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Abstract

Many important economic decisions are based on a parametric forecasting model that is known

to be good but imperfect. We propose methods to improve out-of-sample forecasts from a mis-

specified model by estimating its parameters using a form of local M estimation (thereby nesting

local OLS and local MLE), drawing on information from a state variable that is correlated with

the misspecification of the model. We theoretically consider the forecast environments in which our

approach is likely to offer improvements over standard methods, and we find significant forecast

improvements from applying the proposed method across four distinct empirical analyses including

volatility forecasting, risk management, and yield curve forecasting.
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1 Introduction

Many important economic decisions are based on a forecasting model that is known to be good

but imperfect. Such a model may be retained for a variety of reasons: the model, and its flaws,

may be well-studied and understood, unlike its possible replacement; there may be institutional

impediments to adopting new models; the competitive environment may be such that it is not

possible to switch to a new model in time for it to be of help. For example, central banks maintain

a decision-making infrastructure around a given model or class of models, as do risk management

departments at large financial institutions, and high-frequency trading algorithms have models

physically built into the processing chips. In all of these cases, the model at the heart of these

decisions is known to be good (else it would not have been embedded in the processes) however it

is almost certainly also imperfect.

We propose a method to improve the out-of-sample forecasts from a misspecified model by

estimating the parameters in a way that emphasizes epochs that are similar to the one in which the

forecast is being made. Our approach exploits information from a state variable that is correlated

with the misspecification of the model. For example, consider the case that the true data generating

process (DGP) is a complicated nonlinear autoregressive process, and the model is a simple AR(1).

Through experience, the forecast user may know that when the target variable is far from its average

level the degree of mean-reversion tends to be stronger than when it is around its average value.

This information can be used to “tilt” the AR parameter from its usual OLS estimate when the

target variable is indeed further from its mean. We provide a structured approach for incorporating

this useful information into the parameter estimate without altering the baseline model.

Formally, our method can be interpreted as a form of nonparametric estimation of the parame-

ters of the baseline model. It is a folk theorem in economic forecasting that nonparametric methods

perform poorly out-of-sample, as the increased estimation error overwhelms the improved fit of the

model. We consider this canonical trade-off in a theoretical examination of our approach, and we

identify two key aspects of the forecasting problem that influence the ability of our approach to

improve upon standard methods. Firstly, if the baseline model is “too good,” then there is little
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room for improvement and usual estimation approach will dominate. Fortunately or unfortunately,

even popular forecasting models are inevitably misspecified, leaving open the possibility for im-

provement. Secondly, if the forecast user’s experience does not yield an informative state variable,

then our estimator will converge to the usual estimator’s probability limit, but accompanied by

greater estimation error. Widely-used models inevitably accumulate a lot of practical experience

about their properties and pitfalls, and so it is commonly the case that an informative state variable

is available.

We apply the proposed method to four economic forecasting problems. In the first two ap-

plications we consider volatility forecasting, either using the seminal GARCH model of Bollerslev

(1986), or the popular alternative for models using high-frequency data, the HAR model of Corsi

(2009), estimated by QML. Our third application considers joint forecasts of Value-at-Risk and

Expected Shortfall (VaR and ES), and so the target functional is a (2× 1) vector, estimated using

M -estimation. Finally, we consider yield curve forecasts using the popular Diebold and Li (2006)

model, estimated by OLS, with maturities ranging from three months to ten years. These four

applications illustrate the variety of environments (target functionals, dimensionality, estimation

methods), and we show that our proposed method provides statistically significant improvements

over standard methods.

The estimation method proposed here is closely related to the local MLE of Tibshirani and

Hastie (1987), Fan et al. (1998), and Fan et al. (2009), but unlike those approaches we do not

modify the baseline model in an attempt to recover the DGP; instead we “tilt” the parameters

of the model so that they better fit the current environment, and produce better forecasts.1 Our

approach is a mid-point between the fully parametric ML estimator and the fully nonparametric

approach of Fan et al. (2009): we keep the model fully parametric, but we use nonparametric

methods to optimally weight the observations used in the estimation window. In this sense, our

approach is also similar to the “relevance-weighted ML”of Hu (1997), however we differ in that

our weights arise from the chosen kernel and bandwidth, and we allow the bandwidth to go to

1More specifically, we follow Fan et al. (1998) in the kernel-weighting of the likelihoods, but we do not take an
expansion of the functional of interest in the state variable. Instead, we retain the specification of that functional as
given by the baseline model.
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zero, making this a nonparametric estimator.2 Also related, but in a different context, Kristensen

and Mele (2011) propose a method to obtain derivative prices by approximating the pricing error

implied by a simple and well-known method (the Black-Scholes formula).

A well-known type of local estimation is rolling window estimation, which has been found to

improve forecast performance in a variety of applications, particularly in the presence of structural

breaks, see Pesaran et al. (2013), Inoue et al. (2017) and others. It is also similar to the use of

exponential smoothing, see Brown (1956), Muth (1960), and Zumbach (2006), where more recent

observations are given a higher weight in estimation than older observations. Both methods attempt

to capture the fact that as the DGP evolves through time, the best-fitting approximating model

will vary too. These methods correspond to using time as the state variable, and a one-sided

rectangular or exponential kernel.3 Related, Ang and Kristensen (2012) and Inoue et al. (2020)

consider the estimation of factor models and GARCH models, respectively, with parameters that

vary smoothly over time, though those papers focus on model estimation rather than prediction.

Dendramis et al. (2020) is perhaps the most closely-related paper to ours. That paper focuses

on conditional mean forecasts made using ARMA models and estimated by OLS. The authors

note that the gains they find are somewhat small and not always a significant improvement over

their benchmark AR(1) model. This is in contrast with the variety of target variables, functionals,

and estimation methods that we consider, and the robust and strongly significant gains in forecast

performance that we find empirically. Further, we theoretically analyze the bias-variance trade-off

present in a local estimation framework, and obtain predictions for when such a method is likely

to work well in practice.

Our approach is also related to work on bringing outside information to bear on a forecasting

problem. Manganelli (2009) considers the case that the forecaster has a “default decision” and

provides a structured method for tilting a model-based forecast towards the default decision. Gia-

2Blasques et al. (2016) also consider a weighted ML method, for applications where the vector of dependent
variables can be separated into those of particular interest and the rest, and in estimation the likelihood of the former
is overweighted relative to the latter.

3Theoretically, the interpretation of the local estimator differs in these applications: with a stochastic state variable
one may still assume stationarity, while when using time as the state variable one must instead consider heterogeneity
in the DGP, usually in the form of smoothly evolving parameters. Empirically, either form of state variable is equally
easy to handle, and we consider both in our empirical applications.
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comini and Ragusa (2014) and Pettenuzzo et al. (2014) provide methods for adjusting model-based

forecasts so that they satisfy constraints suggested by economic theory. The approach proposed

in this paper requires less of the forecaster: no default decision and no economic theory, only a

variable that is thought to be related to the degree of model misspecification.

Exploiting the expertise of the forecast user to identify a state variable to improve the forecasts

obtained from a baseline model is also related to professional forecasters’use of both statistical

models and expert judgment. Numerous studies, see Ang et al. (2007) and Faust and Wright (2009)

for example, have found that professional forecasters regularly outperform standard model-based

forecasts. Our tilting of the model parameters may be interpreted as a form a “structured”expert

judgment, and the generally superior performance of our proposed method is consistent with this

literature.

The remainder of the paper is structured as follows. In Section 2 we present our estimator and

theoretically consider the bias-variance trade-off for local and non-local estimation methods in out-

of-sample forecasting. In Section 3 we apply our estimator to four economic forecasting problems

and Section 4 concludes. A supplemental appendix contains additional details and results.

2 Local estimation and out-of-sample forecasting

We consider a target variable Yt+1, and target functional gt ∈ G. For example, gt could be the

mean, variance, median, a quantile, etc. It may also, with some changes in notation and methods,

be a predictive density, though we will focus on point forecasting. The target functional may also

be a vector, e.g. if Yt+1 is a vector and gt is its mean, or if Yt+1 is a scalar and gt is the vector

containing the Value-at-Risk and Expected Shortfall. The forecaster’s information set is Ft, and

naturally gt is Ft-measurable. We focus on one-step-ahead forecasts, but all the results below can

be extended to general h- step-ahead forecasts, for h <∞.

