, but with the added

bene�t of daily data availability). We then compute level (the constant maturity three month

T-bill rate), slope (the di¤erence between the ten-year T-bond and three month T-bill rates) and

curvature (twice the two-year rate less the three-month rate less the ten-year rate) factors for the

U.S., and use their �rst di¤erences as conditioning variables. Finally, to capture variation in the

availability of credit on account of changes in the probability of default, we include the level of the

credit spread of Moody�s BAA bond over the 10-year Treasury bond, adjusted for duration.

3.3.3 Sentiment

Brunnermeier and Nagel (2004) point out that hedge funds �rode�the technology bubble of the late

1990s, going long as technology stock prices rose. They also document that hedge funds skillfully

cut back their exposures just prior to the NASDAQ crash of 2000. This evidence is borne out

by the analysis of Fung, Hsieh, Naik and Ramadorai (2008), who highlight that the only period

during which the average fund generated statistically signi�cant alpha was during the peak of the

internet bubble. We therefore include several proxies for investor sentiment, with the view that if

this mechanism is in operation, hedge funds will increase their risk exposures as investor sentiment

rises and vice versa. The proxies we employ are the VIX index (demeaned using an exponentially

weighted moving average), which is labelled the market�s �fear gauge�in Whaley (2000), and the

University of Michigan�s consumer sentiment index, which has been employed as a sentiment proxy

in several studies, see Lemmon and Portniaguina (2006) and Qiu and Welch (2006) for two recent

examples.
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3.3.4 Performance

Several papers on hedge funds have debated the role of incentive-alignment mechanisms such as

high-water marks on hedge fund risk-taking behavior. When a fund makes low or negative returns,

it is more likely to be under its high-water mark, and consequently, managers may have incentives to

increase their levels of systematic risk (see Goetzmann, Ingersoll and Ross (2003)) and vice versa.11

We therefore include the fund�s recent performance (past one-month and past three-month returns)

as conditioning variables. Furthermore, hedge fund managers are often implicitly or explicitly

benchmarked to commonly available indices. When S&P 500 returns are high, managers may be

tempted to increase their risk-factor loadings to avoid the perception that they are underperforming.

With this in mind, we also include both contemporaneous and lagged returns on the S&P 500 as

possible conditioning variables in our setup.

All told, we have a set of 22 possible conditioning variables in our set: Turnover, Lagged

Turnover, Certi�cate of Deposit 1M, Lagged Certi�cate of Deposit 1M,�Level,�Slope,�Curvature,

Lagged �Level, Lagged �Slope, Lagged �Curvature, Default Spread, Lagged Default Spread, LI-

BOR, Lagged LIBOR, VIX, Lagged VIX, Michigan Sentiment, Lagged Michigan Sentiment, Fund

Performance (last month), Fund Performance (last quarter), S&P 500 Return, Lagged S&P 500

Return.

4 The accuracy of estimates of daily variations in beta using

monthly returns

In this section we study the accuracy of our proposed method for estimating daily variations in

the factor exposures of hedge funds using only monthly returns on these funds. We analyze this

problem in two ways, and we �nd support for our method in both cases. Data on individual hedge

fund returns is almost invariably available only at the monthly frequency, however daily data on

a collection of hedge fund style index returns has recently become available. These daily index

returns are an ideal, real-world dataset on which to check the accuracy of our method. Our �rst

approach is to employ this daily data on hedge fund index returns, and to compare the results

that are obtained when estimating the model on daily data with those that are obtained when only

11Note that Panageas and Wester�eld (2009) analyze high water mark contracts as a sequence of options with a

changing strike price, and do not �nd risk-shifting problems in their setup.
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using monthly returns on these indices. Second, we conduct a simulation study that is calibrated

to match the key features of hedge fund returns, and study the accuracy of the proposed method in

this setting. In this analysis we check the robustness of our estimation method to di¤erent features

of the return-generating process.

4.1 Results using daily hedge fund index returns

Daily returns on hedge fund style indices have recently become available from Hedge Fund Research

(HFR)12. We use these data to check whether the estimates of hedge fund factor exposures that

we obtain using our method, based on only monthly returns, are similar to those that would be

obtained if daily data were available. As the HFR daily returns are only available at the index

level and begin only in April 2003, they are not a replacement for the comprehensive data that we

employ on individual hedge funds. Nevertheless this daily information provides us with valuable

insights into the performance of our method.

We employ the daily HFR indices for �ve hedge fund styles: equity hedge, event driven, con-

vertible arbitrage, merger arbitrage, and market neutral. The period April 2003 to October 2008

yields 1409 daily observations and 67 monthly observations. In our main empirical analysis in

Section 5 below, we consider the seven-factor Fung-Hsieh model for hedge fund returns, but three

of the Fung-Hsieh factors (the returns on three portfolios of lookback straddle options) are only

available at a monthly frequency, and so they are not suitable for our model of daily hedge fund

index returns. Thus we restrict our attention to the four Fung-Hsieh factors that are available

at the daily frequency. As in our main analysis below, we follow Bollen and Whaley (2009) and

reduce the Fung-Hsieh model to a more parsimonious two-factor speci�cation by using the Bayesian

Information Criterion to �nd the two Fung-Hsieh factors that best describe the daily hedge fund

index returns. The chosen factors and the coe¢ cients on these factors in models using daily and

monthly returns are presented in Table 2.

Table 2 reports the estimation results for the constant-beta factor model, using both daily and

monthly hedge fund returns. This table con�rms that estimating a constant-beta model using

monthly returns data yields similar parameter estimates to those obtained using daily data13. As

12Distaso, et al. (2009) are perhaps the �rst to study the properties of these data.
13The alpha estimates presented in Table 2 are daily alphas, and so should be multiplied by approximately 22 to

obtain monthly alphas.
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expected, t-statistics are generally lower in the model estimated on monthly data, but the signs

and magnitudes of the estimated parameters are generally close.

Table 3 presents the results of the model for time-varying factor exposures based on conditioning

information, estimated either using daily returns or using monthly returns. The models that are

estimated are:

r�id = �i + �i1f
�
1d + �i2f

�
2d + 
i1f

�
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�
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�
2dZ

�
d + "
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�
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and so �i is the daily alpha of the fund, �i1 and �i2 are the constant exposures to the two factors

f1 and f2; 
i1 and 
i2 capture variations in factor exposures that occur at the monthly frequency

(with the variable Zt) and �i1 and �i2 capture variations in factor exposures that occur at the daily

frequency (with the variable Z�d).

