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This supplemental appendix contains the following: Appendix SA.1 presents details for im-

plementing the local M estimator and obtaining a forecast from the resulting estimated model.

Appendix SA.2 presents results when the loss function used for estimation does not match the

one used for forecast evaluation, and Appendix SA.3 presents a method for quantifying forecast

improvements as a gain in effective sample size. Appendix SA.4 presents figures showing the sen-

sitivity of the performance of forecasts from locally estimated models to the choice of bandwidth.

This section also presents forecast comparison tables that include GARCH-X and HAR-X mod-

els, to see whether directly including the state variable in the model removes the gains from local

estimation.
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Section SA.1: Implementation details

This section presents details for implementing the local M estimator and obtaining a forecast

from the resulting estimated model. We start with the case of local ordrinary least squares (OLS),

which can be written as simple weighted least squares (and thus has an analytical solution), and

then consider the general case of local M estimation.

The objective function for local OLS is:

θ̃h,T (s) = arg min
θ∈Θ

1

T

T∑
t=1

(
Yt −X ′tθ

)2
K (s− St−1;hT ) , for s ∈ Int (S) (S.1)

For a given bandwidth, set ωt (s) ≡ K (s− St−1;hT )1/2 , and define the re-weighted target variable

Ỹt (s) ≡ ωt (s)Yt and re-weighted regressors, X̃t (s) ≡ ωt (s)Xt. Stack these into a (T × 1) vector

ŸT (s) and a (T × p) matrix ẌT (s) . Then the solution to the above optimization problem is

obtained as simply the OLS regression of Ỹt on X̃t :

θ̃h,T (s) =
(
Ẍ′T (s) ẌT (s)

)−1
Ẍ′T (s) ŸT (s) (S.2)

The above solution holds for any s ∈ Int (S) , but for out-of-sample forecasting we only need to

evaluate the estimator at the prevailing value of the state variable. If we let the length of the

estimation sample be denoted T, and the length of the prediction sample be denoted P, then the

out-of-sample local OLS forecasts are obtained as:

Ỹt+1 ≡ X ′tθ̃h,t (St) , for t = T, T + 1, ..., T + P − 1 (S.3)

where θ̃h,t (St) is obtained using equation (S.2).

For localM estimation, including local QML, we do not generally have a closed-form expression
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for the parameter estimate, θ̃h,T (s) . The out-of-sample local M forecasts are obtained as:

Ŷt+1 ≡ gt

(
θ̃h∗,t (St)

)
, for t = T, T + 1, ..., T + P − 1 (S.4)

where θ̃h∗,t (St) = arg min
θ∈Θ

1

t− 1

t−1∑
τ=1

L (Yτ+1, gτ (θ))K (St − Sτ ;h∗) (S.5)

and h∗ is the optimal bandwidth from the validation sample (which runs for V periods finishing at

time T ). As starting values for the numerical optimization to obtain θ̃h∗,t (St) , we use the non-local

parameter estimate, θ̂t.
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Section SA.2: Mis-matching loss functions for estimation and evaluation

Here we consider the case that the forecaster continues to use loss function L for forecast

evaluation, but uses a loss function Q for estimation (either non-local or local). Such a situation

can arise when a forecaster uses (local or non-local) quasi-maximum likelihood for estimation, while

evaluation is conducted using a different loss function. For notational simplicity, we assume here

that the parameter of the model, θ, is scalar.

Firstly, consider non-local estimation under Q, and define the estimator and its probability limit

as:

θ̄T ≡ arg min
θ∈Θ

1

T

∑T−1

t=1
Q (Yt+1, gt (θ)) (S.6)

θ̄
∗ ≡ arg min

θ∈Θ
E [Q (Yt+1, gt (θ))] (S.7)

Next consider local estimation using the objective function Q, and define the estimator and its

probability limit as:

θ̈h,T (s) = arg min
θ∈Θ

1

T

T∑
t=1

Q (Yt, gt−1 (θ))K (s− St−1;hT ) , for s ∈ Int (S) (S.8)