Let L be a loss function (scoring rule) that elicits the desired target functional, i.e., that

g†t = arg min
g∈G

E [L (Yt+1, g) |Ft] (1)
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For example, if the target functional is the mean, then L can be the squared forecast error.4

The baseline model is a parametric model for the target functional, gt (θ) , and we assume the

parameter of the model is obtained via M -estimation minimizing the same loss function. Matching

the estimation and evaluation loss functions is intuitive and can lead to improved forecasts, see

Granger (1969), Weiss (1996), and Hansen and Dumitrescu (2022) for example.5

θ̂T = arg min
θ∈Θ

1

T

T∑
t=1

L (Yt, gt−1 (θ)) (2)

where θ ∈ Θ ⊆ Rp.We assume that the sample runs from t = 0, 1, ..., T, yielding T observations for

estimation. Under standard conditions the usual estimator converges at rate
√
T to a well-defined

probability limit, θ̂
∗
, and has a Normal asymptotic distribution:

θ̂
∗ ≡ arg min

θ∈Θ
E [L (Yt+1, gt (θ))] (3)

√
T
(
θ̂T − θ̂

∗) D→ N (0,Σ) (4)

2.1 Incorporating information from a state variable

Denote the forecaster’s state variable as St, with support S ⊂ Rd. This variable must be observable

at all t (i.e., is Ft-measurable), and may or may not be one of the variables in the baseline model.

We consider an estimator defined by:

θ̃h,T (s) = arg min
θ∈Θ

1

T

T∑
t=1

L (Yt, gt−1 (θ))K (s− St−1;hT ) , for s ∈ Int (S) (5)

where K is the kernel function, hT is a bandwidth parameter that shrinks with the sample size,

s is some prespecified value of the state variable, and Int (S) is the interior of the support of the

4As discussed in Gneiting (2011) and Patton (2020), in many cases there are an infinite number of loss functions
that elicit a given functional.

5Hansen and Dumitrescu (2022) show that in some applications there may be gains from using a different loss
function for estimation than evaluation, but only if the two loss functions are “coherent.”We discuss this further in
Supplemental Appendix SA.2.
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state variable, S. Under a variety of regularity conditions, the limit of this estimator is:

θ̃
∗

(s) ≡ arg min
θ∈Θ

E [L (Yt+1, gt (θ)) |St = s] (6)

With the bandwidth shrinking at an appropriate rate, which differs depending on assumptions

about smoothness and temporal dependence,6 the rate of convergence for the estimator is T 1/2−γ

for some γ ∈ (0, 1/2):

T 1/2−γ
(
θ̃h,T (s)− θ̃∗ (s)

)
= Op (1) ∀ s ∈ Int (S) (7)

For the purposes of our analysis below, we require only that the estimator is consistent (so γ < 1/2)

but converges more slowly than the parametric rate (γ > 0). Naturally, in applied work one would

like to find the local estimator with the fastest rate of convergence, and in our applications we use

cross-validation to choose the bandwidth that minimizes average loss.7

2.2 The special case of correct specification

Consider the special case that the baseline model is correctly specified and point identified (and so

θ̂
∗
is unique) for the target functional. This implies

∃! θ̂∗ ∈ Θ s.t. g†t = gt(θ̂
∗
) a.s. ∀ t (8)

Now consider the population local estimator using today’s value of the state variable

θ̃
∗

(St) ≡ arg min
θ∈Θ

E [L (Yt+1, gt (θ)) |St] (9)

Since local estimation nests non-local estimation, we have

6See Härdle and Tsybakov (1997) and Härdle et al. (1998) for results on the asymptotic distribution of local
polynomial and local linear estimation for time series, and see Fan and Yao (2003, Chapter 6) for a survey of results
on nonparametric estimation for time series.

7We focus on the case of a stochastic state variable here but the results below go through when conditioning
instead on time, as the fundamental trade-off between a better local approximation and greater estimation error
remains the same. The rate of convergence of the local estimator when using time as the state variable can again be
shown to be T 1/2−γ for some γ ∈ (0, 1/2) under a variety of conditions, see Ang and Kristensen (2012) for example.
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E
[
L
(
Yt+1, gt

(
θ̃
∗

(St)
))
|St
]
≤ E

[
L
(
Yt+1, gt

(
θ̂
∗)) |St] a.s. ∀ t (10)

Since g†t = arg ming∈G E [L (Yt+1, g) |Ft] , we also have

E
[
L
(
Yt+1, g

†
t

)
|Ft
]
≤ E

[
L
(
Yt+1, gt

(
θ̃
∗

(St)
))
|Ft
]

(11)

and by correct specification we have

E
[
L
(
Yt+1, g

†
t

)
|Ft
]

= E
[
L
(
Yt+1, gt(θ̂

∗
)
)∣∣∣Ft] a.s. ∀ t, ∀ θ ∈ Θ (12)

Since St ∈ Ft, we can apply the the law of iterated expectations (LIE) to equations (11)-(12) and

combine with equation (10) to obtain

E
[
L
(
Yt+1, gt(θ̂

∗
)
)∣∣∣St] ≤ E [L(Yt+1, gt

(
θ̃
∗

(St)
))
|St
]
≤ E

[
L
(
Yt+1, gt(θ̂

∗
)
)∣∣∣St] a.s. ∀ t, ∀ θ ∈ Θ

Thus we have E
[
L
(
Yt+1, gt(θ̂

∗
)
)∣∣∣St] = E

[
L
(
Yt+1, gt

(
θ̃
∗

(St)
))∣∣∣St] a.s. ∀ t. By the point-

identification assumption, we then know that θ̃
∗

(St) = θ̂
∗
. Noting that this must be true (a.s.)

for all t, this implies that θ̃
∗

(s) is flat in s. That is, the local M estimator reduces to the usual M

estimator when the baseline model is correctly specified.

2.3 Out-of-sample forecasting and a bias-variance trade-off

We now consider out-of-sample (OOS) forecast accuracy using the local estimator and the usual,

non-local, estimator. We obtain a form of bias-variance trade-off, which illuminates the conditions

under which the local estimator is likely to outperform the usual estimator. As is common in the

literature, we focus here on unconditional forecast accuracy, but it is also possible to look at the

difference in forecast performance conditional on the value of a state variable, for example by using

the methods of Li, et al. (2021), or as a function of time, as in Giacomini and Rossi (2010) and

Richter and Smetanina (2020). In our empirical applications we consider both unconditional and

conditional performance.
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By local estimation optimization, we have

E
[
L
(
Yt+1, gt

(
θ̃
∗

(St)
))
|St
]
≤ E [L (Yt+1, gt (θ)) |St] a.s. ∀ t, ∀ θ ∈ Θ (13)

and by evaluating the right-hand side at the non-local estimator and invoking the LIE we obtain

E
[
L
(
Yt+1, gt

(
θ̃
∗

(St)
))]
≤ E

[
L
(
Yt+1, gt(θ̂

∗
)
)]

(14)

This shows that the out-of-sample average loss from the local estimator will be weakly smaller than

that from the usual estimator in population. Note that this is true even though OOS performance

is computed using non-weighted losses, that is, the kernel function used in the local estimation

objective function does not appear. The gains accrue because the local estimator can vary with

the realized value of the state variable, while the usual estimator is fixed. As shown in the previous

section, when the model is correctly specified we have θ̃
∗

(s) = θ̂
∗ ∀ s and so local and non-local

estimators are identical and yield identical expected loss.

Next we consider the variance of the estimators, and the deleterious impact that estimation error

has on expected loss. It is this aspect that often makes forecasts from nonparametric models worse

than those from parametric models. We do so using a second-order Taylor series expansion of the

time T+1 expected loss incurred using the estimated parameter, centered on the limiting parameter.

We assume that the unconditional expected loss, E [L (Yt+1, ·)] , and conditional expected loss,

E [L (Yt+1, ·)|St] , are, for all θ ∈ Θ, twice differentiable.8 ,9 For ease of presentation we assume that

dim (θ) = 1, which can easily be relaxed.

Consider firstly the expected loss from non-local estimation. By the
√
T -consistency of θ̂T and

8Note that this assumption can hold even when the loss function is not differentiable, as in our use of the “FZ0”
loss function (Fissler and Ziegel, 2016; Patton et al., 2019) in our VaR-ES application, if the target variable is
continuously distributed.

