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Motivation

�Systemic risk� is broadly de�ned as the risk of a crash in a large
number of �rms. It is an �extreme event� in two directions:

1 A large loss (ie, a left-tail realization for stock returns)

2 Across a large proportion of �rms under analysis

There are a variety of methods for studying risk and dependence for
small collections of assets, but a relative paucity of models of
dependence for large collections of assets

There is a growing literature on models for large covariance matrices
(eg, Engle and Kelly, 2008, Engle, Shephard and Sheppard, 2008,
Hautsch, Kyj and Oomen, 2010)

We propose a new high dimension copula-based model that builds
on this literature
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Main contributions of this paper

1 A �exible, simple, class of dynamic factor copula models that can
be applied in high dimensional problems.

Closed-form expression for these models not generally available, but
analytical results on tail dependence available using EVT

A �variance targeting�method makes high dimension application
feasible

2 An application to CDS spreads on 100 US �rms with focus on
systemic risk:

We �nd signi�cant evidence of tail dependence, asymmetric
dependence, and heterogeneous dependence.

We �nd that the risk of systemic distress has increased since the
�nancial crisis
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Copula-based models for economic dependence I

Time-varying, low dimension, copulas:

GARCH-type: Patton (2006, IER), Jondeau and Rockinger (2006,
JIMF), Creal, et al. (2011, JBES), Christo¤ersen, et al. (2012, RFS)
Stochastic Vol-type: Hafner and Manner (2012, JAE)
Regime switching: Rodriguez (2007, JEF), Okimoto (2008, JFQA),
Garcia and Tsafack (2009, JBF)

High dimension, constant, copulas:

Normal, Student�s t, etc.
Vine copulas: Aas et al. (2007, IME), Kurowicka, and Joe (2011,
book), Acar, et al. (2012, JMVA)
Nested Archimedean: Hofert and Scherer (2011, QF), Joe (1997,
book), McNeil, et al. (2005, book)
Factor copulas: Oh and Patton (2014, JBES)
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Copula-based models for economic dependence II

Time-varying and high (N�10) dimension copulas:

Authors N Copula Dynamics Estim
Zhang, et al. (2011, wp) 10 Skew t GAS ML
Christo¤ersen, et al. (2012, RFS) 33 Skew t DCC ML
Almeida, et al. (2012, wp) 30 Vine SV SML
Stöber and Czado (2012, wp) 10 Vine RS Bayes
Christo¤ersen, et al. (2013, wp) 233 Skew t DCC CML

This paper 100 Factor GAS ML
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A simple factor copula model

Consider a vector of n variables, Y, with some joint distribution F�,
marginal distributions F �i , and copula C

�

[Y1, ...,YN ]
0 � Y s F�=C� (F �1 , ...,F �N )

Oh and Patton (2015, JBES) propose a model for C� as the copula
C (θ) implied by the following model:

Let Xi = λiZ + εi , i = 1, 2, ...,N

Z s Fz (θ) , εi s iid Fε (θ) , Z??εi 8 i
So [X1, ...,XN ]

0 � X s Fx (θ) =C (G1 (θ) , ...,GN (θ) ; θ)

In general we won�t know C(θ) in closed form, but we can
nevertheless use it as a model for the true copula C�.
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Illustration of some factor copulas

Consider the following factor structure:

Let Xi = λZ + εi , i = 1, 2, ...,N

εi s iid t (ν) , Z??εi 8 i
Z s Skew t (ν,ψ)

ν 2 [2,∞] , ψ 2 [�0.99, 0]

We set λ = 1 so that the factor copula implied by this structure
generates linear correlation of 0.5.

We will �rst consider some bivariate distributions with this structure,
and then some high dimension distributions.

Oh & Patton (2016) Systemic Risk and Copulas � 8 �



Scatterplots of joint distributions with factor copulas
Marginal distributions are N(0,1), linear correlation = 0.5.
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�Crash�dependence

Crash dependence (similar to Embrechts, et al., 2000): Conditional
on j variables being in their q tails, what is expected proportion of
remaining variables that are in their q tails?

