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Abstract

This paper presents new models for the dependence structure, or copula, of economic variables

based on a factor structure. The proposed models are particularly attractive for high dimensional

applications, involving �fty or more variables. This class of models generally lacks a closed-form

density, but analytical results for the implied tail dependence can be obtained using extreme value

theory, and estimation via a simulation-based method using rank statistics is simple and fast. We

study the �nite-sample properties of the estimation method for applications involving up to 100

variables, and apply the model to daily returns on all 100 constituents of the S&P 100 index. We �nd

signi�cant evidence of tail dependence, heterogeneous dependence, and asymmetric dependence,

with dependence being stronger in crashes than in booms. We also show that the proposed factor

copula model provides superior estimates of some measures of systemic risk.
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1 Introduction

One of the many surprises from the �nancial crisis of late 2007 to 2008 was the extent to which assets

that had previously behaved mostly independently suddenly moved together. This was particularly

prominent in the �nancial sector, where poor models of the dependence between certain asset

returns (such as those on housing, or those related to mortgage defaults) are thought to be one of

the causes of the collapse of the market for CDOs and related securities, see Coval et al. (2009) and

Zimmer (2012) for example. Many models that were being used to capture the dependence between

a large number of �nancial assets were revealed as being inadequate during the crisis. However,

one of the di¢ culties in analyzing risks across many variables is the relative paucity of econometric

models suitable for the task. Correlation-based models, while useful when risk can be summarized

using the second moment, are often built on an assumption of multivariate Gaussianity, and face

the risk of neglecting dependence between the variables in the tails, i.e., neglecting the possibility

that large crashes may be correlated across assets.

This paper makes two primary contributions. First, we present new models for the dependence

structure, or copula, of economic variables. The models are based on a simple factor structure

for the copula and are particularly attractive for high dimensional applications, involving �fty

or more variables.1 These copula models may be combined with existing models for univariate

distributions to construct �exible, tractable joint distributions for large collections of variables.

The proposed copula models permit the researcher to determine the degree of �exibility based

on the number of variables and the amount of data available. For example, by allowing for a

fat-tailed common factor the model captures the possibility of correlated crashes, and by allowing

the common factor to be asymmetrically distributed the model allows for the possibility that the

dependence between the variables is stronger during downturns than during upturns. By allowing

for multiple common factors, it is possible to capture heterogeneous pair-wise dependence within

the overall multivariate copula. High dimension economic applications will often require some

strong simplifying assumptions in order to keep the model tractable, and an important feature of

the class of proposed models is that such assumptions can be made in an easily understandable

manner, and can be tested and relaxed if needed.

1For recent work on high dimensional covariance matrix estimation, see Engle et al. (2008), Fan et al. (2008),

Engle and Kelly (2012), Fan et al. (2012) and Hautsch et al. (2012).
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Factor copulas do not generally have a closed-form density, but certain properties can never-

theless be obtained analytically. Using extreme value theory we obtain theoretical results on the

tail dependence properties for general, multi-factor copulas, and for the speci�c parametric class of

factor copulas that we use in our empirical work.

The second contribution of this paper is a study of the dependence structure of all 100 con-

stituent �rms of the Standard and Poor�s 100 index, using daily data over the period 2008-2010.

This is one of the highest dimension applications of copula theory in the econometrics literature.

We �nd signi�cant evidence in favor of a fat-tailed common factor for these stocks (indicative of

non-zero tail dependence), implying that the Normal, or Gaussian, copula is not suitable for these

assets. Moreover, we �nd signi�cant evidence that the common factor is asymmetrically distrib-

uted, with crashes being more highly correlated than booms. Our empirical results suggest that

risk management decisions made using the Normal copula may be based on too benign a view of

these assets, and derivative securities based on baskets of these assets, or related securities such

as CDOs, may be mispriced if based on a Normal copula. The fact that large negative shocks

may originate from a fat-tailed common factor, and thus a¤ect all stocks at once, makes the di-

versi�cation bene�ts of investing in these stocks lower than under Normality. In an application to

estimating systemic risk, we show that our factor copula model provides superior estimates of two

measures of systemic risk.

An additional contribution of this paper is a detailed simulation study of the properties of the

estimation method for the class of factor copulas we propose. This class does not generally have a

closed-form copula likelihood, and we use the SMM estimator proposed in Oh and Patton (2011).

We consider problems of dimension 3, 10 and 100, and con�rm that the estimator and associated

asymptotic distribution theory have satisfactory �nite-sample properties.

Certain types of factor copulas have already appeared in the literature. The models we consider

are extensions of Hull and White (2004), in that we retain a simple linear, additive factor structure,

but allow for the variables in the structure to have �exibly speci�ed distributions. Other variations

on factor copulas are presented in Andersen and Sidenius (2004) and van der Voort (2005), who

consider certain non-linear factor structures, and in McNeil et al. (2005), who present factor

copulas for modelling times-to-default. With the exception of McNeil et al. (2005), the papers to

date have not considered estimation of the unknown parameters of these copulas, instead examining

calibration and pricing using these copulas. Our formal analysis of the estimation of high dimension
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copulas via a SMM-type procedure is new to the literature, as is our application of this class of

models to a large collection of asset returns.

Some methods for modelling high dimension copulas have previously been proposed in the

literature, though few consider dimensions greater than twenty.2 The Normal copula, see Li (2000)

amongst many others, is simple to implement and to understand, but imposes the strong assumption

of zero tail dependence, and symmetric dependence between booms and crashes. The (Student�s)

t copula, and variants of it, are discussed in Demarta and McNeil (2005). An attractive extension

of the t copula, the �grouped t� copula, is proposed in Daul et al. (2003), who show that this

copula can be used in applications of up to 100 variables. This copula allows for heterogeneous tail

dependence between pairs of variables, but imposes that upper and lower tail dependence are equal

(a �nding we strongly reject for equity returns). Smith, et al. (2012) extract the copula implied

by a multivariate skew t distribution, and Christo¤ersen et al. (2011) combine a skew t copula

with a DCC model for conditional correlations in their study of 33 developed and emerging equity

market indices. Archimedean copulas such as the Clayton or Gumbel allow for tail dependence

and particular forms of asymmetry, but usually have only a one or two parameters to characterize

the dependence between all variables, and are thus quite restrictive when the number of variables

is large. Multivariate �vine�copulas are constructed by sequentially applying bivariate copulas to

build up a higher dimension copula, see Aas et al. (2009), Heinen and Valdesogo (2009) and Min and

Czado (2010) for example, however vine copulas are almost invariably based on an assumption that

is hard to interpret and to test, see Acar et al. (2012) for a critique. In our empirical application

we compare our proposed factor models with several alternative existing models, and show that our

model outperforms them all in terms of goodness-of-�t and in an application to measuring systemic

risk.

The remainder of the paper is structured as follows. Section 2 presents the class of factor

copulas, derives their limiting tail properties, and considers some extensions. Section 3 considers

estimation via a simulation-based method and presents a simulation study of this method. Section

4 presents an empirical study of daily returns on individual constituents of the S&P 100 equity

index over the period 2008-2010. Appendix A contains all proofs, and Appendix B contains a

discussion of the dependence measures used in estimation.

2For general reviews of copulas in economics and �nance see Cherubini, et al. (2004) and Patton (2012).
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2 Factor copulas

For simplicity of exposition we focus on unconditional distributions in this section, and discuss the

extension to conditional distributions in the next section. Consider a vector of N variables, Y;

with some joint distribution F; marginal distributions Fi; and copula C :

[Y1; :::; YN ]
0 � Y s F = C (F1; :::; FN ) (1)

The copula completely describes the dependence between the variables Y1; :::; YN : We will use

existing models to estimate the marginal distributions Fi (which may be parametric, semiparametric

or nonparametric), and focus on constructing useful new models for the dependence between these

variables, C.3 Decomposing the joint distribution in this way has two important advantages over

considering the joint distribution F directly: First, it facilitates multi-stage estimation, which is

particularly useful in high dimension applications, where the sparseness of the data and the potential

proliferation of parameters can cause problems. Second, it allows the researcher to draw on the

large literature on models for univariate distributions, leaving �only� the task of constructing a

model for the copula, which is a simpler problem.

2.1 Description of a simple factor copula model

The class of copulas we consider are those that can be generated by the following simple factor

structure, based on a set of N + 1 latent variables:

Xi = Z + "i, i = 1; 2; :::; N

Z s Fz (�) , "i s iid F" (�) , Z??"i 8 i (2)

[X1; :::; XN ]
0 � X s Fx= C (G1 (�) ; :::; GN (�) ;�)

The copula of the latent variables X; C (�) ; is used as the model for the copula of the observable

variables Y:4 An important point about the above construction is that the marginal distributions

3Although we treat estimation of the marginal distributions as separate from copula estimation, the inference

methods we consider do take estimation error from the marginal distributions into account.
4This method for constructing a copula model resembles the use of mixture models, e.g. the Normal-inverse

Gaussian or generalized hyperbolic distributions, where the distribution of interest is obtained by considering a

function of a collection of latent variables, see Barndor¤-Nielsen (1978, 1997), Barndor¤-Nielsen and Shephard (2009),

McNeil, et al. (2005).
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of Xi may be di¤erent from those of the original variables Yi; so Fi 6= Gi in general. We use

the structure for the vector X only for its copula, and completely discard the resulting marginal

distributions. By doing so, we use C (�) from equation (2) to construct a model for the copula of

Y; and leave the marginal distributions Fi to be speci�ed and estimated in a separate step.

The copula implied by the above structure is generally not known in closed form. The leading

case where it is known is when Fz and F" are both Gaussian distributions, in which case the

variable X is multivariate Gaussian, implying a Gaussian copula, and with an equicorrelation

dependence structure (with correlation between any pair of variables equal to �2z=
�
�2z + �

2
"

�
). For

other choices of Fz and F" the joint distribution of X; and more importantly the copula of X; is

generally not known in closed form. It is clear from the structure above that the copula will exhibit

�equidependence�, in that each pair of variables will have the same bivariate copula as any other

pair. (This property is known as �exchangeability�in the copula literature.) A similar assumption

for correlations is made in Engle and Kelly (2012).

It is simple to simulate from Fz and F" for many classes of distributions, and from simulated

data we can extract properties of the copula, such as rank correlation, Kendall�s tau, and quantile

dependence. These simulated rank dependence measures can be used in simulated method of

moments (SMM) type estimation of the unknown parameters, which is described in Section 3

below.

2.2 A multi-factor copula model

The structure of the model in equation (2) immediately suggests two directions for extensions. The

�rst is to allow for weights on the common factor that di¤er across variables. That is, let

Xi = �iZ + "i, i = 1; 2; :::; N (3)

Z s Fz, "i s iid F", Z??"i 8 i

with the rest of the model left unchanged. In this �single factor, �exible weights� factor copula,

the implied copula is no longer equidependent: a given pair of variables may have weaker or

stronger dependence than some other pair. This extension introduces N � 1 additional parameters

to this model, increasing its �exibility to model heterogeneous pairs of variables, at the cost of a

more di¢ cult estimation problem. An intermediate model may be considered, in which sub-sets of

variables are assumed to have the same weight on the common factor, which may be reasonable
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for �nancial applications with variables grouped ex ante using industry classi�cations, for example.

Such an assumption leads to a �block equidependence�copula, and we will consider this structure

in our empirical application.