9Twice differentiability of the objective function is a common regularity condition in estimation, see Newey and
MacFadden (1994) for example. Primitive conditions that guarantee this holds depend on the specific loss function,
L, forecasting model, gt, and conditional distribution of the target variable, Yt+1|Ft. This condition holds under a
range of different assumptions on the model and data generating process: see White (2001) for suffi cient conditions
that ensure these hold for linear regression (as in our yield curve applications); see Newey and MacFadden (1994)
and White (1994) for suffi cient conditions for QMLE and M estimation (as in our GARCH and HAR applcations);
see Patton et al. (2019) for suffi cient conditions for M estimation using the “FZ0” loss function (as in our VaR-ES
application).
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Taylor’s theorem, we have

E
[
L
(
YT+1, gT

(
θ̂T

))]
= E

[
L
(
YT+1, gT

(
θ̂
∗))]

+
∂E
[
L
(
YT+1, gT

(
θ̂
∗))]

∂θ

(
θ̂T − θ̂

∗)
+

1

2

∂2E
[
L
(
YT+1, gT

(
θ̂
∗))]

∂θ2

(
θ̂T − θ̂

∗)2
+ op

(
T−1

)
(15)

The first-order term is zero since ∂E
[
L
(
YT+1, gT

(
θ̂
∗))]

/∂θ = 0 by the definition of θ̂
∗
. The

second-order term is a Hessian-like term:

Ĥ∗ ≡ 1

2

∂2E
[
L
(
YT+1, gT

(
θ̂
∗))]

∂θ2 (16)

which is positive in standard estimation problems. Thus the second-order term is positive and

vanishing at rate T−1. Next consider expected loss from local estimation. By the T 1/2−γ consistency

of θ̃T (·) we have

E
[
L
(
YT+1, gT

(
θ̃h,T (ST )

))]
= E

[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))]

(17)

+
∂E
[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))]

∂θ

(
θ̃h,T (ST )− θ̃∗ (ST )

)
+

1

2

∂2E
[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))]

∂θ2

(
θ̃h,T (ST )− θ̃∗ (ST )

)2
+ op

(
T−1+2γ

)
The first-order term is zero since

∂

∂θ
E
[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))]

=
∂

∂θ
E
[
E
[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))∣∣∣ST ]] (18)

= E
[
∂

∂θ
E
[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))∣∣∣ST ]] = 0

The first equality holds by the law of iterated expecatations, the second holds as we can interchange

differentiation and (unconditional) expectation under the twice differentiability assumption, and the

third equality holds since ∂E
[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))∣∣∣ST ] /∂θ = 0 from the definition of θ̃

∗
(ST ) .
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The second-order term involves an expected Hessian-like term:

H̃∗ (ST ) ≡ 1

2

∂2E
[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))]

∂θ2 =
1

2
E

∂2E
[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))∣∣∣ST ]

∂θ2

 (19)

which is positive in standard estimation problems.

Finally, consider the difference between the OOS losses using the above two expansions:

E
[
L
(
YT+1, gT

(
θ̃h,T (ST )

))
− L

(
YT+1, gT

(
θ̂T

))]
(20)

= E
[
L
(
YT+1, gT

(
θ̃
∗

(ST )
))
− L

(
YT+1, gT

(
θ̂
∗))]

+Op
(
T−1+2γ

)
The first term on the right-hand side is non-positive, as the local estimator has weakly smaller

expected loss than the usual estimator when both are evaluated at population parameters. The

second term is dominated by the magnitude of the estimation error in the local estimator, and is

positive and vanishing at rate T−1+2γ . Using an optimal bandwidth will make γ as small as possible,

reducing the magnitude of the estimation error in the local estimator. Since this term is positive,

it increases the expected loss from using estimated parameters, and we observe the usual trade-off

in forecasting: a more flexible model leads to improved fit, at a cost of increased estimation error.

Whether one of these terms outweighs the other depends on features specific to each application,

and we discuss these next.

2.4 Empirical predictions from the theoretical analysis

Firstly, consider the case that the baseline model is correctly specified. In that case Section 2.2

showed that θ̃
∗

(s) = θ̂
∗ ∀ s, and we have

E[ L
(
YT+1, gT

(
θ̃
∗

(ST )
))

︸ ︷︷ ︸
local estimator loss

− L
(
YT+1, gT (θ̂

∗
)
)

︸ ︷︷ ︸
non-local estimator loss

] = 0 (21)

In this case, there is no improvement in the fit from using local estimation, and increased estimation

error causes local estimation to have worse OOS performance. More generally, when the baseline
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model is “very good”the scope for an improvement in fit is reduced, and the possibility that any

such improvements are more than offset by increased estimation error is increased.

Secondly, consider the case that the state variable contains no information about variation

in the fit of the misspecified model. We quantify this by considering the population first-order

conditions (FOCs) for the estimation methods. If the scores of the usual, non-local, estimator are

mean independent of the state variable St, i.e.,

E

 ∂L
(
Yt+1, gt(θ̂

∗
)
)

∂θ

∣∣∣∣∣∣St
 = E

∂L
(
Yt+1, gt(θ̂

∗
)
)

∂θ

 (22)

then the local estimation’s FOC is satisfied when θ̃
∗

(St) = θ̂
∗
, since the RHS of the above equation

equals zero by the FOC of the usual estimator. Thus a worthless state variable leads to θ̃
∗

(s) being

flat in s. This is the same outcome as in the correctly specified case, although from a different

source, namely the use of a poor state variable.10 Since θ̃
∗

(St) = θ̂
∗
in this case, there is obviously

no improvement in the fit from using local estimation, and the estimation error term discussed

in the previous section causes local estimation to have worse OOS performance. More generally,

when the state variable is only weakly informative about model misspecification the gains from

local estimation are lower, and the possibility that any such gains are more than offset by increased

estimation error is increased.

2.5 A stylized example

To illustrate the above ideas, consider a nonlinear AR(1) process as the DGP and a standard AR(1)

as the baseline model. Concretely, we use a stationary copula-based Markov process (see, e.g., Chen

and Fan (2006) and Beare (2010)), with standard Normal marginal distributions and a Clayton

copula linking adjacent realizations:

(Yt, Yt−1) = CClayton (Φ,Φ;κ) (23)

10 In the correctly-specified case, the scores are a MDS with respect to Ft, and since St ∈ Ft the LIE implies

E
[
∂L
(
Yt+1, gt

(
θ̂
∗))

/∂θ
∣∣∣St] = 0 for any choice of St, implying that in this case there are no useful state variables.
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where Φ is a standard Normal CDF, and κ is the parameter of the Clayton copula. We set

κ = 5 which implies first-order autocorrelation of about 0.85, and consider an estimation sample of

T = 1000. The conditional mean of Yt given Yt−1 is nonlinear in Yt−1 for this process, and in the

upper panel of Figure 1 we see that it is increasing and concave. The upper panel of Figure 1 also

shows the fitted linear AR(1) prediction obtained by OLS.

If we use Yt−1 as the state variable for local OLS estimation, which was one of the key state

variables considered in Dendramis et al. (2020), then in this example the local estimator asymp-

totically recovers the true conditional expectation function, since the truth is a nonlinear AR(1).

That is, in this example local estimation completely fixes the misspecification of the linear AR(1)

model. This estimator is denoted “Local OLS 1,”and the upper panel of Figure 1 confirms that

this estimator closely tracks the true conditional expectation function.11 We also consider a local

estimator using the second lag of the dependent variable, which is correlated with the ideal state

variable but imperfect. The resulting estimated conditional expectation function is approximately

correct for Yt−1 < 0, where first-order dependence is particularly strong for this process, but is

noticeably incorrect for Yt−1 > 0, where dependence is weaker and the state variable is worse.

The lower panel of Figure 1 presents the out-of-sample RMSE for the two local estimators

across a range of bandwidth parameters. For the optimal choice of bandwidth (h = 0.41) the

RMSE of first local estimator is almost equal to the RMSE of the optimal forecast, which of course

represents the lower bound on RMSE. The RMSE of the second local estimator is greater than that

of the first, consistent with this estimator using a worse state variable, and it is below the usual

OLS estimator’s RMSE for all but the smallest choices of bandwidth. (The optimal bandwidth is

h = 0.62.) As the bandwidth grows the two local estimators generate RMSE that converges to that

of the OLS estimator, as in that case the local estimators reduce to the OLS estimator.

