Supplemental Appendix
S.A.1 Detailed proofs

In order to prove Proposition 1, we use the following five lemmas. First, we recall the

definition of stochastic equicontinuity.

Definition 2 (Andrews (1994)) The empirical process {hr (-) : T' > 1} is stochastically equicon-

tinuous if V€ >0 and n > 0,3 § > 0 such that

sup ||y (61) —hr (02)] >n| <e (2)
16162 <6

lim sup P

T—oo

Lemma 1 Under Assumptions 1 and 2,
(i) A5 T B ) By (1) > [ [ uwdCy (1,0380) a5 T — o
(i) =S F ) < 0. B (1) < a} 2 Con, (0,0:600) as T — oo
(1ii) %25:1 Gi (15 (0)) G (155 (0) L [ JuwvdCy ) (u,v;0) for ¥V € © as S — oo
(i) 155, 1{G: (5:4(0)) < 4.G; (212 (8)) < a} & Coy (0,4:0) for ¥ B€ © as S — o
(v) %Zf:l Gi (15 (0)) G, (2, (0)) 2 [ JuvdC,, ). (u,v;0) forV 8€ © as S — oo
(vi) £3°0 1{G; (215 (0)) < ¢, G (255 (0)) < q} 2 Cyy, (4,4:0) forV € © as S — oo

Proof of Lemma 1.  Under Assumption 1, parts (iii) and (iv) of Lemma 1 can
be proven by Theorem 3 and Theorem 6 of Fermanian, Radulovi¢ and Wegkamp (2004).
Under Assumption 2, Corollary 1 of Rémillard (2010) proves that the empirical copula
process constructed by the standardized residuals 7), weakly converges to the limit of that
constructed by the innovations m,, which combined with Theorem 3 and Theorem 6 of

Fermanian, Radulovi¢ and Wegkamp (2004) yields parts (i) and (ii) above. In the case
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where it is possible to simulate directly from the copula rather than the joint distribution,
e.g. Clayton/Gaussian copula in Section 3 or where we only can simulate from the joint
distribution but know the marginal distribution G; in closed form, it is not necessary to
estimate marginal distribution G;. In this case, instead of (iii) and (iv), (v) and (vi) are used

for the later proofs. (v) and (vi) are proven by the standard law of large numbers. m

Lemma 2 (Lemma 2.8 of Newey and McFadden (1994)) Suppose © is compact and g (0)
is continuous. Then supgee |lgr.s (0) — g0 (0)| 2 0 as T, S — oo if and only if grs (8) 2

g0 (0) for any @ € © as T, S — oo and grs (0) is stochastically equicontinuous.

Lemma 2 states that sufficient and necessary conditions for uniform convergence are
pointwise convergence and stochastic equicontinuity. The following lemma shows that uni-
form convergence of the moment functions gr ¢ (6) implies uniform convergence of the ob-

jective function Q75 ().
Lemma 3 Ifsupco |lgrs (8) — g (0)] 2 0 asT, S — oo, then supgee |Qr.s (8) — Qo (8)] -

0asT,S — .
Proof of Lemma 3. By the triangle inequality and Cauchy-Schwarz inequality
Qrs (0) = Qo (O)] < |lgrs (6) — g0 (O) Wr lgr.s (6) — 0 (6)] 3)
+ |20 (0) (Wr+ W) [ (6) — g0 (0)]| + |&0 (6)' (Wr—Wo) g0 (6)

< lgrs (0) — g0 () |Warl| +2 g0 (0) ] 1gr.s (8) — £ (0) ] | W |

+ g0 (O)] | Wr—Wo
Then note that go () is bounded, Wy is O, (1) and converges to W by Assumption 3(iv),

and supgce ||8r,s (0) — 80 (0)]] = 0, (1) is given. So

sup | Qs (6) — Q0 (6)] < (Slelg||gT,s(9)—g0(9)||> 0, (1) 4)

6coO

420 (1) sup 1.5 (6) ~ 80 (6)] O, (1) + 0, (1) = 0, (1)



Lemma 4 Under Assumption 1, Assumption 2, and Assumption 3(iii),

(1) gr,s(0) is stochastic Lipschitz continuous, i.e.

