
Supplemental Appendix

S.A.1 Detailed proofs

In order to prove Proposition 1, we use the following �ve lemmas. First, we recall the

de�nition of stochastic equicontinuity.

De�nition 2 (Andrews (1994)) The empirical process fhT (�) : T � 1g is stochastically equicon-

tinuous if 8 " > 0 and � > 0;9 � > 0 such that

lim sup
T!1

P

"
sup

k�1��2k<�
khT (�1)� hT (�2)k > �

#
< " (2)

Lemma 1 Under Assumptions 1 and 2,

(i) 1
T

PT
t=1 F̂i (�̂it) F̂j

�
�̂jt
� p!

R R
uvdC�i;�j (u; v;�0) as T !1

(ii) 1
T

PT
t=1 1

n
F̂i (�̂it) � q; F̂j

�
�̂jt
�
� q
o

p! C�i;�j (q; q;�0) as T !1

(iii) 1
S

PS
s=1 Ĝi (xis (�)) Ĝj (xjs (�))

p!
R R

uvdC�i;�j (u; v;�) for 8 �2 � as S !1

(iv) 1
S

PS
s=1 1

n
Ĝi (xis (�)) � q; Ĝj (xjs (�)) � q

o
p! C�i;�j (q; q;�) for 8 �2 � as S !1

(v) 1
S

PS
s=1Gi (xis (�))Gj (xjs (�))

p!
R R

uvdC�i;�j (u; v;�) for 8 �2 � as S !1

(vi) 1
S

PS
s=1 1 fGi (xis (�)) � q;Gj (xjs (�)) � qg

p! C�i;�j (q; q;�) for 8 �2 � as S !1

Proof of Lemma 1. Under Assumption 1, parts (iii) and (iv) of Lemma 1 can

be proven by Theorem 3 and Theorem 6 of Fermanian, Radulovíc and Wegkamp (2004).

Under Assumption 2, Corollary 1 of Rémillard (2010) proves that the empirical copula

process constructed by the standardized residuals �̂t weakly converges to the limit of that

constructed by the innovations �t, which combined with Theorem 3 and Theorem 6 of

Fermanian, Radulovíc and Wegkamp (2004) yields parts (i) and (ii) above. In the case
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where it is possible to simulate directly from the copula rather than the joint distribution,

e.g. Clayton/Gaussian copula in Section 3 or where we only can simulate from the joint

distribution but know the marginal distribution Gi in closed form, it is not necessary to

estimate marginal distribution Gi: In this case, instead of (iii) and (iv), (v) and (vi) are used

for the later proofs. (v) and (vi) are proven by the standard law of large numbers.

Lemma 2 (Lemma 2.8 of Newey and McFadden (1994)) Suppose � is compact and g0 (�)

is continuous. Then sup�2� kgT;S (�)� g0 (�)k
p! 0 as T; S !1 if and only if gT;S (�)

p!

g0 (�) for any � 2 � as T; S !1 and gT;S (�) is stochastically equicontinuous.

Lemma 2 states that su¢ cient and necessary conditions for uniform convergence are

pointwise convergence and stochastic equicontinuity. The following lemma shows that uni-

form convergence of the moment functions gT;S (�) implies uniform convergence of the ob-

jective function QT;S (�) :

Lemma 3 If sup�2� kgT;S (�)� g0 (�)k
p! 0 as T; S !1; then sup�2� jQT;S (�)�Q0 (�)j

p!

0 as T; S !1:

Proof of Lemma 3. By the triangle inequality and Cauchy-Schwarz inequality

jQT;S (�)�Q0 (�)j �
���[gT;S (�)� g0 (�)]0 ŴT [gT;S (�)� g0 (�)]

��� (3)

+
���g0 (�)0 �ŴT+Ŵ

0
T

�
[gT;S (�)� g0 (�)]

���+ ���g0 (�)0 �ŴT�W0

�
g0 (�)

���
� kgT;S (�)� g0 (�)k2




ŴT




+ 2 kg0 (�)k kgT;S (�)� g0 (�)k


ŴT





+ kg0 (�)k2




ŴT�W0





Then note that g0 (�) is bounded, ŴT is Op (1) and converges toW0 by Assumption 3(iv),

and sup�2� kgT;S (�)� g0 (�)k = op (1) is given. So

sup
�2�

jQT;S (�)�Q0 (�)j �
�
sup
�2�

kgT;S (�)� g0 (�)k
�2
Op (1) (4)

+2O (1) sup
�2�

kgT;S (�)� g0 (�)kOp (1) + op (1) = op (1)

2



Lemma 4 Under Assumption 1, Assumption 2, and Assumption 3(iii),

(i) gT;S (�) is stochastic Lipschitz continuous, i.e.

