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Appendix S.A.1: Proofs of propositions

Proof of Proposition 1. Consider a simple case �rst: �1 = �2 = � > 0: This implies that

X1 and X2 have the same distribution function G; and so we can use the same threshold for both

X1 and X2: Then the upper tail dependence coe¢ cient is:

�U = lim
s!1

Pr [X1 > s;X2 > s]

Pr [X1 > s]
:

From standard extreme value theory, see Feller (1970) and Embrechts et al. (1997) for example, we

have the probability of an exceedence by the sum as the sum of the probabilities of an exceedence

by each component of the sum, as the exceedence threshold diverges:

Pr [Xi > s] = Pr [�Z + "i > s] s s��
�
AUz �

� +AU"
�
:

Further, we have the probability of two sums of variables both exceeding some diverging threshold

being driven completely be the common component of the sums:

Pr [X1 > s;X2 > s] = Pr [�Z + "1 > s; �Z + "2 > s] s s��AUz �
�:

And so we obtain:

�U = lim
s!1

s��AUz �
�

s�� (AUz �
� +AU" )

=
AUz �

�

AUz �
� +AU"

:
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(a) Now we consider the case that �1 6= �2; and wlog assume �2 > �1 > 0: This complicates the

problem as the thresholds, s1 and s2; must be set such that G1 (s1) = G2 (s2) = q ! 1; and when

�1 6= �2 we have G1 6= G2 and so s1 6= s2: We can �nd the link between the thresholds as follows:

Pr [Xi > s] s s��i
�
AUz �

�
i +A

U
"

�
;

and we require (s1; s2) such that s��1
�
AUz �

�
1 +A

U
"

�
= s��2

�
AUz �

�
2 +A

U
"

�
: This implies:

s2 = s1

�
AUz �

�
2 +A

U
"

AUz �
�
1 +A

U
"

�1=�
Note that s1 and s2 diverge at the same rate. Further note that since �2 > �1, straightforward

calculations imply that s1=�1 > s2=�2, which is used below. The numerator of the tail dependence

coe¢ cient is:

Pr [X1 > s1; X2 > s2] s Pr [Z > max fs1=�1; s2=�2g] = Pr [Z > s1=�1] = s��1 AUz �
�
1 :

Using either Pr [X1 > s1] or Pr [X2 > s2] in the denominator we obtain:

�U =
��1A

U
z

��1A
U
z +A

U
"

.

(b) Say �2 < �1 < 0: Then similar to part (a) we obtain:

Pr [Xi > s] = Pr [�iZ + "i > s] s s��
�
ALz j�ij

� +AU"
�

Next we �nd the thresholds (s1; s2) such that Pr [X1 > s1] = Pr [X2 > s2] ; which yields

s2 = s1

�
ALz j�2j

� +AU"
ALz j�1j

� +AU"

�1=�
Using the same steps as for part (a), we �nd that s1= j�1j > s2= j�2j : Thus the numerator becomes:

Pr [X1 > s1; X2 > s2] s Pr [(�Z) > max fs1= j�1j ; s2= j�2jg] = Pr [(�Z) > s1= j�1j] = s��1 ALz j�1j
�

and so

�U =
j�1j�ALz

j�1j�ALz +AU"
(c) Consider �2 > �1 = 0 :

Pr [X1 > s1] s s��1 AU"

and Pr [X2 > s2] s s��2
�
AUz �

�
2 +A

U
"

�
but Pr [X1 > s1; X2 > s2] = Pr ["1 > s1] Pr [�2Z + "2 > s2]

s s��1 s��2 AU"
�
AUz �

�
2 +A

U
"

�
= s�2�1

�
AU"
�2
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using s2 = s1

�
AUz �

�
2+A

U
"

AUz �
�
1+A

U
"

�1=�
from part (a). Thus the denominator of the tail dependence coe¢ ci-

entis of order O (s��) while the numerator is of order O
�
s�2�

�
; so the coe¢ cient will be zero.

(d) Consider �1 < 0 < �2: Then the denominator of the tail dependence coe¢ cient will again

be of order O
�
s��1

�
; but the numerator will be of a lower order:

Pr [X1 > s1; X2 > s2] = Pr [�1Z + "1 > s1; �2Z + "2 > s2]

= Pr [�1Z > s1; �2Z > s2] + o
�
s��

�
as s!1

using the same results as above. But note that Pr [�1Z > s1; �2Z > s2] = 0 since s1; s2 > 0

and sgn (�1Z) = �sgn (�2Z) ; and so the numerator will be of order o (s��) ; implying the tail

dependence coe¢ cient will be zero. All of the results for parts (a) through (d) apply for lower tail

dependence, mutatis mutandis.