[ INSERT FIGURE 1 ABOUT HERE ]

11For each of the “local OLS”estimated conditional expectation functions in the upper panel we use the bandwidths
identified as optimal according to the lower panel of Figure 1.
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3 Empirical applications

We consider our new estimation method in four different empirical applications. Firstly, we consider

the widely-used GARCH model of Bollerslev (1986). In this application the target variable (returns)

and the target functional (conditional variance) are both scalars, and the model is estimated using

quasi maximum likelihood (QML). In our second application we consider a popular high-frequency

successor to the GARCH model, namely the HAR model of Corsi (2009). In this application the

target variable functional is again a scalar, and estimation is again done via QML. Our third

application considers forecasts of Value-at-Risk and Expected Shortfall (VaR and ES), and so the

target functional is a (2× 1) vector, and the model is estimated using M -estimation. Finally, we

consider yield curve forecasts using the popular “dynamic Nelson-Siegel” model of Diebold and

Li (2006). In this case the target variable is a (12× 1) vector of yields for bonds with maturities

ranging from three months to ten years and the target functional is the conditional mean of that

vector, estimated using OLS. These four applications illustrate the variety of environments (target

functionals, dimensionality, estimation methods), and we show that our proposed method provides

statistically significant improvements over standard methods.

Across all four applications, for stochastic state variables we use a Gaussian kernel:

KG (x;h) = exp

{
− x2

2h2

}
, x ∈ R, h > 0 (24)

We consider values for the bandwidth, h, in the range 0.01σS to 4σS , where σS is the standard

deviation of the state variable. A small value of h makes the model parameters more “local,”but

also decreases their precision since the effective sample size is smaller, and as h diverges the local

estimator approaches the benchmark non-local method. We also consider an infinite bandwidth by

comparing the average loss from the best finite bandwidth with that from the non-local method.

When using time as a state variable we use a one-sided exponential kernel with bandwidth parameter

λ and window length m:

KE (j;λ) = λj (1− λ) / (1− λm)1 {j < m} , j ∈ 0, 1, 2, ... (25)
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We consider values for λ ranging from 0.98 to 0.9999. Smaller values of λ imply that older data

are given less weight in estimation, making the model parameters more local (in time) but subject

to greater estimation error. As λ → 1 the weight function becomes flat and the local estimator

approaches the benchmark non-local estimator. We consider the limiting case of λ = 1 by comparing

the smallest average loss from a bandwidth less than 1 with the loss from the non-local method.

To select the optimal bandwidth parameter(s) for each state variable, we split the estimation

sample into a “training sample”(the first half) for estimation of the model parameters with a va-

riety of bandwidths, and a “validation sample”(the second half) to select the optimal bandwidth

parameter(s).12 We then use the selected bandwidth parameter when evaluating the model in the

out-of-sample (OOS) period, eliminating look-ahead bias in both the model parameters and band-

width parameters. Model parameters, for both the local and benchmark (non-local) models, are

re-estimated daily throughout the OOS period using an expanding window of data, and bandwidth

parameters for the local models are kept fixed at their optimized value from the validation sample.13

In all applications we consider four stochastic state variables, motivated by our applications to

volatility or risk forecasting and yield curve forecasting. We consider two measures of volatility:

5-minute realized volatility (RV) on the S&P 500 index,14 and VIX, a measure of S&P 500 index

volatility extracted from options prices. We also consider two measures derived from the yield

curve: the Federal Funds Rate (FFR) and the difference between 10-year and 2-year government

bond yields (denoted 10Y-2Y), representing measures of the “level”and “slope”of the yield curve.

To mitigate skewness we use the natural logarithm of the two volatility measures. We also con-

sider time as a state variable, and four bivariate state variables comprised of time and each of the

four stochastic state variables, leading to a total of nine possible state variables. As the kernel

for the bivariate state variables we use the product of the univariate kernel for each of the vari-

12For the bandwidth h we use a coarse grid of width 0.1 from 0.1σS to 4σS to find an approximate solution and
then consider a finer grid of width 0.01 in an interval ±0.1 from the approximate solution. For the bandwidth λ we
consider a grid of width 0.0025 from 0.98 to 1, but we replace 1 with 0.999, 0.9995 and 0.9999.
13An earlier version of this paper considered non-local models estimated on rolling windows of 250, 500 and 1000

days of data. For all but the 1-day yield curve application we found very similar results to those reported here;
non-local estimation was significantly out-performed by local estimation. For the 1-day yield curve application we
found that the best two models were “non-local” using estimation windows of 250 and 500 days. However, using
such short estimation windows also corresponds to a crude form of local estimation, one that is well known in the
literature.
14This data is taken from the Oxford-Man Realised Library.
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ables. Supplemental Appendix SA.1 provides additional details on the implementation of the local

methods.

In our main analyses, we compare the various estimation methods in each application using

OOS average loss. Importantly, OOS losses are unweighted, and so the local estimator has no

inherent advantage; any forecast performance improvements are attributable to a favorable bias-

variance trade-off relative to the benchmark method, in the spirit of the analysis in Section 2.

We use Giacomini-White (2006) (GW) tests to compare each method to the benchmark non-local

method, and we estimate the set of best methods using the model confidence set (MCS) of Hansen

et al. (2011).15 Digging deeper into the comparison of the competing methods, in Section 3.5 we

consider conditional analyses of forecast performance, investigating whether relative performance

varies with the state variable.

3.1 GARCH forecasts

The GARCH model of Bollerslev (1986) is a very popular model for forecasting asset return volatil-

ity, and in a variety of applications, and against a variety of alternatives (see Hansen and Lunde

(2005)), it has proven hard to beat.16 Assuming the conditional mean is zero, the GARCH model

for the conditional volatility of asset return Yt is:

Yt = σtεt (26)

σ2
t = ω + βσ2

t−1 + αY 2
t−1

The benchmark method estimates the model parameters using QML, which is equivalent to mini-

mizing the in-sample average QLIKE loss function:

L
(
Y 2
t , σ

2
t

)
=
Y 2
t

σ2
t

− log
Y 2
t

σ2
t

− 1 (27)

15We use Newey-West standard errors with ten lags for the GW test, and we use the stationary bootstrap with an
average block length of ten for the MCS.
16There are many papers that have built on the original GARCH model, and we do not attempt to conduct a

horserace of volatility models here. Rather we illustrate how our method improves upon the seminal GARCH model,
and, aside from one exception discussed at the end of this section, leave applying the method to extensions for future
research.
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For this analysis we use daily returns on the S&P 500 index over the period January 2000 to

June 2021, a total of T = 5349 observations. We use the period 2000-2010 (2737 observations) as

the estimation sample, which is then further split into two to select the bandwidth parameters, and

the remainder (2612 observations) as the out-of-sample period.

Table 1 presents the out-of-sample performance of the GARCH(1,1) model estimated using a

variety of methods. The rows of this table are ordered by average OOS QLIKE loss, reported in

the third-last column. The local method with the best performance in the validation sample (the

second half of the in-sample period) is marked in the first column with ∗. The last two columns

report Giacomini-White t-statistics of each model relative to the benchmark non-local model, and

an indicator (X or ×) for whether a given method is included in the 95% model confidence set.

We observe that the benchmark method, which uses non-local QML and an expanding estima-

tion window, is ranked last in this set of estimation methods. Every local method has significantly

lower OOS loss than the benchmark method, according to the GW test, with GW t-statistics all

being less than -3. The local method with the best performance in the validation sample uses time

and RV as state variables, and it turns out to also have the lowest average loss in the OOS period.

Comparing the benchmark method with the local method selected using the validation sample we

obtain a GW t-statistic of -12.3, strong evidence that the local method out-performs the non-local

benchmark. When we consider this set of estimation methods as a whole, we find only one method

is included in the model confidence set: local QML using time and RV as state variables. This

small MCS indicates a high degree of precision in identifying the best-performing method.

[ INSERT TABLE 1 ABOUT HERE ]

To better understand the source of the improvement in performance of the best local method,

Figure 2 presents the local QML estimates of the GARCH parameters when RV ranges over its

support, and compares them with the usual, constant, QML estimates of these parameters. To

facilitate interpretation we look at three functions of these parameters: the model-implied average

volatility (
√
ω/ (1− α− β)), reaction of volatility to news (α) , and persistence of volatility (α+β).