9BT;S = Op (1) such that for all �1;�2 2 �; kgT;S (�1)� gT;S (�2)k � BT;S � k�1 � �2k

(ii) There exists � > 0 such that

lim sup
T;S!1

E
�
B2+�T;S

�
<1 for some � > 0

Proof of Lemma 4. Without loss of generality, assume that gT;S (�) is scalar. By

Lemma 1, we know that

~mS (�) =m0 (�) + op (1) (5)

Also, by Assumption 3(iii) and the fact that m (�) consists of a function of Lipschitz con-

tinuous Cij (�), m0 (�) is Lipschitz continuous, i.e. 9K such that

jm0 (�1)�m0 (�2)j � K k�1 � �2k (6)

Then,

jgT;S (�1)� gT;S (�2)j = j ~mS (�1)� ~mS (�2)j = jm0 (�1)�m0 (�2) + op (1)j (7)

� jm0 (�1)�m0 (�2)j+ jop (1)j

� K k�1 � �2k+ jop (1)j

=

�
K +

jop (1)j
k�1 � �2k

�
| {z }

=Op(1)

k�1 � �2k

and let BT;S = K + jop(1)j
k�1��2k : Then for some � > 0

lim sup
T;S!1

E
�
B2+�T;S

�
= lim sup

T;S!1
E

�
K +

jop (1)j
k�1 � �2k

�2+�
<1 (8)
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Lemma 5 (Theorem 2.1 of Newey and McFadden (1994)) Suppose that (i) Q0 (�) is uniquely

minimized at �0; (ii)� is compact; (iii) Q0 (�) is continuous (iv) sup�2�
���Q̂T (�)�Q0 (�)��� p!

0. Then �̂
p! �0

Proof of Proposition 1. We prove this proposition by checking the conditions of

Lemma 5.

(i) Q0 (�) is uniquely minimized at �0 by Assumption 3(i) and Assumption 3(iv):

(ii) � is compact by Assumption 3(ii).

(iii) Q0 (�) consists of linear combinations of rank correlations and quantile dependence

measures that are functions of pair-wise copula functions. Therefore, Q0 (�) is continuous

by Assumption 3(iii).

(iv) The pointwise convergence of gT;S (�) to g0 (�) and the stochastic Lipschitz continuity

of gT;S (�) are shown by Lemma 1 and by Lemma 4(i), respectively. By Lemma 2.9 of Newey

and McFadden (1994), the stochastic Lipschitz continuity of gT;S (�) ensures the stochastic

equicontinuity of gT;S (�), and under Assumption 3, � is compact and g0 (�) is continuous

in �. Therefore, gT;S uniformly converges in probability to g0 by Lemma 2. This implies

that QT;S uniformly converges in probability to Q0 by Lemma 3.

The proof of Proposition 2 uses the following three lemmas.

Lemma 6 Let the dependence measures of interest include rank correlation and quantile

dependence measures, and possibly linear combinations thereof. Then under Assumptions 1

and 2,

p
T (m̂T �m0 (�0))

d! N (0;�0) as T ! 1 (9)

p
S ( ~mS (�0)�m0 (�0))

d! N (0;�0) as S ! 1 (10)
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Proof of Lemma 6. Follows from Theorem 3 and Theorem 6 of Fermanian, Radulovíc

and Wegkamp (2004) and Corollary 1, Proposition 2 and Proposition 4 of Rémillard (2010).

We use Theorem 7.2 of Newey & McFadden (1994) to establish the asymptotic normality

of our estimator, and this relies on showing the stochastic equicontinuity of vT;S (�) de�ned

below.

Lemma 7 Suppose that Assumptions 1, 2, and 3(iii) hold. Then when S=T ! 1 or

S=T ! k 2 (0;1) ; vT;S (�) =
p
T [gT;S (�)� g0 (�)] is stochastically equicontinuous and

when S=T ! 0; vT;S (�) =
p
S [gT;S (�)� g0 (�)] is stochastically equicontinuous.