A second extension to consider is a multi-factor version of the model, where the dependence is

assumed to come from a K-factor model:

Xi =

KX
k=1

�ikZk + "i

"i s iid F", Zk??"i 8 i; k (4)

[Z1; :::; ZK ]
0 � Z s Fz= Cindep (Fz1 ; :::; FzK )

In the most general case one could allow Z to have a general copula CZ that allows dependence

between the common factors, however an empirically useful simpli�cation of this model is to impose

that the common factors are independent, and thus remove the need to specify and estimate CZ . A

further simpli�cation of this factor model may be to assume that each common factor has a loading

equal to one or zero, with the weights speci�ed in advance by grouping variables, for example by

grouping stocks by industry.

The above model can be interpreted as a special case of the �conditional independence structure�

of McNeil, et al. (2005), which is used to describe a set of variables that are independent conditional

on some smaller set of variables, X and Z in our notation.5 McNeil, et al. (2005) describe using

such a structure to generate some factor copulas to model times until default.

2.3 Tail dependence properties of factor copulas

Using results from extreme value theory, it is possible to obtain analytically results on the tail

dependence implied by a factor copula model despite the fact that we do not have a closed-form

expression for the copula. These results are relatively easy to obtain, given the simple linear

structure generating the factor copula. Recall the de�nition of tail dependence for two variables

5The variables Z are sometimes known as the �frailty�, in the survival analysis and credit default literature, see

Du¢ e, et al. (2009) for example.
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Xi; Xj with marginal distributions Gi, Gj :

�Lij � lim
q!0

Pr
h
Xi � G�1i (q) ; Xj � G�1j (q)

i
q

(5)

�Uij � lim
q!1

Pr
h
Xi > G�1i (q) ; Xj > G�1j (q)

i
1� q

That is, lower tail dependence measures the probability of both variables lying below their q quan-

tile, for q limiting to zero, scaled by the probability of one of these variables lying below their q

quantile. Upper tail dependence is de�ned analogously. In Proposition 1 below we present results

for a general single factor copula model:

Proposition 1 (Tail dependence for a factor copula) Consider the factor copula generated

by equation (3). If Fz and F" have regularly varying tails with a common tail index � > 0, i.e.

Pr [Z > s] = AUz s
�� and Pr ["i > s] = AU" s

��, as s!1 (6)

Pr [Z < �s] = ALz s
�� and Pr ["i < �s] = AL" s

�� as s!1

where ALZ ; A
U
Z ; A

L
" and A

U
" are positive constants, then (a) if �j � �i > 0 the lower and upper tail

dependence coe¢ cients are:

�Lij =
��i A

L
z

��i A
L
z +A

L
"

, �Uij =
��i A

U
z

��i A
U
z +A

U
"

(7)

(b) if �j � �i < 0 the lower and upper tail dependence coe¢ cients are:

�Lij =
j�ij�AUz

j�ij�AUz +AL"
, �Uij =

j�ij�ALz
j�ij�ALz +AU"

(8)

(c) if �i�j = 0 or (d) if �i�j < 0; the lower and upper tail dependence coe¢ cients are zero.

All proofs are presented in Appendix A. This proposition shows that when the coe¢ cients on

the common factor have the same sign, and the common factor and idiosyncratic variables have

the same tail index, the factor copula generates upper and lower tail dependence. If either Z or

" is asymmetrically distributed, then the upper and lower tail dependence coe¢ cients can di¤er,

which provides this model with the ability to capture di¤erences in the probabilities of joint crashes

and joint booms. When either of the coe¢ cients on the common factor are zero, or if they have

di¤ering signs, then it is simple to show that the upper and lower tail dependence coe¢ cients are

both zero.
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The above proposition considers the case that the common factor and idiosyncratic variables

have the same tail index; when these indices di¤er we obtain a boundary result: if the tail index of

Z is strictly greater than that of " and �i�j > 0 then tail dependence is one, while if the tail index

of Z is strictly less than that of " then tail dependence is zero.

In our simulation study and empirical work below, we will focus on the skew t distribution

of Hansen (1994) as a model for the common factor and the standardized t distribution for the

idiosyncratic shocks. Proposition 2 below presents the analytical tail dependence coe¢ cients for a

factor copula based on these distributions.

Proposition 2 (Tail dependence for a skew t-t factor copula) Consider the factor copula gen-

erated by equation (3). If Fz = Skew t (�; �) and F" = t (�) ; then the tail indices of Z and "i equal

�; and the constants ALz ; A
U
z ; A

L
" and A

U
" from Proposition 1 equal:

ALz =
bc

�

�
b2

(� � 2) (1� �)2

��(�+1)=2
; AUz =

bc

�

�
b2

(� � 2) (1 + �)2

��(�+1)=2
(9)

AL" = AU" =
c

�

�
1

� � 2

��(�+1)=2
where a = 4�c (� � 2) = (� � 1), b =

p
1 + 3�2 � a2, c = �

�
�+1
2

�
=
�
�
�
�
2

�p
� (� � 2)

�
: Given

Proposition 1 and the expressions for ALz ; A
U
z ; A

L
" and A

U
" above, we then obtain the tail dependence

coe¢ cients for this copula.

In the next proposition we generalize Proposition 1 to allow for a multi-factor model, which

will prove useful in our empirical application in Section 4.

Proposition 3 (Tail dependence for a multi-factor copula) Consider the factor copula gen-

erated by equation (4). Assume F", Fz1 ; :::; FzK have regularly varying tails with a common tail index

� > 0, and upper and lower tail coe¢ cients AU" ; A
U
1 ; ::; A

U
K and AL" ; A

L
1 ; ::; A

L
K : Then if �ik � 0 8

i; k, the lower and upper tail dependence coe¢ cients are:

�Lij =

XK

k=1
1
�
�ik�jk > 0

	
ALk�

�
ik�

�
L;ijk

AL" +
XK

k=1
ALk�

�
ik

(10)

�Uij =

XK

k=1
1
�
�ik�jk > 0

	
AUk �

�
ik�

�
U;ijk

AU" +
XK

k=1
AUk �

�
ik

8



where

��1L;ijk �

8<: max
�
1; 
L;ij�ik=�jk

	
; if �ik�jk > 0

1; if �ik�jk = 0
(11)

��1U;ijk �

8<: max
�
1; 
U;ij�ik=�jk

	
; if �ik�jk > 0

1; if �ik�jk = 0


L;ij �

0@AL" +XK

k=1
ALk�

�
jk

AL" +
XK

k=1
ALk�

�
ik

1A1=�

, 
U;ij �

0@AU" +XK

k=1
AUk �

�
jk

AU" +
XK

k=1
AUk �

�
ik

1A1=�

(12)

The extensions to consider the case that some have opposite signs to the others can be accom-

modated using the same methods as in the proof of Proposition 1. In the one-factor copula model

the variables �L;ijk and �U;ijk can be obtained directly and are determined by min
�
�i; �j

	
; in the

multi-factor copula model these variables can be determined using equation (11) above, but do not

generally have a simple expression.

2.4 Illustration of some factor copulas

To illustrate the �exibility of this simple class of copulas, Figure 1 presents 1000 random draws

from bivariate distributions constructed using four di¤erent factor copulas. In all cases the marginal

distributions, Fi; are set to N (0; 1) ; and the variance of the latent variables in the factor copula are

set to �2z = �2" = 1; so that the common factor (Z) accounts for one-half of the variance of each Xi:

The �rst copula is generated from a factor structure with Fz = F" = N (0; 1) ; implying that the

copula is Normal. The second sets Fz = F" = t (4) ; generating a symmetric copula with positive

tail dependence. The third copula sets F" = N (0; 1) and Fz = skew t (1;�0:25) ; corresponding

to a skewed Normal distribution. This copula exhibits asymmetric dependence, with crashes being

more correlated than booms, but zero tail dependence. The fourth copula sets F" = t (4) and

Fz = skew t (4;�0:25) ; which generates asymmetric dependence and positive tail dependence.

Figure 1 shows that when the distributions in the factor structure are Normal or skewed Normal,

tail events tend to be uncorrelated across the two variables. When the degrees of freedom is set to 4,

on the other hand, we observe several draws in the joint upper and lower tails. When the skewness

parameter is negative, as in the lower two panels of Figure 1, we observe stronger clustering of

observations in the joint negative quadrant compared with the joint positive quadrant.
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An alternative way to illustrate the di¤erences in the dependence implied by these four models

is to use a measure known as �quantile dependence�. This measure captures the probability of

observing a draw in the q-tail of one variable given that such an observation has been observed for

the other variable. It is de�ned as:

� q �

8<: 1
q Pr [U1 � q; U2 � q] ; q 2 (0; 0:5]
1
1�q Pr [U1 > q;U2 > q] ; q 2 (0:5; 1)

(13)

where Ui � Gi (Xi) s Unif (0; 1) are the probability integral transforms of the simulated Xi

variables. As q ! 0 (q ! 1) this measure converges to lower (upper) tail dependence, and for

values of q �near�zero or one we obtain an estimate of the dependence �near�the joint tails.

Figure 2 presents the quantile dependence functions for these four copulas.6 For the symmetric

copulas (Normal, and t-t factor copula) this function is symmetric about q = 0:5; while for the

others it is not. The two copulas with a fat-tailed common factor exhibit quantile dependence that

increases near the tails: in those cases an extreme observation is more likely to have come from

the fat-tailed common factor (Z) than from the thin-tailed idiosyncratic variable ("i) ; and thus an

extreme value for one variable makes an extreme value for the other variable more likely. Figure

2 also presents the theoretical tail dependence for each of these copulas based on Proposition 2

above using a symbol at q = 0 (lower tail dependence) and q = 1 (upper tail dependence). The

skew t (4)-t (4) factor copula illustrates the �exibility of this simple class of models, generating

weak upper quantile dependence but strong lower quantile dependence, a feature that may be

useful when modelling asset returns.

Figure 3 illustrates the di¤erences between these copulas using a truly multivariate approach:

Conditional on observing k out of 100 stocks crashing, we present the expected number, or propor-

tion, of the remaining (100� k) stocks that will crash, a measure based on Geluk, et al. (2007):

�q (j) � �q (j)

N � j (14)

where �q (j) = E
�
N�
q jN�

q � j
�
� j

N�
q �

XN

i=1
1 fUi � qg

For this illustration we de�ne a �crash� as a realization in the lower 1/66 tail, corresponding to

a once-in-a-quarter event for daily asset returns. The upper panel shows that as we condition on
6For the Normal copula the quantile dependence function is known in closed form; for the remaining copula models

we use 50,000 simulations obtain these functions.
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more variables crashing, the expected number of other variables that will crash, �q (j) ; initially

increases, and peaks at around j = 30: At that point, a skew t (4)-t (4) factor copula predicts that

around another 38 variables will crash, while under the Normal copula we expect only around 12

more variables to crash. As we condition on even more variables crashing the plot converges to

inevitably zero, since conditioning on having observed more crashes, there are fewer variables left

to crash. The lower panel of Figure 3 shows that the expected proportion of remaining stocks that

will crash, �q (j) ; generally increases all the way to j = 99:7 For comparison, this �gure also plots

the results for a positively skewed skew t factor copula, where booms are more correlated than

crashes. This copula also exhibits tail dependence, and so the expected proportion of other stocks

that will crash is higher than under Normality, but the positive skew means that crashes are less

correlated than booms, and so the expected proportion is less than when the common factor is

negatively skewed. This �gure illustrates some of the features of dependence that are unique to

high dimension applications, and further motivates our proposal for a class of �exible, parsimonious

models for such applications.

