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1. Introduction

Amodel for themultivariate distribution of the returns on large
collections of financial assets is a crucial component inmodern risk
management and asset allocation. Modelling high-dimensional
distributions, however, is not an easy task and only a few models
are typically used in high dimensions, most notably the Normal
distribution, which is still widely used in practice and academia
despite its notorious limits, for example, thin tails and zero tail
dependence.

This paper provides a new approach for constructing and
estimating high-dimensional distribution models. Our approach
builds on two active areas of recent research in financial econo-
metrics. First, high frequency data has been shown to be superior
to daily data for measuring and forecasting variances and covari-
ances, see Andersen et al. (2006) for a survey of this very active area
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of research. This implies that there are gains to be had by mod-
elling linear dependence, as captured by covariances, using high
frequency data. Second, copula methods have been shown to be
useful for constructing flexible distribution models in high dimen-
sions, see Christoffersen et al. (2013), Oh and Patton (2016) and
Creal and Tsay (2014). These two findings naturally lead to the
question of whether high frequency data and copula methods can
be combined to improve the modelling and forecasting of high-
dimensional return distributions.

Exploiting high frequency data in a lower frequency copula-
based model is not straightforward as, unlike variances and
covariances, the copula of low frequency (say daily) returns is
not generally a known function of the copula of high frequency
returns. Thus the link between high frequency volatility measures
(e.g., realized variance and covariance) and their low frequency
counterparts cannot generally be exploited when considering
dependence via the copula function. We overcome this hurdle by
decomposing the dependence structure of low frequency asset
returns into linear and nonlinear components. We then use high
frequency data to accurately model the linear dependence, as
measured by covariances, and a new class of copulas to capture
the remaining dependence in the low frequency standardized
residuals.

The difficulty in specifying a copula-based model for standard-
ized, uncorrelated, residuals, is that the distribution of the resid-
uals must imply an identity correlation matrix. Independence is
only sufficient for uncorrelatedness, and we wish to allow for
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possible nonlinear dependence between these linearly unrelated
variables. Among existing work, only the multivariate Student’s
t distribution has been used for this purpose, as an identity cor-
relation matrix can be directly imposed on this distribution. We
dramatically increase the set of possible models for uncorrelated
residuals by proposing methods for generating ‘‘jointly symmet-
ric’’ copulas. These copulas can be constructed fromany given (pos-
sibly asymmetric) copula, and when combined with any collection
of (possibly heterogeneous) symmetricmarginal distributions they
guarantee an identity correlation matrix. Evaluation of the density
of our jointly symmetric copulas turns out to be computationally
difficult in high dimensions, but we show that composite likeli-
hood methods (see Varin et al., 2011 for a review) may be used
to estimate the model parameters and undertake model selection
tests.

This paper makes four main contributions. Firstly, we propose
a new class of ‘‘jointly symmetric’’ copulas, which are useful
in multivariate density models that contain a covariance matrix
model (e.g., GARCH–DCC, HAR, stochastic volatility, etc.) as a
component. Second, we show that composite likelihood methods
may be used to estimate the parameters of these new copulas, and
in an extensive simulation studyweverify that thesemethods have
good finite-sample properties. Third, we propose a new and simple
model for high-dimensional covariance matrices drawing on ideas
from the HAR model of Corsi (2009) and the DCC model of Engle
(2002), and we show that this model outperforms the familiar
DCC model empirically. Finally, we present a detailed empirical
application of our model to 104 individual U.S. equity returns,
showing that our proposed approach significantly outperforms
existing approaches both in-sample and out-of-sample.

Our methods and application are related to several existing
papers. Most closely related is the work of Lee and Long (2009),
who also consider the decomposition into linear and nonlinear
dependence, and use copula-based models for the nonlinear
component. However, Lee and Long (2009) focus only on bivariate
applications, and their approach, which we describe in more detail
in Section 2, is computationally infeasible in high dimensions.
Our methods are also clearly related to copula-based density
models, some examples of which are cited above, however in those
approaches only the variances are modelled prior to the copula
stage, meaning that the copula model must capture both the linear
and nonlinear components of dependence. This makes it difficult
to incorporate high frequency data into the dependence model.
Papers that employ models for the joint distribution of returns
that include a covariance modelling step include Chiriac and Voev
(2011), Jondeau and Rockinger (2012), Hautsch et al. (2015), and
Jin and Maheu (2013). As models for the standardized residuals,
those papers use the Normal or Student’s t distributions, both of
which are nested in our class of jointly symmetric models, and
which we show are significantly beaten in our application to U.S.
equity returns.

The paper is organized as follows. Section 2 presents our
approach for modelling high-dimensional distributions. Section 3
presents multi-stage, composite likelihood methods for model
estimation and comparison, which are studied via simulations in
Section 4. Section 5 applies our model to daily equity returns
and compares it with existing approaches. Section 6 concludes.
An appendix contains all proofs, and a web appendix contains
additional details, tables and figures (see Appendix A).

2. Models of linear and nonlinear dependence

We construct a model for the conditional distribution of the
N-vector rt as follows:

rt = µt + H1/2
t et (1)
where et ∼ iid F (·; η) (2)

where F (·; η) is a joint distribution with zero mean, identity co-
variance matrix and ‘‘shape’’ parameter η, and µt = E [rt |Ft−1],
Ht = V [rt |Ft−1], Ft = σ (Yt , Yt−1, . . .), and Yt includes rt and
possibly other time t observables, such as realized variances and
covariances. To obtain H1/2

t , we suggest using the spectral decom-
position due to its invariance to the order of the variables. Note
that by assuming that et is iid, we impose that all dynamics in the
conditional joint distribution of rt are driven by the conditional
mean and (co)variance. This common, and clearly strong, assump-
tion goes some way towards addressing the curse of dimensional-
ity faced when N is large.

In existing approaches, see Chiriac and Voev (2011), Jondeau
and Rockinger (2012), Hautsch et al. (2015), and Jin and Maheu
(2013) for example, F would be assumed multivariate Normal
(which reduces to independence, given that et has identity covari-
ance matrix) or Student’s t , and the model would be complete. In-
stead, we consider the decomposition of the joint distribution F
intomarginal distributions Fi and copula C using Sklar’s (1959) the-
orem:

et ∼ F (·; η) = C (F1 (·; η) , . . . , FN (·; η) ; η) . (3)

Note that the elements of et are uncorrelated but may still exhibit
cross-sectional dependence, which is completely captured by the
copula C. Combining Eqs. (1)–(3) we obtain the following density
for the distribution of returns:

ft (rt) = det

H−1/2

t


× c (F1 (e1t) , . . . , FN (eNt))×

N
i=1

fi (eit) . (4)

Thus this approach naturally reveals two kinds of dependence be-
tween returns: ‘‘linear dependence,’’ captured by conditional co-
variance matrix Ht , and any ‘‘nonlinear dependence’’ remaining
in the uncorrelated residuals et , captured by the copula C. There
are two important advantages in decomposing a joint distribution
of returns in this way. First, it allows the researcher to draw on
the large literature on measuring, modelling and forecasting con-
ditional covariance matrix Ht with low and high frequency data.
For example, GARCH-type models such as the multivariate GARCH
model of Bollerslev et al. (1988), the BEKKmodel of Engle and Kro-
ner (1995), and the dynamic conditional correlation (DCC)model of
Engle (2002) naturally fit in Eqs. (1) and (2). The increasing avail-
ability of high frequency data also enables us to use more accu-
ratemodels for the conditional covariancematrix, see, for example,
Bauer and Vorkink (2011), Chiriac and Voev (2011), and Noureldin
et al. (2012), and those models are also naturally accommodated
by Eqs. (1)–(2).1 Second, the model specified by Eqs. (1)–(3) is eas-
ily extended to high-dimensional applications given that multi-
stage separate estimation of the conditional mean of the returns,
the conditional covariance matrix of the returns, the marginal dis-
tributions of the standardized residuals, and finally the copula of
the standardized residuals is possible. Of course, multi-stage es-
timation is less efficient than one-stage estimation, however the
main difficulty in high-dimensional applications is the prolifera-
tion of parameters and the growing computational burden as the
dimension increases. By allowing for multi-stage estimation we
overcome this obstacle.

1 In the part of our empirical work that uses realized covariance matrices, we
take these as given, and do not take a stand on the specific continuous-time process
that generates the returns and realized covariances. This means that, unlike a DCC-
type model, for example, which only considers daily returns, or a case where the
continuous-time process was specified, we cannot simulate or generate multi-step
ahead predictions from these models.
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Lee and Long (2009) were the first to propose decomposing
dependence into linear and nonlinear components, and we now
discuss their approach inmore detail. They proposed the following
model:

rt = µt + H1/2
t 6−1/2wt (5)

where wt ∼ iid G (·; η) = Cw (G1 (·; η) , . . . ,GN (·; η) ; η)

and 6 ≡ Cov [wt ] .

Thus rather than directlymodelling uncorrelated residuals et aswe
do, Lee and Long (2009) use wt and its covariance matrix 6 to ob-
tain uncorrelated residuals et = 6−1/2wt . In this model it is gener-
ally hard to interpretwt , and thus tomotivate or explain choices of
models for its marginal distribution or copula. Most importantly,
this approach has two aspects that make it unamenable to high-
dimensional applications. Firstly, the structure of thismodel is such
that multi-stage estimation of the joint distribution of the stan-
dardized residuals is not possible, as these residuals are linear com-
binations of the latent variableswt . Thus the entire N-dimensional
distribution G must be estimated in a single step. Lee and Long
(2009) focus on bivariate applications where this is not difficult,
but in applications involving 10, 50 or 100 variables this quickly
becomes infeasible. Secondly, the matrix 6 implied by G (·; η) can
usually only be obtained by numerical methods, and as this matrix
growsquadraticallywithN , this is a computational burden even for
relatively low dimension problems. In contrast, we directly model
the standardized uncorrelated residuals et to take advantage of
benefits from multi-stage separation and to avoid having to com-
pute6. In addition to proposingmethods that work in high dimen-
sions, our approach extends that of Lee and Long (2009) to exploit
recent developments in the use of high frequency data to estimate
lower frequency covariance matrices.

We next describe how we propose modelling the uncorrelated
residuals, et , and then we turn to models for the covariance
matrix Ht .

2.1. A density model for uncorrelated standardized residuals

Abuilding block for ourmodel is anN-dimensional distribution,
F (·; η), that guarantees an identity correlationmatrix. The concern
is that there are only a few copulas that ensure zero correlations,
for example, the Gaussian copula with identity correlation matrix
(i.e. the independence copula) and the t copula with identity
correlation matrix, when combined with symmetric marginals. To
overcome this lack of choice, we nowproposemethods to generate
many copulas that ensure zero correlations by constructing
‘‘jointly symmetric’’ copulas.

We exploit the result that multivariate distributions that sat-
isfy a particular type of symmetry condition are guaranteed to
yield an identity correlationmatrix,which is required by themodel
specified in Eqs. (1)–(2). Recall that a scalar random variable X
is symmetric about the point a if the distribution functions of
(X − a) and (a − X) are the same. For vector random variables
there are two main types of symmetry: in the bivariate case, the
first (‘‘radial symmetry’’) requires only that (X1 − a1, X2 − a2) and
(a1 − X1, a2 − X2) have a common distribution function, while the
second (‘‘joint symmetry’’) further requires that (X1 − a1, a2 − X2)
and (a1 − X1, X2 − a2) also have that common distribution func-
tion. The latter type of symmetry is what we require for ourmodel.
The definition below for the N-variate case is adapted from Nelsen
(2006).