Proof of Lemma 7. By Lemma 4(i), fg�;� (�) : � 2 �g is a type II class of functions

in Andrews (1994). By Theorem 2 of Andrews (1994), fg�;� (�) : � 2 �g satis�es Pollard�s

entropy condition with envelope 1_sup� kg�;� (�)k_B�;�, so Assumption A of Andrews (1994)

is satis�ed. Since g�;� (�) is bounded and by the condition of lim supT;S!1E
�
B2+�T;S

�
<1 for

some � > 0 by Lemma 4(ii), the Assumption B of Andrews (1994) is also satis�ed. Therefore,

vT;S (�) is stochastically equicontinuous by Theorem 1 of Andrews (1994).

Lemma 8 (Theorem 7.2 of Newey & McFadden (1994)) Suppose that gT;S
�
�̂
�0
ŴTgT;S

�
�̂
�
�

inf�2� gT;S (�)
0 ŴTgT;S (�)+op (T

�1) ; �̂
p! �0 and ŴT

p!W0;W0 is positive semi-de�nite,

where there is g0 (�) such that (i) g0 (�0) = 0;(ii) g0 (�) is di¤erentiable at �0 with derivative

G0 such that G0
0W0G0 is nonsingular,(iii) �0 is an interior point of �;(iv)

p
TgT;S (�0)

d!

N (0;�0) ;(v) 9� such that supk���0k��
p
T kgT;S (�)� gT;S (�0)� g0 (�)k =

h
1 +

p
T k� � �0k

i
p!

0:Then
p
T
�
�̂ � �0

�
d! N

�
0; (G0

0W0G0)
�1G0

0W0�0W0G0 (G
0
0W0G0)

�1� :
Proof of Proposition 2. We prove this proposition by checking conditions of Lemma

8.
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(i) g0 (�0) = 0 by construction of g0 (�) =m0 (�0)�m0 (�)

(ii) g0 (�) is di¤erentiable at �0 with derivative G0 such that G0
0W0G0 is nonsingular by

Assumption 4(ii).

(iii) �0 is an interior point of � by Assumption 4(i).

(iv) If S=T !1 as T; S !1;
p
TgT;S (�0) =

p
T (m̂T� ~mS (�0)) (11)

=
p
T (m̂T�m0 (�0))�

p
T ( ~mS (�0)�m0 (�0))

=
p
T (m̂T�m0 (�0))| {z }
d!N(0;�0) by Lemma 6

�
p
Tp
S|{z}

=o(1)

�
p
S ( ~mS (�0)�m0 (�0))| {z }
d!N(0;�0) by Lemma 6

Therefore,
p
TgT;S (�0)

d! N (0;�0) as T; S !1:

If S=T ! k 2 (0;1) as T; S !1;
p
TgT;S (�0) =

p
T (m̂T�m0 (�0))| {z }
d!N(0;�0) by Lemma 6

�
p
Tp
S|{z}

!1=
p
k

�
p
S ( ~mS (�0)�m0 (�0))| {z }
d!N(0;�0) by Lemma 6

Therefore,
p
TgT;S (�0)

d! N

�
0;

�
1 +

1

k

�
�0

�
as T; S !1:

If S=T ! 0 as T; S !1;
p
SgT;S (�0) =

p
Sp
T|{z}

=o(1)

�
p
T (m̂T�m0 (�0))| {z }
d!N(0;�0) by Lemma 6

�
p
S ( ~mS (�0)�m0 (�0))| {z }
d!N(0;�0) by Lemma 6

Therefore,
p
SgT;S (�0)

d! N (0;�0) as T; S !1

Consolidating these results across all three combinations of divergence rates for S and T we

obtain:

1p
1=S + 1=T

gT;S (�0)
d! N (0;�0) as T; S !1:
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(v) We established the stochastic equicontinuity of vT;S (�) =
p
T
�
gT;S (�)� g0 (�)

�
when S=T !1 or S=T ! k by Lemma 7; i.e. for 8" > 0, � > 0;9� such that

lim sup
T!1

P

"
sup

k���0k<�
kvT;S (�)� vT;S (�0)k > �

#
(12)

= lim sup
T!1

P

"
sup

k���0k<�

p
T


gT;S (�)� gT;S (�0)� g0 (�)