We see that the local QML estimate of the level of volatility is increasing in RV, consistent with RV
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providing useful information about future volatility. In the second panel we see that the reaction

to news from local QML is generally lower than from non-local QML, and it is highest when RV

is around 40, indicating that it is these times where the squared return is most informative about

future volatility. We also observe a drop in the persistence of volatility when RV is high; above

about 35. This is consistent with some successful extensions of the GARCH model, e.g., where

volatility is modeled as having a fast- and a slow-moving component (see Engle and Lee (1999)

and Christoffersen et al. (2008)) with sharp increases in volatility being attributable to the less-

persistent component, or, related, where volatility is modeled as having a jump and a continuous

component (Andersen et al. (2007)), with the jump component found to be less persistent.

[ INSERT FIGURES 2 AND 3 ABOUT HERE ]

In Figure 3 we investigate whether the forecast gains from local estimation are sensitive to the

choice of bandwidth. Similar to the lower panel of Figure 1, we plot the average OOS loss from the

local and non-local methods as a function of the bandwidth, as well as 95% GW confidence bands,

indicating whether the two methods have significantly different average losses.17 The optimal band-

width from the validation sample is 0.35, while the ex post best bandwidth choice is 0.17. The

difference in forecast improvement, however, is robust across a range of bandwidths, from approxi-

mately 0.12 to 0.46. As the bandwidth approaches zero the local forecast performance deteriorates,

as estimation error swamps the forecast; as the bandwidth diverges the forecast improvements

shrink to zero and the local and non-local forecasts coincide.

To quantify the magnitude of the forecast gains, in addition to their significance as gauged by

GW tests, Supplemental Appendix SA.3 presents a method that draws on the trade-off between

estimation error and goodness-of-fit that underlies our comparison of local and non-local models.

We quantify the gains in forecast accuracy as a gain in effective sample size for estimating the

benchmark model. Using that method we find that the improvement in forecast performance

achieved by going from the benchmark GARCH model to the best local GARCH model is equivalent

17For ease of presentation, Figure 3 is based on the local model estimated using RV as the state variable. This was
the second-best model in the validation sample. The best model in the validation sample uses both time and RV as
state variables, but visualizing the sensitivity to two bandwidths is more diffi cult. We find similar insensitivity in
that case as in the case presented in Figure 3.
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to the gain from using around 80 times more data for non-local estimation, indicating that the local

GARCHmodel indeed produces forecasts that are substantially better than the benchmark GARCH

model.

In Supplemental Appendix SA.4 we augment the benchmark GARCH model with an additional

variable, making it a “GARCH-X”model. Given its usefulness as a state variable, we use VIX2 as

the “X”variable. (We use VIX2 rather than VIX so that all regressors in the model are measures

of variance.) Table S2 shows that 14 methods significantly (at the 0.05 level) beat the benchmark

GARCH-X model, which ranks 15th out of the 20 competing methods. We find eight methods are

included in the 95% MCS, and all of these methods are local, using VIX, RV, FFR and/or time

as state variables. This confirms that the proposed local method improves the benchmark model

even when an additional variable is included in that model, thereby altering the model, and also

illustrates how to apply our method to an extension of a baseline model.

3.2 HAR volatility forecasts

We next consider a widely-used high frequency-based volatility forecasting model, the heterogeneous

autoregressive (HAR) model of Corsi (2009). This model specifies one-period-ahead volatility to

be a function of the one-day, one-week, and one-month lags of volatility:

RVt = β0 + βdRVt−1 + βw
1

5

∑5

j=1
RVt−j + βm

1

22

∑22

j=1
RVt−j + et (28)

By exploiting the information in high frequency data, this model has been widely found to out-

perform the GARCH model based on daily data. We use five-minute realized volatility on the

S&P 500 index over the period January 2000 to June 2021, and, as in the GARCH analysis in the

previous section, we use 2000-2010 as the estimation sample (which is then further split into two to

select the bandwidth parameters) and the remaining as the out-of-sample period. We also consider

the same set of state variables: time, RV, VIX, FFR, 10Y-2Y, as well as bivariate state variables

using time and each of the four stochastic state variables. We estimate the model using (local or

non-local) QML.
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Table 2 presents results on the out-of-sample forecast performance of the various estimation

methods. The benchmark method ranks 9th out of the 10 estimators, and is significantly beaten,

at the 0.05 level, by five local methods, based on RV, VIX, FFR and/or time. The local model

using VIX is selected using the validation sample, and the GW statistic comparing this method to

the benchmark is -5.8, strongly rejecting the benchmark in favor of the local estimator. Using the

“equivalent sample size”method described in Supplemental Appendix SA.3, we find that the gain

from using local estimation compared with non-local estimation is equivalent to the gain from using

45 times more data for non-local estimation, a substantial improvement. The 95% model confidence

set contains just one estimator, the local method using time and VIX as state variables. These

results reveal that even the more challenging HAR model can be improved by recognizing that it,

too, is misspecified, and by tilting the parameters of the model to reflect the current environment

as captured by the state variable.18 ,19

The theoretical analysis in Section 2.4 revealed that when a state variable that is only weakly

related to the degree of misspecification in the model is considered, local estimation is likely to fare

poorly compared with non-local estimation, as the deleterious effect of nonparametric estimation

error will not be offset by improved fit. This appears to be the case in this application when using

the Fed Funds Rate (FFR) as a state variable: when combined with time it performs better than

the benchmark, though not significantly, and when used on its own the OOS average loss is greater

than the benchmark, and has a GW t-statistic of 1.88, indicating significantly worse performance

at the 0.10 level.

[ INSERT TABLE 2 ABOUT HERE ]

To illustrate how local and non-local estimation leads to different forecasts, Figure 4 presents

volatility forecasts over the last 18 months of the sample period obtained from the best local and

non-local HAR models in Table 2. We see that for much of the period, volatility is low and the two

18Table S3 in the supplemental appendix presents results when the HAR-X model is taken as the baseline model.
We find 15 methods significantly beat the benchmark, and the 95% MCS includes just two methods, both local
versions of the HAR-X model using RV or time and RV as state variables.
19 In Figure S1 in the Supplemental Appendix we show that the forecast gains from using a local HAR model are

robust across a range of choices of the bandwidth parameter.
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methods yield very similar forecasts. The methods differ most markedly during the market turmoil

in March 2020, where we osberve that the local HAR produces forecasts that increase more quickly

as market turbulence rose, and then decrease more quickly in the subsequent weeks.

[ INSERT FIGURE 4 ABOUT HERE ]

3.3 VaR and ES forecasting

We now consider models for forecasting two key quantities in risk management: Value-at-Risk

(VaR) and Expected Shortfall (ES). For a given probability level α, usually set at 5%, these two

measures are defined as the α-quantile and the expected value conditional on being below the

α-quantile, both conditional on information set Ft−1:

Yt|Ft−1 ∼ Ft (29)

[V aRt, ESt] ≡
[
F−1
t (α) , E [Yt|Yt ≤ V aRt,Ft−1]

]
(30)

While VaR is simply a quantile of the conditional distribution of the asset return under analysis,

and thus estimation and forecasting of this measure can be done using the large literature on

quantile forecasting (see Komunjer, 2013, for a review), models for ES are relatively lacking. This

is perhaps in part due to the fact that this risk measure is not “elicitable”(Gneiting, 2011), meaning

that without strong assumptions there is no loss function that allows for its direct estimation. This

hurdle was overcome by Fissler and Ziegel (2016), who proposed a class of loss functions that allows

for the joint estimation of VaR and ES. We will focus on a leading member of this class, the “FZ0”

loss function considered in Nolde and Ziegel (2017) and Patton et al. (2019):

L (y, v, e;α) = − 1

αe
1 {y ≤ v} (v − y) +

v

e
+ log (−e)− 1 (31)

With this loss function in hand, researchers can estimate models for VaR and ES directly (rather

than indirectly via, for example, models for the entire predictive distribution) and competing

forecasts of VaR and ES can be compared via their out-of-sample average FZ0 loss. Throughout,
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we consider a probability level, α, of 5%. This estimator can be interpreted as a QMLE, see Taylor

(2019).