Proof of Proposition 2. It is more convenient to work with the density than the distribution

function for skew t random variables. Note that if Fz has a regularly varying tails with tail index

� > 0; and has corresponding density function fz that is monotone decreasing in the tails (i.e., it

satis�es the Monotone Density Theorem, see Bingham et al. (1987)), then fz satis�es:

fz (s) s �AUz s
���1

and we can thus obtain:

AUz = lim
s!1

fz (s)

�s���1

The skew t distribution of Hansen (1994) has a unique mode and is monotone decreasing on each

side of this, thus satisfying the monotonicity condition.

For � 2 (2;1) and � 2 (�1; 1) ; the skew t distribution of Hansen (1994) has density:

fz (s; �; �) =

8>>><>>>:
bc

�
1 + 1

��2

�
bs+a
1��

�2��(�+1)=2
; s < �a=b

bc

�
1 + 1

��2

�
bs+a
1+�

�2��(�+1)=2
; s � �a=b

where a = 4�c

�
� � 2
� � 1

�
, b =

p
1 + 3�2 � a2, c =

�
�
�+1
2

�
�
�
�
2

�p
� (� � 2)

and its tail index is equal to the degrees of freedom parameter, so � = �: Straightforward algebra

yields

AUz = lim
s!1

fz (s)

�s���1
=
bc

�

�
b2

(� � 2) (1 + �)2

��(�+1)=2
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For the left tail we similarly obtain:

fz (s) s �ALz (�s)
���1

and

ALz = lim
s!�1

fz (s)

� (�s)���1
=
bc

�

�
b2

(� � 2) (1� �)2

��(�+1)=2
When � = 0 we recover the non-skewed, standardized Student�s t distribution. In that case we

have a = 0; b = 1 (and c unchanged), and so AU" = AL" =
c
�

�
1
��2

��(�+1)=2
:

Proof of Proposition 3. First consider the denominator of the upper tail dependence

coe¢ cient:

Pr [Xi > si] = Pr

�XK

k=1
�ikZk + "i > si

�
s Pr ["i > si] +

XK

k=1
Pr [�ikZk > si]

= s��i

�
AU" +

XK

k=1
AUk �

�
ik

�
We need to choose (si; sj) such that Pr [Xi > si] = Pr [Xj > sj ] ; which implies

sj = si

0@AU" +XK

k=1
AUk �

�
jk

AU" +
XK

k=1
AUk �

�
ik

1A1=�

� siU;ij

As in Proposition 1, note that si and sj diverge at the same rate.

When �ik�jk = 0; the factor Zk does not contribute to the numerator of the tail dependence

coe¢ cient, as it appears in at most one of Xi and Xj : Thus we need only keep track of factors

such that �ik�jk > 0: In this case, we again need to determine the larger of si=�ik and sj=�jk for

each k = 1; 2; :::;K: Unlike the one-factor model, a general ranking cannot be obtained. To keep

notation compact we introduce �ijk. Note

max

�
si
�ik

;
sj
�jk

�
= max

�
si
�ik

;
si
�jk

U;ij

�
=

si
�ik

max

�
1;
�ik
�jk

U;ij

�
� si
�ik�ijk

where ��1ijk � max

�
1;
�ik
�jk

U;ij

�
To cover the case that �ik�jk = 0; we generalize the de�nition of �ijk so that it is well de�ned in

that case. The use of any �nite number here will work (as it will be multiplied by zero in this case)
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and here we set it to one:

��1ijk �

8<: max
�
1; U;ij�ik=�jk

	
; if �ik�jk > 0

1; if �ik�jk = 0

Now we can consider the numerator

Pr [Xi > si; Xj > sj ] = Pr

�XK

k=1
�ikZk + "i > si;

XK

k=1
�jkZk + "j > sj

�
s

XK

k=1
Pr
�
�ikZk > si; �jkZk > sj

�
=

XK

k=1
1
�
�ik�jk > 0

	
Pr
�
�ikZk > si; �jkZk > sj

�
=

XK

k=1
1
�
�ik�jk > 0

	
Pr

�
Zk > max

�
si
�ik

;
sj
�jk

��
�

XK

k=1
1
�
�ik�jk > 0

	
Pr

�
Zk >

si
�ik�ijk

�
= s��i

XK

k=1
1
�
�ik�jk > 0

	
AUk �

�
ik�

�
ijk

And so we obtain

�Uij = lim
s!1

Pr [Xi > si; Xj > sj ]

Pr [Xi > si]
=

XK

k=1
1
�
�ik�jk > 0

	
AUk �

�
ik�

�
ijk

AU" +
XK

k=1
AUk �

�
ik

The results for lower tail dependence can be obtained using similar derivations to those above.