 > �

#
< "

and from the following inequality

p
T


gT;S (�)� gT;S (�0)� g0 (�)

 = h1 +pT k� � �0ki � pT 

gT;S (�)� gT;S (�0)� g0 (�)



(13)

we know that

lim sup
T!1

P

"
sup

k���0k<�

p
T


gT;S (�)� gT;S (�0)� g0 (�)

 = h1 +pT k� � �0ki > �

#

� lim sup
T!1

P

"
sup

k���0k<�

p
T


gT;S (�)� gT;S (�0)� g0 (�)

 > �

#
< " (14)

Similarly, it can be shown that when S=T ! 0;

lim sup
S!1

P

"
sup

k���0k<�

p
S


gT;S (�)� gT;S (�0)� g0 (�)

 = h1 +pS k� � �0ki > �

#
< ":

(15)

Proof of Proposition 3. First, we prove the consistency of the numerical derivatives

ĜT;S: This part of the proof is similar to that of Theorem 7.4 in Newey and McFadden

(1994). We will consider one-sided derivatives �rst, with the same arguments applying to

two-sided derivatives. First we consider the case where S=T ! 1 or S=T ! k > 0 as

T; S ! 1: We know that



�̂T;S � �0


 = Op

�
T�1=2

�
by the conclusion of Proposition 2.

Also, by assumption we have "T;S ! 0 and "T;S
p
T !1, so


�̂T;S+ek"T;S � �0


 � 


�̂T;S � �0


+ kek"T;Sk = Op �T�1=2�+O ("T;S) = Op ("T;S)
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(Recall that ek is the kth unit vector.) In the proof of Proposition 2, it is shown that 9� such

that

sup
k���0k��

p
T kgT;S (�)� gT;S (�0)� g0 (�)k =

h
1 +

p
T k� � �0k

i
= op (1)

Substituting �̂T;S+ek"T;S for �; then for T; S large, it follows that

p
T



gT;S ��̂T;S+ek"T;S�� gT;S (�0)� g0 ��̂T;S+ek"T;S�


 = h1 +pT 


�̂T;S+ek"T;S � �0


i � op (1)

so



gT;S ��̂T;S+ek"T;S�� gT;S (�0)� g0 ��̂T;S+ek"T;S�




�

266641 +pT


�̂T;S+ek"T;S � �0


| {z }
=Op("T;S)

37775 op
�
1p
T

�

=
p
TOp ("T;S) op

�
1p
T

�
= Op ("T;S) op (1)

= op ("T;S) (16)

On the other hand, since g0 (�) is di¤erentiable at �0 with derivative G0 by Assumption

4(ii), a Taylor expansion of g0
�
�̂T;S+ek"T;S

�
around �0 is

g0

�
�̂T;S+ek"T;S

�
= g0 (�0) +G0 �

�
�̂T;S+ek"T;S � �0

�
+ o

�


�̂T;S+ek"T;S � �0


�
with g0 (�0) = 0. Then divide by "T;S;

g0

�
�̂T;S+ek"T;S

�
="T;S = G0 �

�
�̂T;S+ek"T;S � �0

�
="T;S + o

�
"�1T;S




�̂T;S+ek"T;S � �0


�
so g0

�
�̂T;S+ek"T;S

�
="T;S �G0ek = G0 �

�
�̂T;S � �0

�
="T;S + o

�
"�1T;S




�̂T;S+ek"T;S � �0


�
The triangle inequality implies that


g0 ��̂T;S+ek"T;S� ="T;S �G0ek




 �



G0 �

�
�̂T;S � �0

�
="T;S




+ o�"�1T;S 


�̂T;S+ek"T;S � �0


�
=

1p
T"T;S




G0 �
p
T
�
�̂T;S � �0

�



+"�1T;S




�̂T;S+ek"T;S � �0


 o (1)
= o (1)Op (1) + "

�1
T;SOp ("T;S) o (1) = op (1) (17)
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Combining the inequalities in equations (16) and (17) gives0@gT;S
�
�̂T;S+ek"T;S

�
� gT;S (�0)

"T;S
�G0ek

1A =

0@gT;S
�
�̂T;S+ek"T;S

�
� gT;S (�0)� g0

�
�̂T;S+ek"T;S

�
"T;S

1A
+
�
g0

�
�̂T;S+ek"T;S

�
="T;S �G0ek

�







gT;S

�
�̂T;S+ek"T;S

�
� gT;S (�0)