πqj �
κqj
N � j

where κqj = E
�
N�q jN�q � j

�
� j

N�q � ∑N
i=1 1 fUi � qg
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Proportion of remaining stocks that will crash
�Crash� de�ned as a 1/66 event = once in a quarter for daily asset returns
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Proportion of remaining CDS spreads that will spike
�Spike� de�ned as a 1/66 event = once in a quarter for daily CDS spreads
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Copulas and the probability integral transform

Two useful results on copulas and transformations of continuous
random variables:

1 If Yi s Fi , then Ui � Fi (Yi ) s Unif (0, 1)

2 If [Y1, ...,YN ]
0 s F = C (F1, ...,FN ) , then [U1, ...,UN ]0 s C
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Time-varying copulas with GAS dynamics

We will model dynamics using the �generalized autoregressive score�
or GAS model of Creal, Koopman and Lucas (2011, JAE).

This approach models the parameters of the copula as a function of
the lagged parameters and the score of the copula likelihood:

Let Ut jFt�1 s C (κt)

where κt+1 = ω+ βκt + αst
st = St � ∆t

∆t =
∂ log c (ut ; κt)

∂κt

A key bene�t of this approach is that the �forcing variable� in the
model for κt+1 is provided directly by the choice of copula model
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Factor copulas with GAS dynamics

We use the GAS model to capture time-varying dependence by letting
the loadings on the common factor change through time

Similar to Engle�s DCC model, we impose that α and β are common
across �rms, and allow only the �intercept�parameters to di¤er

We also impose that the shape parameters (νz , νε,ψ) are constant:

Xit = λitZt + εit , i = 1, 2, ..., 100

Zt s Skew t (νz ,ψ) , εit s iid t(νε), Z??εi 8 i

log λit = ωi + β log λi ,t�1 + α
∂ log c (ut�1jλt�1, νz ,ψ, νε)

∂λi
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Flexible GAS dynamics and �Variance Targeting�

Xit = λitZt + εit , i = 1, 2, ..., 100

log λit = ωi + β log λi ,t�1 + α
∂ log c (ut�1jλt�1, νz ,ψ, νε)

∂λi
,

We do not want to numerically estimate � 100 parameters (ωi )

We use a variance targeting�type approach

We obtain quasi-closed form estimates of the intercept parameters,
ωi , based on sample rank correlations, ρ̄ij :

ρ̄ij = g
�
ωi ,ωj , νz ,ψ, νε

�
, ωi = g

�1
�

ρ̄ij , νz ,ψ, νε

�
We then numerically optimize over only (α, β, νz ,ψ, νε)
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Parsimony / �exibility and factor copulas

Factor copula with GAS dynamics:

Xit = λg (i ),tZt + εit , i = 1, 2, ..., 100

Zt s Skew t (νz ,ψ) , εit s iid t(νε), Z??εi 8 i

log λgt = ωg + β log λg ,t�1 + α
∂ log c (ut�1jλt�1, νz ,ψ, νε)

∂λg
,

g = 1, 2...,G

1 Equidependence model: G = 1

2 Block equidependence model: G = 5 (according to industry groups)

3 Fully �exible: G = 100
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Credit default swaps (CDS)

A CDS written on �rm i (the �reference entity�) at date t is a
contract in which the buyer agrees to make periodic payments
(determined by CDS spread) to the seller until the contract matures
(at t + T ) or a default occurs, whichever happens �rst.

If a default occurs before maturity t + T , the seller compensates the
buyer for the realized credit loss
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CDS and implied probabilities of default

Under some simplifying assumptions (see Carr and Wu, RFS, for eg)
it is possible to show that a CDS spread (Sit ) is given by:

Sit = P
Q
it � LGDit = PP

it �Mit � LGDit

where PQ
it and P

P
it are the implied and objective probabilities of

default,Mit is the market price of risk, and LGDit is the
loss-given-default.

This simple expression can also be obtained as a �rst-order
approximation of more complicated formulas when PQ

it � 0.