Proof of Proposition 4. First we derive some initial results. By the results of Fermanian et

al. (2004), assumption 1 implies that sample rank dependence measures converge in probability

to their population counterparts. Thus R̂T
p�! R, and gk(R̂T )

p�! gk(R) for k = 1; 2; :::; N: By

assumption, the copula of Y is the same as that of X; and so RankCorr [Y] = RankCorr [X] ;

since rank correlations are solely functions of the copula, see Nelsen (2006, Chapter 5).

Re-writing the factor model in equation (2) in matrix form, X = BZ+ "; we can easily obtain

its covariance and correlation matrix:

V [X] = BB0 + I

RL = �BB0�+ �2

where � � diag f[1; 2; :::; N ]g

i �
�
1 + �0i�i

��1=2 , i = 1; 2; :::; N
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Following Proposition 4 of Chamberlain and Rothschild (1983) we obtain a bound on the eigenvalues

of RL: Speci�cally, we use the result that if A and B are symmetric matrices, then gi (A+B) �

gj (A) + gk (B), for j + k � i+ 1: Thus we �nd

gK+1
�
RL
�
� gK+1

�
�BB0�

�
+ g1

�
�2
�
= g1

�
�2
�
� 1

where the �rst inequality follows from the previously-mentioned bound, the equality follows from

rank (�BB0�) = K; and the second inequality follows from the fact that g1
�
�2
�
= maxi 

2
i ; and

2i � 1 since �0i�i � 0:

(i) Pr
h
K̂T > K

i
= Pr

h
gK+1(R̂

y
T ) > 1

i
! 0 as T ! 1; since gK+1(R̂yT )

p�! gK+1(R) =

gK+1(R
L) �1: Thus Pr

h
K̂T � K

i
! 1 as T !1:

(ii) Pr
h
K̂T < K

i
= Pr

h
gK(R̂

y
T ) < 1

i
! 0 as T !1; since gK(R̂yT )

p�! gK(R) = gK(R
L) > 1

under assumption 3. Thus, combining with part (i) we have Pr
h
K̂T = K

i
! 1 as T !1:

Appendix S.A.2: A Monte Carlo study of SMM estimation of
high dimension factor copulas

In this section we present a study of the �nite sample properties of the simulated method

of moments (SMM) estimator de�ned in equation (15) of the main paper. In the case where a

likelihood for the copula model is available in closed form we contrast the properties of the SMM

estimator with those of the maximum likelihood estimator.

We initially consider three di¤erent factor copulas, all of them of the form:

Xi = �Z + "i; i = 1; 2; :::; N

Z s Skew t (�; �) (27)

"i s iid t (�) , and "i??Z 8 i

[X1; :::; XN ]
0 s Fx= C (Gx; :::; Gx)

and we use the skewed t distribution of Hansen (1994) for the common factor. In all cases we

set � = 1; implying that the common factor (Z) accounts for one-half of the variance of each Xi;

implying rank correlation of around 0.5. In the �rst model we set � !1 and � = 0, which implies

that the resulting factor copula is simply the Gaussian copula, with equicorrelation parameter

� = 0:5: In this case we can estimate the model by SMM and also by GMM and MLE, and we
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use this case to study the loss of e¢ ciency in moving from MLE to GMM to SMM. In the second

model we set � = 4 and � = 0, yielding a symmetric factor copula that generates tail dependence.

In the third case we set � = 4 and � = �0:5 yielding a factor copula that generates tail dependence

as well as �asymmetric dependence�, in that the lower tails of the copula are more dependent than

the upper tails. We estimate the inverse degrees of freedom parameter, ��1z ; so that its parameter

space is [0; 0:5) rather than (2;1]:

We also consider an extension of the above equidependence model which allow each Xi to have

a di¤erent coe¢ cient on Z. For N = 3 we set [�1; �2; �3] = [0:5; 1; 1:5] : For N = 10 we set

[�1; �2; :::; �10] = [0:25; 0:50; :::; 2:5]; which corresponds to pair-wise rank correlations ranging from

approximately 0.1 to 0.8. Motivated by our empirical application below, for the N = 100 case we

consider a �block equidependence�model, where we assume that the 100 variables can be grouped

ex ante into 10 groups, and that all variables within each group have the same �i:We use the same

set of values for �i as in the N = 10 case.