We take as the baseline model the zero-mean GARCH model, see Equation (26). Using this

model, forecasts for VaR and ES are obtained as:

[V aRt, ESt] = [a, b] · σt (32)

where b < a < 0 are the tail proportionality coeffi cients linking VaR and ES to volatility. If these

parameters are estimated along with those of the GARCH model by minimizing the in-sample

average FZ0 loss we obtain the “GARCH-FZ” model of Patton et al. (2019). We found that

“localizing” these coeffi cients works poorly for forecasting, perhaps unsurprisingly as it combines

nonparametrics and tail estimation, two data-intensive tasks.20 Instead, we estimate [a, b] using the

standardized residuals based on the standard QML GARCH series, and only localize the GARCH

model parameters. This leads to the GARCH-EDF model, Equation (26) and:

[
ât, b̂t

]
≡
[
F̂−1
ε,t (α) ,

1

αt

t∑
s=1

εs1
{
εs ≤ V̂ aRε

} ]
(33)

where εt ≡ Yt/σt, F̂−1
ε,t is the sample α-quantile of εt, and the GARCH process parameters are

estimated by minimizing the FZ0 loss function. For the non-local estimation we obtain parameters

by minimizing the in-sample average FZ0 loss function using an expanding window of data. For

local M estimation, we follow the same method as in the previous sections: we consider a total of

nine possible state variables, with bandwidth parameters optimized using the second half of the

estimation sample.

Table 3 presents results on the out-of-sample forecast performance of the various estimation

methods. The local method selected using the validation sample, which uses time and VIX as state

variables, performs second-best in the OOS period. It significantly beats the benchmark, which

is ranked 9th, though only at the 0.10 level with a GW statistic of -1.68. Using the “equivalent

20Table S4 in the supplemental appendix is analogous to Table 3, discussed below, using the GARCH-FZ as the
benchmark model. There we see that some local methods significantly beat the non-local benchmark, but overall the
performance is worse, and for this reason we focus on GARCH-EDF as the baseline model.
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sample size”method described in Supplemental Appendix SA.3, we find that the gain from using

local estimation compared with non-local estimation is equivalent to the gain from using just 1.5%

more data for non-local estimation. Three other methods have significantly lower OOS than the

benchmark, and all are local methods, using RV, VIX, or FFR as state variables. The MCS contains

just a single method: local estimation using time and RV. Similar to the HAR application, we find

that using the term spread (10Y-2Y) as a state variable worsens forecast performance, revealing

that that state variable is only weakly related to the degree of misspecification GARCH-EDF model.

[ INSERT TABLE 3 ABOUT HERE ]

In Figure S1 in the Supplemental Appendix we examine the sensitivity of the forecast perfor-

mance of the local GARCH-EDF model to the choice of the bandwidth parameter. In this figure

we focus on the case that the state variable is time, and the bandwidths range from 0.98 to 0.9999.

When the bandwidth is chosen “too small,”in this case meaning in the lower three-quarters of the

range considered, the local model performance deteriorates, and for values in the lowest quarter

of this range the difference from the non-local forecasts are statistically significant. However, the

model’s performance is stable across a range of bandwidths near the validation sample-optimal

bandwidth.

3.4 Yield curve forecasting

In our final empirical application we consider the popular “dynamic Nelson-Siegel”model for pre-

dicting the term structure of bond yields proposed by Diebold and Li (2006). Denoting yt (τ) as

the yield on a bond with maturity τ at time t, this model starts from the Nelson and Siegel (1987)

model for a term structure of yields:

yt (τ) = β1,t + β2,t

(
1− exp {−λtτ}

λtτ

)
+ β3,t

(
1− exp {−λtτ}

λtτ
− exp {−λtτ}

)
+ et (34)

This specification has four free parameters: the betas affect the level, slope and curvature of the

yield curve, while λt determines (among other things) the maturity at which the curvature factor

has a turning point. These parameters can be estimated jointly, period-by-period, using nonlinear
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least squares, or if λt is fixed at some pre-determined value the remaining parameters can be

obtained analytically using OLS. We follow Diebold and Li (2006) and set λt = 0.0609 ∀ t so that

the curvature term peaks at 30 months and the model can be estimated by OLS.

Moving beyond describing yield curves to predicting them, Diebold and Li (2006) proposed

modeling the observed sequences of
{
βi,t
}T
t=1
, for i = 1, 2, 3, as AR(1) processes:

β i,t+1 = φ0i + φ1iβi,t + ei,t+1 (35)

That is, on each day in the estimation window the vector
[
β1,t, β2,t, β3,t

]
is obtained from the cross-

section of yields, and then from the time series of these parameters the predicted value of the vector

for the next period is obtained by estimating an AR(1) model via OLS. Inserting those forecasts

into the Nelson-Siegel functional form then provides a forecast for the next-period yield curve, and

combined the equations (34) and (35) comprise the “dynamic Nelson-Siegel”(DNS) model.

We consider local versions of the DNS model, where the three AR(1) models are estimated

via local OLS based on one of the nine state variables used in the previous analyses. Local OLS

estimation of this model simplifies to weighted OLS (see, e.g., Cleveland and Devlin (1988) and

Fan et al. (1998)), with the weights coming directly from the state variable and the kernel, and, as

for OLS, the estimated local parameters are available in closed form, see Supplemental Appendix

SA.1 for more details. We use the same state variable (and same bandwidth value) for all three

AR(1) models, although that could be relaxed.21 We additionally consider the usual, non-local,

DNS model, estimated on an expanding window of data.

We use daily data over the period January 2000 to June 2021, and we consider bonds with

maturities of three and six months, and one to ten years, a total of twelve maturities.22 We

summarize the predictive performance of this model by summing the squared OOS forecast errors

across maturities.
21We choose the bandwidth to minimize the sum of the MSEs across the three AR(1) models, however it is possible

to consider different state variables, with different bandwidths, for each of the three AR(1) models for the betas. We
have not considered this extension.
22We obtain one- to ten-year yields from https://www.federalreserve.gov/data/nominal-yield-curve.htm and data

on three- and six-month yields, as well as the FFR and 10Y-2Y from the St. Louis Fed “FRED”database.
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Table 4 presents the results for two forecast horizons, one day and twenty days. The results in

Panel A, for the one-day horizon, show that the benchmark method is ranked last out of the ten

methods considered, and is statistically significantly beaten by all nine competitors. However, as

the third-last column in Table 4 reveals, the RMSEs from the competing models are identical up to

the first three decimal places. The improvement in RMSE of the best local method relative to the

benchmark is just 0.1%. Moreover, the “equivalent sample size”measure of the improvement from

using local estimation is a gain in sample size of just 16%. Both of these suggest that despite the

statistical significance, the economic improvement from local estimation is limited. This negative

result connects to the theoretical analysis in Section 2.4, in that the best non-local method in this

application has an R2 of 0.964, leaving very little room for improvement by a competing method.

In Panel B of Table 4 we present results for the 20-day horizon, and for this more challenging

forecasting problem we see that local estimation leads to improved OOS performance. The bench-

mark method ranks eighth out of the ten estimators, and it is significantly beaten by four local

methods, those based on time and time and FFR or VIX. The two methods in the MCS use time

and FFR or 10Y-2Y as state variables. Using the “equivalent sample size”method described in

Supplemental Appendix SA.3, we find that the gain from using local estimation compared with

non-local estimation is equivalent to the gain from using 4 times more data for non-local estimation,

a substantial improvement.23 Panel B of Table 4 provides another example of a poor state variable

leading to worse out-of-sample forecast performance: local estimation using either RV or VIX leads

to higher RMSE, and in the case of RV the difference is strongly significant, with a GW statistic

of over 4.

Combined, the results from the yield curve forecasting application highlight the upsides and the

downsides of local estimation. When the baseline model is very good, as it is for the one-day forecast

horizon, there is little scope for an alternative estimation method to offer any gains. However for

more diffi cult forecasting problems, alternative estimation methods like the local methods proposed

here offer the possibility of improved forecasts, so long as the state variable is informative about

the benchmark model’s misspecification.

