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This article proposes a new class of copula-based dynamic models for high-dimensional conditional
distributions, facilitating the estimation of a wide variety of measures of systemic risk. Our proposed
models draw on successful ideas from the literature on modeling high-dimensional covariance matrices
and on recent work on models for general time-varying distributions. Our use of copula-based models
enables the estimation of the joint model in stages, greatly reducing the computational burden. We use the
proposed new models to study a collection of daily credit default swap (CDS) spreads on 100 U.S. firms
over the period 2006 to 2012. We find that while the probability of distress for individual firms has greatly
reduced since the financial crisis of 2008–2009, the joint probability of distress (a measure of systemic
risk) is substantially higher now than in the precrisis period. Supplementary materials for this article are
available online.
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1. INTRODUCTION

Systemic risk can be broadly defined as the risk of distress in
a large number of firms or institutions. It represents an extreme
event in two directions: a large loss (e.g., corresponding to a large
left-tail realization for stock returns), across a large proportion
of the firms. It differs from “systematic” risk in that the latter
is usually taken to refer to the exposure of an asset to a general
market risk, and carries no reference to the size, direction, and
prevalence that is inherent in a notion of “systemic” risk. There
are a variety of methods for studying risk and dependence for
small collections of assets (see Patton 2013 for a recent review)
but a paucity of methods for studying dependence between a
large collection of assets, which is required for a general analysis
of systemic risk.

Some existing methods for estimating systemic risk simplify
the task by reducing the dimension of the problem to two: an
individual firm and a market index. The “CoVaR” measure of
Adrian and Brunnermeier (2016), for example, uses quantile
regression to estimate a lower tail quantile (e.g., 0.05) of mar-
ket returns conditional on a given firm having a return equal to
its lower tail quantile. The “marginal expected shortfall” pro-
posed by Brownlees and Engle (2016) estimates the expected
return on a firm conditional on the market return being below
some low threshold. These methods have the clear benefit of be-
ing parsimonious, but by aggregating the “nonfirm i” universe
to a single market index, useful information about systemic
risk may be missed. For example, firm i may impact a size-
able subset of the other firms, but fall short of precipitating a
market-wide event. The objective of this article is to provide
models that can be used to handle large collections of variables,
and facilitate the estimation of a wider variety of systemic risk
measures.

We use Sklar’s theorem (see Nelsen 2006), with an extension
to conditional distributions from Patton (2006), to decompose

the conditional joint distribution of a collection of N variables,
Yt = [Y1t , . . . , YNt ]′ , into their marginal distributions and a
conditional copula:

Yt |Ft−1 ∼ Ft = Ct (F1t , . . . , FNt ) . (1)

We propose new models for the time-varying conditional copula,
Ct , that can be used to link models of the conditional marginal
distributions (e.g., ARMA-GARCH models) to form a dynamic
conditional joint distribution. Of central relevance to this arti-
cle are cases where N is relatively large, around 50 to 250. In
such cases, models that have been developed for low dimension
problems (say, N < 5) are often not applicable, either because
no generalization beyond the bivariate model exists, or because
such generalizations are too restrictive (e.g., Archimedean cop-
ulas have just one or two free parameters regardless ofN,which
is clearly very restrictive in high dimensions), or because the ob-
vious generalization of the bivariate case leads to a proliferation
of parameters and unmanageable computational complexity. In
high-dimensional applications, the challenge is to find a balance
of flexibility and parsimony.

This article makes two contributions. First, we propose a flex-
ible and feasible model for capturing time-varying dependence
in high dimensions. Our approach draws on successful ideas
from the literature on dynamic modeling of high-dimensional
covariance matrices and on recent work on models for general
time-varying distributions. In particular, we combine the “GAS”
model of Creal, Koopman, and Lucas (2011, 2013) and the fac-
tor copula model of Oh and Patton (2016) to obtain a flexible yet
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parsimonious dynamic model for high-dimensional conditional
distributions. This model is generally only estimable using nu-
merical optimization techniques, and we propose a “variance
targeting” (Engle and Mezrich 1996; Engle 2002) type esti-
mator to dramatically reduce the dimension of the optimization
problem. We show that this estimation method is a form of (non-
linear) generalized method of moments (GMM), and thus can
be treated as part of a multi-stage GMM estimation of the entire
model. A realistic simulation study confirms that our proposed
models and estimation methods have satisfactory properties for
relevant sample sizes.