EIBT’S = Op (].) S’LLCh that fOT all 91, 92 S @, HgT,S (91) — gT,S (92)” S BT,S . ||01 — 92”
(i) There exists 6 > 0 such that

lim sup E (B7) < oo for some § >0
T,S—00 ’

Proof of Lemma 4. Without loss of generality, assume that gy s (6) is scalar. By

Lemma 1, we know that

s (6) = myg (0) + 0, (1) ()
Also, by Assumption 3(iii) and the fact that m (0) consists of a function of Lipschitz con-
tinuous Cj; (@), mg (0) is Lipschitz continuous, i.e. 3K such that
[my (1) —my (62)] < K (|61 — 62 (6)
Then,
|gr.s (01) — grs (02)] = | (61) — Mg (02)] = [myg (61) —myg (02) + 0, (1)]  (7)
< mg (61) —my (62)] + |op (1)]

< K01 03] + o, (1)
0, (1
(K+M> 10, — 0]

A 101 — 0:]| )
=0,(1)
and let Brs = K + ; ];1”_(22"‘. Then for some ¢ > 0
: 245\ _ s o (D] )"
lim T%LE)OOE (BFS) = lim T,SSLLPOOE (K + M) < 00 (8)



Lemma 5 (Theorem 2.1 of Newey and McFadden (1994)) Suppose that (i) Qo (0) is uniquely
minimized at 0y; (ii) © is compact; (iii) Qq (8) is continuous () supgeg |Qr (8) — Qo (8)| 2

0. Then 6 2 0,

Proof of Proposition 1. @ We prove this proposition by checking the conditions of
Lemma 5.

(1) Qo (0) is uniquely minimized at 8y by Assumption 3(i) and Assumption 3(iv).

(ii) © is compact by Assumption 3(ii).

(iii) Qo (@) consists of linear combinations of rank correlations and quantile dependence
measures that are functions of pair-wise copula functions. Therefore, Qg (0) is continuous
by Assumption 3(iii).

(iv) The pointwise convergence of gr s (8) to go (6) and the stochastic Lipschitz continuity
of gr s (@) are shown by Lemma 1 and by Lemma 4(i), respectively. By Lemma 2.9 of Newey
and McFadden (1994), the stochastic Lipschitz continuity of g7 ¢ () ensures the stochastic
equicontinuity of gr s (@), and under Assumption 3, © is compact and gy (@) is continuous
in 0. Therefore, gr ¢ uniformly converges in probability to gy by Lemma 2. This implies

that Q7 ¢ uniformly converges in probability to Qo by Lemma 3. m
The proof of Proposition 2 uses the following three lemmas.

Lemma 6 Let the dependence measures of interest include rank correlation and quantile

dependence measures, and possibly linear combinations thereof. Then under Assumptions 1

and 2,
VT (thy — mg (6)) % N (0,%) asT — oo (9)
V'S (fag (6) — mg (6)) > N (0,%) as S — o0 (10)



Proof of Lemma 6. Follows from Theorem 3 and Theorem 6 of Fermanian, Radulovi¢
and Wegkamp (2004) and Corollary 1, Proposition 2 and Proposition 4 of Rémillard (2010).

We use Theorem 7.2 of Newey & McFadden (1994) to establish the asymptotic normality
of our estimator, and this relies on showing the stochastic equicontinuity of vy g (6) defined

below.

Lemma 7 Suppose that Assumptions 1, 2, and 3(iii) hold. Then when S/T — oo or
ST — k € (0,00), vr5(0) = VT [gr.5 (0) — g0 (0)] is stochastically equicontinuous and

when ST — 0, vy (8) = V'S [gr.s (8) — g ()] is stochastically equicontinuous.

Proof of Lemma 7. By Lemma 4(i), {g.. (0) : 0 € ©} is a type II class of functions
in Andrews (1994). By Theorem 2 of Andrews (1994), {g..(0) : 6 € ©} satisfies Pollard’s
entropy condition with envelope 1Vsupy ||g.. (8)]|V B.., so Assumption A of Andrews (1994)
is satisfied. Since g.. (@) is bounded and by the condition of limsupy g ., F (B%j;‘;) < oo for
some § > 0 by Lemma 4(ii), the Assumption B of Andrews (1994) is also satisfied. Therefore,

vrs (0) is stochastically equicontinuous by Theorem 1 of Andrews (1994). m

A~ ! A~ A~
Lemma 8 (Theorem 7.2 of Newey & McFadden (1994)) Suppose that gr s <0> Wrgrs (0)