[ INSERT FIGURES 1, 2 AND 3 ABOUT HERE ]

2.5 Non-linear factor copula models

We can generalize the above linear, additive factor structure to consider more general factor struc-

tures. For example, consider the following general one-factor structure:

Xi = h (Z; "i) , i = 1; 2; :::; N

Z s Fz, "i s iid F", Z??"i 8 i (15)

[X1; :::; XN ]
0 � X s Fx= C (G1; :::; GN )

for some function h : R2 ! R. Writing the factor model in this general form reveals that this

structure nests a variety of well-known copulas in the literature. Some examples of copula models

7For the Normal copula this is not the case, however this is perhaps due to simulation error: even with the 10

million simulations used to obtain this �gure, joint 1/66 tail crashes are so rare under a Normal copula that there is

a fair degree of simulation error in this plot for j � 80:
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that �t in this framework are summarized in the table below:

Copula h (Z; ") FZ F"

Normal Z + " N
�
0; �2z

�
N
�
0; �2"

�
Student�s t Z1=2" Ig (�=2; �=2) N

�
0; �2"

�
Skew t �Z + Z1=2" Ig (�=2; �=2) N

�
0; �2"

�
Gen hyperbolic 
Z + Z1=2" GIG (�; �;  ) N

�
0; �2"

�
Clayton (1 + "=Z)�� � (�; 1) Exp (1)

Gumbel � (logZ=")� Stable (1=�; 1; 1; 0) Exp (1)

where Ig represents the inverse gamma distribution, GIG is the generalized inverse Gaussian dis-

tribution, and � is the gamma distribution. The skew t and Generalized hyperbolic copulas listed

here are from McNeil, et al. (2005, Chapter 5), the representation of a Clayton copula in this form

is from Cook and Johnson (1981) and the representation of the Gumbel copula is from Marshall

and Olkin (1988).

The above copulas all have closed-form densities via judicious combinations of the �link�func-

tion h and the distributions Fz and F": By removing this requirement and employing simulation-

based estimation methods to overcome the lack of closed-form likelihood, one can obtain a much

wider variety of models for the dependence structure. In this paper we will focus on linear, additive

factor copulas, and generate �exible models by �exibly specifying the distribution of the common

factor(s).

3 A Monte Carlo study of SMM estimation of factor copulas

As noted above, the class of factor copula models does not generally have a closed-form likelihood,

motivating the study of alternative methods for estimation. A general simulation-based method for

the estimation of copula models is presented in Oh and Patton (2011), which is ideally suited for

the estimation of factor copulas. This estimation method is brie�y described in Sections 3.1 and

3.2 below. In Section 3.3 we present an extensive Monte Carlo study of the �nite-sample properties

of this estimator in applications involving up to 100 variables.
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3.1 Description of the model for the conditional joint distribution

We consider the same class of data generating processes (DGPs) as Chen and Fan (2006), Rémillard

(2010) and Oh and Patton (2011). This class allows each variable to have time-varying conditional

mean and conditional variance, each governed by parametric models, with some unknown marginal

distribution. The marginal distributions are estimated nonparametrically via the empirical distrib-

ution function. The conditional copula of the data is assumed to belong to a parametric family and

is assumed constant, making the model for the joint distribution semiparametric. The combination

of time-varying conditional means and variance and a constant conditional copula makes this model

similar in spirit to the �CCC�model of Bollerslev (1990). The DGP we consider is:

Yt = �t (�0) + �t (�0)�t (16)

where Yt � [Y1t; : : : ; YNt]
0

�t (�) � [�1t (�) ; : : : ; �Nt (�)]
0

�t (�) � diag f�1t (�) ; : : : ; �Nt (�)g

�t � [�1t; : : : ; �Nt]
0 � iid F� = C (F1; : : : ; FN ;�0)

where �t and �t are Ft�1-measurable and independent of �t. Ft�1 is the sigma-�eld containing

information generated by fYt�1;Yt�2; : : :g. The r�1 vector of parameters governing the dynamics

of the variables, �0; is assumed to be
p
T -consistently estimable. If �0 is known, or if �t and �t

are known constant, then the model becomes one for iid data. The copula is parameterized by a

p� 1 vector of parameters, �0 2 �; which is estimated using the SMM approach below.

3.2 Simulation-based estimation of copula models

The simulation-based estimation method of Oh and Patton (2011) is closely related to SMM esti-

mation, though is not strictly SMM, as the �moments�that are used in estimation are functions of

rank statistics. Given the similarity, we will nevertheless refer to the method as SMM estimation.

Our task is to estimate the p� 1 vector of copula parameters, �0 2 �; based on the standardized

residual
n
�̂t � ��1t

�
�̂
� h
Yt � �t

�
�̂
�ioT

t=1
and simulations from the copula model (for example,

the factor copula model in equation 2). The SMM copula estimator of Oh and Patton (2011) is

based on simulation from some parametric joint distribution, Fx (�) ; with implied copula C (�) :

Let ~mS (�) be a (m� 1) vector of dependence measures computed using S simulations from
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Fx (�), fXsgSs=1 ; and let m̂T be the corresponding vector of dependence measures computed using

the standardized residuals f�̂tgTt=1. (We discuss the empirical choice of which dependence measures

to match in Appendix B.) The SMM estimator then de�ned as:

�̂T;S � argmin
�2�

QT;S (�) (17)

where QT;S (�) � g0T;S (�) ŴTgT;S (�)

gT;S (�) � m̂T � ~mS (�)

and ŴT is some positive de�nite weight matrix, which may depend on the data. Under regularity

conditions, Oh and Patton (2011) show that if S=T ! 1 as T ! 1; the SMM estimator is

consistent and asymptotically normal:8

p
T
�
�̂T;S � �0

�
d! N (0;
0) as T; S !1 (18)

where 
0 =
�
G00W0G0

��1
G00W0�0W0G0

�
G00W0G0

��1
�0 � avar [m̂T ], G0 � r�g0 (�0) ; and g0 (�) =p-limT;S!1 gT;S (�) : Oh and Patton (2011) also

present the distribution of a test of the over-identifying restrictions (the �J� test).

The asymptotic variance of the estimator has the same form as in standard GMM applications,

however the components �0 and G0 require di¤erent estimation methods than in standard applica-

tions. Oh and Patton (2011) show that a simple iid bootstrap can be used to consistently estimate

�0; and that a standard numerical derivative of gT;S (�) at �̂T;S ; denoted Ĝ; will consistently esti-

mate G0 under the condition that the step size of the numerical derivative goes to zero slower than

T�1=2: In our simulation study we thoroughly examine the sensitivity of the estimated covariance

matrix to the choice of step size.

3.3 Finite-sample properties of SMM estimation of factor copulas

In this section we present a study of the �nite sample properties of the simulated method of moments

(SMM) estimator of the parameters of various factor copulas. In the case where a likelihood for

the copula model is available in closed form we contrast the properties of the SMM estimator with

those of the maximum likelihood estimator.
8Oh and Patton (2011) also consider the case that S=T ! 0 as S; T ! 1; in which case the convergence rate is

p
S rather than

p
T : In our empirical application we have S � T; and so we do not present that case here.

14



3.3.1 Simulation design

We initially consider three di¤erent factor copulas, all of them of the form:

Xi = Z + "i; i = 1; 2; :::; N

Z s Skew t
�
�2z; �; �

�
(19)

"i s iid t (�) , and "i??Z 8 i

[X1; :::; XN ]
0 s Fx= C (Gx; :::; Gx)

and we use the skewed t distribution of Hansen (1994) for the common factor. In all cases we set

�2z = 1; implying that the common factor (Z) accounts for one-half of the variance of each Xi;

implying rank correlation of around 0.5. In the �rst model we set � !1 and � = 0, which implies

that the resulting factor copula is simply the Gaussian copula, with equicorrelation parameter

� = 0:5: In this case we can estimate the model by SMM and also by GMM and MLE, and we

use this case to study the loss of e¢ ciency in moving from MLE to GMM to SMM. In the second

model we set � = 4 and � = 0, yielding a symmetric factor copula that generates tail dependence.

In the third case we set � = 4 and � = �0:5 yielding a factor copula that generates tail dependence

as well as �asymmetric dependence�, in that the lower tails of the copula are more dependent than

the upper tails. We estimate the inverse degrees of freedom parameter, ��1z ; so that its parameter

space is [0; 0:5) rather than (2;1]:

We also consider an extension of the above equidependence model which allow each Xi to have

a di¤erent coe¢ cient on Z, as in equation (3). For identi�cation of this model we set �2z = 1: For

N = 3 we set [�1; �2; �3] = [0:5; 1; 1:5] : For N = 10 we set [�1; �2; :::; �10] = [0:25; 0:50; :::; 2:5];

which corresponds to pair-wise rank correlations ranging from approximately 0.1 to 0.8. Motivated

by our empirical application below, for the N = 100 case we consider a �block equidependence�

model, where we assume that the 100 variables can be grouped ex ante into 10 groups, and that

all variables within each group have the same �i: We use the same set of values for �i as in the

N = 10 case.

We consider two di¤erent scenarios for the marginal distributions of the variables of interest.

In the �rst case we assume that the data are iid with standard Normal marginal distributions,

meaning that the only parameters that need to be estimated are those of the factor copula. This

simpli�ed case is contrasted with a second scenario where the marginal distributions of the variables
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are assumed to follow an AR(1)-GARCH(1,1) process:

Yit = �0 + �1Yi;t�1 + �it�it, t = 1; 2; :::; T

�2it = ! + 
�2i;t�1 + ��
2
i;t�1�

2
i;t�1 (20)

�t � [�1t; :::; �Nt] s iid F� = C (�;�; :::;�)

where � is the standard Normal distribution function andC is the factor copula implied by equation

(19). We set the parameters of the marginal distributions as [�0; �1; !; 
; �] = [0:01; 0:05; 0:05; 0:85; 0:10] ;

which broadly matches the values of these parameters when estimated using daily equity return

data. In this scenario the parameters of the marginal distribution are estimated via QML in a

separate �rst stage, following which the estimated standardized residuals, �̂it; are obtained and

used in a second stage to estimate the factor copula parameters. In all cases we consider a time

series of length T = 1000, corresponding to approximately 4 years of daily return data, and we use

S = 25�T simulations in the computation of the dependence measures to be matched in the SMM

optimization. We repeat each scenario 100 times. In all results below we use the identity weight

matrix for estimation; corresponding results based on the e¢ cient weight matrix are available in

the web appendix to this paper.9 In Appendix B we describe the dependence measures we use for

the estimation of these models.

3.3.2 Simulation results

Table 1 reveals that for all three dimensions (N = 3; 10 and 100) and for all three copula models the

estimated parameters are centered on the true values, with the average estimated bias being small

relative to the standard deviation, and with the median of the simulated distribution centered

on the true values. The measures of estimator accuracy (the standard deviation and the 90-10

percentile di¤erence) reveal that adding more parameters to the model, ceteris paribus, leads to

greater estimation error, as expected; the �2z parameter, for example, is more accurately estimated

when it is the only unknown parameter compared with when it is one of three unknown parameters.

Looking across the dimension size, we see that the copula model parameters are almost always more

precisely estimated as the dimension grows. This is intuitive, given the equidependence nature of all

9The results based on the e¢ cient weight matrix are generally comparable to those based on the identity weight

matrix, however the coverage rates are worse than those based on the identity weight matrix.
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three models: increasing the dimension of the model does not increase the number of parameters to

be estimated but it does increase the amount of information available on the unknown parameters.