Definition 1 (Joint symmetry). Let X be a vector of N random
variables and let a be a point in RN . Then X is jointly symmetric
about a if the following 2N sets of N random variables have a
common joint distribution:

X̃(i) =


X̃ (i)1 , . . . , X̃

(i)
N

′

, i = 1, 2, . . . , 2N

where X̃ (i)j =

Xj − aj


or


aj − Xj


, for j = 1, 2, . . . ,N.

From the following simple lemma we know that all jointly
symmetric distributions guarantee an identity correlation matrix,
and are thus easily used in a joint distribution model with a
covariance modelling step.

Lemma 1. Let X be a vector of N jointly symmetric random variables
with finite secondmoments. ThenX has an identity correlationmatrix.

If the variable X in Definition 1 has Unif (0, 1) marginal
distributions, then its distribution is a jointly symmetric copula.
It is possible to show that, given symmetry of the marginal
distributions,2 joint symmetry of the copula is necessary and
sufficient for joint symmetry of the joint distribution, via the N-
dimensional analog of Exercise 2.30 in Nelsen (2006):

Lemma 2. Let X be a vector of N continuous random variables with
joint distribution F, marginal distributions F1, . . . , FN and copula
C. Further suppose Xi is symmetric about ai ∀i. Then X is jointly
symmetric about a ≡ [a1, . . . , aN ] if and only if C is jointly
symmetric.

Lemma 2 implies that any combination of symmetric marginal
distributions, of possibly different forms (e.g., Normal, Student’s
t with different degrees of freedom, double-exponential, etc.)
with any jointly symmetric copula yields a jointly symmetric
joint distribution, and by Lemma 1, all such distributions have an
identity correlation matrix, and can thus be used in a model such
as the one proposed in Eqs. (1)–(2).

While numerous copulas have been proposed to explain various
features of dependences in the literature, only a few existing
copulas are jointly symmetric, for example, the Gaussian and t
copulas with an identity correlation matrix. To overcome this
limited choice of copulas,we next propose a novelway to construct
jointly symmetric copulas by ‘‘rotating’’ any given copula, thus
vastly increasing the set of possible copulas to use in applications.

Theorem 1. Assume that N dimensional copula C, with density c, is
given.
(i) The following copula CJS is jointly symmetric:

CJS (u1, . . . , uN) =
1
2N

2
k1=0

· · ·

2
kN=0

(−1)R · C (u1, . . . ,ui, . . . ,uN)

where R =

N
i=1

1 {ki = 2} , and ui =

 1, if ki = 0
ui, if ki = 1

1 − ui, if ki = 2.
(6)

(ii) The probability density function cJS implied by CJS is

cJS (u1, . . . , uN) =
∂NCJS (u1, . . . , uN)

∂u1 · · · ∂uN

=
1
2N

2
k1=1

· · ·

2
kN=1

c (u1, . . . ,ui, . . . ,uN) . (7)

2 We empirically test the assumption of marginal symmetry in our application
in Section 5, and there we also describe methods to overcome this assumption if
needed.
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Fig. 1. Iso-probability contour plots of joint distributions with standard Normal
margins and various copulas: the Clayton copula (θ = 2), and its 90-, 180-, and 270-
degree rotations (upper panel), and an equal-weighted average of the four Clayton
copulas (lower panel).

Theorem 1 shows that the average of mirror-image rotations
of a potentially asymmetric copula about every axis generates a
jointly symmetric copula. Note that the copula cdf, CJS , in Eq. (6)
involves all marginal copulas (i.e., copulas of dimension 2 to N −1)
of the original copula, whereas the density cJS requires only the
densities of the (entire) original copula, with no need for marginal
copula densities. Also notice that cJS requires the evaluation of a
very large number of densities even when N is only moderately
large, which may be slow even when a single evaluation is quite
fast. In Section 3 we show how composite likelihoodmethods may
be employed to overcome this computational problem.

We next show that we can further increase the set of jointly
symmetric copulas for use in applications by considering convex
combinations of jointly symmetric copulas.

Proposition 1. Any convex combination of N-dimensional distribu-
tions that are jointly symmetric around a common point a ∈ R1 is
jointly symmetric around a. This implies that (i) any convex combi-
nation of univariate distributions symmetric around a common point
a is symmetric around a, and (ii) any convex combination of jointly
symmetric copulas is a jointly symmetric copula.

It is simple to visualize how to construct a jointly symmetric
copula in terms of the copula density: the upper panels of Fig. 1
show density contour plots for zero, 90-, 180- and 270-degree
rotations of the Clayton copula, when combined with standard
Fig. 2. Iso-probability contour plots of joint distributions with standard Normal
margins and various jointly symmetric copulas.

Normalmarginal densities. The ‘‘jointly symmetric Clayton’’ copula
is obtained by taking an equal-weighted average of these four
densities, and is presented in the lower panel of Fig. 1.

Fig. 2 presents density contour plots for six jointly symmetric
distributions that differ only in their jointly symmetric copula. The
upper left panel is the case of independence, and the top right
panel presents the jointly symmetric t copula, which is obtained
when the correlation parameter of that copula is set to zero.
The remaining four panels illustrate the flexibility of the models
that can be generated using Theorem 1. To aid interpretability,
the lower four copulas have parameters chosen so that they
are each approximately equally distant from the independence
copula based on the Kullback–Leibler information criterion (KLIC).
Fig. 2 highlights the fact that the copula for uncorrelated random
variables can be very different from the independence copula,
capturing different types of ‘‘nonlinear’’ dependence.

2.2. Forecasting models for multivariate covariance matrix

Research on forecasting models for multivariate covariance
matrices with low-frequency data is pervasive, see Andersen et al.
(2006) for a review, and research on forecasting models using
high frequency data is growing, e.g. Chiriac and Voev (2011),
Noureldin et al. (2012) among others. There are two major
concerns about forecasting models for multivariate covariance
matrices: parsimony and positive definiteness. Keeping these two
concerns inmind,we combine the essential ideas of the DCCmodel
of Engle (2002) and theheterogeneous autoregressive (HAR)model
of Corsi (2009) to obtain a simple and flexible new forecasting
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model for covariance matrices. Following the DCC model, we
estimate the variances and correlations separately, to reduce the
computational burden. We use the HAR model structure, which
is known to successfully capture the long-memory behaviour of
volatility in a simple autoregressive way.

Let∆ be the sampling frequency (e.g., 5 min), which yields 1/∆
observations per trade day. The N × N realized covariance matrix
for the interval [t − 1, t] is defined by

RVarCov∆t =

1/∆
j=1

rt−1+j·∆r′t−1+j·∆ (8)

and is re-written in terms of realized variances and realized
correlations as:

RVarCov∆t =


RVar∆t · RCorr∆t ·


RVar∆t (9)

where RVar∆t = diag

RVarCov∆t


is a diagonal matrix with the

realized variances on the diagonal, and RCorr∆t =

RVar∆t

−1/2
·

RVarCov∆t ·

RVar∆t

−1/2
.

We propose to first apply the HAR model to each (log) realized
variance:

log RVar∆ii,t = φ
(const)
i + φ

(day)
i log RVar∆ii,t−1

+φ
(week)
i

1
4

5
k=2

log RVar∆ii,t−k

+φ
(month)
i

1
15

20
k=6

log RVar∆ii,t−k + ξit ,

i = 1, 2, . . . ,N (10)

and the coefficients

φ
(const)
i , φ

(day)
i , φ

(week)
i , φ

(month)
i

N

i=1
are esti-

mated by OLS for each variance. We use the logarithm of the re-
alized variance to ensure that all variance forecasts are positive,
and also to reduce the influence of large observations, which is im-
portant as the sample period in our empirical analysis includes the
2008 financial crisis.

Next, we propose a model for realized correlations, using
the vech operator. Consider the following HAR-type model for
correlations:

vech

RCorr∆t


= vech


RCorr∆T


(1 − a − b − c)

+ a · vech

RCorr∆t


+ b ·

1
4

5
k=2

vech

RCorr∆t−k


+ c ·

1
15

20
k=6

vech

RCorr∆t−k


+ ξt (11)

where RCorr∆T =
1
T

T
t=1 RCorr

∆
t and (a, b, c) ∈ R3. A more

flexible version of this model would allow (a, b, c) to be replaced
with N (N − 1) /2 × N (N − 1) /2 matrices (A, B, C), however
the number of free parameters in such a specification would be
O


N2


, and is not feasible for high-dimensional applications. In

this parsimonious specification, the coefficients a, b, and c are
easily estimated by OLS regardless of the dimension. Note that
the form of the model in Eq. (11) is such that the predicted value
will indeed be a correlation matrix (when the vech operation is
undone), and so the residual in this specification, ξt , is one that
lives in the space of differences of correlation matrices. As we
employ OLS for estimation, we are able to avoid having to specify
a distribution for this variable.

Let RVarCov∆t denote a forecast of the covariance matrix based
on Eqs. (10) and (11) and estimated parameters. The theorem
below provides conditions under which RVarCov∆t is guaranteed
to be positive definite.

Theorem 2. Assume that (i) Pr

x′rt = 0


= 0 for any nonzero

x ∈ RN (i.e. rt does not have redundant assets), (ii)

â, b̂, ĉ


≥ 0,

and (iii) â + b̂ + ĉ < 1. Then, RVarCov∆t is positive definite.

Our forecasting model for the realized covariance matrix is
simple and fast to estimate and positive definiteness is ensured
by Theorem 2. We note that the above theorem is robust to
the misspecification of return distributions, i.e. Theorem 2 holds
regardless of whether or not return distribution follows the
proposed model specified by Eqs. (1)–(2).

3. Estimation methods and model comparisons

This section proposes a composite likelihood approach to
estimate models from the class of jointly symmetric copulas
proposed in Theorem 1, and then describes corresponding
methods for model comparison tests of copula models specified
and estimated in this way. Finally, we present results on how
to handle the estimation error for the complete model, taking
into account the multi-stage nature of the proposed estimation
methods.

3.1. Estimation using composite likelihood

The proposed method to construct jointly symmetric copulas
in Theorem 1 requires 2N evaluations of the given original copula
density. Even for moderate dimensions, say N = 20, the likelihood
evaluation may be too slow to calculate. We illustrate this using
a jointly symmetric copula based on the Clayton copula, which
has a simple closed-form density and requires just a fraction of a
second for a single evaluation.3 The first row of Table 1 shows that
as the dimension, and thus the number of rotations, increases, the
computation time for a single evaluation of the jointly symmetric
Clayton copula grows from less than a second to several minutes
to many years.4

For high dimensions, ordinary maximum likelihood estimation
(MLE) is not feasible for our jointly symmetric copulas. A
composite likelihood (Lindsay, 1988) consists of combinations
of the likelihoods of submodels or marginal models of the full
model, and under certain conditions maximizing the composite
likelihood (CL) can be shown to generate parameter estimates
that are consistent for the true parameters of the model.5 The
essential intuition behindCL is that since submodels includepartial
information on the parameters of the full model, by properly using
that partial information we can estimate the parameters of full
model, although of course subject to some efficiency loss.