IN

infgeo 815 (9)'VAVTgT,S (0)+o0,(T7h), 0L 0y and Wy 2 Wy, W, is positive semi-definite,
where there is g (0) such that (i) go (00) = 0, (i) g (0) is differentiable at 8y with derivative
Gy such that GYW Gy is nonsingular, (iii) 0y is an interior point of ©,(iv) vVTgr.s (0o) <,
N (0,3),(v) 36 such that SUD||9—go| <5 VT \|gr.s (0) — grs (6o) — g0 (0)|/ [1 +T |6 — 6, LA

0.Then /T (é - 00) 2 N (0, (GhWoGo) ! Gy WS W Go (G WoGo) 1) .

Proof of Proposition 2. We prove this proposition by checking conditions of Lemma



(i) go (80) = 0 by construction of go (8) = mg (8y) — mg (0)

(ii) go (@) is differentiable at 8, with derivative Gg such that G{W Gy is nonsingular by
Assumption 4(ii).

(iii) @y is an interior point of ® by Assumption 4(i).

(iv) If S/T — 0 as T, S — oo,
VTgrs(8) = VT (thy—1hs (6)) (11)

= \/T(rhT—mo (6o)) — (mg (6g) — mg (6o))

NS

= VT (1iy—my (6))) —

-~

X \\/g(rhs (60) —my (o))

-

{

iN(O,ZO) by Lemma 6 iN(O,Eo) by Lemma 6

Il
S
=N
o
=

Therefore,
ﬁgT,s (6o) - N(0,%) as T,5 — oo.

If S/T — k€ (0,00) as T, S — o0,

\/TgT,S (90) = \/T (ﬁlT—mo (90)2 -

-~

X \/g(ffls (89) —myg (609))

S

-~

EE

iN(O,EO) by Lemma 6 g>N(0,20) by Lemma 6

—1/VE

Therefore,
1
\/TgT,S (6o) 4N (O, <1 + E) EO> as T, S — o00.

IfS/T—-0asT,S — oo,

VSgr,s (60) = % x VT (1iy—mg (6o)) — V'S (iias (6o) — my (6)))
vz ~

-~

iN(O,EO) by Lemma 6 iN(O,Eo) by Lemma 6

Therefore,

VSgrs(00) % N (0,5) as T, S — oo

Consolidating these results across all three combinations of divergence rates for S and T we

obtain:
1

VI/S+ 1T

gr.s (0o) L N(0,5) as T, S — oc.



(v) We established the stochastic equicontinuity of vy g (8) = VT (97,5 (8) — g0 (0)]

when S/T — oo or S/T — k by Lemma 7,i.e. for Ve > 0, n > 0,36 such that

lim sup P | sup |[vrs(0)—vrs(6o)] > ?7] (12)
T—oo | [6-60]<s
= limsup P| sup VT |grs(0) — grs(00) — gy (0)]| > 77] <e
T—oo | [0-80]<s

and from the following inequality

VT || 915 (60) = 91,5 (85) = 90 O)| / [1+ VT 10 = 06ll| < VT [l gr.5 (6) = 9.5 (80) — 9, ()
(13)
we know that
lim sup P | sup ﬁHgT,S( — 975 (00) — H/ [1+\/_||9 00||} > 77]
T—oo | [6-80]<5
< tmswp P| swp VT [lgrs(6) — gus 60) — 9, 6)] > 7| < (19
T—oo | [6-60]<5

Similarly, it can be shown that when S/T — 0,

limsup P | sup VS| grs(8) — gr5(60) — g, (0)| / [1 +VS|e- eou] > n] <
S—00 |0—60||<é

(15)

Proof of Proposition 3. First, we prove the consistency of the numerical derivatives
GTS. This part of the proof is similar to that of Theorem 7.4 in Newey and McFadden
(1994). We will consider one-sided derivatives first, with the same arguments applying to
two-sided derivatives. First we consider the case where S/T — oo or S/T — k > 0 as
T,5 — oo. We know that H@;[;g — HOH = O, (T~'/?) by the conclusion of Proposition 2.