"T;S
�G0ek







 �








gT;S

�
�̂T;S+ek"T;S

�
� gT;S (�0)� g0

�
�̂T;S+ek"T;S

�
"T;S








+



g0 ��̂T;S+ek"T;S� ="T;S �G0ek





� op (1)

Then,
gT;S

�
�̂T;S+ek"T;S

�
� gT;S (�0)

"T;S

p! G0ek

and the same arguments can be applied to the two-sided derivative:

gT;S

�
�̂T;S+ek"T;S

�
� gT;S

�
�̂T;S�ek"T;S

�
2"T;S

p! G0ek

This holds for each column k = 1; 2:::; p: Thus ĜT;S
p! G0:

In the case where S=T ! 0 as T; S ! 1; the proof for the consistency of ĜT;S is done

in the similar way using the following facts:




�̂T;S � �0


 = Op �S�1=2� (18)

and 9�

sup
k���0k��

p
S kgT;S (�)� gT;S (�0)� g0 (�)k =

h
1 +

p
S k� � �0k

i
= op (1) (19)

Next, we show the consistency of �̂T;B: If �t and �t are known constant, or if �0 is

known, then the result follows from Theorems 5 and 6 of Fermanian, Radulovíc andWegkamp

(2004). When �0 is estimated, the result is obtained by combining the results in Fermanian,
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Radulovíc and Wekkamp with those of Rémillard (2010), see the Proof of Proposition 3 in

the paper for details.

Proof of Proposition 4. First consider S=T ! 1 or S=T ! k > 0: A Taylor

expansion of g0
�
�̂T;S

�
around �0 yields

p
Tg0

�
�̂T;S

�
=
p
Tg0 (�0) +G0 �

p
T
�
�̂T;S��0

�
+ o

�p
T



�̂T;S��0


� (20)

and since g0 (�0) = 0 and
p
T



�̂T;S��0


 = Op (1)

p
Tg0

�
�̂T;S

�
= G0 �

p
T
�
�̂T;S��0

�
+ op (1) (21)

Then consider the following expansion of gT;S
�
�̂T;S

�
around �0

p
TgT;S

�
�̂T;S

�
=
p
TgT;S (�0) + ĜT;S �

p
T
�
�̂T;S��0

�
+RT;S

�
�̂T;S

�
(22)

where the remaining term is captured by RT;S

�
�̂T;S

�
: Combining equations (21) and (22)

we obtain

p
T
h
gT;S

�
�̂T;S

�
� gT;S (�0)� g0

�
�̂T;S

�i
=
�
ĜT;S�G0

�
�
p
T
�
�̂T;S��0

�
+RT;S

�
�̂T;S

�
+op (1)

Lemma 7 shows the stochastic equicontinuity of vT;S (�) ; which implies (see proof of Propo-

sition 2) that
p
T
h
gT;S

�
�̂T;S

�
� gT;S (�0)� g0

�
�̂T;S

�i
= op (1)

By Proposition 3, ĜT;S�G0 = op (1) ; which implies RT;S

�
�̂T;S

�
= op (1) : Thus, we obtain

the expansion of gT;S
�
�̂T;S

�
around �0 :

p
TgT;S

�
�̂T;S

�
=
p
TgT;S (�0) + ĜT;S �

p
T
�
�̂T;S��0

�
+ op (1) (23)

The remainder of the proof is the same as in standard GMM applications: From the proof

of Proposition 2, we have
p
TgT;S (�0)

d! N (0;�0) and rewrite this as���1=2
0

p
TgT;S (�0) �
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uT;S
d! u �N (0; I) ; and from Proposition 2, we have

p
T
�
�̂T;S��0

�
= (G0

0W0G0)
�1G0

0W0�
1=2
0 uT;S+

op (1) : By these two equations and Proposition 3, equation (23) becomes

p
TgT;S

�
�̂T;S

�
= ��̂1=2T;BuT;S + ĜT;S

�
Ĝ0
T;SŴT ĜT;S

��1
Ĝ0
T;SŴT �̂

1=2
T;BuT;S + op (1)(24)