The composite likelihood can be defined in various ways,
depending onwhich sub-models of the full model are employed. In
our case, the use of bivariate sub-models is particularly attractive,
as a bivariate sub-model of the jointly symmetric copula generated
using Eq. (6) requires only four rotations. This is easily shown using
some copula manipulations, and we summarize this result in the
proposition below.

3 All computational times reported are based on using Matlab R2014a on a 3.4
GHz Intel PC with Windows 7.
4 While evaluation of the likelihood is slow, simulating from this model is

simple and fast (see Section 4.1 for details). This suggests that simulation-based
alternatives to maximum likelihood might be feasible for these models. We leave
the consideration of this interesting possibility for future research.
5 See Varin et al. (2011) for an overview of thismethod, and see Engle et al. (2008)

for an application of this method in financial econometrics.
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Table 1
Computation times for jointly symmetric copulas.

N 10 20 30 50 100

Full likelihood 0.23 s 4 min 70 h 106 years 1017 years
Composite likelihood using all pairs 0.05 s 0.21 s 0.45 s 1.52 s 5.52 s
Composite likelihood using adjacent pairs 0.01 s 0.02 s 0.03 s 0.06 s 0.11 s
Composite likelihood using first pair 0.001 s 0.001 s 0.001 s 0.001 s 0.001 s

Note: Computation times for one evaluation of the density of jointly symmetric copula based on the Clayton copula. These times are based
actual computation times for a single evaluation of an N-dimension Clayton copula, multiplied by the number of rotations required to
obtain the jointly symmetric copula likelihood


2N


or composite likelihood based on all pairs (2N (N − 1)), adjacent pairs (4 (N − 1)),

or a single pair (4).
Proposition 2. For N-dimensional jointly symmetric copulas gener-
ated using Theorem 1, the (i, j) bivariate marginal copula density is
obtained as

cJSij

ui, uj


=

1
4


cij


ui, uj


+ cij


1 − ui, uj


+ cij


ui, 1 − uj


+ cij


1 − ui, 1 − uj


where cij is the (i, j) marginal copula density of the original N-
dimensional copula.

Thus while the full model requires 2N rotations of the original
density, bivariate marginal models only require 22 rotations.
Similar to Engle et al. (2008), we consider CL based either on all
pairs of variables, only adjacent pairs of variables,6 and only the
first pair of variables:

CLall (u1, . . . , uN) =

N−1
i=1

N
j=i+1

log ci,j

ui, uj


(12)

CLadj (u1, . . . , uN) =

N−1
i=1

log ci,i+1 (ui, ui+1) (13)

CLfirst (u1, . . . , uN) = log c1,2 (u1, u2) . (14)

As one might expect, estimators based on these three different CLs
will have different degrees of efficiency, andwe study this in detail
in our simulation study in the next section.

While there are many different ways to construct composite
likelihoods, they all have some common features. First of all, they
are valid likelihoods since the likelihood of the sub-models are
themselves valid likelihoods. Second, the joint model implied by
taking products of densities of sub-models (i.e., imposing an in-
correct independence assumption) causesmisspecification and the
information matrix equality will not hold. Third, the computation
of the composite likelihood is substantially faster than that of the
full likelihood. In our application the computational burden is re-
duced fromO


2N


toO


N2


,O (N) orO (1)whenwe use all pairs,

only adjacent pairs, or only the first pair of variables. The bottom
three rows in Table 1 show the computation gains from using a
composite likelihood based on one of the three combinations in
Eqs. (12)–(14) compared with using the full likelihood.

Let us define maximum composite likelihood estimation
(MCLE) as based on:

θ̂MCLE = argmax
θ

T
t=1

CL (u1t , . . . , uNt; θ) (15)

6 For a given (arbitrary) order of the variables, the ‘‘adjacent pairs’’ CL uses pairs
(ui, ui+1) for i = 1, . . . ,N − 1. Similarly, the ‘‘first’’ pair is simply whichever series
were arbitrarily labelled as the first two.
where CL is a composite log-likelihood, such as one of those in
Eqs. (12)–(14). Under mild regularity conditions (see Newey and
McFadden, 1994 or White, 1994), and an identification condition
we discuss in the next paragraph, Cox and Reid (2004) show that
√
T


θ̂MCLE−θ0


d

−→N

0,H−1

0 J0H
−1
0


(16)

where H0 = −E


∂2

∂θ∂θ′ CL (u1t , . . . , uNt; θ0)

and J0 = V


∂
∂θ

CL

(u1t , . . . , uNt; θ0)

. We refer the reader to Cox and Reid (2004) for

the proof. The asymptotic variance of MCLE takes a ‘‘sandwich’’
form, and is of course weakly greater than that of MLE. We
investigate the extent of the efficiency loss of MCLE relative toMLE
in the simulation study in the next section.

The identification condition required for CL estimation comes
from the first-order condition implied by the optimization
problem. Specifically, it is required that

E

∂

∂θ
CL (u1t , . . . , uNt; θ)

 
= 0 for θ = θ0
≠ 0 for θ ≠ θ0.

(17)

That is, the components of the composite likelihood must be rich
enough to identify the parameters of the full likelihood. As a
problematic example, consider a composite likelihood that uses
only the first pair of variables (as in Eq. (14)), but some elements
of θ do not affect the dependence between the first pair. With
such a CL, θ would not be identified, and one would need to
look for a richer set of submodels to identify the parameters, for
example using more pairs, as in Eqs. (12) and (13), or using
higher dimension submodels, e.g. trivariate marginal copulas. In
our applications, we consider as ‘‘generating’’ copulas only those
with a single unknown parameter that affects all bivariate copulas,
and thus all of the CLs in Eqs. (12)–(14) are rich enough to identify
the unknown parameter.

3.2. Model selection tests with composite likelihood

Wenext consider in-sample and out-of-samplemodel selection
tests when composite likelihood is involved. The tests we discuss
here are guided by our empirical analysis in Section 5, so we
only consider the case where composite likelihoods with adjacent
pairs are used. We first define the composite Kullback–Leibler
information criterion (cKLIC) following Varin and Vidoni (2005).

Definition 2. Given an N-dimensional random variable Z =

(Z1, . . . , ZN) with true density g, the composite Kullback–Leibler
information criterion (cKLIC) of a density h relative to g is

Ic (g,h) = Eg(z)


log

N−1
i=1

gi (zi, zi+1)− log
N−1
i=1

hi (zi, zi+1)



where
N−1

i=1 gi (zi, zi+1) and
N−1

i=1 hi (zi, zi+1) are adjacent-pair
composite likelihoods using the true density g and a competing
density h.
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We focus on the CL using adjacent pairs, but other cKLICs can
be defined similarly. Note that the composite log-likelihood for
the joint distribution can be decomposed using Sklar’s theorem
(Eqs. (3)–(4)) into the marginal log-likelihoods and the copula
composite log-likelihood.We use this expressionwhen comparing
our joint density models in our empirical work below.7,8

CLh ≡

N−1
i=1

logh (zi, zi+1)

= log h1 (z1)+ log hN (zN)+ 2
N−1
i=1

log hi (zi)

+

N−1
i=1

log c (Hi (zi) ,Hi+1 (zi+1)) . (18)

Secondly, notice that the expectation in the definition of cKLIC is
with respect to the (complete) true density g rather than the CL
of the true density, which makes it possible to interpret cKLIC as a
linear combination of the ordinary KLIC of the submodels used in
the CL:

Ic (g,h) =

N−1
i=1

Eg(z)


log

gi (zi, zi+1)

hi (zi, zi+1)



=

N−1
i=1

Egi(zi,zi+1)


log

gi (zi, zi+1)

hi (zi, zi+1)


. (19)

The second equality holds since the expectation of a function of
(Zi, Zi+1) only depends on the bivariate distribution of those two
variables, not the entire joint distribution. The above equation
shows that the cKLIC can be viewed as a linear combination of
the ordinary KLICs of the submodels, which implies that existing
in-sample model selection tests, such as those of Vuong (1989)
for iid data and Rivers and Vuong (2002) for time series, can be
straightforwardly applied to model selection using the cKLIC.9 To
the best of our knowledge, combining the cKLICwith Vuong (1989)
or Rivers and Vuong (2002) tests is new to the literature.

We may also wish to select the best model in terms of out-of-
sample (OOS) forecasting performance measured by some scoring
rule, S, for the model. Gneiting and Raftery (2007) define ‘‘proper’’
scoring rules as those which satisfy the condition that the true
density always receives a higher score, in expectation, than other
densities. Gneiting and Raftery (2007) suggest that the ‘‘natural’’
scoring rule is the log density, i.e. S (h (Z)) = logh (Z), and it can
be shown that this scoring rule is proper.10 We may consider a
similar scoring rule based on log composite density:

S (h (Z)) =

N−1
i=1

loghi (Zi, Zi+1) . (20)

This scoring rule is shown to be proper in the following theorem.

7 In our empirical work, we also include the pair (z1, zN ) in the ‘‘adjacent’’ com-
posite likelihood so that all marginals enter into the joint composite likelihood
twice.
8 Note that the marginal distribution models, hi , may include three estimation

stages: the conditionalmeans (fixed at zero, or estimated by QLME), the conditional
variances and correlations (estimated byQLME), and the conditional densities of the
standardized, uncorrelated, residuals (estimated byMLE). We describe these stages
in more detail in Section 3.3.
9 We note that a model selection test based on the full likelihood could give a

different answer to one based on a composite likelihood.We leave the consideration
of this possibility for future research.
10 The expectation of the log scoring rule is equal to the KLIC up to an additive
constant. Since the KLIC measures how close the density forecasts to the true
density, the log scoring rule can be used as a metric to determine which model is
closer to the true density.
Theorem 3. The scoring rule based on log composite density given in
Eq. (20) is proper, i.e.

E


N−1
i=1

loghi (Zi, Zi+1)


≤ E


N−1
i=1

log gi (Zi, Zi+1)


(21)

where the expectation is with respect to the true density g, and gi and
hi are the composite likelihoods of the true density and the competing
density respectively.

This theorem allows us to interpret OOS tests based on CL as
being related to the cKLIC, analogous to OOS tests based on the full
likelihood being related to the KLIC. In our empirical analysis below
we employ a Giacomini andWhite (2006) test based on an OOS CL
scoring rule.

3.3. Multi-stage estimation and inference

We next consider multi-stage estimation of models such as
those defined by Eqs. (1)–(3). We consider general parametric
models for the conditional mean and covariance matrix:

µt ≡ µ

Yt−1; θmean , Yt−1 ∈ Ft−1 (22)

Ht ≡ H

Yt−1; θvar


.

This assumption allows for a variety of models for the conditional
mean, for example, ARMA, VAR, linear and nonlinear regressions
for the mean, and various conditional covariance models, such
as DCC, BEKK, and DECO, and stochastic volatility models (see
Andersen et al. (2006) and Shephard (2005) for reviews) as well
as the new model proposed in Section 2.2.