We work with the log-di¤erence of the CDS spread, which yields:

∆ log Sit = ∆ logPP
it + ∆ logMit + ∆ log LGDit
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Measures of systemic risk

Measures of �systemic risk� in �nancial markets:

Adrian and Brunnermeier (2009): CoVaR�quantile of market returns
conditional on �rm i stress

Brownlees and Engle (2011): Marginal Expected Shortfall�expected
return on �rm i conditional on market stress

Huang, Zhou and Zhu (2009): price of insurance against
system-wide losses

Our proposed measure is related to the above:

We use CDS spreads to measure individual �rm �distress�, and then
estimate the expected number of �rms simultaneously distressed
given �rm i in distress

It is the �simultaneous�aspect that makes this measure �systemic�,
and which requires the speci�cation of a model for dependence.
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Description of the data

We use daily CDS spreads for single reference entities from Markit
Corporation

We restrict our attention to 5-yr maturity CDS contracts for U.S.
corporations in U.S. dollars for senior subordinated debt

This is the most liquid of the CDS contracts

Use 100 CDS spreads with limited missing data among 125
constituents of a CDS index (North America CDX series 17)

Our sample period is Jan 2006 �Apr 2012, so T=1644 and N=100
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Time series of CDS spreads
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CDS-implied probabilities of default
Avg PD = 1.1% = ~A- grade. PD of ~5% is investment/speculative grade cuto¤
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Summary statistics: CDS spreads
Cross-sectional distribution of individual summary statistics

Mean 5% 25% Median 75% 95%

Mean 97.0 37.2 53.6 75.0 123.8 200.3
Std dev 70.0 17.3 27.2 47.5 84.3 180.6
Skewness 1.2 0.1 0.7 1.3 1.6 2.5
Kurtosis 5.1 2.2 2.9 4.9 6.5 9.5
5% 23.9 9.0 11.7 18.9 29.9 60.5
25% 42.3 20.4 25.2 35.3 47.5 104.7
Median 85.3 35.1 50.1 69.4 113.8 166.2
75% 122.1 46.3 65.9 93.6 154.7 251.1
95% 245.5 72.5 102.6 168.5 313.6 631.9
99% 338.7 80.4 122.9 231.3 435.2 827.1
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Summary statistics: Log-di¤ of CDS spreads
Cross-sectional distribution of individual summary statistics

Mean 5% 25% Median 75% 95%

Mean 5.6 -1.6 2.6 5.5 8.5 13.8
Std dev 378.9 308.6 347.6 373.5 400.4 476.5
Skewness 1.1 -0.3 0.4 0.8 1.5 3.6
Kurtosis 25.5 7.7 10.3 14.6 25.9 74.8
5% -514.6 -622.3 -551.3 -509.6 -474.0 -415.7
25% -144.2 -172.3 -155.6 -145.4 -134.8 -112.0
Median -2.3 -9.0 -3.6 -0.7 0.0 0.0
75% 132.1 95.2 120.5 131.0 144.4 174.6
95% 570.5 457.8 537.1 568.3 612.8 685.0
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CDS data: Industry groups

Markit Corporation classi�es single entities into 5 groups: Consumer,
Manufacturing, Finance, Energy, and Telecom

We use this classi�cation to group �rms for one of our speci�cations:

Group Count
Consumer 34
Manufacturing 21
Finance 16
Energy 12
Telecom 17
Total 100
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The CDS �Big Bang�

With the growth of the CDS market through the 2000s, participants
wanted more homogeneous contracts to increase liquidity

On April 8, 2009, the North American CDS market underwent
changes to contract conventions

CDS coupons were �xed to be 100 or 500 bp, with upfront payments
adjusted accordingly

More rigid rules on triggers for �credit events�and auctions that follow
such events

Move towards central clearing, away from OTC trading

These changes could potentially change the dynamics of CDS
spreads, and we test for these using a simple structural break test:

We have 591 pre-break obs, 1053 post-break obs
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Did the CDS �Big Bang�cause a structural break?