If the methodology presented in Section 2 is accurate, then we would expect to see similar

parameter estimates across the two sampling frequencies. Up to sampling variability, this is indeed

what we observe: Across all �ve indices, the signs of the estimated coe¢ cients generally agree, and

cases of disagreement tend to coincide with parameter estimates that are not signi�cantly di¤erent

from zero. As expected, the parameter estimates obtained from monthly returns are less accurate

than those estimated using daily returns: averaging across all indices and all parameters, the t-

statistics on the daily coe¢ cients are 4:14 times larger for the daily model than for the monthly

model, which is close to the ratio we would expect theoretically,
p
22 � 4:69.

Table 3 also presents the correlation between the time series of daily factor exposures (betas)

estimated using daily and monthly returns. For example, the correlation between the time series of

daily exposure to the S&P500 of the equity hedge index estimated using daily and monthly returns

is 0.98, and the correlation of daily estimates of this index�s exposure to SMB is 0.85. Across the

�ve indices and two factor exposures the average correlation is 0.75. The lowest value (0.25) occurs

for the market neutral index, which was found to have no statistically signi�cant variation in its

factor exposures, and thus a low correlation coe¢ cient is not surprising.

In Figures 1 and 2 we present an illustration of the correspondence between the estimates of

daily factor exposures estimated using actual daily index returns, or using only monthly returns.

For clarity, we narrow the focus of these plots to the �rst quarter of 2008 (the same conclusions are
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drawn from other periods). These �gures illustrate the strong similarity between the two estimates

of time-varying exposure to the S&P500 index, and provide further support for the modelling

approach proposed in Section 2.

4.2 Results from a simulation study

Next, we consider a simulation study designed to further investigate the accuracy of our proposed

estimation method. For simplicity, we consider a one-factor model for a hypothetical hedge fund,

and as in our main empirical analysis below, we allow factor exposures to vary at both the daily

and monthly frequencies. This yields a process for daily hedge fund returns as:

r�d = �+ �f
�
d + 
f

�
dZd + �f

�
dZ

�
d + "

�
R;d; d = 1; 2; :::; 22� T; (10)

where rt �
X21

j=0
r�22t�j ; is the monthly equivalent of the daily variable in the above speci�cation

(analogously ft; Zt). The parameter � captures the average level of beta for this fund, 
 captures

variations in beta that are attributable to the monthly variable Zt; and � captures variations in

beta that are attributable to the daily variable Zd: If we aggregate this process up to the monthly

frequency we obtain:

rt = 22�+ �ft + 
ftZt + �
21X
j=0

f�22t�jZ
�
22t�j + "R;t; t = 1; 2; :::; T: (11)

The parameters �; � and 
 are all estimable using only monthly data; the focus of this simulation

study is our ability to estimate �; and whether attempting to do so adversely a¤ects our estimates

of the remaining parameters.

We next specify the dynamics and distribution of the factor and the conditioning variable. To

allow for autocorrelation in the conditioning variable (as found in such variables as volatility and

turnover) we use an AR(1) process for Z�d :

Z�d = �ZZ
�
d�1 + "

�
Z;d

The conditioning variable is de-meaned prior to estimation, and so the omission of an intercept

in the above speci�cation is without loss of generality. We also assume an AR(1) for the factor

returns, to allow for the possibility that these are also autocorrelated:

f�d = �F + �F
�
f�d�1 � �F

�
+ "�F;d
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Finally, we assume that all innovations are normally distributed, and we allow for correlation

between the factor innovations and the innovations to the conditioning variable:

�
"�R;d; "

�
F;d; "

�
Z;d

�0 s N
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To obtain realistic parameter values for the simulation we calibrate the model to the results

obtained when estimating the model using daily HFR index returns. We use the equity hedge index,

with the S&P500 index as the factor and the VIX volatility series as the conditioning variable. This

leads to the following parameters for our simulation:

� = 2=(22� 12); � = 0:4; 
 = 0:002; � = �0:004

�F = 10= (22� 12) ; �F = 20=
p
22� 12; �Z = 10; �"F =

p
0:1

Thus we assume that the fund generates 2% alpha per annum with an average beta of 0.4, and

a daily beta that varies with both daily and monthly �uctuations in the conditioning variable

(Z� and Z) : The factor is assumed to have an average return of 10% per annum and an annual

standard deviation of 20%. The conditioning variable has daily standard deviation of 10 (similar to

the VIX), and the innovation to the returns process has a daily variance of 0.1, which corresponds

to an R2 of around 0.6 in this design.

We vary the other parameters of the returns generating process in order to study the sensitivity

of the method to these parameters. We consider:

�Z 2 f0; 0:5; 0:9g

�F 2 f�0:2; 0; 0:2g

�FZ 2 f0; 0:5g

T 2 f24; 60; 120g

Thus we allow the conditioning variable to vary from iid (�Z = 0) to persistent (�Z = 0:9) ; we

allow for moderate negative or positive autocorrelation in the factor returns, we allow for zero or

positive correlation between the factor and the conditioning variable, and we consider three sample

sizes: 24 months, 60 months or 120 months, which covers the relevant range of sample sizes in our

empirical analysis (the average sample size in our empirical application is 62 months). We simulate

each con�guration of parameters 1; 000 times, and report the results in Table 4.
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The table shows that the estimation method proposed in Section 2 performs very well in realistic

scenarios. In the �base�scenario, we see that with just 60 months of data we are able to reasonably

accurately estimate the parameters of this model, including the parameter �; which allows us to

capture daily variation in hedge fund risk exposures. Across a range of di¤erent sample sizes,

degrees of autocorrelation and correlation, we see that the estimation method performs well: The

90% con�dence interval of the distribution of parameter estimates contains the true parameter in

all ten scenarios that we consider. This is true even in the last two columns of Table 4, where

we consider scenarios that violate our assumption that the innovations to the hedge fund return

process are not correlated with leads or lags of the factor or conditioning variable: We consider

autocorrelation in both the factor and the conditioning variable, and allow these variables to be

correlated. The simulation results indicate that no problem arises in samples of the size that we

face in pratice.

Overall, our analysis of daily returns on hedge fund indices and the simulation results of this

section provide strong support for the reliability of our estimation procedure in practice. Given

daily conditioning variables for hedge fund risk exposures, the results of this section con�rm that

our method provides a means of obtaining reliable estimates of daily risk exposures from monthly

hedge fund returns.