θ̈
∗

(s) ≡ arg min
θ∈Θ

E [Q (Yt+1, gt (θ)) |St = s] (S.9)

Comparing estimation using L and Q loss functions is related to the work of Hansen and Dumitrescu

(2022), who study when full effi ciency can be obtained by using a loss function for estimation that

differs from that for evaluation. As in Hansen and Dumitrescu (2022), we distinguish between

the case when L and Q are “coherent”versus “incoherent:” the former implies that θ̄∗ = θ̂
∗
and

θ̈
∗

(s) = θ̃
∗

(s) , while the latter implies θ̄∗ 6= θ̂
∗
and θ̈

∗
(s) 6= θ̃

∗
(s) .

Comparison 1A: Non-local estimation using Q vs. L, when L and Q are coherent: In this

case θ̄T (and θ̂T ) is
√
T -consistent for θ̂

∗
. We center the Taylor series expansion for θ̄T on θ̂

∗
and

find

E
[
L
(
YT+1, gT

(
θ̄T
))]

= E
[
L
(
YT+1, gT

(
θ̂
∗))]

+ Ĥ∗
(
θ̄T − θ̂

∗)2
+ op

(
T−1

)
(S.10)
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where Ĥ∗ is defined in equation (16) of the main paper. The linear term in the Taylor series

expansion vanishes since E[∂L(YT+1, gT (θ̂
∗
))/∂θ|FT ] = 0 from the definition of θ̂

∗
. The difference

in expected loss is then

E
[
L
(
YT+1, gT

(
θ̄T
))]
− E

[
L
(
YT+1, gT

(
θ̂T

))]
= Ĥ∗

((
θ̄T − θ̂

∗)2
−
(
θ̂T − θ̂

∗)2
)

+ op
(
T−1

)
(S.11)

and thus vanishes at rate O
(
T−1

)
. In finite samples, the sign of the out-of-sample loss difference is

determined by which estimate is closer to the true parameter. In repeated samples, this corresponds

to the estimator that is more effi cient (i.e., has lower mean-squared estimation error), with that

estimator generating lower out-of-sample loss.

Comparison 1B: Non-local estimation using Q vs. L, when L and Q are incoherent: This is

the case that Hansen and Dumitrescu (2022) call “mindless estimation,”and their Lemma 3 shows

that the Q estimator (in our notation) is dominated by the L estimator asymptotically. We confirm

and elaborate on this result below. First, consider a Taylor series expansion for θ̄T centered on θ̄
∗

:

E
[
L
(
YT+1, gT

(
θ̄T
))]

= E
[
L
(
YT+1, gT

(
θ̄
∗))] (S.12)

+
∂E
[
L
(
YT+1, gT

(
θ̄
∗))]

∂θ

(
θ̄T − θ̄∗

)
(S.13)

+H̄∗
(
θ̄T − θ̄∗

)2
+ op

(
T−1

)
(S.14)

where H̄∗ ≡ 1

2

∂2E
[
L
(
YT+1, gT

(
θ̄
∗))]

∂θ2 (S.15)

In this case the first-order term does not vanish as θ̄∗ is not the minimizer of E [L (YT+1, gT (·))] ,

rather it is the minimizer of E [Q (YT+1, gT (·))] . The sign of the first derivative is equal to sgn
(
θ̄
∗ − θ̂∗

)
.

The difference in expected OOS loss is

E
[
L
(
YT+1, gT

(
θ̄T
))]
− E

[
L
(
YT+1, gT

(
θ̂T

))]
= E

[
L
(
YT+1, gT

(
θ̄
∗))− L(YT+1, gT

(
θ̂
∗))]

+
∂E
[
L
(
YT+1, gT

(
θ̄
∗))]

∂θ

(
θ̄T − θ̄∗

)
+

(
H̄∗
(
θ̄T − θ̄∗

)2 − Ĥ∗ (θ̂T − θ̂∗)2
)

+ op
(
T−1

)
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The first term is positive, as θ̂
∗
is the unique minimizer of E [L (YT+1, gT (·))] , and non-vanishing.

