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Simulated Method of Moments Estimation for
Copula-Based Multivariate Models

Abstract

This paper considers the estimation of the parameters of a copula via a simulated method

of moments type approach. This approach is attractive when the likelihood of the copula

model is not known in closed form, or when the researcher has a set of dependence measures

or other functionals of the copula that are of particular interest. The proposed approach

naturally also nests method of moments and generalized method of moments estimators.

Drawing on results for simulation based estimation and on recent work in empirical copula

process theory, we show the consistency and asymptotic normality of the proposed estimator,

and obtain a simple test of over-identifying restrictions as a speci�cation test. The results

apply to both iid and time series data. We analyze the �nite-sample behavior of these

estimators in an extensive simulation study. We apply the model to a group of seven �nancial

stock returns and �nd evidence of statistically signi�cant tail dependence, and mild evidence

that the dependence between these assets is stronger in crashes than booms.

Keywords: correlation, dependence, inference, method of moments, SMM

J.E.L. codes: C31, C32, C51.
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1 Introduction

Copula-based models for multivariate distributions are widely used in a variety of applica-

tions, including actuarial science and insurance (Embrechts, McNeil and Straumann 2002;

Rosenberg and Schuermann 2006), economics (Brendstrup and Paarsch 2007; Bonhomme

and Robin 2009), epidemiology (Clayton 1978; Fine and Jiang 2000), �nance (Cherubini,

Luciano and Vecchiato 2004; Patton 2006a), geology and hydrology (Cook and Johnson

1981; Genest and Favre 2007), among many others. An important bene�t they provide is

the �exibility to specify the marginal distributions separately from the dependence structure,

without imposing that they come from the same family of joint distributions.

While copulas provide a great deal of �exibility in theory, the search for copula models

that work well in practice is an ongoing one. This search has spawned a number of new and

�exible models, see Demarta and McNeil (2005), McNeil, Frey and Embrechts (2005), Smith,

Min, Almeida and Czado (2010), Smith, Gan and Kohn (2011), and Oh and Patton (2011),

among others. Some of these models are such that the likelihood of the copula is either not

known in closed form, or is complicated to obtain and maximize, motivating the considera-

tion of estimation methods other than MLE. Moreover, in many �nancial applications, the

estimated copula model is used in pricing a derivative security, such as a collateralized debt

obligation or a credit default swap (CDO or CDS), and it may be of interest to minimize

the pricing error (the observed market price less the model-implied price of the security) in

calibrating the parameters of the model. In some cases the mapping from the parameter(s)

of the copula to dependence measures (such as Spearman�s or Kendall�s rank correlation, for

example) or to the price of the derivative contract is known in closed form, thus allowing

for method of moments or generalized method of moments (GMM) estimation. In general,

however, this mapping is unknown, and an alternative estimation method is required. We
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consider a simple yet widely applicable simulation-based approach to address this problem.

This paper presents the asymptotic properties of a simulation-based estimator of the

parameters of a copula model. We consider both iid and time series data, and we consider the

case that the marginal distributions are estimated using the empirical distribution function

(EDF). The estimation method we consider shares features with the simulated method of

moments (SMM), see McFadden (1989) and Pakes and Pollard (1989), for example, however

the presence of the EDF in the sample �moments�means that existing results on SMM are

not directly applicable. We draw on well-known results on SMM estimators, see Newey and

McFadden (1994) for example, and recent results from empirical process theory for copulas,

see Fermanian, Radulovíc and Wegkamp (2004), Chen and Fan (2006) and Rémillard (2010),

to show the consistency and asymptotic normality of simulation-based estimators of copula

models. To the best of our knowledge, simulation-based estimation of copula models has

not previously been considered in the literature. An extensive simulation study veri�es that

the asymptotic results provide a good approximation in �nite samples. We illustrate the

results with an application to a model of the dependence between the equity returns on

seven �nancial �rms during the recent crisis period.

In addition to maximum likelihood, numerous other estimation methods have been con-

sidered for copula-based multivariate models. We describe these here and contrast them with

the SMM approach proposed in this paper. Multi-stage maximum likelihood, also known as

�inference functions for margins�in this literature (see Joe and Xu (1996) and Joe (2005) for

iid data and Patton (2006b) for time series data) is one of the most widely-used estimation

methods. The �maximization by parts�algorithm of Song, Fan and Kalb�eisch (2005) is an

iterative method that improves the e¢ ciency of multi-stage MLE, and attains full e¢ ciency

under some conditions. Like MLE, both of these methods only apply when the marginal

distributions are parametric. When the marginal distribution models are correctly speci�ed

3



this improves the e¢ ciency of the estimator, relative to the proposed SMM approach using

nonparametric margins, however it introduces the possibility of mis-speci�ed marginal dis-

tributions, which can have deleterious e¤ects on the copula parameter estimates, see Kim,

Silvapulle and Silvapulle (2007).

Semi-parametric maximum likelihood (see Genest, Ghoudi and Rivest (1995) for iid data

and Chen and Fan (2006), Chan, Chen, Chen, Fan and Peng (2009) and Chen, Fan and

Tsyrennikov (2006) for time series data) is also a widely-used estimation method and has a

number of attractive features. Most importantly, with respect to SMM approach proposed

here, it yields fully e¢ cient estimates of the copula parameters, whereas SMM generally

does not. Semi-parametric MLE requires, of course, the copula likelihood and for some

more complicated models the likelihood can be cumbersome to derive or to compute, e.g.

the �stochastic copula�model of Hafner and Manner (2012) or the high dimension factor

copula model of Oh and Patton (2011). In such applications it may be desirable to avoid

the likelihood and use a simpler SMM approach.

A long-standing estimator of the copula parameter is the method of moments (MM)

estimator (see Genest (1987) and Genest and Rivest (1993) for iid data and Rémillard (2010)

for time series data). This estimator exploits the known one-to-one mapping between the

parameters of certain copulas and certain measures of dependence. For example, a Clayton

copula with parameter � implies Kendall�s tau of �= (�+ 2) ; yielding a simple MM estimator

of the parameter of this copula as �̂ = 2�̂ = (1� �̂) : MM estimators usually have the bene�t

of being very fast to compute. The SMM estimator proposed in this paper is a generalization

of MM in two directions. Firstly, it allows the consideration of over-identi�ed models: For

some copulas we have more implied dependence measures than unknown parameters (e.g.,

for the Normal copula we have both Kendall�s tau and Spearman�s rank correlation in closed

form). By treating this as a GMM estimation problem we can draw on the information in
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all available dependence measures. Secondly, we allow for dependence measures that are not

known closed-form functions of the copula parameters, and use simulations to obtain the

mapping, making this SMM rather than GMM.

Other, less-widely used, estimation methods considered in the literature include minimum

distance estimation, see Tsukahara (2005), and �expert judgment�estimation, see Britton,

Fisher and Whitley (1998). This paper contributes to this literature by considering the

properties of a SMM-type estimator, for both iid and time series data, nesting GMM and

MM estimation of the copula parameter as special cases.