5 Empirical evidence on dynamic risk exposures

Given the relatively short histories of returns for the hedge funds in our sample documented in

Table 1, and the data-intensive nature of the models for dynamic risk exposures to be estimated,

controlling the number of parameters to be estimated is important. In view of this, we follow Bollen

and Whaley (2009) and reduce the full seven-factor Fung-Hsieh model to a more parsimonious two-

factor model. For each individual fund, we choose the two-variable subset of factors from the full

set of seven that minimizes the Bayesian Information Criterion when the fund�s returns are on the

left-hand side14. Figure 3 shows that the most frequently selected factor is the S&P 500 index,

chosen for 65% of the funds. Of the remaining six factors, the most frequently selected is the size

factor (SMB) while the second most frequently selected factor is the default spread (BAAMTSY),

14As the number of parameters in each of these models is the same, minimizing the BIC is equivalent to maximizing

the R2 or adjusted R2:
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which are chosen for 40% and 35% of funds respectively. Figure 4 breaks this down across the nine

strategy groups and shows that the selected second factors are generally consistent with intuition

about the factors on which di¤erent strategies load. For example, within the Global Macro strategy,

the most frequently picked second factor is the return on a portfolio of lookback straddle options

on currencies (PTFSFX), whereas for �xed income the default spread (BAAMTSY) is the most

frequently picked. With these �optimal�two-factor models for each individual fund, we now turn

to models for dynamic exposures to these factors.

5.1 Optimal conditioning variables for dynamic risk exposures

In Section 3.3 we discussed the complete set of 22 variables we consider as conditioning variables for

capturing time variations in hedge funds�risk exposures. Although the model described in Section

2.3 extends naturally to handle both more risk factors, ft; and more conditioning variables, Zt; the

limited time series of data we have on individual funds compels us to keep the model as simple

as possible. To that end, we consider only a single conditioning variable in the model. We search

across the set of 22 conditioning variables to �nd the variable that is the most signi�cant for a

given fund15, and to test the signi�cance of the selected conditioning variable we control for the

fact that it is the outcome of a speci�cation search by using the �bootstrap reality check�approach

of White (2000), described in Section 2.4.2.

Table 5 presents the results of searching for the optimal conditioning variable for each of the

9,538 individual funds. As some of the interaction variables we consider are not available at a

daily frequency, the number of parameters in the model can vary from fund to fund. Conditioning

variables available at both daily and monthly frequencies are denoted �M,D� in the �rst column

of Table 5, while those available only monthly are denoted �M�. Conditioning variables that are

labelled �M�generate factor models with �ve right-hand side variables (the intercept, the two Fung-

Hsieh factors selected using the BIC criterion, and two additional right-hand side variables that

are interactions between each of the Fung-Hsieh factors and the interaction variable). Conditioning

15We measure the signi�cance of a given conditioning variable by the p-value from a joint test that all coe¢ cients

on interaction terms involving that variable are zero. The number of parameter restrictions that this implies varies

from two to four, depending on whether zero, one or two daily interaction terms are available for inclusion in the

model. We use standard errors based on Newey and West (1987) to obtain the Wald test statistic and use the �2p

distribution, with p = 2; 3; or 4 depending on the number of restrictions being tested, to obtain the p-value. The

critical value for the p-value is determined using the reality check of White (2000).
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variables labelled �M,D�generate factor models with �ve, six or seven right-hand side variables:

the �ve regressors from above, plus zero, one or two daily interaction terms
�X

Zdfid

�
depending

on whether the 0, 1, or both selected Fung-Hsieh factor are available at the daily frequency, or only

monthly (as in the case of the PTFs).

Table 5 presents both the proportions of funds for which a given conditioning variable is selected,

and the proportion of funds for which the selected conditioning variable is signi�cant at the 0.10

level, according to the bootstrap reality check testing procedure. Table 5 orders the conditioning

variables by the proportion of funds for which it was signi�cant, and the ranking can be seen to be

similar when using the selected proportion instead.

Using the bootstrap testing procedure described in Section 2.4, we �nd that the selected condi-

tioning variable is signi�cant for 2,638 or 28% of funds, at the 0.10 level, substantially more than

can be attributed purely to chance. The �ve most signi�cant (and frequently selected) conditioning

variables�Level, the S&P 500 return (and its lag), LIBOR, and VIX. Clearly, funding, performance

and sentiment are important drivers of changes in hedge funds�risk exposures. The liquidity vari-

able (Turnover) comes in 6th, which suggests that the role of liquidity in a¤ecting time-variation

in funds�exposures is also important. While the frequency of selection is important, it is perhaps

more important to consider the increase in the R2 that obtains from augmenting the factor model

with the conditioning variables. Across all conditioning variables, the R2 rises by a factor of 1:6,

from an average of 41.4% for the constant-parameter model to 65% for the model with conditioning

information. Adjusted R2 also increases when we move from the constant-parameter model to the

model with conditioning information, from an average of 24.7% to an average of 38.8%. Next, we

compare our proposed model with a more sophisticated alternative, the Bollen and Whaley (2009)

optimal changepoint model.

5.2 Comparing changepoints with conditioning variables

Table 6 compares the optimal changepoint model employed by Bollen and Whaley (2009) with

our model. In the �rst row we present the proportion of funds for which the changepoint or

conditioning variable is signi�cant using the bootstrap approaches described in Section 2.4, which

appropriately account for the search process. For comparison purposes for our model, we also

present the proportion of funds for which the conditioning variable is signi�cant according to a

naïve statistical test that ignores the search across variables. Ferson and Schadt (1996) and Ferson,
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Simin and Sarkissian (2008) highlight that data-mining is potentially an important concern when

using models with conditioning information; and the comparison between the naïve and bootstrap

proportions helps to illustrate the extent of the problem.

The �rst column of Table 6 shows that we detect a signi�cant changepoint for 30.9% of funds

using the bootstrap test16. Figure 5 shows the most frequently selected changepoint dates between

January 1996 and January 2008. The three most frequently selected changepoint dates are January

1996, March 2000, and August 2007. March 2000 corresponds to the peak of the NASDAQ bubble,

and July 2007 (the month prior to one of the selected dates) can be linked to the disclosure by Bear

Stearns that two of their hedge funds had lost nearly all of their value amid a rapid decline in the

market for subprime mortgages. It is hard to link January 1996 to any well-known event in �nancial

markets. Concentrating instead on the dates that are most signi�cant (shaded black in Figure 5)

we �nd that March 2000, April 2001 and August 2008 are the most signi�cant changepoint dates.