Our second contribution is a detailed study of a collection
of 100 daily credit default swap (CDS) spreads on U.S. firms.
The CDS market has expanded enormously over the last decade,
growing 40-fold from $0.6 trillion of gross notional principal in
2001 to $25.9 trillion at the end of 2011 according to the Inter-
national Swaps and Derivatives Association (ISDA), yet it has
received relatively little attention, compared with equity returns,
in the econometrics literature. (Interest is growing, however, see
Conrad, Dittmar, and Hameed 2011; Christoffersen et al. 2013;
Creal, Gramacy, and Tsay 2014; Lucas, Schwaab, and Zhang
2014; Creal and Tsay 2015 for recent work on CDS data.) We
use our model of CDS spreads to provide insights into sys-
temic risk, as CDS spreads are tightly linked to the health of
the underlying firm. We find that systemic risk rose during the
financial crisis, unsurprisingly. More interestingly, we also find
that systemic risk remains high relative to the precrisis period,
even though idiosyncratic risk has fallen.

The remainder of the article is structured as follows. Sec-
tion 2 presents a dynamic copula model for high-dimensional
applications, and Section 3 presents a simulation study for the
proposed model and estimation method. In Section 4, we present
estimation results for various models of CDS spreads. Section 5
applies the model to estimate time-varying systemic risk, and
Section 6 concludes. Technical details and some additional re-
sults are presented in an online appendix.

2. A DYNAMIC COPULA MODEL FOR HIGH
DIMENSIONS

In this section, we describe our approach for capturing dy-
namics in the dependence between a relatively large number
of variables. (A review of alternative methods from the small
but growing literature on this topic is presented in Section 2.5.)
We consider a class of data-generating processes (DGPs) that
allow for time-varying conditional marginal distributions, for
example, dynamic conditional means and variances, and also
possibly time-varying higher-order moments:

Yt ≡ [Y1t , . . . , YNt ]
′

where Yit = μit (φi,0) + σit (φi,0)ηit , i = 1, 2, . . . , N (2)

ηit |Ft−1 ∼ Fit (φi,0),

where μit is the conditional mean of Yit , σit is the conditional
standard deviation, and Fit (φi,0) is a parametric distribution
with zero mean and unit variance. We will denote the parame-
ters of the marginal distributions as φ ≡[φ′

1, . . . , φ
′
N ]′, the pa-

rameters of the copula as γ, and the vector of all parameters
as θ ≡[φ′, γ ′]′. We assume that Fit is continuous and strictly

increasing, which fits our empirical application, though this as-
sumption can be relaxed. The information set is taken to be
Ft = σ (Yt ,Yt−1, . . .). Define the conditional probability inte-
gral transforms of the data as

Uit ≡ Fit

(
Yit − μit (φi,0)

σit (φi,0)
;φi,0

)
, i = 1, 2, . . . , N. (3)

Then the conditional copula of Yt |Ft−1 is equal to the condi-
tional distribution of Ut |Ft−1:

Ut |Ft−1 ∼ Ct (γ0). (4)

By allowing for a time-varying conditional copula, the class
of DGPs characterized by Equations (2)–(4) is a generaliza-
tion of those considered by Chen and Fan (2006), for exam-
ple, however the cost of this flexibility is the need to specify
parametric marginal distributions. In contrast, Chen and Fan
(2006), Rémillard (2010), and Oh and Patton (2013) allowed
for nonparametric estimation of the marginal distributions. The
parametric margin requirement arises as the asymptotic distri-
bution theory for a model with nonparametric margins and a
time-varying copula is not yet available in the literature. We
attempt to mitigate this requirement in our empirical work by
using flexible models for the marginal distributions, which are
allowed to differ for each variable, and conducting goodness-
of-fit tests to verify that they provide a satisfactory fit to the
data.