2 Simulation-based estimation of copula models

We consider the same class of data generating processes (DGPs) as Chen and Fan (2006),

Chan, Chen, Chen, Fan and Peng (2009) and Rémillard (2010). This class allows each

variable to have time-varying conditional mean and conditional variance, each governed by

parametric models, with some unknown marginal distribution. As in those papers, and also

earlier papers such as Genest and Rivest (1993) and Genest, Ghoudi and Rivest (1995), we

estimate the marginal distributions using the empirical distribution function (EDF). The

conditional copula of the data is assumed to belong to a parametric family with unknown

parameter �0: The DGP we consider is:

[Y1t; : : : ; YNt]
0 � Yt = �t (�0) + �t (�0)�t (1)

where �t (�) � [�1t (�) ; : : : ; �Nt (�)]
0

�t (�) � diag f�1t (�) ; : : : ; �Nt (�)g

[�1t; : : : ; �Nt]
0 � �t � iid F� = C (F1; : : : ; FN ;�0)
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where �t and �t are Ft�1-measurable and independent of �t. Ft�1 is the sigma �eld contain-

ing information generated by fYt�1;Yt�2; : : :g. The r � 1 vector of parameters governing

the dynamics of the variables, �0; is assumed to be
p
T -consistently estimable, which holds

under mild conditions for many commonly-used models for multivariate time series, such as

ARMA models, GARCH models, stochastic volatility models, etc. If �0 is known, or if �t

and �t are known constant, then the model becomes one for iid data. Our task is to esti-

mate the p� 1 vector of copula parameters, �0 2 �; based on the (estimated) standardized

residual f�̂t � ��1t (�̂)[Yt � �t(�̂)]gTt=1 and simulations from the copula model, C (�;�).

2.1 De�nition of the SMM estimator

We will consider simulation from some parametric multivariate distribution, Fx (�) ; with

marginal distributions Gi (�) ; and copula C (�) : This allows us to consider cases where it

is possible to simulate directly from the copula model C (�) (in which case the Gi are all

Unif (0; 1)) and also cases where the copula model is embedded in some joint distribution

with unknown marginal distributions, such as the factor copula models of Oh and Patton

(2011).

We use only �pure� dependence measures as moments since those are a¤ected not by

changes in the marginal distributions of simulated data (X). For example, moments like

means and variances, are functions of the marginal distributions (Gi) and contain no infor-

mation on the copula. Measures like linear correlation contain information on the copula but

are also a¤ected by the marginal distributions. Dependence measures like Spearman�s rank

correlation and quantile dependence are purely functions of the copula and are una¤ected

by the marginal distributions, see Nelsen (2006) and Joe (1997) for example. Spearman�s
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rank correlation, quantile dependence, and Kendall�s tau for the pair
�
�i; �j

�
are de�ned as:

�ij � 12E
�
Fi (�i)Fj

�
�j
��
� 3 = 12

Z Z
uvdCij (u; v)� 3 (2)

�ijq �

8><>: P
�
Fi (�i) � qjFj

�
�j
�
� q
�
=

Cij(q;q)

q
; q 2 (0; 0:5]

P
�
Fi (�i) > qjFj

�
�j
�
> q
�
=

1�2q+Cij(q;q)
1�q ; q 2 (0:5; 1)

(3)

� ij � 4E
�
Cij
�
Fi (�i) ; Fj

�
�j
���

� 1 (4)

where Cij is the copula of
�
�i; �j

�
: The sample counterparts based on the estimated stan-

dardized residuals are de�ned as:

�̂ij � 12

T

TX
t=1

F̂i (�̂it) F̂j
�
�̂jt
�
� 3 (5)

�̂
ij

q �

8><>:
1
Tq

PT
t=1 1fF̂i (�̂it) � q; F̂j

�
�̂jt
�
� qg; q 2 (0; 0:5]

1
T (1�q)

PT
t=1 1fF̂i (�̂it) > q; F̂j

�
�̂jt
�
> qg; q 2 (0:5; 1)

(6)

�̂ ij � 4

T

TX
t=1

Ĉij

�
F̂i (�̂it) ; F̂j

�
�̂jt
��
� 1 (7)

where F̂i (y) � (T + 1)�1
PT

t=1 1f�̂it � yg; and Ĉij (u; v) � (T + 1)�1
PT

t=1 1fF̂i (�̂it) �

u; F̂j
�
�̂jt
�
� vg: Counterparts based on simulations are denoted ~�ij (�), ~�ijq (�) and ~� ij (�) :

Let ~mS (�) be a (m� 1) vector of dependence measures computed using S simulations

from Fx (�), fXsgSs=1 ; and let m̂T be the corresponding vector of dependence measures

computed using the the standardized residuals f�̂tg
T
t=1. These vectors can also contain linear

combinations of dependence measures, a feature that is useful when considering estimation

of high-dimension models. De�ne the di¤erence between these as

gT;S (�) � m̂T � ~mS (�) (8)

Our SMM estimator is based on searching across � 2 � to make this di¤erence as small as

possible. The estimator is de�ned as:
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�̂T;S � argmin
�2�

QT;S (�) (9)

where QT;S (�) � g0T;S (�)ŴTgT;S (�)

and ŴT is some positive de�nite weight matrix, which may depend on the data. As usual,

for identi�cation we require at least as many moment conditions as there are free parameters

(i.e.,m � p). In the subsections below we establish the consistency and asymptotic normality

of this estimator, provide a consistent estimator of its asymptotic covariance matrix, and

obtain a test based on over-identifying restrictions. The supplemental appendix presents

details on the computation of the objective function.

2.2 Consistency of the SMM estimator

The estimation problem here di¤ers in two important ways from standard GMM or M-

estimation: Firstly, the objective function, QT;S (�) is not continuous in � since ~mS (�) will

be a number in a set of discrete values as � varies on �, for example,
n
0; 1

Sq
; 2
Sq
; : : : ; S

Sq

o
for a lower quantile dependence. This problem would vanish if, for the copula model being

considered, we knew the mapping � 7�!m0 (�) � limS!1 ~mS (�) in closed form. The second

di¤erence is that a law of large numbers is not available to show the pointwise convergence

of gT;S (�) ; as the functions m̂T and ~mS (�) both involve empirical distribution functions.

We use recent developments in empirical process theory to overcome this di¢ culty.

We now list some assumptions that are required for our results to hold.

Assumption 1

(i) The distributions F� and Fx are continuous.

(ii) Every bivariate marginal copula Cij of C has continuous partial derivatives with respect

to ui and uj.
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If the data Yt are iid; e.g. if �t and �t are known constant in equation (1), or if

�0 is known, then Assumption 1 is su¢ cient to prove Proposition 1 below, using the re-

sults of Fermanian, Radulovíc and Wegkamp (2004). If, however, estimated standardized

residuals are used in the estimation of the copula then more assumptions are necessary in

order to control the estimation error coming from the models for the conditional means and

conditional variances. We combine assumptions A1�A6 in Rémillard (2010) in the follow-

ing assumption. First, de�ne 
0t = ��1t

�
�̂
�
_�t

�
�̂
�
and 
1kt = ��1t

�
�̂
�
_�kt

�
�̂
�
where

_�t (�) =
@�t(�)
@�0 ; _�kt (�) =

@[�t(�)]k-th column
@�0 ; k = 1; : : : ; N: De�ne dt as

dt = �t � �̂t �
 

0t +

NX
k=1

�kt
1kt

!�
�̂� �0

�
where �kt is k-th row of �t and both 
0t and 
1kt are Ft�1-measurable.