The standardized uncorrelated residuals in Eq. (3) follow a
parametric distribution:

et ∼ iid F = C

F1


·; θmar

1


, . . . , FN


·; θmar

N


; θcopula (23)

where the marginal distributions Fi have zero mean, unit variance,
and are symmetric about zero and the copula C is jointly
symmetric, which together ensures an identity correlation matrix
for et . The parametric specification of µt ,Ht , Fi and C theoretically
enables the use of (one-stage) maximum likelihood estimation,
however, when N is large, this estimation strategy is not feasible,
and multi-stage ML (MSML) estimation is a practical alternative.
We describe MSML estimation in detail below. To save space θmean

is assumed to be known in this section. (For example, it is common
to assume that daily returns are mean zero.)

The covariance model proposed in Section 2.2 allows for the
separate estimation of the conditional variances and the condi-
tional correlation matrix, similar to the DCCmodel of Engle (2002)
which we also consider in our empirical application below. Thus
we can decompose the parameter θvar into


θvar1 , . . . , θvarN , θcorr,

and then represent the complete set of unknown parameters as

θ ≡

θvar1 . . . θvarN θcorr θmar

1 . . . θmar
N θcop

. (24)

As usual for multi-stage estimation, we assume that each sub-
vector of parameters is estimable in just a single stage of the
analysis, and we estimate the elements of θ as follows:

θ̂
var
i ≡ argmax

θvari

T
t=1

log lvarit


θvari


, i = 1, . . . ,N

θ̂
corr

≡ argmax
θcorr

T
t=1

log lcorrt


θ̂
var
1 , . . . , θ̂

var
N , θcorr


(25)

θ̂
mar
i ≡ argmax

θmar
i

T
t=1

log lmar
it


θ̂
var
1 , . . . , θ̂

var
N , θ̂

corr
, θmar

i


,
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i = 1, . . . ,N

θ̂
cop

≡ argmax
θcop

T
t=1

log lcopt


θ̂
var
1 , . . . , θ̂

var
N , θ̂

corr
,

θ̂
mar
1 , . . . , θ̂

mar
N , θcop


.

In words, the first stage estimates the N individual variance
models based on QMLE; the next stage uses the standardized
returns to estimate the correlation model, using QMLE or
a composite likelihood method (as in Engle et al., 2008);
the third stage estimates the N marginal distributions of the
estimated standardized uncorrelated residuals; and the final stage
estimates the copula of the standardized residuals based on the
estimated ‘‘probability integral transforms.’’ This final stage may
be maximum likelihood (if the copula is such that this is feasible)
or composite likelihood, as described in Section 3.1.We denote the
complete vector of estimated parameters obtained from these four
stages as θ̂MSML.

As is clear from the above, later estimation stages depend
on previously estimated parameters, and the accumulation of
estimation error must be properly incorporated into standard
error calculations for θ̂MSML. Multi-stage ML estimation (and, in
particular, multi-stage ML with a composite likelihood stage) can
be viewed as a form of multi-stage GMM estimation, and under
standard regularity conditions, it can be shown (see Newey and
McFadden, 1994, Theorem 6.1) that
√
T


θ̂MSML−θ∗


d

→N

0, V ∗

MSML


as T → ∞. (26)

Consistent estimation of V ∗

MSML is theoretically possible, however
in high dimensions it is not computationally feasible. For example,
the proposed model used in Section 5 for empirical analysis has
more than 1000 parameters, making V ∗

MSML a very large matrix. An
alternative is a bootstrap inference method, see Gonçalves et al.
(2013) for conditions under which block bootstrap may be used
to obtain valid standard errors for multi-stage GMM estimators.
Although this bootstrap approach is not expected to yield any
asymptotic refinements, it allows us to avoid having to compute
a large Hessian matrix. The bootstrap procedure is as follows: (i)
generate a bootstrap sample of length T using a block bootstrap,
such as the stationary bootstrap of Politis and Romano (1994), to
preserve time series dependence in the data; (ii) obtain θ̂

(b)
MSML from

the bootstrap sample, (iii) repeat steps (i)–(ii) B times and use the

quantiles of

θ̂
(b)
MSML

B

b=1
as critical values, or useα/2 and (1 − α/2)

quantiles of

θ̂
(b)
MSML

B

b=1
to obtain (1 − α) confidence intervals for

parameters.

4. Simulation study

4.1. Finite sample properties of MCLE for jointly symmetric copulas

In this section we use simulations to study the efficiency
loss from maximum composite likelihood estimation (MCLE)
relative to MLE, and we compare the efficiency of the three
composite likelihoods presented in Eqs. (12)–(14), namely ‘‘all
pairs’’, ‘‘adjacent pairs’’, and ‘‘first pair’’.

We specify the data generating process as follows, based
on some copula C and a set of independent Bernoulli random
variables:

ũit = Zituit + (1 − Zit) (1 − uit) , t = 1, 2, . . . , T
where [u1t , . . . , uNt ] ≡ ut ∼ iid C (θ)
and Zit ∼ iid Bernoulli (1/2) , and Zit ⊥ Zjt ∀i ≠ j. (27)

We consider two choices for C, the Clayton copula and with
parameter equal to one and the Gumbel copula with parameter
equal to two. We set T = 1000 and we consider dimensions
N = 2, 3, 5, 10, 20, . . . , 100. We repeat all simulations 500 times.

We consider four different estimation methods: MLE, MCLE
with all pairs (Eq. (12)), MCLE with adjacent pairs (Eq. (13)), and
MCLE with the first pair (Eq. (14)). MLE is not computationally
feasible for N > 10, but the MCLEs are feasible for all dimensions
considered.11 We report estimated run times for MLE for N ≥ 20
to provide an indication of how long MLE would take to complete
in those dimensions.

Table 2 presents the simulation results for the Clayton copula,
and the web appendix presents corresponding results for the
Gumbel copula (see Appendix A). The average biases for all
dimensions and for all estimationmethods are small relative to the
standard deviations. The standard deviations show, unsurprisingly,
thatMLE ismore accurate than the threeMCLEs; the efficiency loss
of MCLE with ‘‘all pairs’’ to MLE is ranges from 5% to 37%. Among
the three MCLEs, MCLE with all pairs has the smallest standard
deviations andMCLEwith the first pair has the largest, as expected.
Comparing MCLE with adjacent pairs to MCLE with all pairs, we
find that loss in efficiency is 23% for N = 10, and 5% for N = 100,
and computation speed is two times faster forN = 10 and 70 times
faster for N = 100. For high dimensions, it is confirmed that MCLE
with adjacent pairs performs quitewell compared toMCLEwith all
pairs according to accuracy and computation time, which is similar
to results in Engle et al. (2008) on the use of adjacent pairs in the
estimation of the DCC model.

In sum, MCLE is less efficient than MLE but still approximately
unbiased and very fast for high dimensions. The accuracy of MCLE
based only on adjacent pairs is similar to that ofMCLEwith all pairs,
especially for high dimensions, and the gains in computation time
are large. For this reason, we use MCLE with adjacent pairs for our
empirical analysis in Section 5.

4.2. Finite sample properties of multi-stage estimation

Next we study multi-stage estimation for a representative
model for daily asset returns. We assume:

rt = H1/2
t et (28)

Ht ≡ Cov [rt |Ft−1]
et ∼ iid F = C (F1 (·; ν1) , . . . , FN (·; νN) ; ϕ) .

Weset themean return to zero, andweassume that the conditional
covariance matrix, Ht , follows a GARCH(1,1)–DCC model (see the
web appendix for details of this specification). We use parameter
values for these models based approximately on our empirical
analysis in Section 5:we set theGARCHparameters as [ψi, κi, λi] =

[0.05, 0.1, 0.85] ∀ i, the DCC parameters as [α, β] = [0.02 0.95],
and we set the unconditional correlation matrix to equal the
sample correlations of the first N stock returns used in our
empirical analysis. We use a standardized Student’s t distribution
for the marginal distributions of the standardized residuals, Fi, and
set the degrees of freedom parameter to six. We specify C as a
jointly symmetric copula constructed via Theorem 1, using the
Clayton copula with parameter equal to one.

11 Note that the four estimation methods are equivalent when N = 2, and so the
results are identical in the top row. Also note that the ‘‘first pair’’ MCLE results are
identical across values of N, but we repeat the results down the rows for ease of
comparison with the other estimation methods.
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Table 2
Simulation results for a jointly symmetric copula based on the Clayton copula.

N Bias Std dev Average Run Time (in s)
MLE MCLE

all
MCLE

adj
MCLE
first

MLE MCLE
all

MCLE
adj

MCLE
first

MLE MCLE
all

MCLE
adj

MCLE
first

2 −0.0027 −0.0027 −0.0027 −0.0027 0.1176 0.1176 0.1176 0.1176 0.12 0.12 0.12 0.12
3 −0.0019 −0.0028 −0.0031 −0.0027 0.0798 0.0839 0.0917 0.1176 0.42 0.50 0.24 0.12
5 −0.0014 −0.0022 −0.0016 −0.0027 0.0497 0.0591 0.0713 0.1176 1.96 1.49 0.43 0.12

10 −0.0051 −0.0047 −0.0039 −0.0027 0.0293 0.0402 0.0495 0.1176 116 7 1 0.12
20 −0.0018 −0.0021 −0.0027 0.0365 0.0405 0.1176 2 × 105 27 2 0.12
30 −0.0036 −0.0037 −0.0027 0.0336 0.0379 0.1176 3 × 108 63 3 0.12
40 −0.0028 −0.0037 −0.0027 0.0311 0.0341 0.1176 4 × 1011 117 5 0.12
50 −0.0011 −0.0014 −0.0027 0.0298 0.0329 0.1176 5 × 1014 192 6 0.12
60 −0.0007 −0.0006 −0.0027 0.0314 0.0332 0.1176 7 × 1017 256 7 0.12
70 −0.0013 −0.0013 −0.0027 0.0306 0.0324 0.1176 8 × 1020 364 8 0.12
80 −0.0039 −0.0041 −0.0027 0.0309 0.0332 0.1176 9 × 1023 471 9 0.12
90 0.0012 0.0013 −0.0027 0.0312 0.0328 0.1176 9 × 1026 611 11 0.12

100 −0.0006 −0.0003 −0.0027 0.0290 0.0305 0.1176 1 × 1030 748 12 0.12

Note: This table presents the results from 500 simulations of jointly symmetric copula based on Clayton copula with true parameter 1. The sample size is T = 1000. Four
different estimation methods are used: MLE, MCLE with all pairs, MCLE with adjacent pairs, MCLE with the first pair. MLE is infeasible for N > 10 and so no results are
reported in those cases. The first four columns report the average difference between the estimated parameter and its true value. The next four columns are the standard
deviation in the estimated parameters. The last four columns present average run time of each estimation method. The reported run times for MLE for N > 10 are based on
actual single function evaluation times and on an assumption of 40 function evaluations to reach the optimum.
Table 3
Simulation results for multi-stage estimation.

Variance Correlation Marginal Copula
Const ARCH GARCH DCC α DCC β t dist JS Clayton
ψi κi λi α β νi ϕ

True value 0.05 0.10 0.85 0.02 0.95 6.00 1.00

N = 10
Bias 0.0123 0.0007 −0.0162 −0.0012 −0.0081 0.1926 −0.0122
Std 0.0442 0.0387 0.0717 0.0060 0.0277 1.1023 0.0650
Median 0.0536 0.0959 0.8448 0.0184 0.9459 5.9837 0.9920
90% 0.1027 0.1478 0.9015 0.0263 0.9631 7.5215 1.0535
10% 0.0271 0.0580 0.7619 0.0119 0.9196 5.0559 0.9165
90–10 Diff 0.0756 0.0898 0.1397 0.0144 0.0435 2.4656 0.1370
Time/rep. 54 s.