Again, April 2001 is di¢ cult to link to any well-known event in �nancial markets. The lack of

signi�cant events during several of the frequently selected changepoint months (and the relatively

�at nature of the graph of signi�cant break dates) highlights the di¢ culty in interpreting the results

from the changepoint method, a relative advantage of our approach. Turning to the second column

of Table 6, we see that our approach based on conditioning information �nds 27.7% of funds with

a signi�cant conditioning variable (94.6% if we ignore the search process).

The third and fourth columns of the table o¤er a comparison between the optimal changepoint

method and our model. We �rst take the conditioning variable selected for each fund as given, and

then test whether there are any statistically signi�cant changepoints remaining in the intercept and

the two Fung-Hsieh factor coe¢ cients. The third column of Table 6 shows that once we choose

interaction variables for the fund using our approach, the number of funds for which the changepoint

model adds signi�cant explanatory power drops to 15.2%, around one-half of the proportion of funds

when the conditioning variable is omitted from the model. This is a substantial reduction, but it

also reveals that while our model does capture a large part of the time-variation in factor loadings,

there is some signi�cant remaining variation in factor loadings captured by the use of changepoints.

This suggests that a hybrid model incorporating both changepoints and conditioning variables may

work better than either in isolation. The fourth column of Table 6 shows what happens when we

16This �gure is based on the avgF test statistic; when we bootstrap supF, this percentage falls to 28:7%, and

bootstrapping expF results in 29:8%.
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run the experiment in reverse, namely when we �rst �nd the optimal changepoint for each fund,

and then search across conditioning variables. The numbers show that our method is, if anything,

even more useful once a changepoint has been identi�ed: the proportion of funds for which there

is a statistically signi�cant conditioning variable rises slightly to 30:1% of the full sample from the

27:7% originally detected.

Table 6 shows the percentage of funds selecting di¤erent models, but does not provide infor-

mation about the magnitude of the improvements o¤ered by our model on a fund-by-fund basis.

Figure 6 depicts the performance of the models graphically for the entire set of 9; 538 funds in the

data, plotting the cumulative distribution functions of the R2 statistic for all funds for the di¤erent

models. Con�rming Bollen and Whaley�s (2009) �nding, the �gure shows that the changepoint

model convincingly beats the constant-parameter model. However, our model based on condition-

ing variables beats the changepoint model in the sense that the CDF of our model everywhere lies

under that of the changepoint model. Finally, the two hybrid models considered in columns three

and four of Table 6 both beat our model, con�rming that there are gains to combining the change-

point and conditioning variable approaches. Table 7 reproduces some of the percentiles plotted

in Figure 6, and shows that the dominance of the interaction approach is also observed when we

compare adjusted R2 statistics, and not just raw R2s.

5.3 The value of daily conditioning information

Figure 7 analyzes one source of the improvements o¤ered by our model. As in Figure 6, we plot

the CDF of the R2s from the constant-parameter and interaction-based models. We then make one

addition to the �gure, namely, we include the CDF of R2s from model that includes only monthly

(not daily) conditioning information. The �gure shows that if we only consider monthly conditioning

information, our model does approximately as well as the optimal changepoint model; slightly worse

on low R2 funds, and slightly better on high R2 funds. Clearly, the major improvement in the model

based on conditioning information relative to the optimal changepoint model comes from the use

of daily conditioning information. Table 7 con�rms that this is true even when we account for the

reduction in the number of variables employed in the monthly model: Comparing across the third

and sixth columns of the table in the adjusted R2 panel, it is clear that the model with added daily

interactions dominates the model with only monthly interactions at all percentiles.

The test results in Table 6 support this �nding: when restricting conditioning information to
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monthly variables, we �nd 17.7% of funds with statistically signi�cant variations in factor expo-

sures. When we also consider daily information, the proportion increases to 27.7%. For just 1.3%

of funds do we �nd signi�cant variation using monthly information but not when using both daily

and monthly information, while for 11.3% of funds we �nd signi�cant variation when using daily

conditioning information, but no signi�cant variation when only using monthly conditioning in-

formation. Stated di¤erently, for a total of 1076 funds we �nd evidence of varying risk exposures

using daily information where no evidence could be found when using only monthly information.

We thus conclude that accounting for the high frequencies at which hedge funds alter their risk

exposures is very important when modeling their systematic risk exposures.

As an aside, Table 7 also presents one further change in our model, which follows Christophersen,

Ferson and Glassman (1998). The change is to augment the interaction model to allow for time-

varying alpha, i.e., interacting the intercept with the conditioning information variable in addition

to the time-varying regressors. This addition further increases the explanatory power provided by

our approach �the �nal column of Table 7 shows that this improvement is quite substantial.

5.4 Conditioning variables across hedge fund styles

We now turn to economic interpretations of some of the results from the models with conditioning

information. Table 8 lists the top three most often selected interaction variables across the nine

strategy groups. The �rst column of the table lists the percentage of funds within each strategy

group that have statistically signi�cant interaction variables once the process of searching across the

22 interaction variables is accounted for. The most frequently selected variables across all strategies

are �Level, the S&P 500 return and VIX. In terms of the four categories, namely liquidity, funding

and leverage, sentiment and performance, variations in funding costs appear to be the main driver

of the changes in factor loadings across all strategy groups (accounting for 10 of the 27 top three

variables per strategy). This is perhaps unsurprising considering the signi�cant role of leverage in

hedge funds�return-generation strategies. Studies of the e¤ect of leverage on hedge fund returns

have been somewhat sparse given the lack of detailed data on this aspect of hedge funds�activities,

and authors have adopted di¤erent strategies for ascertaining these e¤ects. For example, using

simulations, Lo and Khandani (2008) highlight that systematic portfolio deleveraging by long-

short equity hedge funds could have been responsible for the �quant meltdown�of August 2007.

Liang (1999) uses the self-reported data in the HFR database on hedge funds�use of leverage, and
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documents that while there is no discernible di¤erence across all funds between those using leverage

and those not using leverage, convertible arbitrage and merger arbitrage funds bene�t from the use

of leverage, while emerging market funds are hurt by the use of leverage. In keeping with this

observation, Table 8 shows that both Relative Value (which contains merger arbitrage funds) and

Fixed Income (which contains convertible arbitrage funds) select �Level and LIBOR as two of their

most frequently picked interaction variables.