The third term vanishes at rate O
(
T−1

)
, and reflects difference in estimation accuracy for L and

Q estimation. The second term vanishes at rate O
(
T−1/2

)
and is of indeterminate sign; it depends

on the sign of the finite-sample bias in θ̄T and the sign of
(
θ̄
∗ − θ̂∗

)
. Consistent with Hansen and

Dumitrescu (2022), the first term dominates, and reflects the penalty for the mismatch between

estimation and evaluation loss functions.

Next we consider local estimation under L and Q.

Comparison 2A: Local estimation using Q vs. L, when L and Q are coherent: In this

case θ̈h,T (s) (and θ̃h,T (s)) is consistent for θ̃
∗

(s). For local estimation using Q the out-of-sample

expected loss is:

E
[
L
(
YT+1, gT

(
θ̈h,T (ST )

))]
= E

[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))]

(S.16)

+H̃∗ (ST )
(
θ̈h,T (ST )− θ̃∗ (ST )

)2
+ op

(
T−1+2γ

)
where H̃∗T (ST ) is a Hessian term defined in equation (19) of the main paper. The difference in

average out-of-sample loss is then

E
[
L
(
YT+1, gT

(
θ̈h,T (ST )

))
− L

(
YT+1, gT

(
θ̃h,T (ST )

))]
= H̃∗ (ST )

((
θ̈h,T (ST )− θ̃∗ (ST )

)2
−
(
θ̃h,T (ST )− θ̃∗ (ST )

)2
)

+ op
(
T−1+2γ

)
and vanishes at rate O

(
T−1+2γ

)
. In finite samples, the sign of the out-of-sample loss difference

is determined by which estimate is more accurate (having smaller squared estimation error). In

repeated samples this corresponds to the estimator that is more effi cient, with that estimator

generating lower out-of-sample loss.

Comparison 2B: Local estimation using Q vs. L, when L and Q are incoherent : In this case
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θ̈
∗

(·) 6= θ̃
∗

(·) , and we center the Taylor series expansion for θ̈h,T (ST ) around θ̈
∗

(ST ) :

E
[
L
(
YT+1, gT

(
θ̈h,T (ST )

))]
= E

[
L
(
YT+1, gT

(
θ̈
∗
(ST )

))]
(S.17)

+
∂E
[
L
(
YT+1, gT

(
θ̈
∗
(ST )

))]
∂θ

(
θ̈h,T (ST )− θ̈∗ (ST )

)
+Ḧ∗ (ST )

(
θ̈h,T (ST )− θ̈∗ (ST )

)2
+ op

(
T−1+2γ

)
where Ḧ∗ (ST ) ≡ 1

2

∂2E
[
L
(
YT+1, gT

(
θ̈
∗
(ST )

))]
∂θ2 (S.18)

The first-order term does not vanish as θ̈
∗

(s) is not the minimizer of E [L (YT+1, gT (·)) |ST = s] ,

rather it is the minimizer of E [Q (YT+1, gT (·)) |ST = s] . Thus the difference in expected OOS loss

is

E
[
L
(
YT+1, gT

(
θ̈h,T (ST )

))
− L

(
YT+1, gT

(
θ̃h,T (ST )

))]
= E

[
L
(
YT+1, gT

(
θ̈
∗
(ST )

))
− L

(
YT+1, gT

(
θ̃
∗
(ST )

))]
(S.19)

+
∂E
[
L
(
YT+1, gT

(
θ̈
∗
(ST )

))]
∂θ

(
θ̈h,T (ST )− θ̈∗ (ST )

)
+

(
Ḧ∗ (ST )

(
θ̈h,T (ST )− θ̈∗ (ST )

)2
− H̃∗ (ST )

(
θ̃h,T (ST )− θ̃∗ (ST )

)2
)

+ op
(
T−1+2γ

)
The first term on the right-hand side of equation (S.19) is positive, as θ̃

∗
is the minimizer of

E [L (YT+1, gT (·))] , and it is non-vanishing. This term reflects a penalty for the mismatch between

estimation and evaluation loss functions. The third term vanishes at rate O
(
T−1+2γ