N = 50
Bias 0.0114 0.0012 −0.0149 −0.0018 −0.0051 0.1880 −0.0136
Std 0.0411 0.0412 0.0687 0.0040 0.0111 1.0936 0.0390
Median 0.0529 0.0958 0.8454 0.0179 0.9458 6.0000 0.9880
90% 0.1019 0.1499 0.9025 0.0234 0.9580 7.5223 1.0312
10% 0.0268 0.0567 0.7615 0.0135 0.9313 5.0454 0.9413
90–10 Diff 0.0751 0.0931 0.1410 0.0098 0.0267 2.4769 0.0899
Time/rep. 138 s.

N = 100
Bias 0.0119 0.0017 −0.0158 −0.0020 −0.0041 0.1813 −0.0133
Std 0.0419 0.0404 0.0691 0.0034 0.0094 1.0748 0.0362
Median 0.0533 0.0966 0.8440 0.0177 0.9467 6.0002 0.9886
90% 0.1025 0.1504 0.9022 0.0223 0.9566 7.4963 1.0244
10% 0.0270 0.0576 0.7607 0.0139 0.9337 5.0492 0.9432
90–10 Diff 0.0756 0.0928 0.1415 0.0084 0.0229 2.4471 0.0811
Time/rep. 329 s.

Note: This table presents the results from 500 simulations of multi-stage estimation of themodel described in Section 3.3. The sample size
is T = 1000 and cross-sectional dimensions are N = 10, 50, and 100. The first row of each panel presents the average difference between
the estimated parameter and its true value. The second row presents the standard deviation in the estimated parameters. The third, fourth
and fifth rows present the 50th, 90th and 10th percentiles of the distribution of estimated parameters, and the final row presents the
difference between the 90th and 10th percentiles.
We estimate the model using the multi-stage estimation de-
scribed in Section 3.3. The parameters of GARCH for each variables
are estimated via QML at the first stage, and the parameters of
the DCCmodel are estimated via variance targeting and composite
likelihood with adjacent pairs, see Engle et al. (2008) for details.
We use ML to estimate the marginal distributions of the standard-
ized residuals, and finallywe estimate the copula parameters using
MCLE with adjacent pairs as explained in Section 3.1. We repeat
this scenario 500 times with time series of length T = 1000 and
cross-sectional dimensions ofN = 10, 50, and 100. Table 3 reports
all parameter estimates except Q. The columns for ψi, κi, λi and νi
report the summary statistics obtained from 500 × N estimates
since those parameters are the same across all variables.

Table 3 reveals that the estimated parameters are centred
on the true values with the average estimated bias being small
relative to the standard deviation. As the dimension size increases,
the copula model parameters are more accurately estimated,
which was also found in the previous section. Since this copula
model keeps the dependence between any two variables identical,
the amount of information on the unknown copula parameter
increases as the dimension grows. The average computation time
is reported in the bottom row of each panel, and it indicates
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Table 4
Summary statistics and conditional mean estimates.

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Panel A: Summary statistics

Mean 0.0002 −0.0006 0.0001 0.0002 0.0004 0.0006
Std dev 0.0219 0.0120 0.0159 0.0207 0.0257 0.0378
Skewness −0.0693 −0.6594 −0.3167 −0.0318 0.1823 0.5642
Kurtosis 11.8559 6.9198 8.4657 10.4976 13.3951 20.0200
Corr 0.4666 0.3294 0.4005 0.4580 0.5230 0.6335

Panel B: Conditional mean

Constant 0.0002 −0.0006 0.0000 0.0002 0.0004 0.0006
AR(1) −0.0535 −0.1331 −0.0794 −0.0553 −0.0250 0.0105

Panel C: Test for skewness, kurtosis, and correlation

# of rejections
H0 : Skew [rit ] = 0 3 out of 104
H0 : Kurt [rit ] = 3 104 out of 104
H0 : Corr


rit , rjt


= 0 5356 out of 5356

Note: Panel A presents summary statistics on the daily equity returns used in the empirical analysis. The columns present
the mean and quantiles from the cross-sectional distribution of the measures listed in the rows. Panel B presents the
parameter estimates for AR(1) models of the conditional means of returns. Panel C shows the number of rejections at the
5% level for tests of zero skewness, zero excess kurtosis, and zero cross-correlation for the 104 stocks under 5% level. (The
total number of pairs of stocks is 5356.).
that multi-stage estimation is quite fast: for example, it takes five
minutes for the one hundred dimension model, in which the total
number of parameters to estimate is more than 5000.

To see the impact of estimation errors from the former stages
to copula estimation, we compare the standard deviations of the
estimated copula parameters in Table 3with the corresponding re-
sults in Table 2. The standard deviation increases by about 30% for
N = 10, and by about 19% forN = 50 and 100. The loss of accuracy
causedbyhaving to estimate theparameters of themarginals is rel-
atively small, given that more than 5000 parameters are estimated
in the former stages.We conclude thatmulti-stage estimationwith
composite likelihood results in a large reduction in the computa-
tional burden (indeed, they make this estimation problem feasible
using current computing power) and yields reliable parameter es-
timates.

5. Empirical analysis of S&P 100 equity returns

In this section we apply our proposed multivariate distribution
model to equity returns over the period January 2006 to December
2012, a total of T = 1761 trade days. We study every stock that
was ever a constituent of the S&P 100 equity index during this
sample, and which traded for the full sample period, yielding a
total of N = 104 assets. The web appendix contains a table with
the names of these 104 stocks (see Appendix A). We obtain high
frequency transaction data on these stocks from the NYSE TAQ
database, and clean these data following Barndorff-Nielsen et al.
(2009), see Bollerslev et al. (2014) for details. We adjust prices
affected by splits and dividends using ‘‘adjustment’’ factors from
CRSP. Daily returns are calculated using the log-difference of the
close prices from high frequency data. For high frequency returns,
log-differences of fiveminute prices are used andovernight returns
are treated as the first return in a day.

5.1. Volatility models and marginal distributions

Table 4 presents the summary statistics of the data and the
estimates of conditional mean model. The top panel presents
unconditional sample moments of the daily returns for each stock.
Those numbers broadly match values reported in other studies, for
example, strong evidence for fat tails. In the lower panel, the formal
tests for zero skewness and zero excess kurtosis are conducted.
The tests show that only 3 stocks out of 104 have a significant
skewness, and all stocks have a significant excess kurtosis. For
reference, we also test for zero pair-wise correlations, and we
reject the null for all pairs of asset returns. The middle panel
shows the estimates of the parameters of AR(1) models. Constant
terms are estimated to be around zero and estimates of the AR(1)
coefficients are slightly negative, both are consistent with values
in other studies.

We estimate two different models for conditional covariance
matrix: the HAR-type model described in Section 2.2 and a GJR-
GARCH–DCC model (see Glosten et al., 1993 and Engle, 2002).12
The latter model uses daily returns, and the former exploits 5-
minute intra-daily returns13; both models are estimated using
quasi-maximum likelihood. The estimates of HAR variance models
are presented in Panel A of Table 5, and are similar to those
reported in Corsi (2009): coefficients on past daily, weekly, and
monthly realized variances are around 0.38, 0.31 and 0.22. For
the HAR-type correlation model, however, the coefficient on past
monthly correlations is the largest followed by weekly and daily.
The parameter estimates for the DCC model presented in Panel
B are close to other studies of daily stock returns, indicating
volatility clustering, asymmetric volatility dynamics, and highly
persistent time-varying correlations. The bootstrap standard
errors described in Section 3.3 are provided for the correlation
models, and they take into account the estimation errors of former
stages.

The standardized residuals are constructed as êt,M ≡ Ĥ−1/2
t,M

rt − µ̂t

where M ∈ {HAR,DCC}. We use the spectral decom-

position rather than the Cholesky decomposition to compute the
square-root matrix due to the former’s invariance to the order of
the variables. Summary statistics on the standardized residuals are
presented in Panels A and B of Table 6.

12 In the interest of space, we report the details of this familiar specification in the
web appendix to this paper (see Appendix A).
13 We use the standard realized covariance matrix, see Barndorff-Nielsen and
Shephard (2004), in the HAR models, and we do not try to correct for the (weak)
AR dynamics captured in the conditional mean model.



D.H. Oh, A.J. Patton / Journal of Econometrics 193 (2016) 349–366 359
Table 5
Conditional covariance model parameter estimates.

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Panel A: HAR-type models based on 5-min returns

Variance models
Constant φ(const)i −0.0019 −0.0795 −0.0375 −0.0092 0.0207 0.1016
HAR day φ(day)i 0.3767 0.3196 0.3513 0.3766 0.3980 0.4414
HAR week φ(week)

i 0.3105 0.2296 0.2766 0.3075 0.3473 0.3896
HAR month φ(month)

i 0.2190 0.1611 0.1959 0.2146 0.2376 0.2962

Est. Std Err.
Correlation model
HAR day (a) 0.1224 0.0079
HAR week (b) 0.3156 0.0199
HAR month (c) 0.3778 0.0326

Panel B: DCC models based on daily returns

Variance models
Constant ψi × 104 0.0864 0.0190 0.0346 0.0522 0.0811 0.2781
ARCH κi 0.0252 0.0000 0.0079 0.0196 0.0302 0.0738
Asym ARCH ζi 0.0840 0.0298 0.0570 0.0770 0.1015 0.1535
GARCH λi 0.9113 0.8399 0.9013 0.9228 0.9363 0.9573

Est. Std Err.
Correlation model
DCC ARCH (α) 0.0245 0.0055
DCC GARCH (β) 0.9541 0.0119

Note: Panel A presents summaries of the estimated HAR-type models described in Section 2.2 using 5-min returns. Panel B presents
summaries of the estimated GJR-GARCH–DCC models using daily returns. The parameter estimates for variance models are summarized
in the mean and quantiles from the cross-sectional distributions of the estimates. The estimates for correlation parts are reported with
bootstrap standard errors which reflect accumulated estimation errors from former stages.
Table 6
Summary statistics and marginal distributions for the standardized residuals.