6 Conclusion

Recent research on hedge funds and mutual funds has documented the importance of accounting

for the dynamic nature of the risk exposures of these actively managed investment vehicles. Several

approaches have been proposed in the literature, including modelling these risk exposures as un-

observed latent factors, and employing optimal changepoint regression techniques. We add to this

literature with a new model that is related to the well-known Ferson and Schadt (1996) conditional

performance evaluation model, extending this approach to capture the daily variation in hedge

funds�factor exposures through the use of daily conditioning variables.

Using a comprehensive data base of hedge funds over the 1995 to 2008 period, we �nd that our

model performs well on statistical grounds, beating the constant parameter model, and also out-

performing more sophisticated models such as the changepoint regression approach. The extension

of our model to capture daily variation in factor exposures is important in this context: A model

with purely monthly interaction variables only performs approximately as well as the changepoint

regression approach. In addition to its good statistical performance, our approach provides the

added bene�t of economic interpretability of the changes in factor exposures: We �nd that variations

in the cost of leverage, liquidity, movements in the VIX, and the performance of commonly employed

benchmarks such as the S&P 500 are important drivers of hedge funds� risk exposures. These

�ndings add to the heretofore sparse evidence on the role of leverage and liquidity in hedge funds�

risk pro�les, an area of increasing importance in light of recent public debates.
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Appendix

The consolidated hedge fund database

The �nal combined database used in this paper comprises 9; 538 live and dead funds of funds

and hedge funds for which contiguous returns data for at least 24 months are available over the

interval spanning 1995 to 2008. This appendix describes how this combined database was created.

The hedge fund and fund of funds data span three di¤erent sources: TASS, HFR, and CISDM,

the time-stamp on the databases is December 2008. There are a total of 17; 732 live and dead funds

across all the databases, for which both administrative information (including fund characteristics)

and returns information were available. This number is misleading, since an individual fund can

appear multiple times from di¤erent vendors, resulting in duplication. The information available in

the administrative �les of the databases are used to systematically remove duplicates. The criteria

used for elimination are:

1. Key name: di¤erent funds from di¤erent database sources occasionally name the same fund

di¤erently. A �Key name�is created for each unique fund using a name-matching algorithm that

eliminates di¤erences on account of hyphenation, misspellings and punctuation.

2. Currency: funds that have the same Key names might o¤er shares to investors in multiple

di¤erent currencies. If the returns are the same when converted into a common currency, the funds

are considered duplicates, otherwise they are preserved as di¤erent funds.

3. Strategy: there are 78 di¤erent strategies listed in the consolidated administrative informa-

tion �le coming from the four di¤erent database sources. Using the classi�cation system employed

in Naik, Ramadorai and Stromqvist (2007), these 78 strategies are condensed into nine broad cat-

egories. The correspondence between the strategies encountered in the administrative �le, and the

broad categories is presented in the Table A.1. below.

4. Management Company: since the information came from three di¤erent sources, the names

of the management companies of funds are also occasionally di¤erently spelled. The names of

management companies are standardized in the same way as the creation of key names (point 1.

above).

5. Length of History: the administrative �les include information such as from- and to-dates,

which provide the start and end date of when information about the hedge fund or fund-of-funds

was recorded in the database source. If there are two or more funds that are completely identical
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in terms of key name, currency, strategy, and management company, the fund for which the longest

period of information is available is selected.

Once this process is completed, additional criteria from the administrative �les are used to

remove any remaining duplicates. Funds with identical key names, currencies, and from-dates are

compared based on their reported minimum investment, redemption notice periods and lock-up

periods. If, within these subgroups, all of the three administrative �elds are the same, the funds

are assumed to be the same. In cases of duplicates, those with the greatest length of history are

chosen, as before. This procedure leaves us with information on 12; 560 unique hedge funds and

funds-of-funds. We then impose the additional requirement that the funds have at least 24 months

of contiguous returns information available. This eliminates a total of 3; 022 funds, leaving a total

of 9; 538 funds in the �nal data. The sources of these funds and the percentage that are alive and

defunct (either liquidated or closed to new investments) are shown in Table A.2.
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Table A.1.  
Vendor Provided Strategies and Mapped Strategies 

 
This table shows the fund strategies provided by HFR, TASS and CISDM data vendors in the first column, and the nine 
strategies to which these are mapped in the second column. 
   

Strategy in Consolidated Database Mapped Strategy 

Arbitrage Relative Value 
Capital Structure Arbitrage Relative Value 
Convertible Arbitrage Fixed Income 
CPO-Multi Strategy Other 
CTA – Commodities Other 
CTA-Systematic/Trend-Following Other
Dedicated Short Bias Directional Traders 
Directional Traders Directional Traders 
Discretionary Trading Other 
Distressed Securities Multi-Process 
Emerging Emerging 
Emerging Markets Emerging 
Emerging Markets: Asia Emerging 
Emerging Markets: E. Europe/CIS Emerging 
Emerging Markets: Global Emerging 
Emerging Markets: Latin America Emerging 
Equity Hedge Security Selection 
Equity Long Only Directional Traders 
Equity Long/Short Security Selection 
Equity Market Neutral Security Selection 
Equity Non-Hedge Directional Traders 
Event Driven Multi-Process 
Event Driven Multi Strategy Multi-Process 
Event-Driven Multi-Process 
Fixed Income Fixed Income 
Fixed Income – MBS Fixed Income 
Fixed Income Arbitrage Fixed Income 
Fixed Income: Arbitrage Fixed Income 
Fixed Income: Convertible Bonds Fixed Income 
Fixed Income: Diversified Fixed Income 
Fixed Income: High Yield Fixed Income 
Fixed Income: Mortgage-Backed Fixed Income 
FOF-Conservative Funds of Funds 
FOF-Invest Funds in Parent Company Funds of Funds 
FOF-Market Neutral Funds of Funds 
FOF-Multi Strategy Funds of Funds 
FOF-Opportunistic Funds of Funds 
FOF-Single Strategy Funds of Funds 
Foreign Exchange Global Macro 
Fund of Funds Funds of Funds 
Global Macro Global Macro 
HFRI Other 
Index Other 
Long Bias Directional Traders 
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Table A.1. (Continued) 