We consider two di¤erent scenarios for the marginal distributions of the variables of interest.

In the �rst case we assume that the data are iid with standard Normal marginal distributions,

meaning that the only parameters that need to be estimated are those of the factor copula. This

simpli�ed case is contrasted with a second scenario where the marginal distributions of the variables

are assumed to follow an AR(1)-GARCH(1,1) process:

Yit = �0 + �1Yi;t�1 + �it�it, t = 1; 2; :::; T

�2it = ! + �2i;t�1 + ��
2
i;t�1�

2
i;t�1 (28)

�t � [�1t; :::; �Nt] s iid F� = C (�;�; :::;�)

where � is the standard Normal distribution function andC is the factor copula implied by equation

(27). We set the parameters of the marginal distributions as [�0; �1; !; ; �] = [0:01; 0:05; 0:05; 0:85; 0:10] ;

which broadly matches the values of these parameters when estimated using daily equity return

data. In this scenario the parameters of the marginal distribution are estimated via QML in a

separate �rst stage, following which the estimated standardized residuals, �̂it; are obtained and

used in a second stage to estimate the factor copula parameters. In all cases we consider a time

series of length T = 1000, corresponding to approximately 4 years of daily return data, and we

use S = 25� T simulations in the computation of the dependence measures to be matched in the

SMM optimization. We repeat each scenario 100 times. In all results below we use the identity
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weight matrix for estimation.12 We use the same dependence measures in the SMM estimation as

in our empirical analysis, described in detail in the appendix to the main paper.

Table A.1 reveals that for all three dimensions (N = 3; 10 and 100) and for all three copula

models the estimated parameters are centered on the true values, with the average estimated bias

being small relative to the standard deviation, and with the median of the simulated distribution

centered on the true values. The measures of estimator accuracy (the standard deviation and the

90-10 percentile di¤erence) reveal that adding more parameters to the model, ceteris paribus, leads

to greater estimation error, as expected; �, for example, is more accurately estimated when it is

the only unknown parameter compared with when it is one of three unknown parameters. Looking

across the dimension size, we see that the copula model parameters are almost always more precisely

estimated as the dimension grows. This is intuitive, given the equidependence nature of all three

models: increasing the dimension of the model does not increase the number of parameters to be

estimated but it does increase the amount of information available on the unknown parameters.

Comparing the SMM estimator with the ML estimator, which is only feasible for the Normal

copula (as the other two factor copulas do not have a copula likelihood in closed form) we see

that the SMM estimator performs quite well. As predicted by theory, the ML estimator is always

more e¢ cient than the SMM estimator, however the loss in e¢ ciency is moderate, ranging from

around 25% for N = 3 to around 10% for N = 100: This provides some con�dence that our move

to SMM, prompted by the lack of a closed-form likelihood, does not come at a cost of a large loss

in e¢ ciency. Comparing the SMM estimator to the GMM estimator provides us with a measure of

the loss in accuracy from having to estimate the population moment function via simulation. We

�nd that this loss is at most 3% and in some cases (N = 100) is slightly negative. Thus little is

lost from using SMM rather than GMM when we set S = 25� T:

Table A.2 shows results for the block equidependence model for the N = 100 case, which can be

compared to the results in the lower panel of Table A.1. This table shows that the parameters of

these models are well estimated using the proposed dependence measures described in the appendix.

The accuracy of the �shape�parameters, ��1 and �; is slightly lower in the more general model,

consistent with the estimation error from having to estimate ten factor loadings (�i) being greater

than from having to estimate just a single loading parameter; however this loss is not great.