Assumption 2

(i) 1
T

TP
t=1


0t
p! �0 and 1

T

TP
t=1


1kt
p! �1k where �0 and �1k are deterministic for k =

1; : : : ; N:

(ii) 1
T

TP
t=1

E (k
0tk) ; 1T
TP
t=1

E
�
k
0tk

2� ; 1
T

TP
t=1

E (k
1ktk) ; and 1
T

TP
t=1

E
�
k
1ktk

2� are bounded
for k = 1; : : : ; N:

(iii) There exists a sequence of positive terms rt > 0 so that
P

t�1 rt <1 and such that the

sequence max1�t�T kdtk =rt is tight.

(iv) max1�t�T k
0tk =
p
T = op (1) and max1�t�T �kt k
1ktk =

p
T = op (1) for k = 1; : : : ; N:

(v)
�
�T ;

p
T
�
�̂� �0

��
weakly converges to a continuous Gaussian process in [0; 1]N�Rr,

where �T is the empirical copula process of uniform random variables:

�T =
1p
T

TP
t=1

�
NQ
k=1

1 (Ukt � uk)� C (u)
�
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(vi) @F�
@�k

and �k
@F�
@�k

are bounded and continuous on �RN = [�1;+1]N for k = 1; : : : ; N:

With these two assumptions, sample rank correlation and quantile dependence con-

verge in probability to their population counterparts, see Theorems 3 and 6 of Fermanian,

Radulovíc and Wegkamp (2004) for the iid case, and combine with Corollary 1 of Rémillard

(2010) for the time series case. (See Lemma 1 of the supplemental appendix for details.)

When applied to simulated data this convergence holds pointwise for any �: Thus gT;S (�)

converges in probability to the population moment functions de�ned as follows:

gT;S (�) � m̂T � ~mS (�)
p�! g0 (�) �m0 (�0)�m0 (�) ; for 8� 2 � as T; S !1 (10)

We de�ne the population objective function as

Q0 (�) = g0 (�)
0W0g0 (�) (11)

whereW0 is the probability limit of ŴT . The convergence of gT;S (�) and ŴT implies that

QT;S (�)
p�! Q0 (�) for 8� 2 � as T; S !1

For consistency of our estimator we need, as usual, uniform convergence of QT;S (�) ; but

as this function is not continuous in � and a law of large numbers is not available, the

standard approach based on a uniform law of large numbers is not available. We instead use

results on the stochastic equicontinuity of gT;S (�) ; based on Andrews (1994) and Newey

and McFadden (1994).

Assumption 3

(i) g0 (�) 6= 0 for � 6= �0

(ii) � is compact.
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(iii) Every bivariate marginal copula Cij (ui;uj;�) of C (�) on (ui; uj) 2 (0; 1) � (0; 1) is

Lipschitz continuous on �:

(iv) ŴT is Op (1) and converges in probability toW0; a positive de�nite matrix.

Proposition 1 Suppose that Assumptions 1, 2 and 3 hold. Then �̂T;S
p�! �0 as T; S !1

A sketch of all proofs is presented in the Appendix, and detailed proofs are in the supple-

mental appendix. Assumption 3(iii) is needed to prove the stochastic Lipschitz continuity

of gT;S (�) ; which is a su¢ cient condition for the stochastic equicontinuity of gT;S (�), and

can easily be shown to be satis�ed for many bivariate parametric copulas. Assumption 3(ii)

requires compactness of the parameter space, a common assumption, and is aided by having

outside information (such as constraints from economic arguments) that allow the researcher

to bound the set of plausible parameters. While Pakes and Pollard (1989) and McFadden

(1989) show the consistency of SMM estimator for T; S diverging at the same rate, Proposi-

tion 1 shows that the copula parameter is consistent at any relative rate of T and S as long

as both diverge. If we know the function m (�) in closed form, then GMM is feasible and is

equivalent to our estimator with S=T !1 as T; S !1:

We focus on weak consistency of our estimator because it su¢ ces for our asymptotic distri-

bution theory, presented below. A corresponding strong consistency result, i.e., �̂T;S
a:s:�! �0;

may be obtained by drawing on recent work by Bouzebda and Zari (2011). The key is to

show uniform strong convergence of the sample objective function, from which strong consis-

tency of the estimator easily follows, see Newey and McFadden (1994) for example. Uniform

strong consistency of the objective function can be shown by combining minor changes in the

above assumptions (e.g., ŴT must converge a.s. toW0) with pointwise strong convergence

of the objective function, which can be obtained using results of Bouzebda and Zari (2011).

11



2.3 Asymptotic normality of the SMM estimator

As QT;S (�) is non-di¤erentiable the standard approach based on a Taylor expansion is not

available, however the asymptotic normality of our estimator can still be established with

some further assumptions:

Assumption 4

(i) �0 is an interior point of �

(ii) g0 (�) is di¤erentiable at �0 with derivative G0 such that G0
0W0G0 is nonsingular.

(iii) gT;S
�
�̂T;S

�0
ŴTgT;S

�
�̂T;S

�
� inf�2� gT;S (�)0 ŴTgT;S (�) + op (1=T + 1=S)

The �rst assumption above is standard, and the third assumption is standard in simulation-

based estimation problems, see Newey and McFadden (1994) for example. The rate at

which the op term vanishes in part (iii) turns out to depend on the smaller of T or S; as

op (1=T + 1=S) = op
�
min (T; S)�1

�
. The second assumption requires the population objec-

tive function, g0; to be di¤erentiable even though its �nite-sample counterpart is not, which

is common in simulation-based estimation. The nonsingularity of G0
0W0G0 is su¢ cient for

local identi�cation of the parameters of this model at �0; see Hall (2005) and Rothenberg

(1971). With these assumptions in hand we obtain the following result.

Proposition 2 Suppose that Assumptions 1, 2, 3 and 4 hold. Then

1p
1=T + 1=S

�
�̂T;S � �0

�
d�! N (0;
0) as T; S !1 (12)

where 
0 = (G
0
0W0G0)

�1G0
0W0�0W0G0 (G

0
0W0G0)

�1 ; and �0 � avar [m̂T ] :

The rate of convergence is thus shown to equal min (T; S)1=2 : In general, one would like

to set S very large to minimize the impact of simulation error and obtain a
p
T convergence
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rate, however if the model is computationally costly to simulate, then the result for S �

T may be useful. When S and T diverge at di¤erent rates the asymptotic variance of

min (T; S)1=2
�
�̂T;S � �0

�
is simply 
0:When S and T diverge at the same rate, say S=T !

k 2 (0;1) ; the asymptotic variance of
p
T
�
�̂T;S � �0

�
is (1 + 1=k)
0; which incorporates

e¢ ciency loss from simulation error. As usual we �nd that 
0 =
�
G0
0�

�1
0 G0

��1
ifW0 is the

e¢ cient weight matrix, ��10 :

The proof of the above proposition uses recent results for empirical copula processes pre-

sented in Fermanian, Radulovíc and Wegkamp (2004) and Rémillard (2010) to establish the

asymptotic normality of the sample dependence measures, m̂T ; and requires us to establish

the stochastic equicontinuity of the moment functions, vT;S (�) =
p
T [gT;S (�)� g0 (�)] :

These are shown in Lemmas 6 and 7 in the supplemental appendix.