Comparing the SMM estimator with the ML estimator, which is only feasible for the Normal

copula (as the other two factor copulas do not have a copula likelihood in closed form) we see

that the SMM estimator performs quite well. As predicted by theory, the ML estimator is always

more e¢ cient than the SMM estimator, however the loss in e¢ ciency is moderate, ranging from

around 25% for N = 3 to around 10% for N = 100: This provides some con�dence that our move

to SMM, prompted by the lack of a closed-form likelihood, does not come at a cost of a large loss

in e¢ ciency. Comparing the SMM estimator to the GMM estimator provides us with a measure of

the loss in accuracy from having to estimate the population moment function via simulation. We

�nd that this loss is at most 3% and in some cases (N = 100) is slightly negative. Thus little is

lost from using SMM rather than GMM when we set S = 25� T:

Table 2 shows results for the block equidependence model for the N = 100 case with AR-

GARCH marginal distributions,10 which can be compared to the results in the lower panel of Table

1. This table shows that the parameters of these models are well estimated using the proposed

dependence measures described in Appendix B. The accuracy of the �shape�parameters, ��1 and

�; is slightly lower in the more general model, consistent with the estimation error from having

to estimate ten factor loadings (�i) being greater than from having to estimate just a single other

parameter
�
�2z
�
; however this loss is not great.

[ INSERT TABLES 1 AND 2 ABOUT HERE ]

In Tables 3 and 4 we present the �nite-sample coverage probabilities of 95% con�dence intervals

based on the estimated asymptotic covariance matrix described in Section 3.2. As discussed above,

a critical input to the asymptotic covariance matrix estimator is the step size used in computing

the numerical derivative matrix Ĝ: This step size, "T ; must go to zero, but at a slower rate than

T�1=2: Ignoring constants, our simulation sample size of T = 1000 suggests setting "T > 0:03; which

is much larger than standard step sizes used in computing numerical derivatives.11 We consider a

range of values from 0.0001 to 0.1. Table 4 shows that when the step size is set to 0.01, 0.03 or

10The results for iid data, and the results for this model for N = 3 and 10, are available in the web appendix.
11For example, the default in many Matlab functions is a step size of "1=3 � 6 � 10�6 � 1=(165; 000), where

" = 2:22� 10�16 is machine epsilon. This choice is optimal in certain applications, see Judd (1998) for example.
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0.1 the �nite-sample coverage rates are close to their nominal levels. However if the step size is

chosen too small (0.003 or smaller) then the coverage rates are much lower than nominal levels.

For example, setting "T = 0:0001 (which is still 16 times larger than the default setting in Matlab)

we �nd coverage rates as low as 38% for a nominal 95% con�dence interval. Thus this table shows

that the asymptotic theory provides a reliable means for obtaining con�dence intervals, so long as

care is taken not to set the step size too small.

[ INSERT TABLES 3 AND 4 ABOUT HERE ]

Finally in Table 5 we present the results of a study of the rejection rates for the J test of over-

identifying restrictions. Given that we consider W = I in this table, the test statistic has a non-

standard distribution (see Proposition 4 of Oh and Patton, 2011), and we use 10; 000 simulations to

obtain critical values. In this case, the limiting distribution also depends on Ĝ; and we present the

rejection rates for various choices of step size "T : Table 5 reveals that the rejection rates are close

to their nominal levels, for both the equidependence models and the �di¤erent loading�models

(which is a block equidependence model for the N = 100 case). The J test rejection rates are less

sensitive to the choice of step size than the coverage probabilities of con�dence intervals, however

the best results are again generally obtained when "T is 0.01 or greater.

[ INSERT TABLE 5 ABOUT HERE ]

4 High-dimension copula models for S&P 100 returns

In this section we apply our proposed factor copulas to a study of the dependence between a large

collection of U.S. equity returns. We study all 100 stocks that were constituents of the S&P 100

index as at December 2010. The sample period is April 2008 to December 2010, a total of T = 696

trade days. The starting point for our sample period was determined by the date of the latest

addition to the S&P 100 index (Philip Morris Inc.), which has had no additions or deletions since

April 2008. The stocks in our study are listed in Table 6, along with their 3-digit SIC codes, which

we will use in part of our analysis below.

[ INSERT TABLE 6 ABOUT HERE]
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Table 7 presents some summary statistics of the data used in this analysis. The top panel

presents sample moments of the daily returns for each stock. The means and standard deviations are

around values observed in other studies. The skewness and kurtosis coe¢ cients reveal a substantial

degree of heterogeneity in the shape of the distribution of these asset returns, motivating our use

of a nonparametric estimate (the EDF) of this in our analysis.

In the second panel of Table 7 we present information on the parameters of the AR(1)�GJR-

GARCH models, augmented with lagged market return information, that are used to �lter each of

the individual return series12:

rit = �0i + �1iri;t�1 + �mirm;t�1 + "it (21)

�2it = !i + �i�
2
i;t�1 + �i"

2
i;t�1 + 
i"

2
i;t�11 f"i;t�1 � 0g

+�mi"
2
m;t�1 + 
mi"

2
m;t�11 f"m;t�1 � 0g (22)

As in our simulation study, we estimate the parameters of the mean and variance models using

QML, and we estimate the distribution of the standardized residuals using the empirical distribution

function (EDF). The use of the EDF allows us to nonparametrically capture skewness and excess

kurtosis in the residuals, if present, and allows these characteristics to di¤er across the 100 variables.

Our estimates of the parameters of these models are consistent with those reported in numerous

other studies, with a small negative AR(1) coe¢ cient found for most though not all stocks, and

with the lagged market return entering signi�cantly in 37 out of the 100 stocks. The estimated

GJR-GARCH parameters are strongly indicative of persistence in volatility, and the asymmetry

parameter, 
; in this model is positive for all but three of the 100 stocks in our sample, supporting

the wide-spread �nding of a �leverage e¤ect� in the conditional volatility of equity returns. The

lagged market residual is also found to be important for volatility in many cases, with the null that

�mi = 
mi = 0 being rejected at the 5% level for 32 stocks.

In the lower panel of Table 7 we present summary statistics for four measures of dependence

between pairs of standardized residuals: linear correlation, rank correlation, average upper and

lower 1% tail dependence (equal to (�0:99 + �0:01) =2), and the di¤erence in upper and lower 10%

tail dependence (equal to �0:90��0:10). The two correlation statistics measure the sign and strength
12We considered GARCH (Bollerslev, 1986), EGARCH (Nelson, 1991), and GJR-GARCH (Glosten, et al., 1993)

models for the conditional variance of these returns, and for almost all stocks the GJR-GARCH model was preferred

according to the BIC.
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of dependence, the third and fourth statistics measure the strength and symmetry of dependence

in the tails. The two correlation measures are similar, and are 0.42 and 0.44 on average. Across all

4950 pairs of assets the rank correlation varies from 0.37 to 0.50 from the 25th and 75th percentiles

of the cross-sectional distribution, indicating the presence of mild heterogeneity in the correlation

coe¢ cients. The 1% tail dependence measure is 0.06 on average, and varies from 0.00 to 0.07

across the inter-quartile range. The di¤erence in the 10% tail dependence measures is negative on

average, and indeed is negative for over 75% of the pairs of stocks, strongly indicating asymmetric

dependence between these stocks.

[ INSERT TABLE 7 ABOUT HERE]

4.1 Results from equidependence copula speci�cations

We now present our �rst empirical results on the dependence structure of these 100 stock returns:

the estimated parameters of eight di¤erent models for the copula. We consider four existing copulas:

the Clayton copula, the Normal copula, the Student�s t copula, and the skew t copula, with equicor-

relation imposed on the latter three models for comparability, and four factor copulas, described

by the distributions assumed for the common factor and the idiosyncractic shock: t-Normal, Skew

t-Normal, t-t, Skew t-t. All models are estimated using the SMM-type method described in Section

3.2. The value of the SMM objective function at the estimated parameters, QSMM ; is presented for

each model, along with the p-value from the J-test of the over-identifying restrictions. Standard

errors are based on 1000 bootstraps to estimate �T;S ; and with a step size "T = 0:1 to compute Ĝ:

Table 8 reveals that the variance of the common factor, �2z; is estimated by all models to

be around 0:9, implying an average correlation coe¢ cient of around 0.47. The estimated inverse

degrees of freedom parameter in these models is around 1/25, and the standard errors on ��1 reveal

that this parameter is signi�cant13 at the 10% level for the three models that allow for asymmetric

dependence, but not signi�cant for the three models that impose symmetric dependence. The

asymmetry parameter, �; is signi�cantly negative in all models in which it is estimated, with t-

13Note that the case of zero tail dependence corresponds to ��1z = 0; which is on the boundary of the parameter

space, implying that a standard t test is strictly not applicable. In such cases the squared t statistic no longer has

an asymptotic �21 distribution under the null, rather it is distributed as an equal-weighted mixture of a �
2
1 and �

2
0;

see Gourieroux and Monfort (1996, Ch 21). The 90% and 95% critical values for this distribution are 1.64 and 2.71,

which correspond to t-statistics of 1.28 and 1.65.
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statistics ranging from -2.1 to -4.4. This implies that the dependence structure between these

stock returns is signi�cantly asymmetric, with large crashes being more likely than large booms.

Other papers have considered equicorrelation models for the dependence between large collections

of stocks, see Engle and Kelly (2012) for example, but empirically showing the importance of

allowing the implied common factor to be fat tailed and asymmetric is novel.

[ INSERT TABLE 8 ABOUT HERE ]

Figure 4 presents the quantile dependence function from the estimated Normal copula and the

estimated skew t� t factor copula, along with the quantile dependence averaged across all pairs of

stocks, and pointwise 90% bootstrap con�dence intervals for these estimates based on the theory in

Rémillard (2010). (The �gure zooms in on the left and right 20% tails, removing the middle 60%

of the distribution as the estimates and models are all very similar there.) This �gure reveals that

the Normal copula overestimates the dependence in the upper tail, and underestimates it in the

lower tail. This is consistent with the fact that the empirical quantile dependence is asymmetric,

while the Normal copula imposes symmetry. The skew t� t factor copula provides a reasonable �t

in both tails, though it somewhat overestimates the dependence in the extreme left tail.

Figure 5 exploits the high-dimensional nature of our analysis, and plots the expected proportion

of �crashes� in the remaining (100� j) stocks, conditional on observing a crash in j stocks. We

show this for a �crash�de�ned as a once-in-a-month (1/22, around 4.6%) event and as a once-in-

a-quarter (1/66, around 1.5%) event. For once-in-a-month crashes, the observed proportions track

the Skew t-t factor copula well for j up to around 25 crashes, and again for j of around 70. For j

in between 30 and 65 the Normal copula appears to �t quite well. For once-in-a-quarter crashes,

displayed in the lower panel of Figure 5, the empirical plot tracks that for the Normal copula well

for j up to around 30, but for j = 35 the empirical plot jumps and follows the skew t � t factor

copula. Thus it appears that the Normal copula may be adequate for modeling moderate tail

events, but a copula with greater tail dependence (such as the skew t� t factor copula) is needed

for more extreme tail events.

[ INSERT FIGURES 4 AND 5 ABOUT HERE ]

The last two columns of Table 8 report the value of the objective function (QSMM ) and the

p-value from a test of the over-identifying restrictions. The QSMM values reveal that the three
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models that allow for asymmetry (skew t copula, and the two skew t factor copulas) out-perform

all the other models, and reinforce the above conclusion that allowing for a skewed common factor

is important for this collection of assets. The p-values, however, are near zero for all models,

indicating that none of them pass this speci�cation test. One likely source of these rejections is

the assumption of equidependence, which was shown in the summary statistics in Table 7 to be

questionable for this large set of stock returns. We relax this in the next section.