)
for some γ ∈

(0, 1/2) , and reflects the difference in estimation accuracy for local L and Q estimation. If Q is more

accurate than L estimation, this term will be negative in repeated samples, thereby introducing

a potential finite-sample trade-off between bias and variance. The second term vanishes at rate

O
(
T−1/2+γ

)
and is of indeterminate sign; it depends on the covariance between the estimation

error in θ̈h,T and the difference between θ̈
∗
and θ̃

∗
, all evaluated at ST .

In both the non-local and local comparisons, unless the loss functions L and Q are “coherent,”

in the terminology of Hansen and Dumitrescu (2022), forecasts obtained using a loss function for
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estimation that differs from that for evaluation are expected to be worse than those obtained using

the same loss function for both estimtion and evaluation. This is because the leading term in

the difference in expected out-of-sample loss is strictly positive and non-vanishing. The next two

terms are of indeterminate signs and vanish as the sample size grows. This is in contrast with the

comparison of local and non-local forecasts in Section 2.3 of the main paper: there, the leading

term is weakly negative (depending on the quality of the state variable and the accuracy of the

forecasting model) and the next two terms are related to the estimation error in the local and non-

local methods, and are known to be positive and negative respectively, vanishing at rates T−1+2γ

for some γ ∈ (0, 1/2) and T−1. Essentially, it is the “quasi-coherency”of the local and non-local loss

functions for estimation (local estimation under L nesting non-local estimation under L) that makes

the comparison of out-of-sample forecast accuracy from local and non-local estimation intriguing.
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Section SA.3: Quantifying the forecast improvements

While the improvements in out-of-sample forecast accuracy from using local models documented

in the main paper are all statistically significant, interpreting the magnitude of these gains is more

diffi cult. In this section we present one method for doing so, drawing on the trade-off between

estimation error and goodness-of-fit that underlies comparing local and non-local models. We

quantify the gains in forecast accuracy as a gain in sample size for estimating the benchmark model.

Specifically, we determine the sample size for the benchmark model such that the improvement

in fit achieved by going from the full-sample benchmark model to the full-sample local model,

E
[
L
(
YT+1, gT

(
θ̂T

))
− L

(
YT+1, gT

(
θ̃T (ST )

))]
≡ L̂T − L̃T , is the same as the improvement in

going from a benchmark model estimated using a hypothetical sample of size aT , a < 1, to the

full-sample benchmark model, E
[
L
(
YT+1, gT

(
θ̂aT

))
− L

(
YT+1, gT

(
θ̂T

))]
≡ L̂aT − L̂T .

To determine this equivalent sample size, consider a second-order Taylor series expansion of

the expected loss for the benchmark model, as in Section 2.3 of the main paper, and assume that

the parameter is a scalar for simplicity. By centering the expansion on the probability limit of

the benchmark model parameter, the leading term drops out, and the linear term is zero by the

first-order condition defining θ̂
∗
, leaving only the second-order terms:

L̂aT − L̂T = Ĥ∗
(
θ̂aT − θ̂

∗)2
− Ĥ∗

(
θ̂T − θ̂

∗)2
+ op

(
T−1

)
(S.20)

where Ĥ∗ ≡ 1
2∂

2ET
[
L
(
YT+1, gT

(
θ̂
∗))]

/∂θ2 as in equation (16) of the main paper. Thus the

difference in expected loss is approximately equal to the (weighted) difference in estimation error.