Chen and Fan (2006), Chan, Chen, Chen, Fan and Peng (2009) and Rémillard (2010)

show that estimation error from �̂ does not enter the asymptotic distribution of the cop-

ula parameter estimator for maximum likelihood or (analytical) moment-based estimators,

and the above proposition shows that this surprising result also holds for the SMM-type

estimators proposed here. In applications based on parametric models for the marginal dis-

tributions, the asymptotic covariance matrix of the copula parameter is more complicated.

In such cases, the model is fully parametric and the estimation approach here is a form of

two-stage GMM (or SMM). In the absence of simulations, this can be treated using exist-

ing methods, see White (1994) and Gouriéroux, Monfort and Renault (1996) for example.

If simulations are used in the copula estimation step, then the lemmas presented in the

appendix can be combined with existing results on two-stage GMM to obtain the limiting

distribution. This is straightforward but requires some additional detailed notation, and so

is not presented here.
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2.4 Consistent estimation of the asymptotic variance

The asymptotic variance of our estimator has the familiar form of standard GMM appli-

cations, however the components �0 and G0 require more care in their estimation than in

standard applications. We suggest using an iid bootstrap to estimate �0 :

1. Sample with replacement from the standardized residuals f�̂tg
T
t=1 to obtain a bootstrap

sample,
n
�̂
(b)
t

oT
t=1
. Repeat this step B times.

2. Using
n
�̂
(b)
t

oT
t=1
; b = 1; :::; B; compute the sample moments and denote as m̂(b)

T ; b =

1; :::; B.

3. Calculate the sample covariance matrix of m̂(b)
T across the bootstrap replications, and

scale it by the sample size:

�̂T;B =
T

B

BX
b=1

�
m̂
(b)
T � m̂T

��
m̂
(b)
T � m̂T

�0
(13)

For the estimation of G0; we suggest a numerical derivative of gT;S (�) at �̂T;S, however

the fact that gT;S is non-di¤erentiable means that care is needed in choosing the step size

for the numerical derivative. In particular, Proposition 3 below shows that we need to let

the step size go to zero, as usual, but slower than the inverse of the rate of convergence of

the estimator (i.e., 1=min
�p
T ;
p
S
�
). Let ek denote the k-th unit vector whose dimension

is the same as that of �, and let "T;S denote the step size. A two-sided numerical derivative

estimator ĜT;S of G has k-th column

ĜT;S;k =
gT;S

�
�̂T;S+ek"T;S

�
� gT;S

�
�̂T;S�ek"T;S

�
2"T;S

; k = 1; 2; :::; p (14)

Combine this estimator with ŴT to form:


̂T;S;B =
�
Ĝ0
T;SŴT ĜT;S

��1
Ĝ0
T;SŴT �̂T;BŴT ĜT;S

�
Ĝ0
T;SŴT ĜT;S

��1
(15)

14



Proposition 3 Suppose that all assumptions of Proposition 2 are satis�ed, and that

"T;S ! 0, "T;S � min
�p
T ;
p
S
�
! 1; B ! 1 as T; S ! 1. Then �̂T;B

p�! �0;

ĜT;S
p�! G0 and 
̂T;S;B

p�! 
0 as T; S !1:

2.5 A test of overidentifying restrictions

If the number of moments used in estimation is greater than the number of copula parameters,

then it is possible to conduct a simple test of the over-identifying restrictions, which can

be used as a speci�cation test of the model. When the e¢ cient weight matrix is used in

estimation, the asymptotic distribution of this test statistic is the usual chi-squared, however

the method of proof is di¤erent as we again need to deal with the lack of di¤erentiability

of the objective function. We also consider the distribution of this test statistic for general

weight matrices, leading to a non-standard limiting distribution.

Proposition 4 Suppose that all assumptions of Proposition 3 are satis�ed and that the

number of moments (m) is greater than the number of copula parameters (p) : Then

JT;S � min (T; S)gT;S

�
�̂T;S

�0
ŴTgT;S

�
�̂T;S

�
d�! u0A0

0A0u as T; S !1

where u � N (0; I)

and A0 � W
1=2
0 �

1=2
0 R0, R0� I���1=20 G0 (G

0
0W0G0)

�1G0
0W0�

1=2
0 : If ŴT = �̂�1T;B; then

JT;S
d�! �2m�p as usual.

As in standard applications, the above test statistic has a chi-squared limiting distribution

if the e¢ cient weight matrix (�̂�1
T;B) is used. When any other weight matrix is used, the test

statistic has a sample-speci�c limiting distribution, and critical values in such cases can be

obtained via a simple simulation:

1. Compute R̂ using ĜT;S, ŴT , and �̂T;B:
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2. Simulate u(k) s iid N (0; I), for k = 1; 2; :::; K, where K is large.

3. For each simulation, compute J (k)T;S = u
(k)0R̂0�̂

1=20
T;BŴT �̂

1=2
T;BR̂u

(k)

4. The sample (1� �) quantile of
n
J
(k)
T;S

oK
k=1

is the critical value for this test statistic.

The need for simulations to obtain critical values from the limiting distribution is non-

standard but is not uncommon; this arises in many other testing problems, see Wolak (1989),

White (2000) and Andrews (2001) for examples. Given that u(k) is a simple standard Normal,

and that no optimization is required in this simulation, and that the matrix R̂ need only be

computed once, obtaining critical values for this test is simple and fast.

2.6 SMM under model mis-speci�cation

All of the above results hold under the assumption that the copula model is correctly speci-

�ed. In the event that the speci�cation test proposed in the previous section rejects a model

as mis-speci�ed, one is led directly to the question of whether these results, or extensions of

them, hold for mis-speci�ed models.

In the literature on GMM, there are two common ways to de�ne mis-speci�cation. Newey

(1985) de�nes a form of �local�mis-speci�cation (where the degree of mis-speci�cation van-

ishes in the limit), and in that case it is simple to show that the asymptotic behavior of the

SMM estimator does not change at all except the mean of limit distribution. Hall and Inoue

(2003) consider �non-local�mis-speci�cation. Formally, a model is said to be mis-speci�ed

if there is no value of � 2 � which satis�es g0 (�) = 0: As Hall and Inoue (2003) note, mis-

speci�cation is only a concern when the model is over-identi�ed, and so in this section we

assume m > p: The absence of a parameter that satis�es the population moment conditions

means that we must instead consider a �pseudo-true�parameter:
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De�nition 1 The pseudo-true parameter is �� (W0) � argmin�2� g00 (�)W0g0 (�) :

While the true parameter, �0; when it exists, is determined only by the population

moment condition g0 (�0) = 0; the pseudo-true parameter depends on the moment condition

and also on the weight matrixW0; and thus we denote it as �� (W0) : With the additional

assumptions below, the consistency of the SMM estimator under mis-speci�cation can be

proven.

Assumption 5 (i) (Non-local mis-speci�cation) kg0 (�)k > 0 for all � 2 �

(ii) (Identi�cation) There exists �� (W0) 2 � such that g0 (�� (W0))
0W0g0 (�� (W0)) <

g0 (�)
0W0g0 (�) for all � 2 �n f�� (W0)g

Proposition 5 Suppose Assumption 1, 2, 3(ii)-3(iv), and 5 holds. Then �̂T;S
p�! �� (W0)

as T; S !1

The above proposition shows that, under mis-speci�cation, the SMM estimator �̂T;S con-

verges in probability to the pseudo true parameter �� (W0) rather than the true parameter

�0: This extends existing results for GMM under mis-speci�cation in Hall (2000) and Hall

and Inoue (2003), as it is established under the discontinuity of the moment functions.