Conditional mean: we test for changes in all parameters jointly, and
�nd signi�cant changes for 39 �rms

Conditional variance: Controlling for changes in the mean, we �nd
breaks in the variance for 66 �rms

28 �rms have a signi�cant break in both mean and variance

Thus structural breaks appear to be important for models of CDS
spreads for many �rms �we allow for these breaks in our analysis
below.
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Dynamic copulas and the heterogeneous dependence

Equidep Block equidep Flexible
Normal Factor Normal Factor Normal Factor

ω1!G
α 0.0216 0.0263 0.0293 0.0260 0.1435 0.1714
β 0.8474 0.9072 0.9758 0.9919 0.9753 0.9819

ν - 12.8236 - 95.6159 - 50.9100
νε - 5.6297 - 5.2700 - 5.5892
ψ - -0.0146 - 0.0932 - 0.1236

logL 38395 40983 38519 41165 39361 41913
Rank 6 3 5 2 4 1
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Model comparison tests I

Hypothesis 1: Normal copula as good as Factor copula

Num
log L Di¤ restrictions p-value†

Equidep-Static Normal 36185
Factor 39508 3322 3 0.000

Equidep-GAS Normal 38395
Factor 40983 2588 3 0.000

Block-GAS Normal 38518
Factor 41165 2647 3 0.000

Flexible-GAS Normal 39361
Factor 41913 2552 3 0.000

F Factor copula signi�cantly better than Normal copula
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Model comparison tests II

Hypothesis 2: Equidependence as good as Block equidependence

Num
log L Di¤ restrictions p-value

Normal-Static Equidep 36185
Block 36477 292 4 0.000

Factor-Static Equidep 39508
Block 39757 249 4 0.000

Normal-GAS Equidep 38395
Block 38518 123 4 0.000

Factor-GAS Equidep 40983
Block 41165 182 4 0.000

F Block equidependence signi�cantly better than Equidependence
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Model comparison tests III

Hypothesis 3: Block equidependence as good as Flexible model

Num
log L Di¤ restrictions p-value

Normal-Static Block 36477
Flexible 37652 1175 95 0.000

Factor-Static Block 39757
Flexible 40628 871 95 0.000

Normal-GAS Block 38518
Flexible 39361 842 95 0.000

Factor-GAS Block 41165
Flexible 41913 747 95 0.000

F Flexible model signi�cantly better than Block equidependence
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Model comparison tests IV

Hypothesis 4: Common factor has same tail shape as idio. shocks

Num
log L Di¤ restrictions p-value

Block-Static Same 39360
Di¤ 39757 397 1 0.000

Equidep-GAS Same 40868
Di¤ 40983 115 1 0.000

Block-GAS Same 41017
Di¤ 41165 148 1 0.000

Flexible-GAS Same 41740
Di¤ 41913 173 1 0.000

F Common factor has di¤erent (thinner) tails than idio. shocks
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Model comparison tests V

Hypothesis 5: Static copula as good as copula with GAS dynamics

Num
log L Di¤ restrictions p-value†

Normal-Block Static 36477
GAS 38518 2041 2 0.000

Factor-Block Static 39757
GAS 41165 1409 2 0.000

Normal-Flexible Static 37652
GAS 39361 1708 2 0.000

Factor-Flexible Static 40628
GAS 41913 1285 2 0.000

F GAS dynamics signi�cantly improve �t over no dynamics
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Conclusions from model comparisons

The common factor and idio. shocks are fat-tailed, with idio shocks
having fatter tails

Normality is strongly rejected

The preferred model allows each �rm to have a unique loading on the
common factor

Heterogeneous model preferred over equidependence models

Time variation in the dependence structure is signi�cant

GAS dynamics better than no dynamics

Oh & Patton (2016) Systemic Risk and Copulas � 38 �



Estimating loadings on the common factor
Loadings on the common factor, for each individual �rm
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Estimating loadings on the common factor
Loadings on the common factor, for block equidependence model
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Manufacture = 21
Finance = 16
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Model-implied and rolling window rank correlations
60-day rolling window rank correlations
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Model-implied and rolling window rank correlations
GAS dynamics match the rolling window correlations reasonably well
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Model-implied and rolling window rank correlations
60-day rolling window rank correlations
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Model-implied and rolling window rank correlations
GAS dynamics broadly match the rolling window correlations
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Measuring the probability of systemic distress I

We now use our model to estimate the prob of systemic distress

For each day in our sample, we simulate the time-path of all 100 CDS
spreads 250 days into the future
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Measuring the probability of systemic distress II

We measure �distress�as a �rm�s one-year-ahead CDS lying above
some (high) threshold:

Dit � 1 fSit � c�itg

We choose this threshold as the 99% quantile for the CDS spread:

Pr [Sit � c�it ] = 0.99

In our sample c̄�0.99 = 339 bps. (Average CDS spread is 97 bps.)
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Measuring the probability of systemic distress III

We measure the �joint probability of distress�as the probability
that at least k �rms are in distress:

JPDt ,k = Prt

��
1
N ∑100

i=1 Di ,t+250

�
� k
N

�

We set k = 30, but the results are similar for k = 20 and k = 40.
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Joint probability of distress
Prob of systemic distress rose in 2008, and has remained relatively high
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Measuring the impact of �rm i distress on systemic risk I

Our model for all 100 �rms allows us to study how distress in
one �rm correlates with system-wide distress

We measure the �expected proportion in distress� for �rm i as the
expected number of �rms in distress, given that �rm i is in distress:

EPDi ,t = Et

�
1
N ∑100

j=1 Dj ,t+250jDi ,t+250 = 1
�
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Expected proportion in distress
Prob of systemic distress rose in 2008, and has remained relatively high
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�Most systemic��rms

Our measure of systemic risk is:

EPD it = Et

�
1
N ∑100

j=1 Dj ,t+250jDi ,t+250 = 1
�

When this measure is low it reveals that �rm i being in distress is not
a signal of widespread distress (�rm i is more idiosyncratic)

When this measure is high it reveals that �rm i being in distress is a
signal of widespread distress (�rm i is a bellwether )

This is di¤erent from some other measures (eg, MES): �safer��rms
are more likely to be bellwethers than riskier �rms.
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Expected proportion in distress

26 January 2009 17 April 2012
EPD Firm EPD Firm

Most
systemic 78 Lockheed Martin 94 Wal-Mart

2 77 Campbell Soup 88 Baxter Int�l
3 75 Marsh & McLennan 88 Walt Disney
4 75 Baxter Int�l 87 Home Depot
5 74 Goodrich 84 McDonald�s
...
96 35 Vornado Realty 12 MetLife
97 34 Gen Elec Capital 11 The GAP
98 34 Johnson Controls 11 Sallie Mae
99 34 Alcoa 11 Comp Sci Corp
Least 33 Sallie Mae 8 Pitney Bowes
systemic
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Distress spillovers between �nancial and real sectors

A particular focus in the systemic risk literature is spillovers of distress
from the �nancial sector to the non�nancial (�real�) sector

Our sample contains 16 �nancial �rms and 84 non�nancials, and we
next consider the Expected Proportion in Distress across these two
classi�cations

EPDF jFt = Et

�
1
16 ∑16

j=1 Dj ,t+250jDi ,t+250 = 1, i 2 Financial
�

EPDNF jFt = Et

�
1
84 ∑84

j=1 Dj ,t+250jDi ,t+250 = 1, i 2 Financial
�

EPDF jNFt = Et

�
1
16 ∑16

j=1 Dj ,t+250jDi ,t+250 = 1, i 2 NonFin
�

EPDNF jNFt = Et

�
1
84 ∑84

j=1 Dj ,t+250jDi ,t+250 = 1, i 2 NonFin
�
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Distress spillovers between �nancial and real sectors
Spillover seems strongest from real to �nancial, not the other way around
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Estimates of systemic distress from CDS spreads

Our estimates of the joint conditional distribution of the CDS spreads
on 100 US �rms over the period Jan 2006�April 2012 reveal:

1 Dependence between CDS spreads rose during the �nancial crisis of
2008, and has remained high since then

2 The median degree of systemic risk of a �rm has nearly doubled since
the pre-crisis period

Similar to results for European sovereign default probabilities in Zhang,
et al. (2011)

This increase in the probability of systemic distress is not re�ected in
the average probability of default implied from CDS spreads
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Summary and conclusion

We present a simple and �exible class of dynamic factor copula
models that may be applied in high dimensions.

Analytical results on tail dependence available using EVT

A �variance targeting�method makes high dim applications feasible

We applied the new copulas to a collection of 100 daily CDS spreads

Among the highest dimension copula application to date

Evidence of asymmetric, heterogeneous and time-varying
dependence

We �nd that the risk of systemic distress has remained high since the
�nancial crisis
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