12Corresponding results based on the e¢ cient weight matrix generally comparable to those based on the identity

weight matrix, however the coverage rates are worse than those based on the identity weight matrix.
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[ INSERT TABLES A.1 AND A.2 ABOUT HERE ]

In Tables A.3 and A.4 we present the �nite-sample coverage probabilities of 95% con�dence

intervals based on the estimated asymptotic covariance matrix. As discussed in Oh and Patton

(2013), a critical input to the asymptotic covariance matrix estimator is the step size used in

computing the numerical derivative matrix Ĝ: This step size, "T ; must go to zero, but at a slower

rate than T�1=2: Ignoring constants, our simulation sample size of T = 1000 suggests setting

"T > 0:03; which is much larger than standard step sizes used in computing numerical derivatives.13

We consider a range of values from 0.0001 to 0.1. Table A.4 shows that when the step size is set to

0.01, 0.03 or 0.1 the �nite-sample coverage rates are close to their nominal levels. However if the

step size is chosen too small (0.003 or smaller) then the coverage rates are much lower than nominal

levels. For example, setting "T = 0:0001 (which is still 16 times larger than the default setting in

Matlab) we �nd coverage rates as low as 38% for a nominal 95% con�dence interval. Thus this

table shows that the asymptotic theory provides a reliable means for obtaining con�dence intervals,

so long as care is taken not to set the step size too small.

[ INSERT TABLES A.3 AND A.4 ABOUT HERE ]

Finally in Table A.5 we present the results of a study of the rejection rates for the J test of

over-identifying restrictions. Given that we considerW = I in this table, the test statistic has a non-

standard distribution (see Proposition 4 of Oh and Patton, 2013), and we use 10; 000 simulations

to obtain critical values. In this case, the limiting distribution also depends on Ĝ; and we present

the rejection rates for various choices of step size "T : Table A.5 reveals that the rejection rates

are close to their nominal levels, for both the equidependence models and the �di¤erent loading�

models (which is a block equidependence model for the N = 100 case). The J test rejection rates

are less sensitive to the choice of step size than the coverage probabilities of con�dence intervals,

however the best results are again generally obtained when "T is 0.01 or greater.

[ INSERT TABLE A.5 ABOUT HERE ]

13For example, the default in many Matlab functions is a step size of "1=3 � 6 � 10�6 � 1=(165; 000), where

" = 2:22� 10�16 is machine epsilon. This choice is optimal in certain applications, see Judd (1998) for example.
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Appendix S.A.3: AMonte Carlo study of the use of �scree�plots
for factor copulas

In this section we study the usefulness of �scree�plots based on rank correlation matrices for

identifying the number of factors in a factor copula. We consider factor copulas with the number

of factors K 2 f1; 2; 4; 8g ; and in all cases we set N = 100 and T = 1000: We �rstly consider the

following DGP:

Xi = �0iZ+ "i, i = 1; 2; :::; N

Zk s Skew t (�k; �k) ; where �k s Unif [3; 33] , �k s Unif [�1; 1] (29)

"i s t (�i) ; where �i s Unif [3; 33]

and all variables and parameters are iid across variables and across simulations. We choose the

factor loadings, �ik; to imply cross-sectional average correlations that are around 0.5, consistent

with our empirical application. To implement this, we need to adjust the factor loadings as K

varies (else the common factors get too strong as K grows). We assume �ik s N
�
�� ; �

2
�

�
, where:

K = 1 K = 2 K = 4 K = 8

�� 1:00 0:75 0:50 0:40

�2� 0:202 0:202 0:202 0:202

In the �gure below we plot all N (N � 1) =2 linear and rank correlations for one simulation

from each of these cases. These scatterplots reveal that these two measures of association are not

identical, but are indeed very close, suggesting that assumption 2 of Proposition 4 of the paper is

reasonable for the types of factor copulas we consider.

In a second simulation design we attempt to match more closely the model we �nd works well in

our empirical results. This model is an eight-factor model, but with any given variable only having

non-zero loading on a common �market�factor, and one of seven �industry�factors; the loadings

on six of the factors are imposed to be zero. We use the following design:

Xi = �0iZ+ "i

Z0 s Skew t (4;�0:5) and �i0 s N
�
1; 0:12

�
(30)

Zk s t (4) and �ik s N
�
0:45; 0:32

�
; k = 1; 2; :::; 7

"i s t (4) , i = 1; 2; ::; N
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We group the N = 100 variables into seven �industries,� each containing 14 variables, except for

the last group which contains 16. The results for the �no groups�and the �industry groups�DGPs

are presented in Table A.6. We �nd that K̂T correctly estimates the number of factors for 90% to

99% of simulations.