Also, by assumption we have e g — 0 and e, VT — 0, 50

6o

< HéT,S -6,

+ ‘|ek€T75H = Op (T71/2) + O (€T75) = Op (5T,S)
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(Recall that ey, is the k' unit vector.) In the proof of Proposition 2, it is shown that 3§ such
that

|983p|<5ﬁ gz, (0) — 87,5 (60) — 80 (8)[| / [1 +VT |6 - 90||] =0 (1)

Substituting 9T7S—|—ek5T,5 for @, then for T, S large, it follows that

VT HgT,S (éT,S+ek5T,S) —gr.s (6o) — 8o <éT,S+ek5T,S> H / [1 +VT HéT,s—i-ekﬁT,s — Oom <o,(1)

SO HgT,s <9T,s+ek€T,s> —gr.s (6o) — 8o <9T,s+ek€T,s> H

A 1
< 1+\/T‘0T5—|—ek5T5—00‘ Op (_
N A 7 7 7 ﬁ

=0p (5735)

= \/Top (e1,s) 0p (%) = Oy (er5) 0p (1)
= 0p (ET,s) (16)

On the other hand, since g (@) is differentiable at 8, with derivative Go by Assumption

4(ii), a Taylor expansion of gg <9T,S—|—eksT75> around 6 is
g0 (9T,S+ek€T,s> =go(60) + Go - (éT,S+ek5T,S - 90) +o (HéT,5+6k5T,s - 90H)

with go (89) = 0. Then divide by er g,

)

g0 (éT,S+ek5T,S) Jers = Go- (éT,S+ek5T,S - 90) /er.s + o (8}715 ”éT,S+ek5T,S — 0y

SO 8o <éT7S‘|‘ek5T,S> /ers — Goer = G- <éT,S - 90) [er.s + o (55,15 HéT,s+ek€T,s - 90H>
The triangle inequality implies that

Hgo (éT,S+ek5T,S) /er.s — GoekH < HGO : (97’,5 - 90) /5T,SH +o (5%,15 HéT,S+ek5T,S - 90”)

- o VT o)

—H‘:;}S H9T7S+ek5T,5 — eoH 0 (1)

= 0(1) 0, (1) + 2750, (ers) 0 (1) = 0, (1) (17)
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Combining the inequalities in equations (16) and (17) gives

gr.s (9T,s+ek€T,s) —gr.s (6o) gr.s (éT,S+ek5T,S> —gr,s(00) — 8o (éT,S+ek5T,S>

— Goek =
T8 T8
+ (go (9T,s+ek€T,s) /er.s — Goek>
gr.s <9T,S+ek5T,S> — g5 (6o) gr.s <9T,S+ek€T,s> —gr.s(600) — o <9T,S+ek€T,s>
— Goei|| <
TS ET.8

+ Hgo (éT,s+ek€T,s) /er.s — GOekH
< 0p(1)

Then,

gr.s <9T,s+ek€T,s) —gr.s (6o) »
— Goek

Er.s

and the same arguments can be applied to the two-sided derivative:

gr.s (9T,S+ek€T,s> —8rs (9T,S—ek€:r,s>

p
— Goey
2ers

This holds for each column k£ = 1, 2...,p. Thus (A}TVS 2 Gy.
In the case where S/T — 0 as T, S — oo, the proof for the consistency of (A}Tys is done

in the similar way using the following facts:
|65 = 00 = 0, (5772) (18)
and 36

sup V'S |lgrs (0) — &r,s (60) — 0 (0)] / [1 + V56 = 6ol = 0, (1) (19)

6—60l|<é
Next, we show the consistency of 21 - If p, and o, are known constant, or if ¢, is
known, then the result follows from Theorems 5 and 6 of Fermanian, Radulovi¢ and Wegkamp

(2004). When ¢, is estimated, the result is obtained by combining the results in Fermanian,



Radulovi¢ and Wekkamp with those of Rémillard (2010), see the Proof of Proposition 3 in

the paper for details. m

Proof of Proposition 4.  First consider S/T" — oo or S/T — k > 0. A Taylor

expansion of g (9T s) around 6, yields
VT (éT,S> = VTg (60) + Go - vT <9T,5—90> +o (ﬁ HéT,S—%H) (20)
and since gg (8p) = 0 and /T HéT’S_QOH =0,(1)
VTey (01.5) = Go- VT (Or,5-60) + 0, (1) (21)
Then consider the following expansion of gz g <9T,g> around 6,
VTgrs <éT,S> =VTgrs(00) + Grs - VT (éT,S_00> + Rrs (éT,S> (22)

where the remaining term is captured by Ry g (@T 5) . Combining equations (21) and (22)

we obtain
VT [gT,s (éT,S> —grs (6o) — 8o (915” = (GT,S—G())-\/T <9T75—00) +Rr g (913) +o, (1)