= ��̂1=2T;BR̂uT;S + op (1)

where R̂ �
�
I� �̂�1=2T;B ĜT;S

�
Ĝ0
T;SŴT ĜT;S

��1
Ĝ0
T;SŴT �̂

1=2
T;B

�
: The test statistic is

TgT;S

�
�̂T;S

�0
ŴTgT;S

�
�̂T;S

�
= u0T;SR̂

0�̂
1=20
T;BŴT �̂

1=2
T;BR̂uT;S + op (1) (25)

= u0R0
0�

1=20
0 W0�

1=2
0 R0u+ op (1)

where R0 �
�
I���1=2

0 G0 (G
0
0W0G0)

�1G0
0W0�

1=2
0

�
: When ŴT= �̂

�1
T;B; R̂ is symmetric

and idempotent with rank
�
R̂
�
= tr

�
R̂
�
=m�p; and the test statistic converges to a �2m�p

random variable, as usual. In general, the asymptotic distribution is a sample-dependent

combination ofm independent standard Normal variables, namely that of u0R0
0�

1=20
0 W0�

1=2
0 R0u

where u �N (0; I) :

When S=T ! 0; a similar proof can be given using Taylor expansion of g0
�
�̂T;S

�
p
Sg0

�
�̂T;S

�
=
p
Sg0 (�0) +G0 �

p
S
�
�̂T;S��0

�
+ o

�p
S



�̂T;S��0


� (26)
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S.A.2 Implementation of the SMM estimator

This section provides further details on the constricution of the SMM objective function

and the estimation of the parameter.

Our estimator is based on matching sample dependence measures (rank correlation, quan-

tile dependence, etc) to measures of dependence computed on simulated data from the model

evaluated at a given parameter �: The sample dependence measures are stacked into a vector

m̂T ; and the corresponding measures on the simulated data are stacked into a vector ~mS (�) :

Re-stating equation (9) from the paper, our estimator is:

�̂T;S � argmin
�2�

g0T;S (�)ŴTgT;S (�) (27)

where gT;S (�) � m̂T � ~mS (�) :

We now describe the construction of the SMM objective function. All dependence mea-

sures used in this paper are based on the estimated standardized residuals, which are con-

structed as:

�̂t � ��1t (�̂)[Yt � �t(�̂)] (28)

We then compute pair-wise dependence measures such as those in equations (4) and (5)

of the paper, e.g., �̂ij and �̂
ij

q : For quantile dependence we set q 2 f0:05; 0:10; 0:90; 0:95g :

The copula models we consider all satisfy an �exchangeability�property, and we use that

when constructing the moments to use in the estimator. Speci�cally, we calculate moments

m̂T as:

m̂T =
2

N (N � 1)

N�1X
i=1

NX
j=i+1

�
�̂ij �̂

ij

0:05 �̂
ij

0:10 �̂
ij

0:90 �̂
ij

0:95

�0
(29)

Next we simulate data fXs (�)gSs=1 from distribution Fx (�) ; and compute the vector

of dependence measures ~mS (�) : It is critically important in this step to keep the ran-

dom number generator seed �xed across simulations, see Gouriéroux and Monfort (1996,

12



Simulation-Based Econometric Methods, Oxford University Press). Failing to do so makes

the simulated data �jittery� across function evaluations, and the numerical optimization

algorithm will fail to converge.

Finally, we specify the weight matrix. In this paper we choose either ŴT = I or ŴT =

�̂�1
T;B: Note that for our estimation problem the estimated e¢ cient weight matrix, �̂�1T;B;

depends on the covariance matrix of the vector of sample dependence measures, and not on

the parameters of the model. Thus unlike some GMM or SMM estimation problems, this

estimator does not require an initial estimate of the unknown parameter.

We use numerical optimization procedure to �nd �̂T;S: As our objective function is not

di¤erentiable we cannot use procedures that rely on analytical or numerical derivatives (such

as familiar Newton or �quasi-Newton�algorithms). We use �fminsearch�in MATLAB, which

is a simplex search algorithm that does not require derivatives. As with all numerical opti-

mization procedures, some care is required to ensure that a global optimum has been found.

In each estimation, we consider many di¤erent starting values for the algorithm, and choose

the resulting parameter estimate that leads to the smallest value of the objective function.