[ INSERT TABLE A.6 ABOUT HERE ]
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Figure 6: Comparison of linear and rank correlations for variables generated by the factor copulas

in equation (29).
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Table A.1: Simulation results for factor copula models

Normal
MLE GMM SMM Factor t� t Factor Skew t� t

� � � � ��1 � ��1 �

True value 1.00 1.00 1.00 1.00 0.25 1.00 0.25 -0.50

N = 3

Bias 0.0141 -0.0143 -0.0164 -0.0016 -0.0185 0.0126 -0.0199 -0.0517
Std 0.0803 0.1014 0.1033 0.1094 0.0960 0.1205 0.1057 0.1477
Median 1.0095 0.9880 0.9949 0.9956 0.2302 1.0050 0.2380 -0.5213
90% 1.1180 1.1103 1.1062 1.1448 0.3699 1.1772 0.3636 -0.3973
10% 0.9172 0.8552 0.8434 0.8721 0.0982 0.8662 0.0670 -0.7538
90-10 Di¤ 0.2008 0.2551 0.2628 0.2727 0.2716 0.3110 0.2966 0.3565

N = 10

Bias 0.0113 -0.0099 -0.0119 -0.0025 -0.0137 -0.0039 -0.0161 -0.0119
Std 0.0559 0.0651 0.0666 0.0724 0.0611 0.0851 0.0790 0.0713
Median 1.0125 0.9874 0.9898 0.9926 0.2360 0.9897 0.2376 -0.5084
90% 1.0789 1.0644 1.0706 1.0967 0.3102 1.1095 0.3420 -0.4318
10% 0.9406 0.9027 0.8946 0.9062 0.1704 0.8996 0.1331 -0.5964
90-10 Di¤ 0.1383 0.1617 0.1761 0.1905 0.1398 0.2100 0.2089 0.1645

N = 100

Bias 0.0167 -0.0068 -0.0080 -0.0011 -0.0138 0.0015 -0.0134 -0.0099
Std 0.0500 0.0554 0.0546 0.0659 0.0549 0.0841 0.0736 0.0493
Median 1.0164 0.9912 0.9956 1.0011 0.2346 0.9943 0.2402 -0.5101
90% 1.0805 1.0625 1.0696 1.0886 0.3127 1.1060 0.3344 -0.4465
10% 0.9534 0.9235 0.9279 0.9112 0.1685 0.8970 0.1482 -0.5734
90-10 Di¤ 0.1270 0.1390 0.1418 0.1773 0.1442 0.2089 0.1861 0.1270

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas,
the Normal copula, the t � t factor copula and the Skew t � t factor copula. The Normal copula
is estimated by ML, GMM, and SMM, and the other two copulas are estimated by SMM. The
marginal distributions of the data are assumed to follow AR(1)-GARCH(1,1) processes, as described
in Section 3. Problems of dimension N = 3; 10 and 100 are considered, the sample size is T = 1000
and the number of simulations used is S = 25 � T: The �rst row of each panel presents the
average di¤erence between the estimated parameter and its true value. The second row presents
the standard deviation in the estimated parameters. The third, fourth and �fth rows present
the 50th, 90th and 10th percentiles of the distribution of estimated parameters, and the �nal row
presents the di¤erence between the 90th and 10th percentiles.

13



Table A.2: Simulation results for block equidependence factor copula model, N=100

��1 �z �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

True value 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Normal

Bias - - -0 .0010 -0.0038 -0 .0040 -0 .0072 -0 .0071 -0.0140 -0 .0178 -0 .0119 -0 .0194 -0.0208

Std - - 0 .0128 0.0182 0.0248 0.0322 0.0377 0.0475 0.0651 0.0784 0.1022 0.1291

Median - - 0 .2489 0.4970 0.7440 0.9942 1.2421 1.4868 1.7279 1.9918 2.2256 2.4832

90% - - 0 .2645 0.5204 0.7787 1.0291 1.2970 1.5470 1.8226 2.0874 2.3609 2.6458

10% - - 0 .2304 0.4701 0.7158 0.9502 1.1982 1.4197 1.6526 1.8825 2.0921 2.3090

90-10 di¤ - - 0 .0341 0.0503 0.0629 0.0788 0.0987 0.1273 0.1700 0.2049 0.2689 0.3368

Factor t� t

Bias -0 .0120 - 0 .0000 0.0009 0.0018 -0 .0045 0.0011 -0 .0073 -0.0080 -0 .0122 -0 .0061 -0 .0065