4.2 Results from block equidependence copula speci�cations

In response to the rejection of the copula models based on equidependence, we now consider a

generalization to allow for heterogeneous dependence. We propose a multi-factor model that allows

for a common, market-wide, factor, and a set of factors related only to speci�c industries. We use

the �rst digit of Standard Industrial Classi�cation (SIC) to form seven groups of stocks, see Table

6. The model we consider is the copula generated by the following structure:

Xi = �iZ0 + 
iZS(i) + "i, i = 1; 2; :::; 100

Z0 s Skew t (�; �) (23)

ZS s iid t (�) , S = 1; 2; :::; 7; ZS??Z0 8 S

"i s iid t (�) , i = 1; 2; :::; 100; "i??Zj 8 i; j

where S (i) is the SIC group for stock i: There are eight latent common factors in total in this

model, but any given variable is only a¤ected by two factors, simplifying its structure and reducing

the number of free parameters. Note here we impose that the industry factors and the idiosyncratic

shocks are symmetric, and only allow asymmetry in the market-wide factor, Z0: It is feasible to

consider allowing the industry factors to have di¤ering levels of asymmetry, but we rule this out in

the interests of parsimony. We impose that all stocks in the same SIC group have the same factor

loadings, but allow stocks in di¤erent groups to have di¤erent factor loadings. This generates a

�block equidependence�model which greatly increases the �exibility of the model, but without

generating too many additional parameters to estimate. In total, this copula model has a total of

16 parameters, providing more �exibility than the 3-parameter equidependence model considered

in the previous section, but still more parsimonious (and tractable) than a completely unstructured
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approach to this 100-dimensional problem.14

The results of this model are presented in Table 9. The Clayton copula is not presented here

as it imposes equidependence by construction, and so is not comparable to the other models. The

estimated inverse degrees of freedom parameter, ��1; is around 1/14, which is larger and more

signi�cant than for the equidependence model, indicating stronger evidence of tail dependence.

The asymmetry parameters are also larger (in absolute value) and more signi�cantly negative in

this more �exible model than in the equidependence model. It appears that when we add variables

that control for intra-industry dependence, (i.e., industry-speci�c factors) we �nd the market-wide

common factor is more fat tailed and left skewed than when we impose a single factor structure.

[ INSERT TABLE 9 ABOUT HERE ]

Focusing on our preferred skew t� t factor copula model, the coe¢ cients on the market factor,

�i; range from 0.88 (for SIC group 2, Manufacturing: Food, apparel, etc.) to 1.25 (SIC group

1, Mining and construction), indicating the varying degrees of inter-industry dependence. The

coe¢ cients on the industry factors, 
i; measure the degree of additional intra-industry dependence,

beyond that coming from the market-wide factor. These range from 0.17 to 1.09 for SIC groups

3 and 1 respectively. Even for the smaller estimates, these are signi�cantly di¤erent from zero,

indicating the presence of industry factors beyond a common market factor. The intra- and inter-

industry rank correlations and tail dependence coe¢ cients implied by this model15 are presented

in Table 10, and reveal the degree of heterogeneity and asymmetry that this copula captures: rank

correlations range from 0.39 (for pairs of stocks in SIC groups 1 and 5) to 0.72 (for stocks within

SIC group 1). The upper and lower tail dependence coe¢ cients further reinforce the importance of

asymmetry in the dependence structure, with lower tail dependence measures being substantially

larger than upper tail measures: lower tail dependence averages 0.82 and ranges from 0.70 to 0.99,

while upper tail dependence averages 0.07 and ranges from 0.02 to 0.74.

[ INSERT TABLE 10 ABOUT HERE ]
14We also considered a one-factor model that allowed for di¤erent factor loadings, generalizing the equidependence

model of the previous section but simpler than this multi-factor copula model. That model provided a signi�cantly

better �t than the equidependence model, but was also rejected using the J test of over-identifying restrictions, and

so is not presented here to conserve space.
15Rank correlations from this model are not available in closed form, and we use 50,000 simulations to estimate

these. Upper and lower tail dependence coe¢ cients are based on Propositions 2 and 3.
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With this more �exible model we can test restrictions on the factor coe¢ cients, to see whether

the additional �exibility is required to �t the data. The p-values from these tests are in the bottom

rows of Table 9. Firstly, we can test whether all of the industry factor coe¢ cients are zero, which

reduces this model to a one-factor model with �exible weights. The p-values from these tests are

zero to four decimal places for all models, providing strong evidence in favor of including industry

factors. We can also test whether the market factor is needed given the inclusion of industry

factors by testing whether all betas are equal to zero, and predictably this restriction is strongly

rejected by the data. We further can test whether the coe¢ cients on the market and industry

factors are common across all industries, reducing this model to an equidependence model, and

this too is strongly rejected. Finally, we use the J test of over-identifying restrictions to check the

speci�cation of these models. Using this test, we see that the models that impose symmetry are

strongly rejected. The skew t copula has a p-value of 0.04, indicating a marginal rejection, and the

skew t� t factor copula performs best, passing this test at the 5% level, with a p-value of 0.07.

Thus it appears that a multi-factor model with heterogeneous weights on the factors, that allows

for positive tail dependence and stronger dependence in crashes than booms, is needed to �t the

dependence structure of these 100 stock returns.

4.3 Measuring systemic risk: Marginal Expected Shortfall

The recent �nancial crisis has highlighted the need for the management and measurement of sys-

temic risk, see Acharya et al. (2010) for discussion. Brownlees and Engle (2011) propose a measure

of systemic risk they call �marginal expected shortfall�, or MES. It is de�ned as the expected return

on stock i given that the market return is below some (low) threshold:

MESit = �Et�1 [ritjrmt < C] (24)

An appealing feature of this measure of systemic risk is that it can be computed with only a bivariate

model for the conditional distribution of (rit; rmt), and Brownlees and Engle (2011) propose a

semiparametric model based on a bivariate DCC-GARCH model to estimate it. A corresponding

drawback of this measure is that by using a market index to identify periods of crisis, it may overlook

periods with crashes in individual �rms. With a model for the entire set of constituent stocks,

such as the high dimension copula models considered in this paper, combined with standard AR-

GARCH type models for the marginal distributions, we can estimate the MES measure proposed
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in Brownlees and Engle (2011), as well as alternative measures that use crashes in individual stocks

as �ags for periods of turmoil. For example, one might consider the expected return on stock i

conditional on k stocks in the market having returns below some threshold, a �kES�:

kESit = �Et�1
�
rit

�����XN

j=1
1 frjt < Cg

�
> k

�
(25)

Brownlees and Engle (2011) propose a simple method for ranking estimates of MES:

MSEi =
1

T

TX
t=1

(rit �MESit)
2 1 frmt < Cg (26)

RelMSEi =
1

T

TX
t=1

�
rit �MESit
MESit

�2
1 frmt < Cg

Corresponding metrics immediately follow for estimates of �kES�:

In Table 11 we present the MSE and RelMSE for estimates of MES and kES, for threshold

choices of -2% and -4%. We implement the model proposed by Brownlees and Engle (2011), as well

as their implementations of a model based on the CAPM, and one based purely on rolling historical

information. Along with these, we present results for four copulas: the Normal, Student�s t; skew

t; and skew t� t factor copula, all with the block equidependence structure from Section 4.2 above.

In the upper panel of Table 11 we see that the Brownlees-Engle model performs the best for both

thresholds under the MSE performance metric, with the skew t� t factor copula as the second-best

performing model. Under the Relative MSE metric, the factor copula is best performing model,

for both thresholds, followed by the skew t copula. Like Brownlees and Engle (2011), we �nd that

the worst-performing methods under both metrics are the Historical and CAPM methods.

The lower panel of Table 11 presents the performance of various methods for estimating kES;

with k set to 30.16 This measure requires an estimate of the conditional distribution for the

entire set of 100 stocks, and thus the CAPM and Brownlees-Engle methods cannot be applied. We

evaluate the remaining �ve methods, and �nd that the skew t�t factor copula performs the best for

both thresholds, under both metrics. Thus our proposed factor copula model for high dimensional

dependence allows us to gain some insights into the structure of the dependence between this large

collection of assets, and also provides improved estimates of measures of systemic risk.

[ INSERT TABLE 11 ABOUT HERE ]

16We choose this value of k so that the number of identi�ed �crisis�days is broadly comparable to the number of

such days for MES. Results for alternative values of k are similar.
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5 Conclusion

This paper presents new models for the dependence structure, or copula, of economic variables

based on a simple factor structure for the copula. The proposed models are particularly attractive

for high dimensional applications, involving �fty or more variables, as they allow the researcher to

increase or decrease the �exibility of the model according to the amount of data available and the

dimension of the problem, and, importantly, to do so in a manner that is easily interpreted. The

class of factor copulas presented in this paper does not generally have a closed-form likelihood.

We use extreme value theory to obtain analytical results on the tail dependence implied by factor

copulas, and we consider SMM-type methods for the estimation of factor copulas. Via an extensive

Monte Carlo study, we show that SMM estimation has good �nite-sample properties in time series

applications involving up to 100 variables.

We employ our proposed factor copulas to study daily returns on all 100 constituents of the S&P

100 index over the period 2008-2010, and �nd signi�cant evidence of a skewed, fat-tailed common

factor, which generates asymmetric dependence and tail dependence. In an extension to a multi-

factor copula, we �nd evidence of the importance of industry factors, leading to heterogeneous

dependence. We also consider an application to the estimation of systemic risk, and we show that

the proposed factor copula model provides superior estimates of two measures of systemic risk.

Appendix A: Proofs

Proof of Proposition 1. Consider a simple case �rst: �1 = �2 = � > 0: This implies that

Xi s G; for i = 1; 2; and so we can use the same threshold for both X1 and X2: Then the upper

tail dependence coe¢ cient is:

�U = lim
s!1

Pr [X1 > s;X2 > s]

Pr [X1 > s]

From standard extreme value theory, see Hyung and de Vries (2007) for example, we have the

probability of an exceedence by the sum as the sum of the probabilities of an exceedence by each
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component of the sum, as the exceedence threshold diverges:

Pr [Xi > s] = Pr [�Z + "i > s]

= Pr [�Z > s] + Pr ["i > s] + o
�
s��

�
as s!1

� AUz (s=�)
�� +AU" s

��

= s��
�
AUz �

� +AU"
�

Further, we have the probability of two sums of variables both exceeding some diverging threshold

being driven completely be the common component of the sums:

Pr [X1 > s;X2 > s] = Pr [�Z + "1 > s; �Z + "2 > s]

= Pr [�Z > s; �Z > s] + o
�
s��

�
as s!1

� s��AUz �
�

So we have

�U = lim
s!1

s��AUz �
�

s�� (AUz �
� +AU" )

=
AUz �

�

AUz �
� +AU"

(a) Now we consider the case that �1 6= �2; and wlog assume �2 > �1 > 0: This complicates the

problem as the thresholds, s1 and s2; must be set such that G1 (s1) = G2 (s2) = q ! 1; and when

�1 6= �2 we have G1 6= G2 and so s1 6= s2: We can �nd the link between the thresholds as follows:

Pr [Xi > s] = Pr [�iZ + "i > s] � s��
�
AUz �

�
i +A

U
"

�
for s!1

so �nd s1; s2 such that s��1
�
AUz �

�
1 +A

U
"

�
= s��2

�
AUz �

�
2 +A

U
"

�
; which implies:

s2 = s1

�
AUz �

�
2 +A

U
"

AUz �
�
1 +A

U
"

�1=�
Note that s1 and s2 diverge at the same rate. Below we will need to know which of s1=�1 and

s2=�2 is larger. Note that �2 > �1; which implies the following:

) ��2 > ��1 since x� is increasing in x for x; � > 0

) AU" �
�
2 +A

U
z �

�
1�

�
2 > AU" �

�
1 +A

U
z �

�
1�

�
2

)
�
�2
�1

��
>
AU" +A

U
z �

�
2

AU" +A
U
z �

�
1

) �2
�1

>

�
AU" +A

U
z �

�
2

AU" +A
U
z �

�
1

�1=�
=
s2
s1

) s1
�1

>
s2
�2
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Then the denominator of the tail dependence coe¢ cient is Pr [Xi > si] � s��i
�
AUz �

�
i +A

U
"

�
; and

the numerator becomes:

Pr [X1 > s1; X2 > s2] = Pr [�1Z + "1 > s1; �2Z + "2 > s2]

� Pr [�1Z > s1; �2Z > s2] as s1; s2 !1

= Pr [Z > max fs1=�1; s2=�2g]

= Pr [Z > s1=�1] = s��1 AUz �
�
1

Finally, using either Pr [X1 > s1] or Pr [X2 > s2] in the denominator we obtain:

�U =
s��1 AUz �

�
1

s��1 (AUz �
�
1 +A

U
" )
=

��1A
U
z

��1A
U
z +A

U
"

, as claimed.