Lemma 7 shows the stochastic equicontinuity of vr g (6), which implies (see proof of Propo-

sition 2) that
VT [gT,S <éT,S) —gr,s (00) — 8o (éT,S>] =0, (1)
By Proposition 3, (A}Tﬂ—Go = 0, (1), which implies Ry g (915) = 0, (1). Thus, we obtain
the expansion of gr g <9T75) around 0 :
VTers (0r.s) = VTers (00) + Grs - VT (Br.5-60) + 0, (1) (23)
The remainder of the proof is the same as in standard GMM applications: From the proof
of Proposition 2, we have vTgr 5 (60) 4N (0,3) and rewrite this as —251/2\/TgT,S (60) =

10



urg L wu~N (0,1), and from Proposition 2, we have v/T (éT,S—O(J) = (G{]V\/'OGO)_1 GgWOEé/QuT,S—i—

0, (1) . By these two equations and Proposition 3, equation (23) becomes

N ~ N N a A -1 . Al -
VTers (0rs) = ~Silhurs + Grs (GrsWrGrs)  GrsWrSijurs + o, (1)24)
= 5/ Rurs+o,(1)

where R = (I - 2;};2(}@ S (G’T SVAVTCA-}T,S) CA-}QF SWTfllT{ ]23) . The test statistic is

A~ I A~ A~ A~ A ~ A A~
TgT,S (0715) WTgT,S <0T,S> = u&«7SR,E¥gWTE;/’éRuT7S + 0y (1) (25)

= UWR,SYYWoSY Rou + o, (1)

where Ro = (1 3 2Gy (GEWGo) ™ G3W023/2> - When Wr= %, R is symmetric
and idempotent with rank <R> =1tr <f{> = m—p, and the test statistic converges to a an_p
random variable, as usual. In general, the asymptotic distribution is a sample-dependent
combination of m independent standard Normal variables, namely that of u’ R{)Eé/ "W, Eé/ ’Rou
where u ~N (0,1).

When S/T — 0, a similar proof can be given using Taylor expansion of g (éT,S>

VSgo (9T,S> = V/Sgo (8) + Go- VS (éT,S_HO) +o (\/E HéT,s—eo‘D (26)

11



S.A.2 Implementation of the SMM estimator

This section provides further details on the constricution of the SMM objective function
and the estimation of the parameter.

Our estimator is based on matching sample dependence measures (rank correlation, quan-
tile dependence, etc) to measures of dependence computed on simulated data from the model
evaluated at a given parameter 8. The sample dependence measures are stacked into a vector
mr, and the corresponding measures on the simulated data are stacked into a vector mg (0) .

Re-stating equation (9) from the paper, our estimator is:

05 = arg rgm g5 (0) Wrgrs (0) (27)
S

where g7 ¢ (0) = mr —mg (0).
We now describe the construction of the SMM objective function. All dependence mea-
sures used in this paper are based on the estimated standardized residuals, which are con-

structed as:
il = o, ()[Y: — k(9] (28)
We then compute pair-wise dependence measures such as those in equations (4) and (5)
of the paper, e.g., p” and S\Zj. For quantile dependence we set ¢ € {0.05,0.10,0.90,0.95} .
The copula models we consider all satisfy an “exchangeability” property, and we use that

when constructing the moments to use in the estimator. Specifically, we calculate moments
mr as:
Ao s TN 2 4j 2 4] ]
mr = N (N —-1) Z [ PY Aoos Aot Aoso Aoos (29)
: ~
Next we simulate data {X, (8)}°_, from distribution F, (@), and compute the vector

of dependence measures mg (@) . It is critically important in this step to keep the ran-

dom number generator seed fized across simulations, see Gouriéroux and Monfort (1996,

12



Simulation-Based Econometric Methods, Oxford University Press). Failing to do so makes
the simulated data “jittery” across function evaluations, and the numerical optimization
algorithm will fail to converge.

Finally, we specify the weight matrix. In this paper we choose either Wy = I or Wy =
f]ilB. Note that for our estimation problem the estimated efficient weight matrix, f]ilB,
depends on the covariance matrix of the vector of sample dependence measures, and not on
the parameters of the model. Thus unlike some GMM or SMM estimation problems, this
estimator does not require an initial estimate of the unknown parameter.