While consistency of �̂T;S under mis-speci�cation is easily obtained, establishing the limit

distribution of �̂T;S is not straightforward. A key contribution of Hall and Inoue (2003) is

to show that the limit distribution of GMM (with smooth, di¤erentiable moment functions)

depends on the limit distribution of the weight matrix, not merely the probability limit of

the weight matrix. In SMM applications, it is possible to show that the limit distribution

will additionally depend on the limit distribution of the numerical derivative matrix, denoted

ĜT;S above. Some results on the statistical properties of numerical derivatives are presented

in Hong, Mahajan and Nekipelov (2010), but this remains a relatively unexplored topic. In
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addition to incorporating the dependence on the distribution of ĜT;S, under mis-speci�cation

one needs an alternative approach to establish the stochastic equicontinuity of the objective

function, which is required for a Taylor series expansion of the population objective function

to be used to obtain the limit distribution of the estimator. We leave the interesting problem

of the limit distribution of �̂T;S under mis-speci�cation for future research.

3 Simulation study

In this section we present a study of the �nite sample properties of the simulation-based

(SMM) estimator studied in the previous section. We consider two widely-known copula

models, the Clayton and the Gaussian (or Normal) copulas, see Nelson (2006) for discussion,

and the �factor copula�proposed in Oh and Patton (2011), outlined below. A closed-form

likelihood is available for the �rst two copulas, while the third copula requires a numerical

integration step to obtain the likelihood (details on this are presented in the supplemental

appendix). In all cases we contrast the �nite-sample properties of the MLE with the SMM

estimator. The �rst two copulas also have closed-form cumulative distribution functions,

and so quantile dependence (de�ned in equation 3) is also known in closed form. For the

Clayton copula we have Kendall�s tau in closed form (� = �= (2 + �)) but not Spearman�s

rank correlation, see Nelsen (2006). For the Normal copula we have both Spearman�s rank

correlation in closed form (�S = 6=� arcsin (�=2)) and Kendall�s tau (� = 2=� arcsin (�)) ; see

Nelsen (2006) and Demarta and McNeil (2005). This allows us to also compare GMM with

SMM for these copulas, to quantify the loss in accuracy from having to resort to simulations.

The factor copula we consider is based on the following structure:
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Let Xi = Z + "i; i = 1; 2; :::; N

where Z s Skew t
�
0; �2; ��1; �

�
; "i s iid t

�
��1
�
, and "i??Z 8 i (16)

[X1; :::; XN ]
0 � X s Fx= C (Gx; :::; Gx)

where we use the skewed t distribution of Hansen (1994). We use the copula of X implied

by the above structure as our �factor copula�model, and it is parameterized by (�2; ��1; �) :

For the factor copula we have none of the above dependence measures in closed form, and

so simulation-based methods are required. For the simulation we set the parameters to

generate rank correlation of around 1/2, and so set the Clayton copula parameter to 1, the

Gaussian copula parameter to 1/2, and the factor copula parameters to �2 = 1; ��1 = 1=4

and � = �1=2.

We consider two di¤erent scenarios for the marginal distributions of the variables of

interest. In the �rst case we assume that the data are iid with standard Normal marginal

distributions, meaning that the only parameters that need to be estimated are those of

the copula. This simpli�ed case is contrasted with a second scenario where the marginal

distributions of the variables are assumed to follow an AR(1)-GARCH(1,1) process, which

is widely-used in time series applications:

Yit = �0 + �1Yi;t�1 + �it�it, t = 1; 2; :::; T

�2it = ! + ��2i;t�1 + ��
2
i;t�1�

2
i;t�1 (17)

�t � [�1t; :::; �Nt]
0 s iid F� = C (�;�; :::;�)

where � is the standard Normal distribution function andC can be Clayton, Gaussian, or the

factor copula implied by equation (16). We set the parameters of the marginal distributions

as [�0; �1; !; �; �] = [0:01; 0:05; 0:05; 0:85; 0:10] ; which broadly matches the values of these

parameters when estimated using daily equity return data. In this scenario the parameters
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of the models for the conditional mean and variance are estimated, and then the estimated

standardized residuals are obtained:

�̂it =
Yit � �̂0 � �̂1Yi;t�1

�̂it
: (18)

These residuals are used in a second stage to estimate the copula parameters. In all cases

we consider a time series of length T = 1; 000, corresponding to approximately 4 years of

daily return data, and we use S = 25�T simulations in the computation of the dependence

measures to be matched in the SMM optimization. We use �ve dependence measures in

estimation: Spearman�s rank correlation, and the 0:05; 0:10; 0:90; 0:95 quantile dependence

measures, averaged across pairs of assets. We repeat each scenario 100 times, and in the

results below we use the identity weight matrix for estimation. (Corresponding results based

on the e¢ cient weight matrix, ŴT = �̂
�1
T;B; are comparable, and available in the supplemen-

tal appendix to this paper.) We also report the computation times (per simulation) for each

estimation.

Table 1 reveals that for all three dimensions (N = 2; 3 and 10) and for all three copula

models the estimated parameters are centered on the true values, with the average estimated

bias being small relative to the standard deviation, and with the median of the simulated

distribution centered on the true values. Looking across the dimension size, we see that

the copula model parameters are almost always more precisely estimated as the dimension

grows. This is intuitive, given the exchangeable nature of all three models.

Comparing the SMM estimator with the ML estimator, we see that the SMM estimators

su¤er a loss in e¢ ciency of around 50% for N = 2 and around 20% for N = 10: The

loss is greatest for the ��1 parameter of the factor copula, and is moderate and similar for

the remaining parameters. Some loss is of course expected, and this simulation indicates

that the loss is moderate overall. Comparing the SMM estimator to the GMM estimator
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provides us with a measure of the loss in accuracy from having to estimate the population

moment function via simulation. We �nd that this loss ranges from zero to 3%, and thus

little is lost from using SMM rather than GMM. The simulation results in Table 2, where

the copula parameters are estimated after the estimation of AR(1)-GARCH(1,1) models for

the marginal distributions in a separate �rst stage, are very similar to the case when no

marginal distribution parameters are required to be estimated, consistent with Proposition

2. Thus that somewhat surprising asymptotic result is also relevant in �nite samples.

[ INSERT TABLES 1 AND 2 ABOUT HERE ]

In Table 3 we present the �nite-sample coverage probabilities of 95% con�dence intervals

based on the asymptotic normality result from Proposition 2 and the asymptotic covariance

matrix estimator presented in Proposition 3. As shown in that proposition, a critical input to

the asymptotic covariance matrix estimator is the step size used in computing the numerical

derivative matrix ĜT;S: This step size, "T;S; must go to zero, but at a slower rate than 1=
p
T :

Ignoring constants, our simulation sample size of T = 1; 000 suggests setting "T;S > 0:03;

which is much larger than standard step sizes used in computing numerical derivatives. (For

example, the default in many functions in MATLAB is a step size of around 6� 10�6, which

is an optimal choice in certain applications, see Judd (1998) for example.) We study the

impact of the choice of step size by considering a range of values from 0.0001 to 0.1. Table 3

shows that when the step size is set to 0.01 or 0.1 the �nite-sample coverage rates are close

to their nominal levels. However if the step size is chosen too small (0.001 or smaller) then

the coverage rates are much lower than nominal levels. For example, setting "T;S = 0:0001

(which is still 16 times larger than the default setting in MATLAB) we �nd coverage rates as

low as 2% for a nominal 95% con�dence interval. Thus this table shows that the asymptotic

theory provides a reliable means for obtaining con�dence intervals, so long as care is taken
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not to set the step size too small.