The models considered here are relatively small, with up to three unknown parameters, but

when the number of unknown parameters is large more care is required to ensure that a

global optimum has been found, see Judd (1998, Numerical Methods in Economics, MIT

Press) for more discussion.

S.A.3 Implementation of MLE for factor copulas
Consider a simple factor model:

Xi = Z + "i; i = 1; 2; :::; N

Z s FZ ; "i s iid F", "i??Z 8 i

[X1; :::; XN ]
0 � X s Fx= C (G; :::; G)

13



To obtain the copula density c we must �rst obtain the joint density, fx, and the marginal

density, g: These can be obtained using numerical integration to �integrate out�the latent

common factor, Z. First, note that

fxijz (xijz) = f" (xi � z)

Fxijz (xijz) = F" (xi � z)

and fxjz (x1; : : : ; xN jz) =
YN

i=1
f" (xi � z)

Then the marginal density and marginal distribution of Xi are:

g (x) =

Z 1

�1
fxjz (xjz) fz (z) dz =

Z 1

�1
f" (x� z) fz (z) dz

G (x) =

Z 1

�1
Pr [X � xjZ = z] fz (z) dz =

Z 1

�1
F" (x� z) fz (z) dz

The joint density is similarly obtained:

fx (x1; : : : ; xN) =

Z 1

�1
fxjz (x1; : : : ; xN jz) fz (z) dz =

Z 1

�1

YN

i=1
f" (xi � z) fz (z) dz

From these, we obtain the copula density:

c (u1; : : : ; uN) =
fx (G

�1 (u1) ; : : : ; G
�1 (uN))QN

i=1 g (G
�1 (ui))

We approximate the above integrals using Gauss-Legendre quadrature, see Judd (1998)

for details and discussion. We use the probability integral transformation of Z to convert

the above unbounded integals to integrals on [0; 1] ; for example:

g (x) =

Z 1

�1
f" (x� z) fz (z) dz =

Z 1

0

f"
�
x� F�1z (u)

�
du

A key choice in quadrature methods is the number of �nodes�to use in approximating the

integral. We ran simulations using 50, 150, and 250 nodes, and found that the accuracy

of the resulting MLE was slightly better for 150 than 50 nodes, and not di¤erent for 250

compared with 150 nodes. Thus in the paper we report results for MLE based on quadrature

using 150 nodes.
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S.A.4 Additional tables

Table S1: Simulation results for iid data with optimal weight matrix

Clayton Normal Factor copula

GMM SMM SMM� GMM SMM SMM

� � � � � �2 ��1 �

True 1.00 1.00 1.00 0.5 0.5 1.00 0.25 -0.50

N = 2

Bias -0.018 -0.020 -0.018 -0.001 0.000 0.016 -0.026 -0.094
St dev 0.085 0.092 0.091 0.025 0.026 0.144 0.119 0.189
Median 0.984 0.977 0.981 0.497 0.500 0.999 0.200 -0.557
90-10% 0.224 0.247 0.233 0.070 0.069 0.374 0.332 0.447
Time 0.07 515 51 0.41 0.67 112

N = 3

Bias 0.008 0.010 0.006 -0.003 -0.003 0.022 -0.009 -0.057
St dev 0.063 0.073 0.068 0.021 0.022 0.110 0.103 0.146
Median 0.996 1.008 1.002 0.495 0.498 1.006 0.238 -0.540
90-10% 0.160 0.172 0.165 0.054 0.061 0.294 0.261 0.366
Time 0.12 1398 59 0.29 1.60 138

N = 10

Bias -0.003 -0.004 -0.005 -0.004 -0.004 0.019 -0.010 -0.023
St dev 0.047 0.049 0.050 0.014 0.015 0.097 0.078 0.085
Median 0.993 0.997 0.997 0.497 0.495 1.006 0.251 -0.514
90-10% 0.121 0.126 0.127 0.036 0.037 0.248 0.189 0.165
Time 1 22521 170 0.34 3 358

Notes: The simulation design is the same as that of Table 1 in the paper except that we
use the e¢ cient weight matrix, ŴT = �̂

�1
T;B:
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Table S2: Simulation results for AR-GARCH data with optimal weight matrix