Clearly the value of
(
θ̂T − θ̂

∗)2
is unknown, but recalling that under standard regularity assump-

tions for M estimation we have
√
T
(
θ̂T − θ̂

∗) D−→ N (0,Σ) , we know the expected value of that

term is Σ/T. Thus we find

E
[
L̂aT − L̂T

]
≈ 1− a

a
Ĥ∗Σ/T (S.21)

We then set the above equation equal to the difference in expected loss from using the benchmark
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and local models, and solve for a∗ :

a∗ =
Ĥ∗Σ/T

Ĥ∗Σ/T +
(
L̂T − L̃T

) (S.22)

If L̂T − L̃T > 0 (the benchmark model has greater loss than local model) and Ĥ∗Σ/T > 0 (there

is non-zero estimation error in the benchmark model), then a∗ ∈ (0, 1) . If the local model is worse

than the benchmark model, and so L̂T − L̃T < 0, there are two cases to consider: If it is “not too

much worse,” in the sense that 0 < L̃T − L̂T < Ĥ∗Σ/T, then we will find a∗ > 1, with the value

increasing in the outperformance of the non-local method. If the local method is “much worse,”

in the sense that L̃T − L̂T > Ĥ∗Σ/T, then the above expression for a∗ does not make sense (it

returns a negative value), and in such cases we set a∗ → ∞. We do not observe any such cases in

our applications. The expression for a∗ when θ is a vector is

a∗ =
tr
(
Ĥ∗Σ

)
/T

tr
(
Ĥ∗Σ

)
/T +

(
L̂T − L̃T

) (S.23)

All of the terms in the expression for a∗ in equation (S.23) are estimable: L̂T and L̃T are simply

the observed out-of-sample average losses for the benchmark and local models respectively. Σ is

the usual asymptotic covariance matrix of a non-local M estimator, and can be estimated in the

usual way:

Σ̂ = Â−1B̂Â−1

Â =
1

R

∑R

t=1

∂2L
(
Yt+1, gt

(
θ̂R

))
∂θ∂θ′

(S.24)

B̂ =
1

R

∑R

t=1

∂L
(
Yt+1, gt

(
θ̂R

))
∂θ

∂L
(
Yt+1, gt

(
θ̂R

))
∂θ′

Ĥ∗ can be estimated simply as Â/2, leading to the simplification tr
(
Ĥ∗Σ

)
= tr

(
B̂Â−1

)
/2.

The above approach can be used directly for all but one of our applications: the benchmark

model for the VaR-ES application uses multi-step estimation, with a mix of QMLE, sample quantiles
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and expected shortfall, and M estimation, complicating the estimation of Σ. For that application

we instead estimate Σ using a block bootstrap (Politis and Romano, 1994) with an average block

length of 250 days. That application also uses a loss function that is not differentiable, complicating

the estimation of Ĥ∗. That matrix corresponds to 1/2 of the D0 matrix defined in equation (31) of

Patton et al. (2019), and we use the estimator for that matrix given their Theorem 3.

Table S1 presents the out-of-sample loss for the benchmark non-local model and the best local

model, across the five applications considered in this paper, along with Giacomini-White t-statistics.

The first three rows of this table are taken from Tables 1 to 4 and are included for ease of com-

parison. The bottom row reports the “proportional equivalent sample size,” a∗. We see that for

the two volatility applications, local estimation is equivalent to having around 83 and 45 times

more data respectively, indicating that the local versions of these models produce forecasts that

are substantially better than the non-local benchmarks. In the VaR-ES application, the equivalent

sample size is only about 1.5% smaller than the full sample, suggesting that while the gains from

local estimation are statistically significant, they are relatively small in magnitude, consistent with

the well-known diffi culty of estimating tail parameters and evaluating tail forecasts. For one-step

yield curve forecasting, local estimation leads to strongly statistically significant improvements,

with a GW t-statistic of less than -9, but the effective increase in sample size is only about 16%,

consistent with the benchmark forecasts already being very good. Finally, for 20-step-ahead yield

curve forecasts local estimation is equivalent to having over four times the sample size, a meaningful

improvement to match the strong statistical significance revealed by the GW t-statistic.
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Table S1: Equivalent sample sizes for non-local models

Yield curve
GARCH HAR VaR-ES h=1 h=20

Benchmark OOS loss 0.414 0.254 -3.843 0.158 0.246
Best local OOS loss 0.315 0.238 -3.868 0.158 0.244
GW t-statistic -12.302 -6.158 -1.987 -9.471 -6.966
Equiv sample (a∗) 0.012 0.022 0.986 0.838 0.234