We use numerical optimization procedure to find 9T75. As our objective function is not
differentiable we cannot use procedures that rely on analytical or numerical derivatives (such
as familiar Newton or “quasi-Newton” algorithms). We use “fminsearch” in MATLAB, which
is a simplex search algorithm that does not require derivatives. As with all numerical opti-
mization procedures, some care is required to ensure that a global optimum has been found.
In each estimation, we consider many different starting values for the algorithm, and choose
the resulting parameter estimate that leads to the smallest value of the objective function.
The models considered here are relatively small, with up to three unknown parameters, but
when the number of unknown parameters is large more care is required to ensure that a
global optimum has been found, see Judd (1998, Numerical Methods in Economics, MIT

Press) for more discussion.

S.A.3 Implementation of MLE for factor copulas

Consider a simple factor model:
X, = Z+4¢, i=1,2,...,N
Z ~ Fy, egi~udF,, 1LZV i
[X1,...Xn] = X~F,=C(G,...,Q)

13



To obtain the copula density ¢ we must first obtain the joint density, f,, and the marginal
density, g. These can be obtained using numerical integration to “integrate out” the latent

common factor, Z. First, note that

fxi|2($i|z) = fo(zi—2)

Fy,2 (zilz) = F.(zi—2)
N
and £, (21,...,2n5]2) = I_LZ1 felxy— 2

Then the marginal density and marginal distribution of X; are:

g(z) = / fupe 2l2) £ (2 dz—/ folw— ) £ (2) de

G(x) = / Pr[X§x|Z—Z}fz()dZ—/ F.(x—2)f.(2)dz

The joint density is similarly obtained:
fx(xl,...,xN):/ £ (1, an]2) f2 dz-/ Hl e lwi—2) [ (2) dz

From these, we obtain the copula density:

£, (G (u1),...,G 7 (un))
Hij\ilg (G ()

We approximate the above integrals using Gauss-Legendre quadrature, see Judd (1998)

c(u,...,uy) =

for details and discussion. We use the probability integral transformation of Z to convert

the above unbounded integals to integrals on [0, 1], for example:

- [ re-an@i= [ Lo w)a

A key choice in quadrature methods is the number of “nodes” to use in approximating the
integral. We ran simulations using 50, 150, and 250 nodes, and found that the accuracy
of the resulting MLE was slightly better for 150 than 50 nodes, and not different for 250
compared with 150 nodes. Thus in the paper we report results for MLE based on quadrature

using 150 nodes.
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S.A.4 Additional tables

Table S1: Simulation results for iid data with optimal weight matrix

Clayton Normal Factor copula
GMM SMM SMM* GMM SMM SMM
K K K P p o? vt A
True 1.00 1.00 1.00 0.5 0.5 1.00  0.25 -0.50
N =2

Bias -0.018 -0.020 -0.018 -0.001  0.000 0.016 -0.026 -0.094
St dev  0.085 0.092 0.091 0.025 0.026 0.144 0.119 0.189
Median 0.984 0977  0.981 0.497  0.500 0.999 0.200 -0.557
90-10% 0.224 0.247  0.233 0.070  0.069 0.374 0332 0.447
Time 0.07 515 51 0.41 0.67 112

N =3

Bias 0.008 0.010  0.006 -0.003 -0.003 0.022 -0.009 -0.057
St dev  0.063 0.073  0.068 0.021  0.022 0.110 0.103 0.146
Median  0.996 1.008  1.002 0.495 0.498 1.006 0.238 -0.540
90-10% 0.160 0.172  0.165 0.054 0.061 0.294 0.261 0.366
Time 0.12 1398 29 0.29 1.60 138

N =10

Bias -0.003 -0.004 -0.005 -0.004 -0.004 0.019 -0.010 -0.023
St dev  0.047 0.049 0.050 0.014 0.015 0.097 0.078 0.085
Median 0.993 0.997  0.997 0.497 0.495 1.006 0.251 -0.514
90-10% 0.121 0.126  0.127 0.036  0.037 0.248 0.189 0.165
Time 1 22521 170 0.34 3 358

Notes: The simulation design is the same as that of Table 1 in the paper except that we
use the efficient weight matrix, Wy = E;}B.
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Table S2: Simulation results for AR-GARCH data with optimal weight matrix