2.1 Factor Copulas

In high-dimensional applications, a critical aspect of any
model is imposing some form of dimension reduction. A widely
used method to achieve this in economics and finance is to use
a factor structure. Oh and Patton (2016) proposed using a factor
model with flexible distributions to obtain a flexible class of
“factor copulas.” A one-factor version of their model is the cop-
ula for the latent vector random variable Xt ≡ [X1t , . . . , XNt ]′

implied by the following structure:

Xit = λit (γλ)Zt + εit , i = 1, 2, . . . , N,
where Zt ∼ Fzt (γz) , εit ∼ iid Fεt (γε) , Zt⊥⊥εit∀i, (5)

where Fzt (γz) and Fεt (γε) are flexible parametric univariate dis-
tributions for the common factor and the idiosyncratic vari-
ables, and λit (γλ) is a potentially time-varying weight on the
common factor. The collection of all copula parameters is
γ ≡[γ ′

z, γ
′
ε, γ

′
λ]

′. The conditional joint distribution for Xt can
be decomposed into its conditional marginal distributions and
its conditional copula via Sklar’s theorem (see Nelsen 2006) for
conditional distributions, see Patton (2006):

Xt ∼ Gt= Ct (G1t (γ ) , . . . ,GNt (γ ) ; γ ). (6)

Note that only the copula of these latent variables, denoted
Ct (γ ) , is used as a model for the copula of the observable data
Yt ; the marginal distributions of Xt need not be the same as the
marginal distributions of the observed data. (These marginals,
Git , are effectively discarded.) If we impose that the marginal
distributions of the observable data are also driven by the factor
structure in Equation (5), then we would also use the implied
marginal distributions, and this approach then becomes a stan-
dard factor model for a vector of variables. However, Oh and
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Patton (2015) proposed imposing the factor structure only on
the component of the multivariate model where dimension re-
duction is critical, namely, the copula, and allow the marginal
distributions to be modeled using a potentially different ap-
proach. In this case, the factor structure in Equation (5) is used
only for the copula that it implies, and this becomes a “factor
copula” model.

The copula implied by Equation (5) is known in closed form
for only a few particular combinations of choices of Fz and
Fε (the most obvious example being where both of these dis-
tributions are Gaussian, in which case the implied copula is
also Gaussian). For general choices of Fz and Fε, the copula
of X will not be known in closed form, and thus the copula
likelihood is not known in closed form. Numerical methods
can be used to overcome this problem. Oh and Patton (2013)
proposed simulated method of moments-type estimation of the
unknown parameters, however their approach is only applica-
ble when the conditional copula is constant. A key objective of
this article is to allow the conditional copula to vary through
time and so an alternate estimation approach is desirable. We
use a simple numerical integration method, described in detail
in the internet appendix, to overcome the lack of closed-form
likelihood. This numerical integration exploits the fact that al-
though the copula is N-dimensional, we need only integrate out
the common factor, which is one-dimensional in the structure
above.

Also, analogous to this issue in other latent factor models, the
copula implied by Equation (5) is only identified up to the sign of
the loadings (λit ) and the sign of the common factor (Zt ) . That
is, for a given set of loadings and common factor distribution,
an identical copula can be obtained by switching the signs of
all loadings and by flipping the distribution of Zt around zero.
In some applications, this issue can complicate interpreting the
parameters of the factor model. In our application, we exploit
the fact that all of the variables are positively related, and we
thus impose that the factor loadings are all positive.

Dynamics in the factor copula model in Equation (5) arise
by allowing the loadings on the common factor, λit , to vary
through time, and/or by allowing the distributions of the com-
mon factor and the idiosyncratic variables to change through
time. For example, holding Fzt and Fεt fixed, an increase in the
factor loadings corresponds to an increase in the level of over-
all dependence (e.g., rank correlation) between the variables.
Holding the factor loadings fixed, an increase in the thickness
of the tails of the distribution of the common factor increases
the degree of tail dependence. In the next section, we describe
how we model these dynamics.