Std 0.0574 - 0.0149 0.0236 0.0300 0.0343 0.0443 0.0580 0.0694 0.0867 0.1058 0.1332

Median 0.2384 - 0.2503 0.5056 0.7528 0.9985 1.2550 1.4881 1.7409 1.9820 2.2234 2.4737

90% 0.3056 - 0.2678 0.5255 0.7896 1.0348 1.3052 1.5697 1.8270 2.1012 2.4089 2.6597

10% 0.1683 - 0.2348 0.4689 0.7187 0.9462 1.1965 1.4282 1.6517 1.8744 2.1303 2.3196

90-10 di¤ 0.1373 - 0.0330 0.0566 0.0709 0.0886 0.1086 0.1416 0.1754 0.2268 0.2786 0.3401

Factor skew t� t

Bias -0 .0119 -0 .0019 0.0008 0.0001 0.0028 -0 .0029 -0 .0036 -0 .0096 -0 .0114 -0 .0232 -0 .0178 -0 .0194

Std 0.0633 0.0451 0.0134 0.0246 0.0320 0.0443 0.0588 0.0806 0.0902 0.1111 0.1373 0.1635

Median 0.2434 -0 .5051 0.2477 0.5001 0.7520 0.9986 1.2468 1.4826 1.7417 1.9803 2.2107 2.4786

90% 0.3265 -0 .4392 0.2680 0.5309 0.7961 1.0613 1.3028 1.5856 1.8378 2.1094 2.4430 2.7034

10% 0.1550 -0 .5527 0.2358 0.4660 0.7155 0.9505 1.1756 1.4042 1.6230 1.8395 2.0494 2.2739

90-10 di¤ 0.1714 0.1134 0.0321 0.0648 0.0807 0.1107 0.1272 0.1814 0.2148 0.2699 0.3936 0.4294

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas: the
Normal copula, the t � t factor copula and the Skew t � t factor copula. We divide the N = 100
variables into ten groups and assume that all variables in the same group have the same loading
on the common factor. The marginal distributions of the data are assumed to follow AR(1)-
GARCH(1,1) processes, as described in Section 3. The sample size is T = 1000 and the number of
simulations used is S = 25�T: The �rst row of each panel presents the average di¤erence between
the estimated parameter and its true value. The second row presents the standard deviation in the
estimated parameters. The third, fourth and �fth rows present the 50th, 90th and 10th percentiles
of the distribution of estimated parameters, and the �nal row presents the di¤erence between the
90th and 10th percentiles.
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Table A.3: Simulation results on coverage rates

Factor Factor
Normal t� t Skew t� t

� � ��1 � ��1 �

N = 3
"T
0.1 89 93 97 99 100 96
0.03 90 94 98 99 98 96
0.01 88 92 98 99 96 95
0.003 85 95 95 96 89 95
0.001 83 89 89 92 84 93
0.0003 58 69 69 74 74 74
0.0001 38 49 53 57 70 61

N = 10
"T
0.1 87 93 99 97 98 99
0.03 87 95 99 97 98 97
0.01 87 94 96 97 98 95
0.003 87 95 95 98 95 96
0.001 87 95 93 96 90 95
0.0003 86 94 87 91 77 93
0.0001 71 87 81 71 81 85

N = 100
"T
0.1 95 93 95 94 95 94
0.03 95 94 94 94 94 94
0.01 95 93 93 94 94 94
0.003 94 95 93 94 94 94
0.001 94 94 92 94 93 95
0.0003 92 94 92 94 92 93
0.0001 84 94 89 94 88 95

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas, the
Normal copula, the t � t factor copula and the Skew t � t factor copula, all estimated by SMM.
The marginal distributions of the data are assumed to follow AR(1)-GARCH(1,1) processes, as
described in Section 3. Problems of dimension N = 3; 10 and 100 are considered, the sample size
is T = 1000 and the number of simulations used is S = 25 � T: The rows of each panel contain
the step size, "T ; used in computing the matrix of numerical derivatives, ĜT;S : The numbers in
the table present the percentage of simulations for which the 95% con�dence interval based on the
estimated covariance matrix contained the true parameter.
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Table A.4: Coverage rate for block equidependence factor copula model, N=100

��1 � �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

Normal
"T
0.1 - - 97 91 92 89 95 93 94 95 95 90
0.03 - - 97 91 92 90 95 95 94 95 95 90
0.01 - - 97 91 92 90 95 94 94 96 94 91
0.003 - - 97 90 93 90 95 94 95 96 95 90
0.001 - - 97 90 94 93 94 94 94 96 94 92
0.0003 - - 97 92 93 92 95 94 91 93 92 94
0.0001 - - 94 94 91 88 90 92 94 91 88 86