Clayton Normal Factor copula

GMM SMM SMM� GMM SMM SMM

� � � � � �2 ��1 �

True 1.00 1.00 1.00 0.5 0.5 1.00 0.25 -0.50

N = 2

Bias -0.021 -0.017 -0.014 -0.002 -0.001 0.018 -0.022 -0.083
St dev 0.087 0.097 0.097 0.026 0.026 0.154 0.121 0.188
Median 0.980 0.989 0.987 0.498 0.498 0.997 0.209 -0.553
90-10% 0.225 0.247 0.258 0.070 0.069 0.399 0.346 0.485
Time 0.06 531 60 0.39 0.69 119

N = 3

Bias 0.002 -0.004 -0.001 -0.003 -0.003 0.021 -0.009 -0.061
St dev 0.063 0.066 0.068 0.021 0.023 0.114 0.106 0.151
Median 0.995 0.990 0.991 0.495 0.497 1.018 0.243 -0.548
90-10% 0.153 0.166 0.164 0.052 0.058 0.299 0.278 0.336
Time 0.12 1613 76 0.33 1.50 135

N = 10

Bias -0.006 -0.005 -0.007 -0.005 -0.005 0.014 -0.013 -0.027
St dev 0.047 0.051 0.050 0.014 0.015 0.093 0.078 0.097
Median 0.991 0.997 0.993 0.496 0.494 1.000 0.250 -0.513
90-10% 0.120 0.136 0.134 0.037 0.040 0.229 0.193 0.187
Time 2 25492 175 0.41 4 361

Notes: The simulation design is the same as that of Table 2 in the paper except that we
use the e¢ cient weight matrix, ŴT = �̂

�1
T;B:
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Table S3: Simulation results on coverage rates with optimal weight matrix

Clayton Normal Factor copula

� J � J �2 ��1 � J

N = 2
"T;S
0.1 89 95 93 99 97 99 96 96
0.01 56 93 95 99 97
0.001 9 80 77 79 80
0.0001 1 16 40 54 56

N = 3
"T;S
0.1 91 98 88 95 98 99 97 99
0.01 70 88 98 99 96
0.001 10 82 88 86 86
0.0001 0 41 51 59 48

N = 10
"T;S
0.1 93 100 87 97 95 96 94 100
0.01 79 87 94 94 93
0.001 20 87 89 84 92
0.0001 5 64 70 70 73

Notes: The simulation design is the same as that of Table 3 in the paper except that we use
the e¢ cient weight matrix, ŴT = �̂

�1
T;B: The numbers in column J present the percentage of

simulations for which the test statistic of over-identifying restrictions test described in Section
2 was smaller than its critical value from chi square distribution under 95% con�dence level
(this test does not require a choice of step size for the numerical derivative, "T;S; and so we
have only one value per model).
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Table S4: Summary statistics on the daily stock returns

Bank of Bank of Citi Goldman JP Morgan Wells
America N.Y. Group Sachs Morgan Stanley Fargo

Mean 0.038 0.015 -0.020 0.052 0.041 0.032 0.047
Std dev 3.461 2.797 3.817 2.638 2.966 3.814 2.965
Skewness 1.048 0.592 1.595 0.984 0.922 4.982 2.012
Kurtosis 28.190 18.721 43.478 18.152 16.006 119.757 30.984

Notes: This table presents some summary statistics of the seven daily equity returns data
used in the empirical analysis.

Table S5: Parameter estimates for the conditional mean and variance models

Bank of Bank of Citi Goldman JP Morgan Wells
America N.Y. Group Sachs Morgan Stanley Fargo

Constant (�0) 0.038 0.017 -0.019 0.058 0.043 0.031 0.051
ri;t�1 0.020 -0.151 0.053 -0.156 -0.035 0.004 -0.078
rm;t�1 -0.053 -0.011 0.029 0.282 -0.141 0.063 -0.099

Constant (!) 0.009 0.069 0.019 0.034 0.014 0.036 0.008
�2i;t�1 0.931 0.895 0.901 0.953 0.926 0.922 0.926
"2i;t�1 0.031 0.017 0.036 0.000 0.025 0.002 0.021

"2i;t�1 � 1f"i;t�1�0g 0.048 0.079 0.123 0.077 0.082 0.135 0.108
"2m;t�1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

"2m;t�1 � 1f"m;t�1�0g 0.068 0.266 0.046 0.012 0.064 0.077 0.013

Notes: This table presents the estimated models for the conditional mean (top panel)
and conditional variance (lower panel).
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