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Panel A: HAR standardized residuals

Mean 0.0023 −0.0122 −0.0042 0.0016 0.0076 0.0214
Std dev 1.0921 0.9647 1.0205 1.0822 1.1423 1.2944
Skewness −0.1613 −1.5828 −0.4682 −0.0837 0.3420 0.7245
Kurtosis 13.1220 5.0578 6.8422 9.8681 16.0303 32.7210
Correlation 0.0026 −0.0445 −0.0167 0.0020 0.0209 0.0502

Panel B: GARCH–DCC standardized residuals

Mean 0.0007 −0.0155 −0.0071 0.0004 0.0083 0.0208
Std dev 1.1871 1.1560 1.1737 1.1859 1.2002 1.2240
Skewness −0.1737 −1.4344 −0.5293 −0.0307 0.2628 0.7920
Kurtosis 12.6920 5.0815 6.7514 10.1619 15.9325 28.8275
Correlation −0.0011 −0.0172 −0.0073 −0.0008 0.0053 0.0145

Panel C: Marginal t distribution parameter estimates

HAR 5.3033 4.1233 4.7454 5.1215 5.8684 6.8778

DCC 6.0365 4.2280 5.0314 5.9042 7.0274 8.2823

Panel D: Test for skewness, kurtosis, and correlation

# of rejections
HAR DCC

H0 : Skew [eit ] = 0 4 out of 104 6 out of 104
H0 : Kurt [eit ] = 3 104 out of 104 104 out of 104
H0 : Corr


eit , ejt


= 0 497 out of 5356 1 out of 5356

Note: Panel A presents summary statistics of the uncorrelated standardized residuals obtained from the HAR-type
model, and Panel B presents corresponding results based on the GARCH–DCC model. Panel C presents the estimates
of the parameters for the marginal distribution of standardized residuals, obtained from the two volatility models. Panel
D reports the number of rejections, at the 5% level, for tests of zero skewness, zero excess kurtosis, and zero cross-
correlation.
Our proposed approach for modelling the joint distribution
of the standardized residuals is based on a jointly symmetric
distribution, and thus a critical first step is to test for univariate
symmetry of these residuals. We do so in Panel D of Table 6. We
find that we can reject the null of zero skewness for only 4/104
and 6/104 series based on the HAR and DCC models. Thus the
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Table 7
Estimation results for the copula models.

Jointly symmetric copula models Benchmarks
t Clayton Frank Gumbel Indep MV t dist

HAR Est
(s.e.)

39.4435
(4.3541)

0.0876
(0.0087)

1.2652
(0.0942)

1.0198
(0.0038)

– 6.4326
(0.1405)

a

log L −282491 −282500 −282512 −282533 −282578 −284853
Rank 1 2 3 4 5 6
t-test of indep 8.45 10.07 13.43 5.25 – 45.72

DCC Est
(s.e.)

28.2068
(5.4963)

0.1139
(0.0155)

1.5996
(0.1540)

1.0312
(0.0071)

– 7.0962
(0.3586)

a

log L −289162 −289190 −289217 −289255 −289404 −291607
Rank 7 8 9 10 11 12
t-test of indep 6.13 7.36 10.36 4.40 – 17.80

Note: This table presents the estimated parameters of four different jointly symmetric copula models based on t , Clayton, Frank, and
Gumbel copulas, as well as the estimated parameter of the (standardized) multivariate t distribution as a benchmark model. The
independence copula model has no parameter to estimate. Bootstrap standard errors are reported in parentheses. Also reported is the
log-likelihood from the complete distribution model formed by combining the copula model with the HAR or DCC volatility model. (The
MV t distribution is not based on a copula decomposition, but its joint likelihoodmay be comparedwith those from copula-basedmodels.)
The bottom row of each panel reports t-statistics for a test of no nonlinear dependence.

a The parameter of the multivariate t distribution is not a copula parameter, but it is reported in this row for simplicity.
assumption of symmetry appears reasonable for this data set.14 We
also test for zero excess kurtosis and we reject it for all 104 series
for both volatility models. These two test results motivate our
choice of a standardized Student’s t distribution for the marginal
distributions of the residuals. Finally, as a check of our conditional
covariance models, we also test for zero correlations between the
residuals. We find that we can reject this null for 9.2% and 0.0% of
the 5356 pairs of residuals, using the HAR and DCC models. Thus
both models provide a reasonable estimate of the time-varying
conditional covariance matrix, although by this metric the DCC
model would be preferred over the HAR model.

Panel C of Table 6 presents the cross-sectional quantiles of
104 estimated degrees of freedom parameters of standardized
Student’s t distributions. These estimates range from 4.1 (4.2) at
the 5% quantile to 6.9 (8.3) at the 95% quantile for the HAR (DCC)
model. Thus both sets of standardized residuals imply substantial
kurtosis, and, interestingly for the methods proposed in this
paper, substantial heterogeneity in kurtosis. A simple multivariate
t distribution could capture the fat tails exhibited by our data,
but it imposes the same degrees of freedom parameter on all 104
series. Panel C suggests that this restriction is not supported by the
data, and we show in formal model selection tests below that this
assumption is indeed strongly rejected.

5.2. Specifications for the copula

We next present the most novel aspect of this empirical
analysis: the estimation results for a selection of jointly symmetric
copula models. Parameter estimates and standard errors for
these models are presented in Table 7. We consider four
jointly symmetric copulas based on the t Clayton, Frank, and
Gumbel copulas. The jointly symmetric copulas based on Clayton,
Frank and Gumbel are constructed using Theorem 1, and the
jointly symmetric t copula is obtained simply by imposing an

14 If these tests indicated the presence of significant asymmetry, then an
alternative approach based on a combination of the one presented here and
that of Lee and Long (2009) might be employed: First, use the current approach
for the joint distribution of the variables for which symmetry is not rejected.
Then use Lee and Long’s approach for the joint distribution of the asymmetric
variables. Finally combine the two sets of variables invoking the assumption that
the entire (N-dimensional) copula is jointly symmetric. As discussed in Section 2,
such an approach will be computationally demanding if the number of asymmetric
variables is large, but this hybrid approach offers a substantial reduction in the
computational burden if a subset of the variables are symmetrically distributed.
identity correlation matrix for that copula.15 We compare our
jointly symmetric specifications with two well-known benchmark
models: the independence copula and the multivariate Student’s
t distribution. The independence copula is a special case of a
jointly symmetric copula, and there is no parameter to estimate.
The multivariate t distribution is what would be obtained
if our jointly symmetric t copula and all 104 univariate t
distributions had the same degrees of freedom parameter, and
in this case there would be no gains to using Sklar’s theorem to
decompose the joint distribution of the residuals into marginal
distributions and the copula. Note that while the independence
copula imposes a stronger condition on the copula specification
than the multivariate t distribution, it does allow each of the
marginal distributions to be possibly heterogeneous Student’s
t distributions, and so the ordering of these two specifications
is not clear ex ante. This table also reports bootstrap standard
errors which incorporate accumulated estimation errors from
former stages. We follow steps explained in Section 3.3 to obtain
these standard errors. The average block length for the stationary
bootstrap is set to 100.

The log-likelihoods of the complete model for all 104 daily
returns are reported for each of the models in Table 7, along with
the rank of each model according to its log-likelihood, out of the
twelve competing specifications presented here. Comparing the
values of the log-likelihoods, we draw two initial conclusions. First,
copula methods (even the independence copula) outperform the
multivariate t distribution, which imposes strong homogeneity on
the marginal distributions and the copula. Second, high frequency
data improves the fit of all models relative to the use of daily
data: the best six performing models are those based on the HAR
specification.

We next study the importance of allowing for nonlinear
dependence. The independence copula assumes no nonlinear
dependence, and we can test for the presence of nonlinear
dependence by comparing the remaining specifications with the
independence copula. Since the four jointly symmetric copulas and
the multivariate t distribution all nest the independence copula,16

15 It is important to note that the combination of a jointly symmetric t copula
with the 104 univariate t marginal distributions does not yield a multivariate t
distribution, except in the special case that all 105 degrees of freedom parameters
are identical. We test that restriction below and find that it is strongly rejected.
16 The t copula and the multivariate t distribution nest independence at θ−1

= 0;
the Clayton and Frank jointly symmetric copulas nest independence at θ = 0; the
Gumbel jointly symmetric copula nests independence at θ = 1. We note, however,
that independence is nested on the boundary of the parameter space in all cases,
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Table 8
t-statistics from in-sample model comparison tests.

HAR models GARCH–DCC models
t JS C JS F JS GJS Indep MV t t JS C JS F JS GJS Indep

HARmodels
t JS –
C JS 2.92 –
F JS 2.16 1.21 –
GJS 5.38 6.02 1.75 –

Indepa 8.45 10.07 13.43 5.25 –
MV t 19.70b 19.52 19.45 19.23 18.40c –

GARCH–DCC models
t JS 7.86 7.85 7.85 7.84 7.82 6.92 –
C JS 7.86 7.86 7.85 7.85 7.83 6.93 4.48 –
F JS 7.85 7.85 7.84 7.83 7.82 6.91 2.69 1.27 –
GJS 7.88 7.87 7.87 7.86 7.84 6.94 6.74 7.47 1.74 –

Indepa 7.90 7.90 7.90 7.89 7.87 6.97 6.13 7.36 10.36 4.40 –
MV t 8.95 8.95 8.94 8.94 8.92 8.03 18.50b 18.11 17.94 17.60 15.69c

Note: This table presents t-statistics from pair-wise Rivers and Vuong (2002) model comparison tests introduced in Section 3.2. A positive t-statistic
indicates that the model above beat the model to the left, and a negative one indicates the opposite. t JS , C JS , F JS , and GJS stand for jointly symmetric copulas
based on t , Clayton, Frank, and Gumbel copulas respectively. ‘‘Indep’’ is the independence copula. MV t is the multivariate Student’s t distribution. The
upper panel includes results for models that use 5-min data and the HAR-type covariance model introduced in Section 2.2, the lower panel includes results
for models based on a GARCH–DCC covariance model.

a The comparisons of jointly symmetric copula-based models with the independence copula, reported in the penultimate row of the top panel, and the
right half of the penultimate row of the lower panel, are nested comparisons and the Rivers and Vuong (2002) test does not apply. The t-statistics here are
the same as those in Table 7.

b The MV t density is nested in the density based on the jointly symmetric t copula, and so strictly the Rivers and Vuong (2002) test does not apply,
however it is computationally infeasible to implement the formal nested test; we report the Rivers and Vuong t-statistic here for ease of reference.

c The MV t density and the density based on the independence copula are nested only at a single point, and we apply the Rivers and Vuong (2002) test
here.
we can implement this test as a simple restriction on an estimated
parameter. The t-statistics for those tests are reported in the
bottom row of each panel of Table 7. Independence is strongly
rejected in all cases, and we thus conclude that there is substantial
nonlinear cross-sectional dependence in daily returns.While linear
correlation and covariances are important for describing this
vector of asset returns, these results reveal that thesemeasures are
not sufficient to completely describe their dependence.