Strategy in Consolidated Database Mapped Strategy 

  
Long/Short Equity Hedge Security Selection 
Long-Short Credit Fixed Income 
Macro Global Macro 
Managed Futures Other
Market Timing Directional Traders 
Merger Arbitrage Relative Value 
Multi Strategy Multi-Process 
Multi-Process Multi-Process 
Multi-Strategy Multi-Process 
No Bias Relative Value 
Option Arbitrage Relative Value 
Other Relative Value Relative Value 
Private Placements Multi-Process 
Regulation D Relative Value 
Relative Value Relative Value 
Relative Value Arbitrage Relative Value 
Relative Value Multi Strategy Multi-Process 
Sector Directional Traders 
Sector: Energy Directional Traders 
Sector: Financial Directional Traders 
Sector: Health Care/Biotechnology Directional Traders 
Sector: Miscellaneous Directional Traders 
Sector: Real Estate Directional Traders 
Sector: Technology Directional Traders 
Security Selection Security Selection 
Short Bias Directional Traders 
Short Selling Directional Traders 
Statistical Arbitrage Relative Value 
Strategy Other 
Systematic Trading Directional Traders 
Tactical Allocation Directional Traders 
UNKNOWN STRATEGY Other 
Variable Bias Directional Traders 
(blank) Other

 
Table A.2. 

Data Sources 
This table shows the number of funds from each of the three sources (HFR, TASS and CISDM), and the number of these 
funds that are alive and defunct (either liquidated or closed) in the consolidated universe of hedge fund data. 

 

          

Source Dataset Number of Funds Alive Defunct % Defunct 

TASS 3397 1813 1584 46.629% 

HFR 3537 2120 1417 40.062% 

CISDM 2604 1265 1339 51.421% 

Total 9538 5198 4340 45.502% 
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Figure 1: Estimates of the daily exposure of the HFR equity hedge index to the SP500 index over
the �rst quarter of 2008 from three models: constant beta, time-varying beta using daily returns on
the index, and time-varying beta using the proposed method based only on monthly returns.
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Figure 2: Estimates of the daily exposure of the HFR equity hedge index to the SMB index over the
�rst quarter of 2008 from three models: constant beta, time-varying beta using daily returns on the
index, and time-varying beta using the proposed method based only on monthly returns.
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Table 1  
Summary Statistics 

 
This table shows summary statistics for the funds in our sample.  Panel A reports the percentiles of the 
pooled (cross-sectional) distribution of returns, unsmoothed returns, AUM, management fees, incentive 
fees, lockup and redemption notice periods.  Panel B shows the percentages of funds in the consolidated 
sample of 9,538 which have return histories of the lengths specified in the column headers.  Panel C shows 
the percentages of the 9,538 funds in each of the strategies represented in the rows.  
 

Panel A 
 

  Returns Unsmoothed  AUM  Management Incentive Fee Lockup  Redemption Notice

    Returns ($MM)  Fee Fee (Months) (Months) 

25th Prctile -0.700 -0.841 9.400 1.000 15.000 0.000 0.333 
50th Prctile 0.720 0.710 32.000 1.500 20.000 0.000 1.000 
75th Prctile 2.230 2.363 106.756 2.000 20.000 6.000 1.500 
Mean 0.845 0.847 166.714 1.400 16.635 3.438 1.125 

 
 
 

Panel B 
 

<36 Months >=36 , <60 >=60 

Length(Return History) 17.100 31.233 51.667 
 
 
 

Panel C 
 

  Percent of Funds in Strategy 

Security Selection 28.727 
Global Macro 6.039 
Relative Value 3.271 
Directional Traders 7.811 
Funds of Funds 22.248 

Multi-Process 8.209 

Emerging Markets 6.238 
Fixed Income 7.779 
CTAs and Others 9.677 
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Table 2 
Factor models for daily and monthly hedge fund style index returns 

Table 2 shows results from a simple two-factor model applied to five hedge fund style index returns, identified in the first row of the table. In all cases a constant 
is included, and two factors from the set of four daily Fung-Hsieh factors are selected using the Bayesian Information Criterion. Robust t-statistics are reported 
below the parameter estimates, and the R2 and adjusted R2 are reported in the bottom two rows of the table. 
 
 

  Equity Hedge Event Driven Convertible Arb Merger Arb Market Neutral 

Daily Monthly Daily Monthly Daily Monthly Daily Monthly Daily Monthly 

Constant -0.005 -0.007 0.012 0.008 -0.034 -0.021 0.016 0.015 0.004 0.004
t-stat -0.580 -0.865 1.654 1.498 -1.775 -1.239 2.869 2.620 0.621 0.632
SP500 0.362 0.536 0.256 0.426 -0.105 0.249 0.140 0.151 
t-stat 16.252 6.641 12.714 11.280 -3.025 2.399 5.118 3.549 
SMB 0.161 0.140 -0.019 0.000
t-stat 2.979 2.039 -0.828 -0.004
TCM10Y -0.139 -0.038
t-stat -1.072 -0.057
BAAMTSY -1.807 -1.279 -5.950 -15.478 -0.245 -0.197 
t-stat     -2.512 -2.269 -2.457 -3.530 -0.354 -0.318

R2 0.681 0.695 0.578 0.729 0.210 0.703 0.458 0.335 0.157 0.000
R2adj 0.681 0.685 0.577 0.721 0.209 0.694 0.457 0.314 0.156 -0.031

  



42 
 

Table 3 
Factor models for daily and monthly hedge fund style index returns, with time-varying betas 

Table 3 shows results from a two-factor model applied to five hedge fund style index returns, identified in the first row of the table, allowing for time variation in 
the factor exposures through conditioning variables. This model is described in equations (8) and (9). Two factors from the set of four daily Fung-Hsieh factors 
are selected using the Bayesian Information Criterion, and are identified in Table 2. Robust t-statistics are reported below the parameter estimates, and the R2 and 
adjusted R2 are also reported. The fourth-last row presents the bootstrap p-value for the joint significance of the coefficients on the interaction terms (gamma1, 
gamm2, delta1, delta2), controlling for the search across possible interaction variables that was conducted. The third-last row presents the naive p-value from a 
similar test that ignores the search process. The second- and third-last rows present the correlation between the time series of daily factor exposures estimated 
using daily and monthly data, for each of the two factors. The selected conditioning variable is presented in the final row. 
 