2.2 Generalized Autoregressive Score Dynamics

An important feature of any dynamic model is the specifica-
tion for how the parameters evolve through time. Some spec-
ifications, such as stochastic volatility models (see Shephard
2005) and related stochastic copula models (see Manner and
Segers 2011; Hafner and Manner 2012) allow the varying pa-
rameters to evolve as a latent time series process. Others, such
as ARCH-type models for volatility (see Engle 1982) and re-
lated models for copulas (see, e.g., Patton 2006; Jondeau and

Rockinger 2006; Creal, Koopman, and Lucas 2013, e.g.) model
the varying parameters as some function of lagged observables.
An advantage of the latter approach over the former, especially
for high-dimensional applications, is that it avoids the need to
“integrate out” the innovation terms driving the latent time series
processes.

Within the class of ARCH-type models (“observation driven,”
in the terminology of Creal, Koopman, and Lucas 2013), the
question of which function of lagged observables to use as a
forcing variable in the evolution equation for the varying param-
eter arises. For models of the conditional variance, an obvious
choice is the lagged squared residual, as in the ARCH model, but
for models with parameters that lack an obvious interpretation
the choice is less clear. We adopt the generalized autoregressive
score (GAS) model of Creal, Koopman, and Lucas (2013) to
overcome this problem. (Harvey 2013 and Harvey and Sucarrat
2014 proposed a similar method for modeling time-varying pa-
rameters, which they called a “dynamic conditional score,” or
“DCS,” model.) These authors proposed using the lagged score
of the density model (copula model, in our application) as the
forcing variable. Specifically, for a copula with time-varying
parameter δt , governed by fixed parameter γ, we have

Let Ut |Ft−1 ∼ C(δt (γ ))

then δt = ω + Bδt−1 + Ast−1

where st−1 = St−1∇t−1 (7)

∇t−1 = ∂ log c(ut−1; δt−1)

∂δt−1

and St is a scaling matrix, for example, the inverse Hessian
or its square root. (The specification for the dynamics of the
parameter δt can also be generalized to include observable vari-
ables, similar to the GARCH-X (Brenner, Harjes, and Kroner
1996) extension of a GARCH model, see De Lira Salvatierra and
Patton (2015), although we do not pursue that here.) If the cop-
ula likelihood is not available in closed form, as is generally the
case with factor copulas, then the vector ∇t can be obtained via
numerical differentiation.

While this specification for the evolution of a time-varying
parameter is clearly somewhat arbitrary, Creal, Koopman, and
Lucas (2013) motivated it by showing that it nests a variety of
popular and successful existing models: GARCH (Bollerslev
1986) for conditional variance; ACD (Engle and Russell 1998)
for models of trade durations (the time between consecutive
high-frequency observations); Davis, Dunsmuir, and Streett’s
(2003) model for Poisson counts. In recent work, Blasques,
Koopman, and Lucas (2014a) showed that the GAS model can
be motivated information-theoretically, by showing that this
approach minimizes the local Kullback–Leibler divergence
between the true conditional density and the model-implied
density, and Harvey (2013) motivated this specification as an
approximation to a filter for a model driven by a stochastic latent
parameter, or an “unobserved components” model. Finally, the
recursion above can also be interpreted as the steepest ascent di-
rection for improving the model’s fit, in terms of the likelihood,
given the current value of the model parameter δt , similar to
numerical optimization algorithms such as the Gauss–Newton
algorithm.



184 Journal of Business & Economic Statistics, April 2018

2.3 High-Dimensional Factor Copulas With GAS
Dynamics

We employ the GAS model to allow for time variation in the
factor loadings in the factor copula implied by Equation (5), but
to keep the model parsimonious we impose that the parameters
governing the “shape” of the common and idiosyncratic vari-
ables (γz and γε) are constant. We use the skewed t distribution
of Hansen (1994) as the model for Fz. This distribution has two
shape parameters, a degrees of freedom parameter (νz ∈ (2,∞])
and an asymmetry parameter (ψz ∈ (−1, 1)) , and it simplifies
to the standardized t distribution when ψ = 0. We use the stan-
dardized t distribution as the model for Fε for simplicity.