Notes: This table presents the out-of-sample loss for the benchmark non-local model and the
best local model, across the five applications considered in this paper, along with Giacomini-White
t-statistics. The first three rows of this table are taken from Tables 1 to 4 and are presented here
for ease of comparison. The bottom row reports the “proportional equivalent sample size,” a∗,
introduced above.
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Section SA.4: Additional tables and figures
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Figure S1: This plot shows the average out-of-sample (OOS) loss using local QML estimates of a
HAR model (upper panel) and local M-estimation of a VaR-ES model (lower panel), as a function
of the bandwidth. The state variable for the HAR model is VIX. The state variable for the VaR-ES
model is time. The dashed lines show the non-local average loss, and the thin solied lines show the
95% GW confidence interval on the difference between local and non-local average loss. The starred
vertical lines show the bandwidths for each application chosen based on a validation sample separate
from the OOS period.
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Table S2: Out-of-sample forecast performance for GARCH-X models

Method details Forecast performance
Rank Model StateVar Bwidth AvgLoss GW stat MCS
1 GARCH time,RV 0.9995,0.31 0.315 -6.473 X
2 GARCH-X RV 0.87 0.321 -13.820 X
3 GARCH-X time,RV 0.9999, 0.92 0.321 -13.721 X
4 GARCH RV 0.35 0.324 -5.236 X
5∗ GARCH-X time,10Y-2Y 0.9775, 0.2 0.327 -2.834 X
6 GARCH-X time,VIX 0.96, 1.27 0.328 -2.805 X
7 GARCH-X time,FFR 0.9575, 0.5 0.331 -2.614 X
8 GARCH-X time 0.9575 0.333 -2.531 X
9 GARCH time,VIX 0.9999, 0.27 0.339 -6.521 ×
10 GARCH VIX 0.28 0.341 -6.211 ×
11 GARCH-X VIX 1.15 0.350 -8.914 ×
12 GARCH-X 10Y-2Y 0.16 0.368 -1.813 ×
13 GARCH time 0.995 0.370 -0.466 ×
14 GARCH-X FFR 2.99 0.372 -10.435 ×
15 GARCH-X - - 0.374 F ×
16 GARCH time,FFR 0.9975, 0.33 0.377 0.250 ×
17 GARCH time,10Y-2Y 0.9975, 0.16 0.381 0.581 ×
18 GARCH 10Y-2Y 0.11 0.396 2.019 ×
19 GARCH FFR 0.23 0.401 2.600 ×
20 GARCH - - 0.414 3.977 ×

Notes: This table presents measures of forecast performance over the out-of-sample period
(January 2011 to June 2021) from GARCH and GARCH-X models estimated using either QML
(non-local), or local QML. All GARCH-X models use VIX2 as the extra variable. The rows are
ordered by average OOS QLIKE loss, reported in the third-last column. The local method with the
best performance in the validation sample (the second half of the estimation sample) is marked in
the first column with ∗. The local estimators use the state variable(s) given in the third column and
bandwidth parameter(s) from the fourth column, which are selected using the validation sample.
All forecasting models are estimated using an expanding window of data. The penultimate column
reports Giacomini-White t-statistics of each model relative to the benchmark non-local method
(marked withF), with negative t-statistics indicating lower average loss. The final column includes
a check mark if a given method is included in the 95% model confidence set, and a cross otherwise.
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Figure S2: This plot shows the out-of-sample RMSE using local OLS estimates of a yield curve
models as a function of the bandwidth. The state variable for the 1-day horizon (upper plot) is
realized variance. The state variable for the 20-day horizon (lower plot) is time. The dashed line
is the (non-local) OLS RMSE, and the thin solied lines show the 95% GW confidence interval on
the difference between local and non-local RMSE. The starred vertical lines show the bandwidths for
each application chosen based on a validation sample separate from the OOS period.
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Table S3: Out-of-sample forecast performance for HAR-X models