Table 3 also presents the results of a study of the rejection rates for the test of over-

identifying restrictions presented in Proposition 4. Given that we consider W = I in this

table, the test statistic has a non-standard distribution, and we use K = 10; 000 simulations

to obtain critical values. In this case, the limiting distribution also depends on ĜT;S; and

we again compute ĜT;S using a step size of "T;S = 0:1; 0:01; 0:001 and 0:0001: The rejection

rates are close to their nominal levels 95% for the all three copula models.

[ INSERT TABLE 3 ABOUT HERE ]

We �nally consider the properties of the estimator under model mis-speci�cation. In

Table 4 we consider two scenarios: one where the true copula is Clayton but the model is

Normal, and one where the true copula is Normal but the model is Clayton. The pseudo-true

parameters for these two scenarios are not known in closed form, and we use a simulation of

10 million observations to estimate it. The pseudo-true parameters vary across the dimension

of the model, and we report them in the top row of each panel of Table 4. The remainder

of Table 4 has the same structure as Tables 1 and 2. Similar to those tables, in this mis-

speci�ed case we see that the estimated parameters are centered on the pseudo-true values,

with the average estimated bias being small relative to the standard deviation. These mis-

speci�ed scenarios also provide some insight into the power of the speci�cation test based on

over-identifying restrictions. We �nd that for all three dimensions and for both iid and AR-

GARCH data, the J-test rejected the null of correct speci�cation across all 100 simulations,

indicating this test has power to detect model mis-speci�cation.

These simulation results provide support for the proposed estimation method: for empir-

ically realistic parameter values and sample size, the estimator is approximately unbiased,

with estimated con�dence intervals that have coverage close to their nominal level when
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the step size for the numerical derivative is chosen in line with our theoretical results, and

the test for model mis-speci�cation has �nite-sample rejection frequencies that are close to

their nominal levels when the model is correctly speci�ed, and has good power to reject

mis-speci�ed models.

[ INSERT TABLE 4 ABOUT HERE ]

4 Application to the dependence between �nancial �rms

This section considers models for the dependence between seven large �nancial �rms. We use

daily stock return data over the period January 2001 to December 2010, a total of T = 2515

trade days, on Bank of America, Bank of New York, Citigroup, Goldman Sachs, J.P. Morgan,

Morgan Stanley and Wells Fargo. Summary statistics for these returns are presented in

Table S4 of the supplemental appendix, and indicate that all series are positively skewed

and leptokurtotic, with kurtosis ranging from 16.0 (J.P. Morgan) to 119.8 (Morgan Stanley).

To capture the impact of time-varying conditional means and variances in each of these

series, we estimate the following autoregressive, conditionally heteroskedastic models:

rit = �0i + �1iri;t�1 + �2irm;t�1 + "it, "it = �it�it

where �2it = !i + �i�
2
i;t�1 + �1i"

2
i;t�1 + 
1i"

2
i;t�1 � 1["i;t�1�0] (19)

+�2i"
2
m;t�1 + 
2i"

2
m;t�1 � 1["m;t�1�0]

where rit is the return on one of these seven �rms and rmt is the return on the S&P 500 index.

We include the lagged market index return in both the mean and variance speci�cations to

capture any in�uence of lagged information in the model for a given stock, and in the model

for the market index itself we set �1 = �1 = 
1 = 0: Estimated parameters from these

models are presented in Table S5 of the supplemental appendix, and are consistent with the
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values found in the empirical �nance literature, see Bollerslev, Engle and Nelson (1994) for

example. From these models we obtain the estimated standardized residuals, �̂it; which are

used in the estimation of the dependence structure.

In Table 5 we present measures of dependence between these seven �rms. The upper

panel reveals that rank correlation between their standardized residuals is 0.63 on average,

and ranges from 0.55 to 0.76. The lower panel of Table 5 presents measures of dependence

in the tails between these series. The upper triangle presents the average of the 1% and 99%

quantile dependence measures presented in equation (6), and we see substantial dependence

here, with values ranging between 0.16 and 0.40. The lower triangle presents the di¤erence

between the 90% and 10% quantile dependence measures, as a gauge of the degree of asym-

metry in the dependence structure. These di¤erences are mostly negative (14 out of 21),

indicating greater dependence during crashes than during booms.

Table 6 presents the estimation results for three di¤erent copula models of these series.

The �rst model is the well-known Clayton copula, the second is the Normal copula and the

third is a �factor copula�as proposed by Oh and Patton (2011). The �rst copula allows for

lower tail dependence, but imposes that upper tail dependence is zero. The second copula

implies zero tail dependence in both directions. The third copula allows for tail dependence

in both tails, and allows the degree of dependence to di¤er across positive and negative

realizations.

[ INSERT TABLES 5 AND 6 ABOUT HERE ]

For all three copulas we implent the SMM estimator proposed in Section 2, with the

identity weight matrix and the e¢ cient weight matrix, using �ve dependence measures:

Spearman�s rank correlation, and the 0:05; 0:10; 0:90; 0:95 quantile dependence measures,

averaged across pairs of assets. We also implement the MLE for comparison. The value
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of the SMM objective function at the estimated parameters is presented for each model,

along with the p-value from a test of the over-identifying restrictions based on Proposition

4. We use Proposition 3 to compute the standard errors, with B = 1; 000 bootstraps used

to estimate �T;S; and "T;S = 0:1 used as the step size to compute ĜT;S:

The parameter estimates for the Normal and factor copula models are similar for ML

and SMM, while they are quite di¤erent for the Clayton copula. This may be explained by

the results of the test of over-identifying restrictions: the Clayton copula is strongly rejected

(with a p-value of less than 0.001 for both choices of weight matrix), while the Normal is

less strongly rejected (p-values of 0.043 and 0.001). The factor copula is not rejected using

this test for either choice of weight matrix. The improvement in �t from the factor copula

appears to come from its ability to capture tail dependence: the parameter that governs

tail dependence (��1) is signi�cantly greater than zero, while the parameter that governs

asymmetric dependence (�) is not signi�cantly di¤erent from zero.

Given that our sample period spands the �nancial crisis, one may wonder whether the

copula is constant throughout the period. To investigate this, we implement the copula

structrual break test proposed by Rémillard (2010). This test uses a Kolmogorov-Smirnov

type test statistic to compare the empirical copula before and after a given point in the

sample, and then searches across all dates in the sample. We implement this test using

1000 simulations for the �multiplier�method, and �nd a p-value of 0.001, indicating strong

evidence of a change in the copula over this period. Running this test on just the last two

years of our sample period (January 2009 to December 2010) results in a p-value of 0.191,

indicating no evidence of a change in the copula over this sub-period. We re-estimate our

three copula models using data from this sub-period, and present the results in the lower

panel of Table 6. The estimated parameters all indicate a (slight) increase in dependence in

this sub-sample relative to the full sample. Perhaps the largest change is in the � parameter
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of the factor copula, which goes from around 8.8 (across the three estimation methods) to

around 4.4, indicating a substantial increase in the degree of tail dependence between these

�rms. The results of the speci�cation tests over this sub-sample are comparable to the full

sample results: the Clayton copula is strongly rejected, the Normal copula is rejected but

less strongly, and the factor copula is not rejected, using either weight matrix.