Our model for the joint distribution of returns invokes
an assumption that while linear dependence, captured via
the correlation matrix, is time-varying, nonlinear dependence,
captured through the distribution of the standardized residuals, is
constant. We test this assumption by estimating the parameters
of this distribution (the copula parameter, and the parameters of
the 104 univariate Student’s t marginal distributions) separately
for the first and second half of our sample period, and then test
whether they are significantly different. We find that 16 (19) of
the HAR (DCC) marginal distribution parameters are significantly
different at the 5% level, but none of the copula parameters are
significantly different. Importantly, when we implement a joint
test for a change in the entire parameter vector, we find no
significant evidence (the p-values are both 0.99), and thus overall
we conclude that this assumption is consistent with the data.17

We now turn to formal tests to compare the remaining, mostly
non-nested, models. We consider both in-sample and out-of-
sample tests.

which requires a non-standard t test. The asymptotic distribution of the squared
t-statistic no longer has χ2

1 distribution under the null, rather it follows an equal-
weighted mixture of a χ2

1 and χ2
0 , see Gouriéroux and Monfort (1996), Ch 21). The

90%, 95%, and 99% critical values for this distribution are 1.28, 1.64, and 2.33 which
correspond to t-statistics of 1.64, 1.96, and 2.58.
17 An alternative approach to capturing time-varying nonlinear dependence could
be to specify a generalized autoregressive score (GAS) model (Creal et al., 2013) for
these parameters. GAS models have been shown to work well in high dimensions,
see Oh and Patton (2016). We leave this interesting extension for future research.
5.3. Model selection tests

5.3.1. In-sample tests
As discussed in Section 3.2, the composite likelihood KLIC,

(cKLIC) is a proper scoring rule, and can be represented as a linear
combination of bivariate KLICs, allowing us to use existing in-
sample model selection tests, such as those of Rivers and Vuong
(2002). In a Rivers and Vuong test comparing two models, A and B,
the null and alternative hypotheses are:

H0 : E

CLAt


θ∗

A


− CLBt


θ∗

B


= 0 (29)

vs. H1 : E

CLAt


θ∗

A


− CLBt


θ∗

B


> 0

H2 : E

CLAt


θ∗

A


− CLBt


θ∗

B


< 0

where CLMt

θ∗

M


is the day t composite likelihood for the joint

distribution from model M ∈ {A, B}, and the expectation is taken
with respect to the true, unknown, joint distribution. Rivers and
Vuong (2002) show that a simple t-statistic on the difference
between the sample averages of the log-composite likelihood has
the standard Normal distribution under the null hypothesis:
√
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
, such as the HAC estimator of Newey andWest

(1987).
Table 8 presents t-statistics from Rivers and Vuong (2002)

model comparison tests. A positive t-statistic indicates that the
model above beats the model to the left, and a negative one
indicates the opposite. We first examine the bottom row of the
upper panel to see whether the copula-based models outperform
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Table 9
t-statistics from out-of-sample model comparison tests.

HARmodels GARCH–DCC models
t JS C JS F JS GJS Indep MV t t JS C JS F JS GJS Indep

HARmodels
t JS –
CJS 1.50 –
FJS 0.89 0.44 –
GJS 2.88 3.09 1.21 –
Indep 2.57 2.60 2.34 1.84 –

MV t 10.75 10.63 10.65 10.48 10.00 –

GARCH–DCC models
t JS 5.23 5.23 5.23 5.23 5.22 4.55 –
C JS 5.23 5.23 5.23 5.23 5.22 4.55 1.55 –
F JS 5.23 5.22 5.23 5.22 5.21 4.55 1.79 1.34 –
GJS 5.24 5.24 5.24 5.23 5.22 4.56 2.96 3.31 0.01 –

Indep 5.24 5.24 5.24 5.23 5.22 4.56 3.10 3.12 2.38 2.44 –
MV t 6.05 6.05 6.05 6.05 6.04 5.41 14.65 14.33 14.56 13.88 12.80

Note: This table presents t-statistics from pair-wise comparisons of the out-of-sample likelihoods of competing density forecasts based on the test of
Giacomini and White (2006). A positive t-statistic indicates that the model above beat the model to the left, and a negative one indicates the opposite. t JS ,
C JS , F JS , and GJS stand for jointly symmetric copulas based on t , Clayton, Frank, and Gumbel copulas respectively. ‘‘Indep’’ is the independence copula. MV t
is the multivariate Student’s t distribution. The upper panel includes results for models that use 5-min data and the HAR-type covariance model introduced
in Section 2.2, the lower panel includes results for models based on a GARCH–DCC covariance model.
the multivariate t distribution. The multivariate t distribution is
widely used as an alternative to the Normal distribution not only
in the literature but also in practice due to its thick tails and non-
zero tail dependence. We observe that all t-statistics in that row
are positive and larger than 18, indicating strong support in favour
of the copula-based models. This outperformance is also achieved
when the GARCH–DCCmodel using daily data is used (see the right
half of the bottom row of the lower panel).

Next we consider model comparisons for the volatility models,
to see whether a covariance matrix model that exploits high
frequency data provides a better fit than one based only on
daily data. The diagonal elements of the left half of the lower
panel present these results, and in all cases we find that the
model based on high frequency data significantly out-performs
the corresponding model based on lower-frequency data. In fact,
all t-statistics in the left half of the lower panel are positive and
significant, indicating that the worst high frequency model is
better than the best daily model. This is strong evidence of the
gains from using high frequency data for capturing dynamics in
conditional covariances.

Finally, we identify the best-fitting model of all twelve models
considered here. The fact that all t-statistics in Table 8 are positive
indicates that the first model listed in the top row is the best, and
that is the model based on the jointly symmetric t copula. This
model significantly beats all alternative models. (The second-best
model is based on the jointly symmetric Clayton copula.) In Fig. 3
we present the model-implied conditional correlation and the 1%
quantile dependence, a measure of lower-tail dependence,18 for
one pair of assets in our sample, Citi Group and Goldman Sachs,
using the best model. The plot shows that the correlation between
this pair ranges from 0.25 to around 0.75 over this sample period.
The lower tail dependence implied by the jointly symmetric t
copula ranges from 0.02 to 0.34, with the latter indicating very
strong lower-tail dependence.

18 For two variables with a copula C, the q-quantile dependence measure is
obtained as τ q = C (q, q) /q, and is interpretable as the probability that one of
the variables will lie in the lower q tail of its distribution, conditional on the other
variable lying in its lower q tail.
5.3.2. Out of sample tests
We next investigate the out-of-sample (OOS) forecasting

performance of the competing models. We use the period from
January 2006 to December 2010 (R = 1259) as the in-sample
period, and January 2011 to December 2012 (P = 502) as the out-
of-sample period.We employ a rollingwindowestimation scheme,
re-estimating the model each day in the OOS period. We use the
Giacomini and White (2006) test to compare models based on
their OOS composite likelihood. The implementation of these tests
is analogous to the Rivers and Vuong test described above. We
note here that the Giacomini andWhite test punishes complicated
models that provide a good (in-sample) fit but are subject to
a lot of estimation error. This feature is particularly relevant
for comparisons of our copula-based approaches, which have
104 extra parameters for the marginal distribution models, with
the multivariate t distribution, which imposes that all marginal
distributions and the copula have the same degrees of freedom
parameter.19

Table 9 presents t-statistics from these pair-wise OOS model
comparison tests, with the same format as Table 8. The OOS
results are broadly similar to the in-sample results, though with
somewhat lower power. We again find that the multivariate t
distribution is significantly beaten by all competing copula-based
approaches, providing further support for the models proposed in
this paper. We also again find strong support for the use of high
frequency data for the covariancematrixmodel,with theHAR-type
models outperforming the daily GARCH–DCC models.

Comparing the independence copula with the jointly sym-
metric copulas we again find that the independence copula is
significantly beaten, providing evidence for the out-of-sample im-
portance of modelling dependence beyond linear correlation. One
difference in Table 9 relative to Table 8 is in the significance of the
difference in performance between the four jointly symmetric cop-
ulas: we find that the jointly symmetric Gumbel copula is signifi-
cantly beaten by the t and the Clayton, but neither of these latter
two significantly beats the other, nor the Frank copula. The jointly

19 Also note that the Giacomini andWhite (2006) test can be applied to nested and
non-nested models, and so all elements of Table 9 are computed in the same way.
See Patton (2012) for more details on implementing in-sample and out-of-sample
tests for copula-based models.
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Fig. 3. Model-implied linear correlation (upper panel) and 1% quantile dependence (lower panel) for daily returns on Citi Group and Goldman Sachs, based on the HAR-type
model for the conditional covariance matrix, and the jointly symmetric t-copula model.
symmetric t remains themodelwith the best performance, but it is
not significantly better than the jointly symmetric Clayton or Frank
models out of sample.

6. Conclusion

This paper proposes a new general model for high-dimensional
distributions of asset returns that utilizes mixed frequency data
and copulas. We decompose dependence into linear and nonlinear
components, and exploit recent advances in the analysis of
high frequency data to obtain more accurate models for linear
dependence, as measured by the covariance matrix, and propose
a new class of copulas to capture the remaining dependence
in the low frequency standardized residuals. By assigning two
different tasks to high frequency data and copulas, we obtain
significantly improvedmodels for joint distributions. Our approach
for obtaining jointly symmetric copulas generates a rich set
of models for studying the dependence of uncorrelated, but
dependent, variables. The evaluation of the density of our jointly
symmetric copulas turns out to be computationally difficult in high
dimensions, but we show that composite likelihood methods may
be used to estimate the parameters of the model and undertake
model selection tests.

We employ our proposed models to study daily return
distributions of 104 US equities over the period 2006–2012. We
find that our proposed models significantly outperform existing
alternatives both in-sample and out-of-sample. The improvement
in performance can be attributed to three main sources. Firstly,
the use of a copula-based approach allows for the use of
heterogeneous marginal distributions, relaxing a constraint of the
familiar multivariate t distribution. Secondly, the use of copula
models that allow for dependence beyond linear correlation,which
relaxes a constraint of the Normal copula, leads to significant gains
in fit. Finally, consistent with a large extant literature, we find that
linear dependence, as measured by the covariance matrix, can be
more accuratelymodelled by using high frequency data than using
daily data alone.

Appendix. Proofs

The following two lemmas are needed to prove Lemma 2.

Lemma 3. Let {Xi}
N
i=1 be N continuous random variables with joint

distribution F, marginal distributions F1, . . . , FN . Then {Xi}
N
i=1 is

jointly symmetric about {ai}Ni=1 if and only if

F (a1 + x1, . . . , ai + xi, . . . , aN + xN)
= F (a1 + x1, . . . ,∞, . . . , aN + xN)

− F (a1 + x1, . . . , ai − xi, . . . , aN + xN) ∀i (31)

F (a1 + x1, . . . ,∞, . . . , aN + xN) and F(a1 + x1, . . . , ai − xi, . . . ,
aN + xN) mean that only the ith element is ∞ and ai − xi,
respectively, and other elements are {a1 + x1, . . . , ai−1 + xi−1, ai+1
+ xi+1, . . . , aN + xN}.
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Proof. (⇒) By Definition 1, the joint symmetry implies that the
following holds for any i,

Pr [X1 − a1 ≤ x1, . . . , Xi − ai ≤ xi, . . . , XN − aN ≤ xN ]
= Pr [X1 − a1 ≤ x1, . . . , ai − Xi ≤ xi, . . . , XN − aN ≤ xN ] (32)

and with a simple calculation, the right hand side of Eq. (32) is
written as

Pr [X1 − a1 ≤ x1, . . . , ai − Xi ≤ xi, . . . , XN − aN ≤ xN ]
= Pr [X1 − a1 ≤ x1, . . . , Xi ≤ ∞, . . . , XN − aN ≤ xN ]

− Pr [X1 − a1 ≤ x1, . . . , Xi ≤ ai − xi, . . . , XN − aN ≤ xN ]
= F (a1 + x1, . . . ,∞, . . . , aN + xN)

− F (a1 + x1, . . . , ai − xi, . . . , aN + xN) (33)

and the left hand side of Eq. (32) is

Pr [X1 − a1 ≤ x1, . . . , Xi − ai ≤ xi, . . . , XN − aN ≤ xN ]
= F (a1 + x1, . . . , ai + xi, . . . , aN + xN)

(⇐) Eq. (31) can be written as

Pr [X1 − a1 ≤ x1, . . . , Xi − ai ≤ xi, . . . , XN − aN ≤ xN ]
= Pr [X1 − a1 ≤ x1, . . . , Xi ≤ ∞, . . . , XN − aN ≤ xN ]

− Pr [X1 − a1 ≤ x1, . . . , Xi ≤ ai − xi, . . . , XN − aN ≤ xN ] ∀i

and by Eq. (33), the right hand side becomes Pr[X1 − a1 ≤

x1, . . . , ai − Xi ≤ xi, . . . , XN − aN ≤ xN ]. Therefore

Pr [X1 − a1 ≤ x1, . . . , Xi − ai ≤ xi, . . . , XN − aN ≤ xN ]
= Pr [X1 − a1 ≤ x1, . . . , ai − Xi ≤ xi, . . . , XN − aN ≤ xN ] ∀i

and this satisfies the definition of joint symmetry. �

Eq. (31) provides a definition of joint symmetry for general
CDFs. The corresponding definition for copulas is given below.