Factor t� t
"T
0.1 95 - 94 93 96 96 98 91 93 92 95 93
0.03 94 - 94 91 96 96 98 92 93 92 97 93
0.01 95 - 94 94 97 96 97 93 93 92 98 93
0.003 94 - 94 94 97 96 97 94 94 95 98 95
0.001 94 - 93 93 97 97 97 92 96 94 100 94
0.0003 90 - 94 95 98 97 99 94 95 95 99 93
0.0001 65 - 95 96 96 98 98 92 96 94 97 91

Factor Skew t� t
"T
0.1 93 95 98 95 96 94 94 92 91 91 90 92
0.03 93 95 98 95 95 94 95 92 91 91 89 90
0.01 93 95 97 96 95 94 94 92 92 91 91 91
0.003 93 95 97 96 96 94 95 92 92 92 90 89
0.001 93 94 97 96 95 94 94 91 91 93 89 88
0.0003 84 93 98 95 95 95 95 90 90 88 83 85
0.0001 69 86 98 97 94 91 90 88 87 84 83 80

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas:
the Normal copula, the t � t factor copula and the Skew t � t factor copula. We divide the
N = 100 variables into ten groups and assume that all variables in the same group have the
same loading on the common factor. The marginal distributions of the data are assumed to follow
AR(1)-GARCH(1,1) processes, as described in Section 3. The sample size is T = 1000 and the
number of simulations used is S = 25 � T: The rows of each panel contain the step size, "T ; used
in computing the matrix of numerical derivatives, ĜT;S : The numbers in the table present the
percentage of simulations for which the 95% con�dence interval based on the estimated covariance
matrix contained the true parameter.

16



Table A.5: Rejection frequencies for the test of overidentifying restrictions

Equidependence Di¤erent loadings
Factor Factor Factor Factor

Normal t� t Skew t� t Normal t� t Skew t� t

N = 3
"T
0.1 97 97 99 95 97 97
0.03 97 98 99 95 95 96
0.01 97 97 100 93 95 95
0.003 97 98 100 92 95 96
0.001 98 96 100 93 93 97
0.0003 99 97 100 91 92 97
0.0001 99 97 99 92 94 98

N = 10
"T
0.1 97 97 98 98 95 98
0.03 98 97 97 98 95 99
0.01 96 97 97 97 94 98
0.003 97 96 97 98 92 99
0.001 98 95 97 96 89 100
0.0003 97 94 97 97 93 100
0.0001 97 94 98 98 95 100

N = 100
"T
0.1 97 95 99 95 95 99
0.03 97 95 98 96 94 99
0.01 97 95 98 96 93 99
0.003 97 95 97 95 94 99
0.001 97 94 99 95 91 100
0.0003 97 94 99 95 89 100
0.0001 98 92 98 93 90 100

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas, the
Normal copula, the t � t factor copula and the Skew t � t factor copula, all estimated by SMM.
The marginal distributions of the data are assumed to follow AR(1)-GARCH(1,1) processes, as
described in Section 3. Problems of dimension N = 3; 10 and 100 are considered, the sample size
is T = 1000 and the number of simulations used is S = 25� T: The rows of each panel contain the
step size, "T ; used in computing the matrix of numerical derivatives, ĜT;S ; needed for the critical
value. The con�dence level for the test of over-identifying restrictions is 0.95, and the numbers
in the table present the percentage of simulations for which the test statistic was less than its
computed critical value.
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Table A.6: Properties of the estimator of the number of factors

No �industry�groups �Industry�groups

K = 1 K = 2 K = 4 K = 8 K = 8

Mean 1.267 2.078 4.040 7.999 7.896
Std dev 1.154 0.293 0.201 0.045 0.305

Pr[K̂T < K] 0.000 0.000 0.000 0.002 0.104
Pr[K̂T = K] 0.903 0.928 0.961 0.998 0.896
Pr[K̂T > K] 0.097 0.072 0.039 0.000 0.000

Notes: This table presents results from 1000 simulations of �ve di¤erent factor copulas, with the
true number of factors denoted K. In all simulations we set N = 100 and T = 1000: The estimator
for the number of factors, K̂T ; is presented in Proposition 4 of the main paper.
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