(b) Say �2 < �1 < 0: Then:

Pr [Xi > s] = Pr [�iZ + "i > s]

� Pr [�iZ > s] + Pr ["i > s] for s!1

= Pr [j�ij (�Z) > s] + Pr ["i > s]

= s��
�
ALz j�ij

� +AU"
�

Next we �nd the thresholds s1; s2 such that Pr [X1 > s1] = Pr [X2 > s2] :

s��1
�
ALz j�1j

� +AU"
�
= s��2

�
ALz j�2j

� +AU"
�

so s2 = s1

�
ALz j�2j

� +AU"
ALz j�1j

� +AU"

�1=�
Using the same steps as for part (a), we �nd that s2 > s1 but s1= j�1j > s2= j�2j : Thus the

numerator becomes:

Pr [X1 > s1; X2 > s2] = Pr [�1Z + "1 > s1; �2Z + "2 > s2]

� Pr [�1Z > s1; �2Z > s2] for s1; s2 !1

= Pr [j�1j (�Z) > s1; j�2j (�Z) > s2]

= Pr [(�Z) > max fs1= j�1j ; s2= j�2jg]

= Pr [(�Z) > s1= j�1j] = ALz s
��
1 j�1j�

so �U =
j�1j�ALz

j�1j�ALz +AU"
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(c) If �1 or �2 equal zero, then the numerator of the upper tail dependence coe¢ cient limits to

zero faster than the denominator. Say �2 > �1 = 0 :

Pr [X1 > s1] = s��1
�
AUz �

�
1 +A

U
"

�
= s��1 AU" = O

�
s��

�
and Pr [X2 > s2] = s��2

�
AUz �

�
2 +A

U
"

�
= O

�
s��

�
but Pr [X1 > s1; X2 > s2] = Pr ["1 > s1; �2Z + "2 > s2]

= Pr ["1 > s1] Pr [�2Z + "2 > s2]

= AU" s
��
1

�
AUz �

�
2 +A

U
"

�
s��2 as s!1

= O
�
s�2�

�
so

Pr [X1 > s1; X2 > s2]

Pr [X1 > s1]
= O

�
s��

�
! 0 as s!1:

(d) Say �1 < 0 < �2: Then the denominator will be order O (s��) ; but the numerator will be of a

lower order:

Pr [X1 > s1; X2 > s2] = Pr [�1Z + "1 > s1; �2Z + "2 > s2]

= Pr [�1Z > s1; �2Z > s2] + o
�
s��

�
as s!1

= o
�
s��

�
since Pr [�1Z > s1; �2Z > s2] = 0 as s1; s2 > 0 (!1) and sgn (�1Z) = �sgn (�2Z) : Thus �U =

o (s��) =O (s��) = o (1)! 0 as s!1: All of the results for parts (a) through (d) apply for lower

tail dependence, mutatis mutandis.

Proof of Proposition 2. It is more convenient to work with the density than the distribution

function for skew t random variables. Note that if Fz has a regularly varying tails with tail index

� > 0; then

Fz (s) � Pr [Z � s] = 1� Pr [Z > s] = 1�AUz s�� as s!1

fz (s) � @Fz (s)

@s
= � @

@s
Pr [Z > s] = �AUz s

���1 as s!1

so AUz = lim
s!1

fz (s)

�s���1

This representation of the extreme tails of a density function is common in EVT, see Embrechts,

et al. (1997) and Daníelsson, et al. (2012) for example. For � 2 (2;1) and � 2 (�1; 1) ; the skew
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t distribution of Hansen (1994) has density:

fz (s; �; �) =

8>>><>>>:
bc

�
1 + 1

��2

�
bz+a
1��

�2��(�+1)=2
; z < �a=b

bc

�
1 + 1

��2

�
bz+a
1+�

�2��(�+1)=2
; z � �a=b

where a = 4�c

�
� � 2
� � 1

�
, b =

p
1 + 3�2 � a2, c =

�
�
�+1
2

�
�
�
�
2

�p
� (� � 2)

and its tail index is equal to the degrees of freedom parameter, so � = �: Using computational

algebra software such as Mathematica, it is possible to show that

AUz = lim
s!1

fz (s)

�s���1
=
bc

�

�
b2

(� � 2) (1 + �)2

��(�+1)=2
For the left tail we have

fz (s) � @Fz (s)

@s
=

@

@s
ALz (�s)

�� as s! �1

= �ALz (�s)
���1

and so ALz = lim
s!�1

fz (s)

� (�s)���1

And this can be shown to equal

ALz = lim
s!�1

fz (s)

� (�s)���1
=
bc

�

�
b2

(� � 2) (1� �)2

��(�+1)=2
When � = 0 we recover the non-skewed, standardized Student�s t distribution. In that case we

have a = 0; b = 1 (and c unchanged), and so AU" = AL" =
c
�

�
1
��2

��(�+1)=2
:

Proof of Proposition 3. First consider the denominator of the upper tail dependence

coe¢ cient:

Pr [Xi > si] = Pr

�XK

k=1
�ikZk + "i > si

�
� Pr ["i > si] +

XK

k=1
Pr [�ikZk > si] for si !1

= s��i

�
AU" +

XK

k=1
AUk �

�
ik

�
We need to choose si; sj !1 such that Pr [Xi > si] = Pr [Xj > sj ] ; which implies

sj = si

0@AU" +XK

k=1
AUk �

�
jk

AU" +
XK

k=1
AUk �

�
ik

1A1=�

� si
U;ij

30



As in Proposition 1, note that si and sj diverge at the same rate.

When �ik�jk = 0; the factor Zk does not contribute to the numerator of the tail dependence

coe¢ cient, as it appears in at most one of Xi and Xj : Thus we need only keep track of factors

such that �ik�jk > 0: In this case, we again need to determine the larger of si=�ik and sj=�jk for

each k = 1; 2; :::;K: Unlike the one-factor model, a general ranking cannot be obtained. To keep

notation compact we introduce �ijk. Note

max

�
si
�ik

;
sj
�jk

�
= max

�
si
�ik

;
si
�jk


U;ij

�
=

si
�ij

max

�
1;
�ik
�jk


U;ij

�
� si
�ik�ijk

where ��1ijk � max

�
1;
�ik
�jk


U;ij

�
To cover the case that �ik�jk = 0; we generalize the de�nition of �ijk so that it is well de�ned in

that case. The use of any �nite number here will work (as it will be multiplied by zero in this case)

and we set it to one:

��1ijk �

8<: max
�
1; 
U;ij�ik=�jk

	
; if �ik�jk > 0

1; if �ik�jk = 0

Now we can consider the numerator

Pr [Xi > si; Xj > sj ] = Pr

�XK

k=1
�ikZk + "i > si;

XK

k=1
�jkZk + "j > sj

�
�

XK

k=1
Pr
�
�ikZk > si; �jkZk > sj

�
for si; sk !1

=
XK

k=1
1
�
�ik�jk > 0

	
Pr
�
�ikZk > si; �jkZk > sj

�
=

XK

k=1
1
�
�ik�jk > 0

	
Pr

�
Zk > max

�
si
�ik

;
sj
�jk

��
�

XK

k=1
1
�
�ik�jk > 0

	
Pr

�
Zk >

si
�ik�ijk

�
= s��i

XK

k=1
1
�
�ik�jk > 0

	
AUk �

�
ik�

�
ijk

And so we obtain

�Uij = lim
s!1

Pr [Xi > si; Xj > sj ]

Pr [Xi > si]
=

XK

k=1
1
�
�ik�jk > 0

	
AUk �

�
ik�

�
ijk

AU" +
XK

k=1
AUk �

�
ik

The results for lower tail dependence can be obtained using similar derivations to those above.
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Appendix B: Choice of dependence measures for estimation

To implement the SMM estimator of these copula models we must �rst choose which dependence

measures to use in the SMM estimation. We draw on �pure� measures of dependence, in the

sense that they are solely a¤ected by changes in the copula, and not by changes in the marginal

distributions. For examples of such measures, see Joe (1997, Chapter 2) or Nelsen (2006, Chapter

5). Our preliminary studies of estimation accuracy and identi�cation lead us to use pair-wise rank

correlation, and quantile dependence with q = [0:05; 0:10; 0:90; 0:95] ; giving us �ve dependence

measures for each pair of variables.

Let �ij denote one of the dependence measures (i.e., rank correlation or quantile dependence at

di¤erent levels of q) between variables i and j; and de�ne the �pair-wise dependence matrix�:

D =

26666664
1 �12 � � � �1N

�12 1 � � � �2N
...

...
. . .

...

�1N �2N � � � 1

37777775 (27)

Where applicable, we exploit the (block) equidependence feature of the models in de�ning

the �moments� to match. For the initial set of simulation results and for the �rst model in the

empirical section, the model implies equidependence, and we use as �moments� the average of

these �ve dependence measures across all pairs, reducing the number of moments to match from

5N (N � 1) =2 to just 5:

�� � 2

N (N � 1)

N�1X
i=1

NX
j=i+1

�̂ij (28)

For a model with di¤erent loadings on the common factor (as in equation 3) equidependence

does not hold. Yet the common factor aspect of the model implies that there are O (N) ; not

O
�
N2
�
, parameters driving the pair-wise dependence matrices. In light of this, we use the N � 1

vector
�
��1; :::; ��N

�0
; where

��i �
1

N

NX
j=1

�̂ij

and so ��i is the average of all pair-wise dependence measures that involve variable i: This yields a

total of 5N moments for estimation.
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For the block-equidependence version of this model (used for the N = 100 case in the simulation,

and in the second set of models for the empirical section), we exploit the fact that (i) all variables in

the same group exhibit equidependence, and (ii) any pair of variables (i; j) in groups (r; s) has the

same dependence as any other pair (i0; j0) in the same two groups (r; s) : This allows us to average

all intra- and inter-group dependence measures. Consider the following general design, where we

have N variables, M groups, and km variables per group, where �Mm=1km = N . Then decompose

the (N �N) matrix D into sub-matrices according to the groups:

D
(N�N)

=

26666664
D11 D0

12 � � � D0
1M

D12 D22 � � � D0
2M

...
...