23 In Figure S2 in the Supplemental Appendix we show that the results for both yield curve applications are robust
across a range of choices of the bandwidth parameter.
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[ INSERT TABLE 4 ABOUT HERE ]

3.5 Conditional comparisons of forecast performance

In all of the above analyses we focused on the average out-of-sample (OOS) performance of local and

non-local methods for estimating a forecasting model. However, if the forecast user has an idea for a

state variable that may be useful for tilting the estimated model parameters, this variable may also

be useful for predicting which method is likely to outperform in the next period. We investigate this

idea in three ways: via linear regression, nonparametric regression, and a test of uniform predictive

performance. In each case we compare the local method with the best performance in the validation

sample (these are marked with ∗ in each of Tables 1 to 4) to the benchmark non-local method. The

state variable used is the same as that in the local method: RV for the GARCH application, and

VIX for the HAR and VaR-ES applications, and the slope of the term structure (10Y-2Y) for the

yield curve (h=1 and h=20) applications.

Table 5 presents the results of a simple linear regression of OOS loss differences on a constant

and the lagged state variable, as proposed in Giacomini and White (2005). We de-mean the state

variable so that the intercept of this regression corresponds to the difference in average OOS loss,

and the t-statistics associated with the intercept are exactly the GW statistics for the unconditional

comparisons in Tables 1 to 4. The t-statistics on the slope coeffi cient reveal whether the state

variable can (linearly) predict future differences in realized losses. In the GARCH application the

slope coeffi cient (on RV) is positive and significant, indicating that the local method does relatively

worse when volatility is high. In the HAR and VaR-ES applications the slope (on VIX) is negative,

but not significant, indicating that the local method does relatively better when volatility is high.

The slope coeffi cient switches signs in the two yield curve applications, but is not significant in

either.

[ INSERT TABLE 5 ABOUT HERE ]

To gain a more nuanced understanding of the relationship between OOS loss differences and the

state variable, Figures 5 and 6 present a simple nonparametric kernel smooth of this relationship,
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along with pointwise 95% confidence intervals.24 These plots allow us to see if the loss difference

particularly positive or negative in some part of the support of the state variable. In the upper panel

of Figure 5 we see that local QML strongly outperforms non-local QML for GARCH models when

volatility is relatively low. When annualized RV is above about 15% the difference in performance

is approximately zero, and the confidence interval includes zero for all values of RV above 20%.

Similar results hold for the VaR-ES comparison.

For the HAR application, presented in the middle panel of Figure 5, we see that the predicted

OOS loss difference is almost constant in the state variable. The loss difference is always negative,

revealing that local QML outperforms non-local QML regardles of the level of volatility, though

the significance of the difference drops as volatility rises above about 30%.

In the upper panel of Figure 6, we see that local OLS significantly outperforms non-local

OLS when the term structure is relatively flat (when the difference between 10-year and 2-year

government bonds is near zero). When the term structure steepens to greater than about 1%, the

difference in performance is not significant. In the lower panel of Figure 6 we observe the reason

for the insignificant slope coeffi cient in the linear analysis presented in Table 5: the relationship

is U-shaped. When the term structure is relatively flat or relatively steep, non-local OLS weakly

dominates local OLS, while for intermediate values of the slope (between 0.25% and 2.5%) local

OLS significantly outperforms non-local OLS.25

Finally, we use the recently-proposed “conditional superior predictive ability” (CSPA) test of

Li et al. (2021) to test whether the non-local method has weakly lower expected loss across the

entire support of the state variable:

H0 : E
[
L
(
Yt+1, gt

(
θ̃h,t (St)

))
− L

(
Yt+1, gt(θ̂t)

)∣∣∣St = s
]
≥ 0 ∀ s ∈ Int (S) (36)

as well the hypothesis where the inequality in equation (36) is reversed. In the GARCH application,

we reject the first null (p-value less than 0.01) and conclude that non-local QML does not weakly
24The estimate and confidence intervals are computed using Theorem 2.2 of Li and Racine (2007).
25 It is possible to construct a “hybrid” forecast based on the local and non-local methods by switching between

them according to which method is predicted to have lower loss in the subsequent period, see Giacomini and White
(2005) and Timmermann and Zhu (2021) for example. We do not pursue this extension here.
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dominate local QML uniformly, which is unsurprising given the estimated average loss presented in

the upper panel of Figure 5. We fail to reject the reverse hypothesis (p-value of 0.99), meaning that

local QML may indeed dominate non-local QML, and combined these results indicate that local

QML is strongly preferred to non-local QML. We find the same outcomes for the HAR and both

yield curve (h = 1 and h = 20) applications: local estimation is strongly preferred to non-local

estimation. In contrast, in the VaR-ES application we fail to reject either null at the 0.05 level,

despite local estimation outperforming non-local estimation unconditionally, and outperforming

pointwise for low values of VIX as in Figure 5. This outcome may be due to a relative lack of power

in this application, which is focused on the 5% tail of the distribution of returns.

[ INSERT FIGURES 5 AND 6 ABOUT HERE ]

4 Conclusion

This paper proposes an estimation method to improve the forecasts produced by a misspecified

forecasting model, without altering the form of the underlying model. In many decision-making

environments, the statistical model is “hardwired,”at least in the short term, and substituting it

for a new and improved model is not possible. This may be because changing the model requires

regulatory approval, or approval from a high-level committee, or because the time taken to embed

a new model in the decision-making process is long relative to the competitive environment. We

overcome this hurdle by maintaining the functional form of the baseline model and improving its fit

by upweighting past observations that look more similar to the forecast date, and downweighting

observations that are more dissimilar, drawing on methods like local OLS estimation and local

MLE, see Tibshirani and Hastie (1987), Cleveland and Devlin (1988) and Fan et al. (1998), as well

as older methods like exponential smoothing, see Brown (1956) and Muth (1960).

We theoretically compare out-of-sample forecasts from the proposed estimation method with

those from the baseline model and observe a familiar bias-variance trade-off. Interestingly, the bias-

variance trade-off for the proposed method goes in the opposite direction to the usual one for out-

of-sample forecasting: the proposed estimation method (generally) adds variance to the forecast, in
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the hope of reducing the bias from using the misspecified baseline model. Our theoretical analysis

sheds light on the conditions that are likely to be favorable for the local estimation method proposed

here. Specifically, the baseline model cannot be “too good” and the forecaster’s state variable

summarizing the environment at the forecast date cannot be “too bad.”

We apply the proposed method to four economic forecasting problems. The first two applications

consider volatility forecasting, using daily data and the famous GARCH model of Bollerslev (1986)

or high frequency data and the popular HAR model of Corsi (2009). The third application is to risk

management, and focuses on joint forecasts of Value-at-Risk and Expected Shortfall. The fourth

application is to yield curve forecasts, made using the “dynamic Nelson-Siegel”model proposed

by Diebold and Li (2006). We find that our proposed method provides statistically significant

improvements over the baseline methods in almost all cases.
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Table 1: Out-of-sample forecast performance for GARCH(1,1) models

Method details Forecast performance
Rank StateVar Bwidth AvgLoss GW stat MCS
1∗ time,RV 0.9995,0.31 0.315 -12.302 X
2 RV 0.35 0.324 -11.726 ×
3 time,VIX 0.9999, 0.27 0.339 -9.188 ×
4 VIX 0.28 0.341 -9.050 ×
5 time 0.995 0.370 -6.785 ×
6 time,FFR 0.9975, 0.33 0.377 -6.489 ×
7 time,10Y-2Y 0.9975, 0.16 0.381 -4.286 ×
8 10Y-2Y 0.11 0.396 -3.667 ×
9 FFR 0.23 0.401 -4.348 ×
10 — — 0.414 F ×

Notes: This table presents measures of forecast performance over the out-of-sample period
(January 2011 to June 2021) from GARCH(1,1) models estimated using either QML (non-local),
or local QML. The rows are ordered by average OOS QLIKE loss, reported in the third-last col-
umn. The local method with the best performance in the validation sample (the second half of
the estimation sample) is marked in the first column with ∗. The local estimators use the state
variable(s) given in the second column and bandwidth parameter(s) from the third column, which
are selected using the validation sample. All forecasting models are estimated using an expanding
window of data. The penultimate column reports Giacomini-White t-statistics of each model rel-
ative to the benchmark non-local method (marked with F), with negative t-statistics indicating
lower average loss. The final column includes a check mark if a given method is included in the
95% model confidence set, and a cross otherwise.
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Table 2: Out-of-sample forecast performance for HAR models