Clayton Normal Factor copula
GMM SMM SMM* GMM SMM SMM
K K K p P o? vt A
True 1.00 1.00 1.00 0.5 0.5 1.00  0.25  -0.50
N =2

Bias -0.021 -0.017 -0.014 -0.002 -0.001 0.018 -0.022 -0.083
St dev  0.087 0.097  0.097 0.026  0.026 0.154 0.121 0.188
Median 0.980 0.989  0.987 0.498  0.498 0.997 0.209 -0.553
90-10%  0.225 0.247  0.258 0.070  0.069 0.399 0.346 0.485
Time 0.06 531 60 0.39 0.69 119

N =3

Bias 0.002 -0.004 -0.001 -0.003 -0.003 0.021 -0.009 -0.061
St dev  0.063 0.066  0.068 0.021  0.023 0.114 0.106  0.151
Median 0.995 0.990 0.991 0.495 0.497 1.018  0.243 -0.548
90-10%  0.153 0.166  0.164 0.052  0.058 0.299 0.278 0.336
Time 0.12 1613 76 0.33 1.50 135

N =10

Bias -0.006 -0.005 -0.007 -0.005 -0.005 0.014 -0.013 -0.027
St dev ~ 0.047 0.051  0.050 0.014 0.015 0.093 0.078 0.097
Median 0.991 0.997  0.993 0.496 0.494 1.000 0.250 -0.513
90-10% 0.120 0.136  0.134 0.037  0.040 0.229 0.193 0.187
Time 2 25492 175 0.41 4 361

Notes: The simulation design is the same as that of Table 2 in the paper except that we
use the efficient weight matrix, Wy = E;}B.
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Table S3: Simulation results on coverage rates with optimal weight matrix

Clayton Normal Factor copula

ko J p J o> vtoX T

N=2
€r,s
0.1 89 95 93 99 97 99 96 96
0.01 56 93 95 99 97
0.001 9 80 79 80
0.0001 1 16 40 54 56
N=3
Er.s
0.1 91 98 88 95 98 99 97 99
0.01 70 88 98 99 96
0.001 10 82 88 86 86
0.0001 0 41 51 59 48
N =10
€TS8
0.1 93 100 87 97 95 96 94 100
0.01 79 87 94 94 93
0.001 20 87 89 &4 92
0.0001 5 64 70 70 73

Notes: The simulation design is the same as that of Table 3 in the paper except that we use
the efficient weight matrix, W, = ZA];}B. The numbers in column J present the percentage of
simulations for which the test statistic of over-identifying restrictions test described in Section
2 was smaller than its critical value from chi square distribution under 95% confidence level
(this test does not require a choice of step size for the numerical derivative, e7g, and so we
have only one value per model).
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Table S4: Summary statistics on the daily stock returns

Bank of Bank of Citi Goldman JP Morgan Wells

America N.Y. Group Sachs Morgan Stanley Fargo
Mean 0.038 0.015 -0.020 0.052 0.041 0.032  0.047
Std dev 3.461 2797  3.817 2.638 2.966 3.814  2.965
Skewness 1.048 0.592  1.595 0.984 0.922 4982  2.012
Kurtosis 28.190  18.721 43.478 18.152  16.006 119.757 30.984

Notes: This table presents some summary statistics of the seven daily equity returns data
used in the empirical analysis.

Table S5: Parameter estimates for the conditional mean and variance models

Bank of Bank of Citi Goldman JP Morgan Wells

America N.Y. Group Sachs Morgan Stanley Fargo

Constant (¢) 0.038 0.017 -0.019 0.058 0.043 0.031 0.051
Tit—1 0.020  -0.151  0.053 -0.156  -0.035 0.004 -0.078

T t—1 -0.063  -0.011  0.029 0.282  -0.141 0.063 -0.099
Constant (w) 0.009 0.069  0.019 0.034 0.014 0.036  0.008
07 0.931 0.895  0.901 0.953 0.926 0.922 0.926

€4 1 0.031 0.017  0.036 0.000 0.025 0.002 0.021
SRR SR 0.048 0.079  0.123 0.077 0.082 0.135 0.108
€3n’t_1 0.000 0.000  0.000 0.000 0.000 0.000  0.000
572717t,1 Ly 1<0} 0.068 0.266  0.046 0.012 0.064 0.077  0.013

Notes: This table presents the estimated models for the conditional mean (top panel)
and conditional variance (lower panel).
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