. . .
...

D1M D2M � � � DMM

37777775 , where Dij is (ki � kj) (29)

Then create a matrix of average values from each of these matrices, taking into account the fact

that the diagonal blocks are symmetric:

D�
(M�M)

=

26666664
��11 ��12 � � � ��1m

��12 ��22 � � � ��2m
...

...
. . .

...

��1m ��2m � � � ��mm

37777775 (30)

where ��ss � 2

ks (ks � 1)
XX

�̂ij , avg of all upper triangle values in Dss

��rs =
1

krks

XX
�̂ij , avg of all elements in matrix Drs; r 6= s

Finally, similar to the previous model, create the vector of average measures
�
��
�
1; :::;

��
�
M

�
; where

��
�
i �

1

M

MX
j=1

��ij (31)

This gives as a total of M moments for each dependence measure, so 5M in total.
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Table 1: Simulation results for factor copula models

Normal
MLE GMM SMM Factor t� t Factor skew t� t

�2z �2z �2z �2z ��1 �2z ��1 �

True value 1.00 1.00 1.00 1.00 0.25 1.00 0.25 -0.50

N = 3

Bias 0.0141 -0.0143 -0.0164 -0.0016 -0.0185 0.0126 -0.0199 -0.0517
Std 0.0803 0.1014 0.1033 0.1094 0.0960 0.1205 0.1057 0.1477
Median 1.0095 0.9880 0.9949 0.9956 0.2302 1.0050 0.2380 -0.5213
90% 1.1180 1.1103 1.1062 1.1448 0.3699 1.1772 0.3636 -0.3973
10% 0.9172 0.8552 0.8434 0.8721 0.0982 0.8662 0.0670 -0.7538
90-10 Di¤ 0.2008 0.2551 0.2628 0.2727 0.2716 0.3110 0.2966 0.3565

N = 10

Bias 0.0113 -0.0099 -0.0119 -0.0025 -0.0137 -0.0039 -0.0161 -0.0119
Std 0.0559 0.0651 0.0666 0.0724 0.0611 0.0851 0.0790 0.0713
Median 1.0125 0.9874 0.9898 0.9926 0.2360 0.9897 0.2376 -0.5084
90% 1.0789 1.0644 1.0706 1.0967 0.3102 1.1095 0.3420 -0.4318
10% 0.9406 0.9027 0.8946 0.9062 0.1704 0.8996 0.1331 -0.5964
90-10 Di¤ 0.1383 0.1617 0.1761 0.1905 0.1398 0.2100 0.2089 0.1645

N = 100

Bias 0.0167 -0.0068 -0.0080 -0.0011 -0.0138 0.0015 -0.0134 -0.0099
Std 0.0500 0.0554 0.0546 0.0659 0.0549 0.0841 0.0736 0.0493
Median 1.0164 0.9912 0.9956 1.0011 0.2346 0.9943 0.2402 -0.5101
90% 1.0805 1.0625 1.0696 1.0886 0.3127 1.1060 0.3344 -0.4465
10% 0.9534 0.9235 0.9279 0.9112 0.1685 0.8970 0.1482 -0.5734
90-10 Di¤ 0.1270 0.1390 0.1418 0.1773 0.1442 0.2089 0.1861 0.1270

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas,
the Normal copula, the t � t factor copula and the skew t � t factor copula. The Normal copula
is estimated by ML, GMM, and SMM, and the other two copulas are estimated by SMM. The
marginal distributions of the data are assumed to follow AR(1)-GARCH(1,1) processes, as described
in Section 3. Problems of dimension N = 3; 10 and 100 are considered, the sample size is T = 1000
and the number of simulations used is S = 25 � T: The �rst row of each panel presents the
average di¤erence between the estimated parameter and its true value. The second row presents
the standard deviation in the estimated parameters. The third, fourth and �fth rows present
the 50th, 90th and 10th percentiles of the distribution of estimated parameters, and the �nal row
presents the di¤erence between the 90th and 10th percentiles.
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Table 2: Simulation results for di¤erent loadings factor copula model with N=100

��1 �z �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

True value 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Normal

Bias - - -0 .0010 -0.0038 -0 .0040 -0 .0072 -0 .0071 -0.0140 -0 .0178 -0 .0119 -0 .0194 -0.0208

Std - - 0 .0128 0.0182 0.0248 0.0322 0.0377 0.0475 0.0651 0.0784 0.1022 0.1291

Median - - 0 .2489 0.4970 0.7440 0.9942 1.2421 1.4868 1.7279 1.9918 2.2256 2.4832

90% - - 0 .2645 0.5204 0.7787 1.0291 1.2970 1.5470 1.8226 2.0874 2.3609 2.6458

10% - - 0 .2304 0.4701 0.7158 0.9502 1.1982 1.4197 1.6526 1.8825 2.0921 2.3090

90-10 di¤ - - 0 .0341 0.0503 0.0629 0.0788 0.0987 0.1273 0.1700 0.2049 0.2689 0.3368

Factor t� t

Bias -0 .0120 - 0 .0000 0.0009 0.0018 -0 .0045 0.0011 -0 .0073 -0.0080 -0 .0122 -0 .0061 -0 .0065

Std 0.0574 - 0.0149 0.0236 0.0300 0.0343 0.0443 0.0580 0.0694 0.0867 0.1058 0.1332

Median 0.2384 - 0.2503 0.5056 0.7528 0.9985 1.2550 1.4881 1.7409 1.9820 2.2234 2.4737

90% 0.3056 - 0.2678 0.5255 0.7896 1.0348 1.3052 1.5697 1.8270 2.1012 2.4089 2.6597

10% 0.1683 - 0.2348 0.4689 0.7187 0.9462 1.1965 1.4282 1.6517 1.8744 2.1303 2.3196

90-10 di¤ 0.1373 - 0.0330 0.0566 0.0709 0.0886 0.1086 0.1416 0.1754 0.2268 0.2786 0.3401

Factor skew t� t

Bias -0 .0119 -0 .0019 0.0008 0.0001 0.0028 -0 .0029 -0 .0036 -0 .0096 -0 .0114 -0 .0232 -0 .0178 -0 .0194

Std 0.0633 0.0451 0.0134 0.0246 0.0320 0.0443 0.0588 0.0806 0.0902 0.1111 0.1373 0.1635

Median 0.2434 -0 .5051 0.2477 0.5001 0.7520 0.9986 1.2468 1.4826 1.7417 1.9803 2.2107 2.4786

90% 0.3265 -0 .4392 0.2680 0.5309 0.7961 1.0613 1.3028 1.5856 1.8378 2.1094 2.4430 2.7034

10% 0.1550 -0 .5527 0.2358 0.4660 0.7155 0.9505 1.1756 1.4042 1.6230 1.8395 2.0494 2.2739

90-10 di¤ 0.1714 0.1134 0.0321 0.0648 0.0807 0.1107 0.1272 0.1814 0.2148 0.2699 0.3936 0.4294

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas: the
Normal copula, the t � t factor copula and the skew t � t factor copula. We divide the N = 100
variables into ten groups and assume that all variables in the same group have the same loading
on the common factor. The marginal distributions of the data are assumed to follow AR(1)-
GARCH(1,1) processes, as described in Section 3. The sample size is T = 1000 and the number of
simulations used is S = 25�T: The �rst row of each panel presents the average di¤erence between
the estimated parameter and its true value. The second row presents the standard deviation in the
estimated parameters. The third, fourth and �fth rows present the 50th, 90th and 10th percentiles
of the distribution of estimated parameters, and the �nal row presents the di¤erence between the
90th and 10th percentiles.
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Table 3: Simulation results on coverage rates

Factor Factor
Normal t� t skew t� t

�2z �2z ��1 �2z ��1 �

N = 3
"T
0.1 89 93 97 99 100 96
0.03 90 94 98 99 98 96
0.01 88 92 98 99 96 95
0.003 85 95 95 96 89 95
0.001 83 89 89 92 84 93
0.0003 58 69 69 74 74 74
0.0001 38 49 53 57 70 61

N = 10
"T
0.1 87 93 99 97 98 99
0.03 87 95 99 97 98 97
0.01 87 94 96 97 98 95
0.003 87 95 95 98 95 96
0.001 87 95 93 96 90 95
0.0003 86 94 87 91 77 93
0.0001 71 87 81 71 81 85

N = 100
"T
0.1 95 93 95 94 95 94
0.03 95 94 94 94 94 94
0.01 95 93 93 94 94 94
0.003 94 95 93 94 94 94
0.001 94 94 92 94 93 95
0.0003 92 94 92 94 92 93
0.0001 84 94 89 94 88 95

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas, the
Normal copula, the t � t factor copula and the skew t � t factor copula, all estimated by SMM.
The marginal distributions of the data are assumed to follow AR(1)-GARCH(1,1) processes, as
described in Section 3. Problems of dimension N = 3; 10 and 100 are considered, the sample size
is T = 1000 and the number of simulations used is S = 25 � T: The rows of each panel contain
the step size, "T ; used in computing the matrix of numerical derivatives, ĜT;S : The numbers in
the table present the percentage of simulations for which the 95% con�dence interval based on the
estimated covariance matrix contained the true parameter.
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Table 4: Coverage rate for di¤erent loadings factor copula model with N=100
AR-GARCH data

��1 � �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

Normal
"T
0.1 - - 97 91 92 89 95 93 94 95 95 90
0.03 - - 97 91 92 90 95 95 94 95 95 90
0.01 - - 97 91 92 90 95 94 94 96 94 91
0.003 - - 97 90 93 90 95 94 95 96 95 90
0.001 - - 97 90 94 93 94 94 94 96 94 92
0.0003 - - 97 92 93 92 95 94 91 93 92 94
0.0001 - - 94 94 91 88 90 92 94 91 88 86

Factor t� t
"T
0.1 95 - 94 93 96 96 98 91 93 92 95 93
0.03 94 - 94 91 96 96 98 92 93 92 97 93
0.01 95 - 94 94 97 96 97 93 93 92 98 93
0.003 94 - 94 94 97 96 97 94 94 95 98 95
0.001 94 - 93 93 97 97 97 92 96 94 100 94
0.0003 90 - 94 95 98 97 99 94 95 95 99 93
0.0001 65 - 95 96 96 98 98 92 96 94 97 91

Factor skew t� t
"T
0.1 93 95 98 95 96 94 94 92 91 91 90 92
0.03 93 95 98 95 95 94 95 92 91 91 89 90
0.01 93 95 97 96 95 94 94 92 92 91 91 91
0.003 93 95 97 96 96 94 95 92 92 92 90 89
0.001 93 94 97 96 95 94 94 91 91 93 89 88
0.0003 84 93 98 95 95 95 95 90 90 88 83 85
0.0001 69 86 98 97 94 91 90 88 87 84 83 80

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas:
the Normal copula, the t � t factor copula and the skew t � t factor copula. We divide the
N = 100 variables into ten groups and assume that all variables in the same group have the
same loading on the common factor. The marginal distributions of the data are assumed to follow
AR(1)-GARCH(1,1) processes, as described in Section 3. The sample size is T = 1000 and the
number of simulations used is S = 25 � T: The rows of each panel contain the step size, "T ; used
in computing the matrix of numerical derivatives, ĜT;S : The numbers in the table present the
percentage of simulations for which the 95% con�dence interval based on the estimated covariance
matrix contained the true parameter.
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Table 5: Rejection frequencies for the test of overidentifying restrictions