Method details Forecast performance
Rank StateVar Bwidth AvgLoss GW stat MCS
1 time,VIX 0.9999, 0.35 0.238 -6.158 X
2∗ VIX 0.34 0.239 -5.802 ×
3 time,10Y-2Y 0.9999, 2.5 0.254 -2.393 ×
4 time,RV 0.9999, 3.05 0.254 -2.445 ×
5 time 0.9999 0.254 -2.867 ×
6 time,FFR 0.9999, 2.5 0.254 -0.956 ×
7 10Y-2Y 2.68 0.254 -1.436 ×
8 RV 3.11 0.254 -0.474 ×
9 - - 0.254 F ×
10 FFR 2.51 0.255 1.875 ×

Notes: This table presents measures of forecast performance over the out-of-sample period
(January 2011 to June 2021) from HAR models estimated using either QML (non-local), or local
QML. The rows are ordered by average OOS QLIKE loss, reported in the third-last column. The
local method with the best performance in the validation sample (the second half of the estimation
sample) is marked in the first column with ∗. The local estimators use the state variable(s) given in
the second column and bandwidth parameter(s) from the third column, which are selected using the
validation sample. All forecasting models are estimated using an expanding window of data. The
penultimate column reports Giacomini-White t-statistics of each model relative to the benchmark
non-local method (marked with F), with negative t-statistics indicating lower average loss. The
final column includes a check mark if a given method is included in the 95% model confidence set,
and a cross otherwise.
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Table 3: Out-of-sample forecast performance for VaR-ES models

Method details Forecast performance
Rank StateVar Bwidth AvgLoss GW stat MCS
1 time,RV 0.9975. 2.57 -3.868 -1.987 X
2∗ time,VIX 0.9975, 1.68 -3.864 -1.678 ×
3 time 0.9975 -3.860 -1.329 ×
4 time,FFR 0.9975, 3.09 -3.860 -1.289 ×
5 time,10Y-2Y 0.9975, 2.52 -3.859 -1.206 ×
6 RV 2.06 -3.852 -5.682 ×
7 VIX 2.01 -3.849 -3.815 ×
8 FFR 2.97 -3.845 -2.253 ×
9 - - -3.843 F ×
10 10Y-2Y 3.18 -3.843 0.177 ×

Notes: This table presents measures of forecast performance over the out-of-sample period
(January 2011 to June 2021) from GARCH(1,1) models estimated either M estimation or local
M estimation and the FZ0 loss function in Equation (31). The rows are ordered by average OOS
FZ0 loss, reported in the third-last column. For a given model, the local method with the best
performance in the validation sample (the second half of the estimation sample) is marked in the
first column with ∗. The local estimators use the state variable(s) given in the second column and
bandwidth parameter(s) from the third column, which are selected using the validation sample.
All forecasting models are estimated using an expanding window of data. The penultimate column
reports Giacomini-White t-statistics of each model relative to the benchmark non-local method
(marked withF), with negative t-statistics indicating lower average loss. The final column includes
a check mark if a given method is included in the 95% model confidence set, and a cross otherwise.

35



Table 4: Out-of-sample forecast performance for yield curve models

Method details Forecast performance
Rank StateVar Bwidth AvgLoss GW stat MCS

Panel A: One-day forecast horizon
1 time,RV 0.9999, 1.2 0.158 -9.471 X
2 time,FFR 0.9999, 0.74 0.158 -5.736 X
3 RV 1.19 0.158 -7.522 ×
4 FFR 0.74 0.158 -4.698 ×
5 time,10Y-2Y 0.9999, 0.49 0.158 -6.023 ×
6 time,VIX 0.9999, 1.53 0.158 -5.748 ×
7∗ 10Y-2Y 0.49 0.158 -3.544 ×
8 time 0.9999 0.158 -16.634 ×
9 VIX 1.5 0.158 -2.365 ×
10 - - 0.158 F ×

Panel B: Twenty-day forecast horizon
1 time,FFR 0.9999, 3.2 0.244 -6.966 X
2 time,10Y-2Y 0.9999, 0.76 0.244 -1.914 X
3 time 0.9999 0.245 -7.294 ×
4 time,VIX 0.9999, 1.95 0.245 -3.352 ×
5 FFR 3.2 0.245 -6.146 ×
6∗ 10Y-2Y 0.76 0.246 -0.426 ×
7 time,RV 0.9999, 2.08 0.246 -0.496 ×
8 - - 0.246 F ×
9 VIX 1.98 0.246 0.648 ×
10 RV 2.11 0.247 4.477 ×

Notes: This table presents measures of one- and twenty-day-ahead forecast performance over the
out-of-sample period (January 2011 to June 2021) from dynamic Nelson-Siegel models estimated
using either OLS or local OLS. The rows in each panel are ordered by average OOS RMSE,
multiplied by 100, reported in the third-last column. The local method with the best performance
in the validation sample is marked in the first column with ∗. The local estimators use the state
variable(s) given in the second column and bandwidth parameter(s) from the third column, which
are selected using the validation sample. All forecasting models are estimated using an expanding
window of data. The penultimate column reports Giacomini-White t-statistics of each model
relative to the benchmark non-local method (marked with F), with negative t-statistics indicating
lower average loss. The final column includes a check mark if a given method is included in the
95% model confidence set, and a cross otherwise.
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Table 5: Conditional comparisons of forecasting models

Yield curve
GARCH HAR VaR-ES h=1 h=20

Intercept −0.099 −0.016 −0.020 −0.052 −0.373
(std. err.) (0.008) (0.003) (0.012) (0.015) (0.875)
[t-stat] [−12.302] [−5.802] [−1.678] [−3.544] [−0.426]

Slope 0.090 −0.014 −0.000 0.087 −2.901
(std. err.) (0.009) (0.010) (0.056) (0.076) (7.591)
[t-stat] [10.297] [−1.361] [−0.003] [1.155] [−0.382]

Notes: This table presents the estimated parameters and standard errors from a linear regres-
sion of out-of-sample loss differences on a constant and the lagged state variable, across the five
applications considered in this paper. The methods compared in each column are the local method
with the best performance in the validation sample (marked with ∗ in each of Tables 1 to 4) and the
the non-local method using the full estimation sample. The state variable used for the comparison
is the same one that appears in the local method: RV for the GARCH application, VIX for the
HAR and VaR-ES application, and 10Y-2Y for the yield curve (h=1 and h=20) applications.

.
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Figure 1: The upper panel presents the expected value of Yt given Yt−1 according to the DGP in
equation (23), and estimates of this using a linear AR(1) estimated by OLS and local OLS with
two different state variables: Yt−1 and Yt−2. The lower panel presents the RMSE of the different
estimators as a function of the local OLS bandwidth parameters.
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Figure 2: This plot shows the local QML estimates of transformations of the GARCH(1,1)
parameters (ω, β, α) as a function of realized volatility (RV). Also shown are the (non-local)
QML parameter estimates. The upper, middle and lower panels plot
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Figure 3: This plot shows the average out-of-sample (OOS) loss using local QML estimates of a
GARCH model as a function of the bandwidth. The state variable is realized variance. The dashed
line is the (non-local) QML average loss, and the thin solied lines show the 95% GW confidence
interval on the difference between local and non-local average loss. The starred vertical line shows
the bandwidth chosen based on a validation sample separate from the OOS period.
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Figure 4: This figure shows the predicted volatility from a HAR model estimated using local or
non-local QML, along with realized volatility, over the last 18 months of the sample period.
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Figure 5: This figure presents estimates of the expected out-of-sample loss differences from models
estimated via local or non-local methods, conditional on realized volatility (top panel) or VIX (lower
two panels). Positive loss differences indicate the non-local method is preferred.

41



0 0.5 1 1.5 2 2.5 3
10Y2Y

0.015

0.01

0.005

0

0.005

0.01

0.015
Ex

pe
ct

ed
 lo

ss
 d

iff
er

en
ce

Horizon = 1 day

Cond expected loss
Approx 95% C.I.

Comparing forecasts from local and nonlocal DNS models

0 0.5 1 1.5 2 2.5 3
10Y2Y

0.5

0.25

0

0.25

0.5

Ex
pe

ct
ed

 lo
ss

 d
iff

er
en

ce

Horizon = 20 days

Figure 6: This figure presents estimates of the expected out-of-sample loss difference of a dynamic
Nelson-Siegel (DNS) model estimated via local OLS or non-local OLS, both conditional on the
difference between 10-year and 2-year government bond yields (10Y-2Y). Positive loss differences
indicate the non-local method is preferred.
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