      Equity Hedge     Event Driven     Convertible Arb    Merger Arb    Market Neutral 

  Daily Monthly Daily Monthly Daily Monthly Daily Monthly Daily Monthly

Alpha 0.001 -0.001 0.010 0.000 -0.015 0.019 0.014 0.014 0.003 0.007 
t-stat 0.097 -0.152 1.437 0.028 -0.854 2.187 2.578 2.312 0.485 1.523 
Beta1 0.337 0.443 0.262 0.441 -0.073 0.237 0.119 0.170 -0.013 -0.006 
t-stat 15.518 9.011 16.528 12.887 -2.670 3.273 6.853 3.296 -0.612 -0.162 
Beta2 0.237 0.187 -1.683 -0.734 -2.409 2.089 -0.782 -0.428 -0.239 0.897 
t-stat 7.124 3.107 -3.228 -1.062 -2.974 1.138 -2.318 -0.417 -1.913 2.395 
Gamma1 -5.411 -6.998 -0.023 -0.053 -0.730 -2.550 -0.056 -0.175 -0.360 -0.838 
t-stat -3.453 -1.537 -0.519 -0.248 -1.070 -1.317 -0.931 -1.447 -1.395 -2.849 
Gamma2 2.758 4.520 -0.768 -0.398 58.606 125.310 -2.469 -3.353 -0.465 -4.926 
t-stat 1.519 1.075 -0.608 -0.179 2.959 2.857 -2.518 -1.224 -0.632 -1.916 
Delta1 6.657 -36.442 -0.385 0.363 0.066 0.270 -0.237 0.056 0.292 0.829 
t-stat 0.694 -2.090 -4.805 1.142 3.313 12.730 -2.481 0.539 1.294 2.971 
Delta2 -90.453 -174.020 -7.598 -21.166 1.532 0.528 7.428 1.787 0.624 6.944 
t-stat -7.497 -5.217 -6.067 -5.172 6.182 0.261 2.411 0.153 0.890 2.671 

R2 0.720 0.790 0.603 0.813 0.306 0.930 0.520 0.373 0.183 0.289 
R2adj 0.719 0.769 0.601 0.794 0.303 0.924 0.518 0.310 0.180 0.218 

Boot p-val 0.000 0.006 0.000 0.003 0.000 0.000 0.000 0.305 0.639 0.255 
Naïve p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000

Corr-b1[t] 0.983 0.918 0.642 0.946 0.609 
Corr-b2[t] 0.849 0.842 0.798 0.762 0.249 

Interact  var Turnover ∆Slope SP500 lag1 Lagged ∆Level LIBOR 
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Table 4 
Results from a simulation study of the estimation method 

Table 4 reports the mean and standard deviation, across 1000 independent simulation replications, of estimates of the parameters of a model of time-varying 
factor exposures. The results for ten different simulation designs are presented. Simulation design parameters are presented in the first panel of the table, and the 
mean and standard deviation of the simulation distribution of parameter estimates are presented in the second and third panels. The true values of the four 
parameters are presented in the first column of the table. The values for alpha, gamma and delta are scaled up by a factor of 100 for ease of interpretability. 
 

1 2 3 4 5 6 7 8 9 10 

    
True 

values  
Base  

scenario 
Short  

sample 
Long  

sample 

Low  
autocorr

in Z 

High  
autocorr

in Z 

Corr  
b/w F, 

Z 

Neg 
autocorr  

in F,  
rhoFZ=0 

Pos 
autocorr  

in F,  
rhoFZ=0 

Neg 
autocorr  

in F,  
rhoFZ=0.5 

Pos 
autocorr  

in F,  
rhoFZ=0.5 

T 60 24 120 60 60 60 60 60 60 60 
rhoFZ 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 
phiZ 0.5 0.5 0.5 0.0 0.9 0.5 0.5 0.5 0.5 0.5 
phiF 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 0.2 -0.2 0.2 

Mean Alpha*100 0.758 0.715 0.827 0.794 0.729 0.773 0.812 0.780 0.735 0.725 0.721 
Mean Beta 0.400 0.400 0.397 0.399 0.400 0.401 0.400 0.401 0.400 0.399 0.401 
Mean Gamma*100 0.200 0.198 0.198 0.200 0.198 0.200 0.200 0.199 0.201 0.198 0.199 
Mean Delta*100 -0.400 -0.391 -0.400 -0.409 -0.399 -0.404 -0.410 -0.381 -0.392 -0.397 -0.394 

St dev Alpha*100   0.089 0.146 0.062 0.089 0.092 0.194 0.085 0.091 0.191 0.191 
St dev Beta 0.035 0.060 0.024 0.033 0.035 0.035 0.042 0.031 0.041 0.029 
St dev Gamma*100 0.005 0.009 0.003 0.008 0.003 0.005 0.006 0.004 0.005 0.004 
St dev Delta*100   0.038 0.062 0.026 0.035 0.052 0.034 0.039 0.034 0.037 0.031 
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Table 5 
Selection of Conditioning Variables 

Table 2 shows results from the interaction-based model applied to the 9,538 funds in the data.  In order, the columns report if the conditioning variable has only 
monthly (M) or monthly and daily (M,D) data; the variable name; the number of funds for which the conditioning variable is selected (the funds for which the 
variable beats all the other conditioning variables on the R2 criterion); the mean R2 from the benchmark constant-parameter factor model; the mean R2 from the 
factor model augmented with the selected conditioning variable; the ratio of the two R2’s; the number of funds for which the conditioning variable is significant 
using the bootstrap reality check; the average R2 from the benchmark and conditional factor models (and their ratio) only for those funds for which the 
conditioning variable is significant 

Funds for which variable is selected Funds for which variable is significant 
Frequency Variable Number Base R2 Best R2 Best/Base Number Base R2 Best R2 Best/Base