Equidependence Di¤erent loadings
Factor Factor Factor Factor

Normal t� t skew t� t Normal t� t skew t� t

N = 3
"T
0.1 97 97 99 95 97 97
0.03 97 98 99 95 95 96
0.01 97 97 100 93 95 95
0.003 97 98 100 92 95 96
0.001 98 96 100 93 93 97
0.0003 99 97 100 91 92 97
0.0001 99 97 99 92 94 98

N = 10
"T
0.1 97 97 98 98 95 98
0.03 98 97 97 98 95 99
0.01 96 97 97 97 94 98
0.003 97 96 97 98 92 99
0.001 98 95 97 96 89 100
0.0003 97 94 97 97 93 100
0.0001 97 94 98 98 95 100

N = 100
"T
0.1 97 95 99 95 95 99
0.03 97 95 98 96 94 99
0.01 97 95 98 96 93 99
0.003 97 95 97 95 94 99
0.001 97 94 99 95 91 100
0.0003 97 94 99 95 89 100
0.0001 98 92 98 93 90 100

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas, the
Normal copula, the t � t factor copula and the skew t � t factor copula, all estimated by SMM.
The marginal distributions of the data are assumed to follow AR(1)-GARCH(1,1) processes, as
described in Section 3. Problems of dimension N = 3; 10 and 100 are considered, the sample size
is T = 1000 and the number of simulations used is S = 25� T: The rows of each panel contain the
step size, "T ; used in computing the matrix of numerical derivatives, ĜT;S ; needed for the critical
value. The con�dence level for the test of over-identifying restrictions is 0.95, and the numbers
in the table present the percentage of simulations for which the test statistic was greater than its
computed critical value.
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Table 6: Stocks used in the empirical analysis

Ticker Name SIC Ticker Name SIC Ticker Name SIC
AA Alcoa 333 EXC Exelon 493 NKE Nike 302
AAPL Apple 357 F Ford 371 NOV National Oilwell 353
ABT Abbott Lab. 283 FCX Freeport 104 NSC Norfolk Sth 671
AEP American Elec 491 FDX Fedex 451 NWSA News Corp 271
ALL Allstate Corp 633 GD GeneralDynam 373 NYX NYSE Euronxt 623
AMGN Amgen Inc. 283 GE General Elec 351 ORCL Oracle 737
AMZN Amazon.com 737 GILD GileadScience 283 OXY OccidentalPetrol 131
AVP Avon 284 GOOG Google Inc 737 PEP Pepsi 208
AXP American Ex 671 GS GoldmanSachs 621 PFE P�zer 283
BA Boeing 372 HAL Halliburton 138 PG Procter&Gamble 284
BAC Bank of Am 602 HD Home Depot 525 QCOM Qualcomm Inc 366
BAX Baxter 384 HNZ Heinz 203 RF Regions Fin 602
BHI Baker Hughes 138 HON Honeywell 372 RTN Raytheon 381
BK Bank of NY 602 HPQ HP 357 S Sprint 481
BMY Bristol-Myers 283 IBM IBM 357 SLB Schlumberger 138
BRK Berkshire Hath 633 INTC Intel 367 SLE Sara Lee Corp. 203
C Citi Group 602 JNJ Johnson&J. 283 SO Southern Co. 491
CAT Caterpillar 353 JPM JP Morgan 672 T AT&T 481
CL Colgate 284 KFT Kraft 209 TGT Target 533
CMCSA Comcast 484 KO Coca Cola 208 TWX Time Warner 737
COF Capital One 614 LMT Lock�dMartn 376 TXN Texas Inst 367
COP Conocophillips 291 LOW Lowe�s 521 UNH UnitedHealth 632
COST Costco 533 MA Master card 615 UPS United Parcel 451
CPB Campbell 203 MCD MaDonald 581 USB US Bancorp 602
CSCO Cisco 367 MDT Medtronic 384 UTX United Tech 372
CVS CVS 591 MET Metlife Inc. 671 VZ Verizon 481
CVX Chevron 291 MMM 3M 384 WAG Walgreen 591
DD DuPont 289 MO Altria Group 211 WFC Wells Fargo 602
DELL Dell 357 PM Philip Morris 211 WMB Williams 492
DIS Walt Disney 799 MON Monsanto 287 WMT WalMart 533
DOW Dow Chem 282 MRK Merck 283 WY Weyerhauser 241
DVN Devon Energy 131 MS MorganStanley 671 XOM Exxon 291
EMC EMC 357 MSFT Microsoft 737 XRX Xerox 357
ETR ENTERGY 491

Description Num Description Num
SIC 1 Mining, construct. 6 SIC 5 Trade 8
SIC 2 Manuf: food, furn. 26 SIC 6 Finance, Ins 18
SIC 3 Manuf: elec, mach 25 SIC 7 Services 6
SIC 4 Transprt, comm�s 11 ALL 100

Notes: This table presents the ticker symbols, names and 3-digit SIC codes of the 100 stocks
used in the empirical analysis of this paper. The lower panel reports the number of stocks in each
1-digit SIC group.
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Table 7: Summary statistics

Cross-sectional distribution

Mean 5% 25% Median 75% 95%

Mean 0.0004 -0.0003 0.0001 0.0003 0.0006 0.0013
Std dev 0.0287 0.0153 0.0203 0.0250 0.0341 0.0532
Skewness 0.3458 -0.4496 -0.0206 0.3382 0.6841 1.2389
Kurtosis 11.3839 5.9073 7.5957 9.1653 11.4489 19.5939

�0 0.0004 -0.0004 0.0001 0.0004 0.0006 0.0013
�1 -0.0345 -0.2045 -0.0932 -0.0238 0.0364 0.0923
�m -0.0572 -0.2476 -0.1468 -0.0719 0.0063 0.1392
! � 1000 0.0126 0.0024 0.0050 0.0084 0.0176 0.0409
� 0.8836 0.7983 0.8639 0.8948 0.9180 0.9436
� 0.0240 0.0000 0.0000 0.0096 0.0354 0.0884

 0.0593 0.0000 0.0017 0.0396 0.0928 0.1628
�m 0.0157 0.0000 0.0000 0.0000 0.0015 0.0646

m 0.1350 0.0000 0.0571 0.0975 0.1577 0.3787

� 0.4155 0.2643 0.3424 0.4070 0.4749 0.5993
�s 0.4376 0.2907 0.3690 0.4292 0.4975 0.6143
(�0:99 + �0:01) =2 0.0572 0.0000 0.0000 0.0718 0.0718 0.1437
(�0:90 � �0:10) -0.0922 -0.2011 -0.1293 -0.0862 -0.0431 0.0144

Notes: This table presents some summary statistics of the daily equity returns data used in the
empirical analysis. The top panel presents simple unconditional moments of the daily return series.
The second panel presents summaries of the estimated AR(1)�GJR-GARCH(1,1) models estimated
on these returns. The lower panel presents linear correlation, rank correlation, average 1% upper
and lower tail dependence, and the di¤erence between the 10% tail dependence measures, computed
using the standardized residuals from the estimated AR�GJR-GARCH model. The columns present
the mean and quantiles from the cross-sectional distribution of the measures listed in the rows. The
top two panels present summaries across the N = 100 marginal distributions, while the lower panel
presents a summary across the N (N � 1) =2 = 4950 distinct pairs of stocks.
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Table 10: Rank correlation and tail dependence implied by a multi-factor model

SIC 1 SIC 2 SIC 3 SIC 4 SIC 5 SIC 6 SIC 7

Rank correlation
SIC 1 0:72
SIC 2 0:41 0:44
SIC 3 0:44 0:45 0:51
SIC 4 0:41 0:42 0:45 0:46
SIC 5 0:39 0:40 0:44 0:41 0:53
SIC 6 0:42 0:43 0:47 0:43 0:42 0:58
SIC 7 0:45 0:46 0:50 0:46 0:44 0:47 0:57

Lower n Upper tail dependence
SIC 1 0:99 n 0:74 0:02 0:07 0:02 0:03 0:09 0:13
SIC 2 0:70 0:70 n 0:02 0:02 0:02 0:02 0:02 0:02
SIC 3 0:92 0:70 0:92 n 0:07 0:02 0:03 0:07 0:07
SIC 4 0:75 0:70 0:75 0:75 n 0:02 0:02 0:02 0:02
SIC 5 0:81 0:70 0:81 0:75 0:81 n 0:03 0:03 0:03
SIC 6 0:94 0:70 0:92 0:75 0:81 0:94 n 0:09 0:09
SIC 7 0:96 0:70 0:92 0:75 0:81 0:94 0:96n 0:14

Notes: This table presents the dependence measures implied by the estimated skew t� t factor
copula model reported in Table 9. This model implies a block equidependence structure based on
the industry to which a stock belongs, and the results are presented with intra-industry dependence
in the diagonal elements, and cross-industry dependence in the o¤-diagonal elements. The top panel
present rank correlation coe¢ cients based on 50,000 simulations from the estimated model. The
bottom panel presents the theoretical upper tail depedence coe¢ cients (upper triangle) and lower
tail dependence coe¢ cients (lower triangle) based on Propositions 2 and 3.

46



Table 11: Performance of methods for predicting systemic risk

MSE RelMSE

Cut-o¤ -2% -4% -2% -4%

Marginal Expected Shortfall (MES)

Brownlees-Engle 0.9961 1.2023 0.7169 0.3521
Historical 1.1479 1.6230 1.0308 0.4897
CAPM 1.1532 1.5547 0.9107 0.4623
Normal copula 1.0096 1.2521 0.6712 0.3420
t copula 1.0118 1.2580 0.6660 0.3325
Skew t copula 1.0051 1.2553 0.6030 0.3040
Skew t� t factor copula 1.0012 1.2445 0.5885 0.2954

k-Expected Shortfall (kES)

Historical 1.1632 1.6258 1.4467 0.7653
Normal copula 1.0885 1.4855 1.3220 0.5994
t copula 1.0956 1.4921 1.4496 0.6372
Skew t copula 1.0898 1.4923 1.3370 0.5706
Skew t� t factor copula 1.0822 1.4850 1.1922 0.5204

Notes: This table presents the MSE (left panel) and Relative MSE (right panel) for various
methods of estimating measures of systemic risk. The top panel presents results for marginal ex-
pected shortfall (MES ), de�ned in equation (24), and the lower panel presents results for k-expected
shortfall (kES ), de�ned in equation (25), with k set to 30. Two thresholds are considered, C = �2%
and C = �4%: There are 70 and 21 �event�days forMES under these two thresholds, and 116 and
36 �event�days for kES: The best-performing model for each threshold and performance metric is
highlighted in bold.
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Figure 1: Scatter plots from four bivariate distributions, all with N(0,1) margins and linear corre-
lation of 0.5, constructed using four di¤erent factor copulas.
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Figure 3: Conditional on observing j out of 100 stocks crashing, this �gure presents the expected
number (upper panel) and proportion (lower panel) of the remaining (100-j) stocks that will crash.
�Crash�events are de�ned as returns in the lower 1/66 tail.
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Figure 4: Sample quantile dependence for 100 daily stock returns, along with the �tted quantile
dependence from a Normal copula and from a Skew t-t factor copula, for the lower and upper tails.
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Figure 5: Conditional on observing j out of 100 stocks crashing, this �gure presents the expected
proportion of the remaining (100-j) stocks that will crash. �Crash� events are de�ned as returns
in the lower 1/22 (upper panel) and 1/66 (lower panel) tail. Note that the horizontal axes in these
two panels are di¤erent, due to limited information in the joint tails.
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