Figure 1 sheds some further light on the relative performance of these copula models, over

the full sample. This �gure compares the empirical quantile dependence function with those

implied by the three copula models. An iid bootstrap with B = 1; 000 replications is used to

construct pointwise con�dence intervals for the sample quantile dependence estimates. We

see here that the Clayton copula is �too asymmetric� relative to the data, while both the

Normal and the factor copula models appear to provide a reasonable �t.

[ INSERT FIGURE 1 ABOUT HERE ]

5 Conclusion

This paper presents the asymptotic properties of a new simulation-based estimator of the

parameters of a copula model, which matches measures of rank dependence implied by

the model to those observed in the data. The estimation method shares features with

the simulated method of moments (SMM), see McFadden (1989) and Newey and McFadden

(1994), for example, however the use of rank dependence measures as �moments�means that

existing results on SMM cannot be used. We extend well-known results on SMM estimators

using recent work in empirical process theory for copula estimation, see Fermanian, Radulovíc

and Wegkamp (2004), Chen and Fan (2006) and Rémillard (2010), to show the consistency

and asymptotic normality of SMM-type estimators of copula models. To the best of our

knowledge, simulation-based estimation of copula models has not previously been considered
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in the literature. We also provide a method for obtaining a consistent estimate of the

asymptotic covariance matrix, and a test of the over-identifying restrictions. Our results

apply to both iid and time series data, and an extensive simulation study veri�es that

the asymptotic results provide a good approximation in �nite samples. We illustrate the

results with an application to a model of the dependence between the equity returns on

seven �nancial �rms, and �nd evidence of statistically signi�cant tail dependence, and some

evidence that the dependence between these assets is stronger in crashes than booms.

Appendix: Sketch of proofs
Detailed proofs are available in the supplemental appendix to this paper.

Proof of Proposition 1. First note that: (a) Q0 (�) is uniquely minimized at �0 by

Assumption 3(i) and positive de�niteW0 of Assumption 3(iv); (b)� is compact by Assump-

tion 3(ii); (c) Q0 (�) consists of linear combinations of rank correlations and quantile depen-

dence measures that are functions of pair-wise copula functions, so Q0 (�) is continuous by

Assumption 3(iii). The main part of the proof requires establishing that QT;S uniformly con-

verges in probability to Q0; which we show using �ve lemmas in the supplemental appendix:

Pointwise convergence of gT;S (�) to g0 (�) and stochastic Lipschitz continuity of gT;S (�) is

shown using results from Fermanian, Wegkamp and Radulovíc (2004) and Rémillard (2010),

combined with Assumption 3(iii). This is su¢ cient for the stochastic equicontinuity of gT;S

and for the uniform convergence in probability of gT;S to g0 by Lemmas 2.8 and 2.9 of Newey

and McFadden (1994). Using the triangle and Cauchy-Schwarz inequalities this implies that

QT;S uniformly converges in probability to Q0. We have thus veri�ed that the conditions of

Theorem 2.1 of Newey and McFadden (1994) hold, and we have �̂
p! �0 as claimed.
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Proof of Proposition 2. We prove this proposition by verifying the �ve conditions of

Theorem 7.2 of Newey and McFadden (1994) for our problem: (i) g0 (�0) = 0 by construction

of g0 (�) = m (�0) �m (�). (ii) g0 (�) is di¤erentiable at �0 with derivative G0 such that

G0
0W0G0 is nonsingular by Assumption 4(ii). (iii) �0 is an interior point of� by Assumption

4(i). (iv) This part requires showing the asymptotic normality of
p
TgT;S (�0) : We will

present the result only for S=T ! k 2 (0;1) : The results for the cases that S=T !

0 or S=T ! 1 are similar. In Lemma 6 of the supplemental appendix we show that
p
T (m̂T �m0 (�0))

d! N (0;�0) as T ! 1 and
p
S ( ~mS (�0)�m0 (�0))

d! N (0;�0) as

S !1 using Theorem 3 and Theorem 6 of Fermanian, Radulovíc and Wegkamp (2004) and

Corollary 1, Proposition 2 and Proposition 4 of Rémillard (2010). This implies that

p
TgT;S (�0) =

p
T (m̂T �m0 (�0))| {z }

d!N(0;�0)

�
r
T

S|{z}
!1=

p
k

p
S ( ~mS (�0)�m0 (�0))| {z }

d!N(0;�0)

and so
p
TgT;S (�0)

d! N (0; (1 + 1=k)�0) as T; S !1: (v) This part requires showing that

supk���0k<�
p
T


gT;S (�)� gT;S (�0)� g0 (�)

 = h1 +pT k� � �0ki p! 0: The main part of

this proof involves showing the stochastic equicontinuity of vT;S (�) =
p
T
�
gT;S (�)� g0 (�)

�
:

This is shown in Lemma 7 of the supplemental appendix by showing that fg�;� (�) : � 2 �g

is a type II class of functions in Andrews (1994), and then using that paper�s Theorem 1.

Proof of Proposition 3. If �t and �t are known constant, or if �0 is known,

then the consistency of �̂T;B follows from Theorems 5 and 6 of Fermanian, Radulovíc and

Wegkamp (2004). When �0 is estimated, the result is obtained by combining the results

in Fermanian, Radulovíc and Wegkamp with those of Rémillard (2010): For simplicity,

assume that only one dependence measure is used. Let �̂ij and �̂
(b)
ij be the sample rank

correlations constructed from the standardized residuals
�
�̂it; �̂

j
t

	T
t=1

and from the bootstrap

counterpart
n
�̂
(b)i
t ; �̂

(b)j
t

oT
t=1
: Also, de�ne the corresponding estimates, ��ij and ��

(b)
ij ; using the
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true innovations
�
�it; �

j
t

	T
t=1
and the bootstrapped true innovations

n
�
(b)i
t ; �

(b)j
t

oT
t=1
(where the

same bootstrap time indices are used for both
n
�̂
(b)i
t ; �̂

(b)j
t

oT
t=1

and
n
�
(b)i
t ; �

(b)j
t

oT
t=1
). De�ne

true � as �0: Theorem 5 of Fermanian, Radulovíc and Wegkamp (2004) shows that

p
T
�
��ij � �0

�
=
p
T
�
��
(b)
ij � ��ij

�
+ op (1)

Corollary 1 and Proposition 4 of Rémillard (2010) shows, under Assumption 2, that

p
T
�
�̂ij � ��ij

�
= op (1) and

p
T
�
�̂
(b)
ij � ��

(b)
ij

�
= op (1)

Combining those three equations, we obtain

p
T
�
�̂ij � �0

�
=
p
T
�
�̂
(b)
ij � �̂ij

�
+ op (1) , as T;B !1

and so equation (13) is a consistent estimator of �0: Consistency of the numerical derivatives

ĜT;S can be established using a similar approach to Theorem 7.4 of Newey and McFadden

(1994), and since ŴT
p!W0 by Assumption 3(iv), we thus have 
̂T;S;B

p! 
0:

Proof of Proposition 4. We consider only the case where S=T !1 or S=T ! k > 0.