1 M, D ∆Level 783 0.293 0.488 1.666 312 0.374 0.636 1.698 
2 M, D S&P500 Return 771 0.325 0.495 1.520 275 0.439 0.668 1.521 
3 M, D LIBOR 571 0.306 0.476 1.557 205 0.429 0.639 1.491 
4 M, D Lagged S&P500 Return 469 0.316 0.491 1.555 173 0.441 0.677 1.534 
5 M, D VIX 490 0.285 0.474 1.662 160 0.386 0.666 1.723 
6 M, D Turnover 444 0.311 0.490 1.574 158 0.418 0.672 1.606 
7 M, D Lagged LIBOR 422 0.325 0.490 1.509 151 0.467 0.672 1.438 
8 M, D Lagged Turnover 467 0.278 0.446 1.604 133 0.386 0.634 1.646 
9 M Michigan Sentiment index 394 0.294 0.445 1.515 113 0.431 0.638 1.479 
10 M, D Lagged ∆Level 413 0.280 0.450 1.610 101 0.425 0.677 1.590 
11 M, D Default Spread 353 0.284 0.447 1.573 90 0.418 0.654 1.565 
12 M CD 1 month 310 0.309 0.453 1.467 87 0.459 0.643 1.401 
13 M Fund performance (3 months) 487 0.247 0.391 1.584 87 0.419 0.632 1.509 
14 M, D Lagged Default Spread 377 0.296 0.460 1.556 86 0.412 0.663 1.611 
15 M, D ∆Curvature 384 0.272 0.439 1.613 85 0.418 0.682 1.633 
16 M, D Lagged VIX 358 0.266 0.438 1.642 81 0.366 0.627 1.712 
17 M Fund performance (1 month) 601 0.240 0.384 1.603 78 0.341 0.595 1.746 
18 M Lagged Michigan index 373 0.282 0.430 1.527 75 0.435 0.634 1.458 
19 M, D ∆Slope 325 0.269 0.426 1.583 62 0.404 0.660 1.635 
20 M Lagged CD 1 month 226 0.292 0.433 1.481 47 0.429 0.618 1.440 
21 M, D Lagged ∆Curvature 273 0.262 0.416 1.586 42 0.426 0.678 1.591 

22 M, D Lagged ∆Slope 247 0.274 0.443 1.618 37 0.385 0.645 1.673 

Total Total/Average 9538 0.287 0.450 1.573 2638 0.414 0.650 1.577 



45 
 

 

 

Table 6 
Comparing Changepoints With Conditioning Variables 

 
This table shows results from a comparison between the change-point model of Bollen and Whaley (2009) and the conditioning variables (or “interactions”) 
method applied in this paper.  The columns show the method employed for allowing for time-varying betas: The optimal changepoint regression approach; the 
conditioning variables approach adopted in this paper; a model with the optimal conditioning variables included in the baseline two-factor model, and then the 
optimal changepoint being estimated; a model with the optimal changepoint included in the baseline two-factor model, and then the optimal conditioning variable 
being selected; the conditioning variables model estimated using only monthly variables; and a conditioning variables model that allows for time-variation in the 
intercept as well as the factor loadings.  The numbers in each cell represent the proportion of all 9,538 funds for which the bootstrap yields statistically significant 
results.  The test used for the changepoint models is the “avgF” test; and the bootstrap reality check of White (2000) is used for the interaction models. The 
bottom row of this table reports the proportion of funds for which we would conclude the conditioning variable is significant if we ignored the search process. 
 

Changepoints Interactions 
Interactions first, add 

Changepoints 
Changepoints first, add 

Interactions 
Interactions, but 

only monthly  
Interactions, allow 

varying Alpha 
     

Bootstrap 0.309 0.277 0.152 0.301 0.177 0.329 
 

Naive  
0.946 

 
0.929 0.935 0.967 
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Table 7 
Comparing Distributions of R-squared and Adjusted R-squared Statistics across Factor Models 

 
This table shows percentile points of the R-squared and Adjusted R-squared distributions across 9,538 funds when applying the different methods to allow for 
time-varying factor loadings.  The columns show the method employed for allowing for time-varying betas: The optimal changepoint regression approach; the 
conditioning variables (or “interactions”) approach adopted in this paper; a model with the optimal interaction terms included in the baseline two-factor model, 
and then the optimal changepoint being estimated; a model with the optimal changepoint included in the baseline two-factor model, and then the optimal 
interaction variable being selected; the interaction model estimated using only monthly interaction data; and finally, an interaction based model that allows for 
time-variation in the intercept as well as the factor loadings.  The rows show the statistic being computed; the top panel presents these statistics for R-squared; 
and the bottom panel presents these statistics for the Adjusted R-squared.  
 
  

Constant Changepoints Interactions 
Interactions first, 
add Changepoints 

Changepoints first, 
add Interactions 

Interactions, but 
only monthly 

Interactions, allow 
varying Alpha 

      
R-squared 

10th % 0.082 0.192 0.211 0.268 0.266 0.197 0.247 

25th % 0.147 0.272 0.307 0.372 0.363 0.284 0.345 
Mean 0.288 0.406 0.454 0.512 0.503 0.424 0.485 
Median 0.256 0.388 0.444 0.510 0.499 0.411 0.480 

75th %  0.402 0.523 0.594 0.650 0.640 0.552 0.621 

90th % 0.544 0.646 0.711 0.755 0.747 0.673 0.731 
      

Adjusted R-squared 

10th % 0.034 0.098 0.135 0.171 0.158 0.132 0.154 

25th % 0.098 0.189 0.230 0.279 0.257 0.221 0.250 
Mean 0.247 0.332 0.388 0.430 0.414 0.368 0.402 
Median 0.213 0.312 0.371 0.422 0.403 0.349 0.389 

75th %  0.365 0.459 0.532 0.574 0.562 0.499 0.542 

90th % 0.515 0.598 0.664 0.701 0.690 0.632 0.670 
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Table 8 
Selected Interaction Variables by Strategy 

 
This table shows which interaction variables are most often statistically significant for each of the nine strategies listed in rows.  For example, in the Security 
Selection strategy, 25.328% of funds have statistically significant interaction variables.  Of these, 8.934% pick the S&P500 return as the interaction variable, 
8.069% pick LIBOR, and 7.637% pick ∆Level.  These three interaction variables are the three most often picked of the entire set of 22 interaction variables, 
across all individual funds in this strategy.      
 

Strategy Perc. Sig.   Frequency of Selection 

      1st 2nd 3rd

Security Selection 25.328 S&P500 Return 8.934 LIBOR 8.069 ∆Level 7.637 
Global Macro 13.021 Default Spread  9.333 Fund Perf (1 M) 9.333 S&P500 Return 6.667 
Relative Value 28.205 VIX 14.773 ∆Level 12.500 Turnover(-1) 6.818 
Directional Traders 33.423 LIBOR(-1) 8.434 Mich. Sent. 8.434 Turnover 8.032 
Funds of Funds 40.009 ∆Level 17.550 S&P500 Return 15.430 S&P500 Return(-1) 9.541 
Multi-Process 22.989 S&P500 Return 10.556 VIX 9.444 Turnover 8.333 
Emerging Markets 20.336 VIX 22.314 ∆Level 15.703 S&P500 Return 10.744 
Fixed Income 24.933 ∆Level 15.676 VIX 8.649 VIX(-1) 7.568 
CTAs and Others 21.343 ∆Level 10.660 VIX 10.152 LIBOR 9.645 

 