Definition 3 (Jointly symmetric copula). A N-dimensional copula C
is jointly symmetric if it satisfies

C (u1, . . . , ui, . . . , uN) = C (u1, . . . , 1, . . . , uN)

− C (u1, . . . , 1 − ui, . . . , uN) ∀i (34)

where ui ∈ [0, 1] ∀ i. ‘‘C (u1, . . . , 1, . . . , uN)’’ and ‘‘C(u1, . . . , 1 −

ui, . . . , uN)’’ are taken to mean that the ith element is 1 and 1− ui,
respectively, and other elements are {u1, . . . , ui−1, ui+1, . . . , uN}.

Lemma 4. Consider two scalar randomvariables X1 and X2, and some
constant b1 in R1. If (X1 − b1, X2) and (b1 − X1, X2) have a common
joint distribution, then Cov [X1, X2] = 0.

Proof. X1−b1 and b1−X1 have the samemarginal distribution and
the same moments, so E [X1 − b1] = E [b1 − X1] ⇒ E [X1] = b1.
The variables (X1 − b1, X2) and (b1 − X1, X2) also have the same
moments, so E [(X1 − b1) X2] = E [(b1 − X1) X2] ⇒ E [X1X2] =

b1E [X2]. Thus the covariance of X1 and X2 is Cov [X1, X2] =

E [X1X2] − E [X1] E [X2] = 0. �

Proof of Lemma 1. Joint symmetry of

Xi, Xj


around


bi, bj


, for

i ≠ j, is sufficient for Lemma 4 to hold. This is true for all pairs (i, j)
of elements of the vector X, and so Corr [X] = I. �

Proof of Lemma 2. (⇒)We follow Lemma 3 and rewrite Eq. (31)
as

C (F1 (a1 + x1) , . . . , Fi (ai + xi) , . . . , FN (aN + xN))
= C (F1 (a1 + x1) , . . . , 1, . . . , FN (aN + xN))

− C (F1 (a1 + x1) , . . . , Fi (ai − xi) , . . . , FN (aN + xN)) ∀i
and we know Fi (ai + xi) = 1 − Fi (ai − xi) due to the assumption
of the symmetry of each Xi. Therefore,

C (u1, . . . , ui, . . . , uN) = C (u1, . . . , 1, . . . , uN)

− C (u1, . . . , 1 − ui, . . . , uN) ∀i

where ui ≡ Fi (ai + xi) .
(⇐) Following the reverse steps to above, Eq. (34) becomes Eq.

(31), and the proof is done by Lemma 3. �

Proof of Theorem 1. We seek to show that CJS in Eq. (6) satisfies
Eq. (34), i.e.:

CJS (u1, . . . , ui, . . . , uN) = CJS (u1, . . . , 1, . . . , uN)

− CJS (u1, . . . , 1 − ui, . . . , uN) ∀i.

We first show this equality for i = N . Re-write Eq. (6) as

CJS (u1, . . . , uN) =
1
2N


C(−N) (u1, . . . , uN−1, uN)

− C(−N) (u1, . . . , uN−1, 1 − uN)+ C(−N) (u1, . . . , uN−1, 1)


where C(−N) (u1, . . . , uN−1, uN)

=

2
k1=0

· · ·

2
kN−1=0

(−1)R(−N) · C (u1, . . . ,uN−1, uN)

R(−N) ≡

N−1
i=1

1 {ki = 2} andui =

1 for ki = 0
ui for ki = 1
1 − ui for ki = 2.

Then similarly re-write CJS (u1, . . . , uN−1, 1) and CJS(u1, . . . , uN−1,
1 − uN) to obtain:

CJS (u1, . . . , uN−1, 1)− CJS (u1, . . . , uN−1, 1 − uN)

=
1
2N


C(−N) (u1, . . . , uN−1, 1)− C(−N) (u1, . . . , uN−1, 0)  

=0

+ C(−N) (u1, . . . , uN−1, 1)


−
1
2N


C(−N) (u1, . . . , uN−1, 1 − uN)

− C(−N) (u1, . . . , uN−1, uN)+ C(−N) (u1, . . . , uN−1, 1)


=
1
2N


C(−N) (u1, . . . , uN−1, uN)

− C(−N) (u1, . . . , uN−1, 1 − uN)+ C(−N) (u1, . . . , uN−1, 1)


= CJS (u1, . . . , uN) .

This equation holds similarly for all i = 1, . . . ,N − 1, so the proof
is done. �

Proof of Proposition 1. Let {Fs}Ss=1 be a collection of distributions
jointly symmetric around a. By Lemma 2 this implies

F (a + x1, . . . , a + xi, . . . , a + xN)
= F (a + x1, . . . ,∞, . . . , a + xN)

− F (a + x1, . . . , a − xi, . . . , a + xN) ∀i.

Next let G (x) ≡
S

s=1 ωsFs (x) . Then

G (a + x1, . . . , a + xi, . . . , a + xN)

=

S
s=1

ωsFs (a + x1, . . . , a + xi, . . . , a + xN)
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=

S
s=1

ωsF (a + x1, . . . ,∞, . . . , a + xN)

−

S
s=1

ωsF (a + x1, . . . , a − xi, . . . , a + xN) ∀ i

≡ G (a + x1, . . . ,∞, . . . , a + xN)
−G (a + x1, . . . , a − xi, . . . , a + xN) ∀i

and thus G is jointly symmetric around a by Lemma 2. Claim (i) of
the proposition is proved by noting that joint symmetry reduces to
(univariate) symmetry when N = 1. Claim (ii) is proven by noting
that if {Fs}Ss=1 all have Unif (0, 1)marginal distributions then they
are all jointly symmetric copulas, and as convex combinations of
copulas are copulas, G is then a jointly symmetric copula. �

To prove Theorem 2, we need the following lemma. Below we
use M to denote the number of daily observations for the DCC
model, and the total number of intra-daily observations for the
HAR-type model.

Lemma 5. If rank [y1, . . . , yM ] ≥ N, where ym ∈ RN , thenM
m=1 ymy

′
m is positive definite.

Proof. Assume that
M

m=1 ymy
′
m is only positive semi-definite.

Then there exists a nonzero vector x ∈ RN such that x′M
m=1 ymy

′
m


x = 0, and this implies x′

·ym = 0 for anym. On the

other hand, if rank [y1, . . . , yM ] ≥ N , then [y1, . . . , yM ] span RN ,
which implies there exist {αi}

M
i=1 such that

α1y1 + · · · + αMyM = x.
Premultiplying by x′ gives α1x′y1 + · · · + αMx′yM = x′x.

The left hand side is zero since x′
· ym = 0 for any m, which

contradicts that x is a nonzero vector. Therefore,
M

m=1 ymy
′
m is

positive definite. �

Proof of Theorem 2. First we note that Eq. (10) is guaranteed to
yield a positive variance forecast, and so the diagonal matrix of
variance forecasts is positive definite. Given the fact that ifmatrices
U and V are positive definite, then UVU is also positive definite,
we just need to establish positive definiteness of the correlation
matrix forecast RCorr∆t below. Substituting


â, b̂, ĉ


for (a, b, c) in

Eq. (11), and undoing the ‘‘vech’’ operation, we obtain RCorr∆t :

RCorr∆t = RCorr∆T

1 − â − b̂ − ĉ


+ â · RCorr∆t−1

+ b̂ ·
1
4

5
k=2

RCorr∆t−k + ĉ ·
1
15

20
k=6

RCorr∆t−k.

The first term is positive definite since RCorr∆T is positive definite
by Lemma 5 if the number of days multiplied by the intra-day
frequency is greater than N and


1 − â − b̂ − ĉ


is greater than

zero by assumption. The other three terms are positive semi-
definite by the positive semi-definiteness of realized correlation
and the assumption that


â, b̂, ĉ


≥ 0. Thus RCorr∆t is positive

definite. �

Proof of Proposition 2. We obtain the marginal copula density
by first obtaining the marginal copula CDF. Recall that the (i, j)
bivariate copula CDF implied by an N-dimensional copula CDF is
obtained by setting all arguments of the original copula to 1, except
i and j:

Cij

ui, uj


= C


1, . . . , 1, ui, uj, 1, . . . , 1


. (35)
For jointly symmetric copulas generated using Eq. (6) this implies

CJS
ij


ui, uj


= CJS 

1, . . . , 1, ui, uj, 1, . . . , 1


=
1
2N

2
j1=0

· · ·

2
jN=0

(−1)R · C (u1, . . . ,uN)

=
1
2N

1
k1=0

· · ·

2
ki=0

2
kj=0

· · ·

1
kN=0

(−1)R · C (u1, . . . ,uN)

since um = 1 ∀m ∉ {i, j}, and soum = 0 whenever km = 2, and
C = 0 whenever any one of its arguments is equal to zero. Then

CJS
ij


ui, uj


=

1
2N

2N−2
2

ki=0

2
kj=0

(−1)R · Cij
ui,uj


=

1
4

2
ki=0

2
kj=0

(−1)R · Cij
ui,uj


sinceum = 1 for km = 0 or km = 1, for all m ∉ {i, j}. Expanding
above we obtain

CJS
ij


ui, uj


=

1
4


2ui + 2uj − 1 + Cij


ui, uj


− Cij


ui, 1 − uj


− Cij


1 − ui, uj


+ Cij


1 − ui, 1 − uj


,

and then taking the second cross partial derivative we find

cJSij

ui, uj


≡
∂2CJS

ij


ui, uj


∂ui∂uj

=
1
4


cij


ui, uj


+ cij


ui, 1 − uj


+ cij


1 − ui, uj


+ cij


1 − ui, 1 − uj


as claimed. �

Proof of Theorem 3. By applying log (y) ≤ y − 1 to hi(Zi,Zi+1)
gi(Zi,Zi+1)

, the
following is shown:

N−1
i=1

Eg(z)


log

hi (Zi, Zi+1)

gi (Zi, Zi+1)



≤

N−1
i=1


Eg(z)


hi (Zi, Zi+1)

gi (Zi, Zi+1)


− 1



=

N−1
i=1


Egi(zi,zi+1)


hi (Zi, Zi+1)

gi (Zi, Zi+1)


− 1



≡

N−1
i=1


gi (zi, zi+1)

hi (zi, zi+1)

gi (zi, zi+1)
dzidzi+1 − 1


= 0

where the second line holds since only submodel for (Zi, Zi+1)

is needed to evaluate the above expectation, and the third line
holds since hi is a valid density. Thus E

N−1
i=1 loghi (Zi, Zi+1)


≤

E
N−1

i=1 log gi (Zi, Zi+1)

as claimed. �

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2016.04.011.
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