The case for k = 0 is analogous. A Taylor expansion of g0
�
�̂T;S

�
around �0 yields

p
Tg0

�
�̂T;S

�
=
p
Tg0 (�0) +G0 �

p
T
�
�̂T;S��0

�
+ o

�p
T



�̂T;S��0


�

and since g0 (�0) = 0 and
p
T



�̂T;S��0


 = Op (1)

p
Tg0

�
�̂T;S

�
= G0 �

p
T
�
�̂T;S��0

�
+ op (1) (20)

Then consider the following expansion of gT;S
�
�̂T;S

�
around �0

p
TgT;S

�
�̂T;S

�
=
p
TgT;S (�0) + ĜT;S �

p
T
�
�̂T;S��0

�
+RT;S

�
�̂T;S

�
(21)

where the remaining term is captured by RT;S

�
�̂T;S

�
: Combining equations (20) and (21)

we obtain

p
T
h
gT;S

�
�̂T;S

�
� gT;S (�0)� g0

�
�̂T;S

�i
=
�
ĜT;S�G0

�
�
p
T
�
�̂T;S��0

�
+RT;S

�
�̂T;S

�
+op (1)
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The stochastic equicontinuity of vT;S (�) =
p
T [gT;S (�)� g0 (�)] is established in the proof

of Proposition 2, which implies (see proof of Proposition 2) that

p
T
h
gT;S

�
�̂T;S

�
� gT;S (�0)� g0

�
�̂T;S

�i
= op (1)

By Proposition 3, ĜT;S�G0 = op (1) ; which implies RT;S

�
�̂T;S

�
= op (1) : Thus, we obtain

the expansion of gT;S
�
�̂T;S

�
around �0 :

p
TgT;S

�
�̂T;S

�
=
p
TgT;S (�0) + ĜT;S �

p
T
�
�̂T;S��0

�
+ op (1) (22)

The remainder of the proof is the same as in standard GMM applications, see Hall (2005)

for example.

Proof of Proposition 5. Lemma 1, 2, 3 and 4 are not a¤ected by mis-speci�cation.

Lemma 5 (i) is replaced by Assumption 5 (ii). Therefore, �̂T;S
p! �� (W0) :
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Table 3: Simulation results on coverage rates

Clayton Normal Factor copula

� J � J �2 ��1 � J

N = 2
"T;S
0.1 91 98 94 98 94 100 95 98
0.01 46 99 92 98 94 99 96 100
0.001 2 99 76 98 76 79 74 99
0.0001 1 99 21 98 54 75 57 97

N = 3
"T;S
0.1 97 99 89 97 99 100 96 99
0.01 63 98 88 97 99 96 95 100
0.001 11 98 83 98 92 84 93 100
0.0001 2 100 38 99 57 70 61 99

N = 10
"T;S
0.1 96 99 87 97 97 97 95 98
0.01 88 99 87 96 96 97 97 97
0.001 18 100 87 98 97 95 88 97
0.0001 0 98 71 97 73 85 81 98

Notes: This table presents the results from 100 simulations of Clayton copula, the Normal
copula, and a factor copula, all estimated by SMM. The marginal distributions of the data
are assumed to follow AR(1)-GARCH(1,1) processes, as described in Section 3. Problems of
dimension N = 2; 3 and 10 are considered, the sample size is T = 1; 000 and the number of
simulations used is S = 25 � T: The rows of each panel contain the step size, "T;S; used in
computing the matrix of numerical derivatives, ĜT;S: The numbers in column �; �; �2; ��1;
and � present the percentage of simulations for which the 95% con�dence interval based on
the estimated covariance matrix contained the true parameter. The numbers in column J
present the percentage of simulations for which the test statistic of over-identifying restric-
tions test described in Section 2 was smaller than its computed critical value under 95%
con�dence level.
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Table 4: Simulation results for mis-speci�ed models

iid AR-GARCH

True copula Normal Clayton Normal Clayton
Model Clayton Normal Clayton Normal

N = 2
Pseudo-true 0.542 0.599 0.543 0.588
Bias -0.013 0.111 -0.007 0.046
St dev 0.050 0.173 0.035 0.120
Median 0.526 0.659 0.539 0.617
90-10% 0.130 0.433 0.091 0.265
Time 4 72 1 70
J test prob. 0 0 0 0

N = 3
Pseudo-true 0.543 0.599 0.542 0.607
Bias 0.003 0.077 -0.002 0.006
St dev 0.039 0.164 0.027 0.088
Median 0.544 0.629 0.540 0.609
90-10% 0.107 0.432 0.072 0.198
Time 5 90 1 86
J test prob. 0 0 0 0

N = 10
Pseudo-true 0.544 0.602 0.544 0.603
Bias 0.001 0.059 -0.001 0.047
St dev 0.033 0.118 0.016 0.116
Median 0.546 0.622 0.540 0.618
90-10% 0.086 0.307 0.043 0.314
Time 20 206 4 207
J test prob. 0 0 0 0

Notes: This table presents the results from 100 simulations when the true copula and
the model are di¤erent (i.e., the model is mis-speci�ed). The parameters of the copula
models are estimated using SMM based on rank correlation and four quantile dependence
measures (q = 0:05; 0:10; 0:90; 0; 95). The marginal distributions of the data are assumed to
be either iid N (0; 1) or AR(1)-GARCH(1,1) processes, as described in Section 3. Problems
of dimension N = 2; 3 and 10 are considered, the sample size is T = 1; 000 and the number
of simulations used is S = 25� T: The pseudo-true parameter is estimated using 10 million
observations. The last row in each panel presents the proportion of tests of over-identifying
restrictions that are smaller than the 95% critical value.
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Table 5: Sample dependence statistics

Bank of Bank of Citi Goldman JP Morgan Wells
America N.Y. Group Sachs Morgan Stanley Fargo

BoA 0.586 0.691 0.556 0.705 0.602 0.701
BoNY 0.551 0.574 0.578 0.658 0.592 0.595
Citi 0.685 0.558 0.608 0.684 0.649 0.626
Goldman 0.564 0.565 0.609 0.655 0.759 0.548
JPM 0.713 0.633 0.694 0.666 0.667 0.683
Morgan S 0.604 0.587 0.650 0.774 0.676 0.578
Wells F 0.715 0.593 0.636 0.554 0.704 0.587

BoA 0.219 0.239 0.219 0.398 0.298 0.358
BoNY -0.048 0.179 0.199 0.159 0.219 0.199
Citi -0.045 -0.004 0.199 0.318 0.219 0.199
Goldman -0.068 0.000 0.032 0.239 0.378 0.199
JPM -0.024 -0.056 -0.012 0.012 0.239 0.358
Morgan S -0.060 -0.020 -0.064 -0.036 -0.008 0.219
Wells F 0.020 -0.052 0.044 -0.028 0.024 0.000

Notes: This table presents measures of dependence between the seven �nancial �rms under
analysis. The upper panel presents Spearman�s rank correlation (upper triangle) and linear
correlation (lower triangle), and the lower panel presents the di¤erence between the 10%
tail dependence measures (lower triangle) and average 1% upper and lower tail dependence
(upper triangle). All dependence measures are computed using the standardized residuals
from the models for the conditional mean and variance.
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Figure 1: This �gure plots the probability of both variables being less than their q quantile
(q<0.5) or greater than the q quantile (q>0.5). For the data this is averaged across all pairs,
and a bootstrap 90% (pointwise) con�dence interval is presented.

.
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