Method details Forecast performance
Rank Model StateVar Bwidth AvgLoss GW stat MCS
1 HAR-X RV 0.47 0.229 -8.657 X
2 HAR-X time,RV 0.9975, 0.77 0.234 -7.620 X
3 HAR-X VIX 0.47 0.235 -8.177 ×
4∗ HAR-X time,VIX 0.9999, 0.46 0.238 -7.913 ×
5 HAR time,VIX 0.9999, 0.35 0.238 -7.507 ×
6 HAR VIX 0.34 0.239 -7.484 ×
7 HAR-X time,FFR 0.99, 0.25 0.250 -5.609 ×
8 HAR time,10Y-2Y 0.9999, 2.5 0.254 -5.976 ×
9 HAR time,RV 0.9999, 3.05 0.254 -5.949 ×
10 HAR time 0.9999 0.254 -5.964 ×
11 HAR time,FFR 0.9999, 2.5 0.254 -5.929 ×
12 HAR 10Y-2Y 2.68 0.254 -5.932 ×
13 HAR RV 3.11 0.254 -5.909 ×
14 HAR - - 0.254 -5.921 ×
15 HAR FFR 2.51 0.255 -5.878 ×
16 HAR-X time 0.9999 0.331 -1.342 ×
17 HAR-X time,10Y-2Y 0.9999, 2.5 0.336 -0.387 ×
18 HAR-X - - 0.340 F ×
19 HAR-X 10Y-2Y 2.12 0.352 1.452 ×
20 HAR-X FFR 2.01 0.373 3.356 ×

Notes: This table presents measures of forecast performance over the out-of-sample period
(January 2011 to June 2021) from HAR and HAR-X models estimated using either QML (non-
local), or local QML. All HAR-X models use VIX2 as the extra variable. The rows are ordered
by average OOS QLIKE loss, reported in the third-last column. The local method with the best
performance in the validation sample (the second half of the estimation sample) is marked in the
first column with ∗. The local estimators use the state variable(s) given in the third column and
bandwidth parameter(s) from the fourth column, which are selected using the validation sample.
All forecasting models are estimated using an expanding window of data. The penultimate column
reports Giacomini-White t-statistics of each model relative to the benchmark non-local method
(marked withF), with negative t-statistics indicating lower average loss. The final column includes
a check mark if a given method is included in the 95% model confidence set, and a cross otherwise.
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Table S4: Out-of-sample forecast performance for GARCH-FZ models

Method details Forecast performance
Rank StateVar Bwidth AvgLoss GW stat MCS
1 time 0.9995 -3.859 -2.731 X
2 RV 2.51 -3.851 -5.587 X
3 VIX 2.2 -3.850 -4.239 X
4 FFR 2.03 -3.846 -1.873 ×
5 - - -3.844 F ×
6 10Y-2Y 1.33 -3.843 0.343 ×
7∗ time,VIX 0.9925, 1.2 -3.838 0.325 ×
8 time,RV 0.99, 1.6 -3.833 0.464 ×
9 time,FFR 0.9925, 1.76 -3.830 0.686 ×
10 time,10Y-2Y 0.9925, 2.28 -3.829 0.716 ×

Notes: This table presents measures of forecast performance over the out-of-sample period
(January 2011 to June 2021) from GARCH-FZ models estimated using either M estimation or
local M estimation and the FZ0 loss function in Equation (31). The rows are ordered by average
OOS FZ0 loss, reported in the third-last column. For a given model, the local method with the
best performance in the validation sample (the second half of the estimation sample) is marked in
the first column with ∗. The local estimators use the state variable(s) given in the second column
and bandwidth parameter(s) from the third column, which are selected using the validation sample.
All forecasting models are estimated using an expanding window of data. The penultimate column
reports Giacomini-White t-statistics of each model relative to the benchmark non-local method
(marked withF), with negative t-statistics indicating lower average loss. The final column includes
a check mark if a given method is included in the 95% model confidence set, and a cross otherwise.
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