The general GAS framework in Equation (7) applied to the
factor loadings (λit ) in Equation (5) would imply N + 2N2

parameters governing their evolution, which represents an in-
feasibly large number for even moderate values of N. To keep
the model parsimonious, we adopt a simplification from the
DCC model of Engle (2002), and impose that the coefficient
matrices (B and A) are diagonal with a scalar parameter (β and
α, respectively) on the diagonal. To avoid the estimation of an
N ×N scaling matrix, we set St = I . In our empirical appli-
cation below, we found slightly better results from modeling
log λit , thereby imposing positive weights, than from modeling
λit directly. We thus employ a GAS model for the log factor
loadings, but the use of the logarithm here is not essential to our
empirical approach:

log λit = ωi + β log λi,t−1 + αsi,t−1, i = 1, 2, . . . , N, (8)

where sit ≡ ∂ log c(ut ; λt , νz, ψz, νε)/∂ log λit and λt ≡ [λ1t ,

. . . , λNt ]′.
The dynamic copula model implied by Equations (5) and (8)

containsN + 2 parameters for the GAS dynamics, three param-
eters for the shape of the common and idiosyncratic variables,
for a total of N + 5 parameters. Numerically optimizing this
model when N = 50 or 100 represents quite a computational
challenge. We propose a method to overcome this challenge by
adapting an idea from the DCC model of Engle (2002), known
as “variance targeting.” The nature of our GAS specification
means that the variance targeting approach needs to be modified
for use here.

The evolution equation for λit in Equation (8) can be rewritten
as

log λit = E
[
log λit

]
(1 − β) + β log λi,t−1 + αsi,t−1 (9)

using the result from Creal, Koopman, and Lucas (2013) that
Et−1[sit ] = 0, and soE[log λit ] = ωi/(1 − β). The proposition
below provides a method for using sample rank correlations
to obtain an estimate of E[log λit ], which eliminates the need
to numerically optimize over the intercept parameters, ωi. The
proposition is based on the following assumption.

Assumption 1.

(a) The conditional copula of Yt |Ft−1 is the time-varying
factor copula given in Equations (5) and (8).

(b) The process {λt } generated by Equation (8) is strictly
stationary.

(c) Let ρt,X ≡ vech(RankCorrt−1[Xt ]). Then log λt is a lin-
ear function of ρt,X.

(d) Let ρij,X ≡ RankCorr[Xi,Xj ] and ρLij,X ≡ Corr[Xi,
Xj ]. Then, for fixed values of (γz, γε), the mapping
ρij,X = ϕ(ρLij,X) is strictly increasing.

Part (a) of this assumption makes explicit that the copula
of the data is the GAS-factor copula model, and so the con-
ditional copula of Yt |Ft−1 is the same as that of Xt |Ft−1.

Blasques, Koopman, and Lucas (2014b) provided conditions
under which univariate GAS models satisfy stationarity con-
ditions, and Blasques, Koopman, and Lucas (2014a) provided
results for GAS models with a vector-dependent variable but a
scalar time-varying parameter; corresponding theoretical results
for our multivariate case are not yet available in the literature,
and in part (b) we simply assume that stationarity holds. Part (c)
formalizes the applicability of a Taylor series expansion of the
function mapping ρt to λt . In practice, this assumption will hold
only approximately, and its applicability needs to be verified
via simulation, which we discuss further in Section 3 and in the
internet appendix. Part (d) enables us to map rank correlations
to linear correlations. Note that we can take (γz, γε) as fixed, as
we call this mapping for each evaluation of the log-likelihood.
Importantly, this mapping can be computed prior to estimation,
and then just called during estimation, rather than recomputed
each time the likelihood function is evaluated, which greatly
speeds up estimation.

Proposition 1. Let Assumption 1 hold, and denote the vech
of the rank correlation matrix of the standardized residuals, ηt ,
as ρ̄η and its sample analog as ρ̂η. Then:

(i) E[log λt ] = H (ρ̄η), where H is defined in Equation (A.4).

(ii) ̂log λ = H (ρ̂η) is a GMM estimator of E[log λt ].

The proof of this proposition is in the appendix. Part (i) of
the above proposition provides the mapping from the popula-
tion rank correlation of the standardized residuals to the mean
of the (log) factor loadings, which is the basis for consider-
ing a variance-targeting type estimator. Part (ii) shows that the
sample analog of this mapping can be interpreted as a stan-
dard GMM estimator. This is useful as it enables us to treat
the estimation of the complete vector of parameters as multi-
stage GMM. Under standard regularity conditions, this can be
shown to yield consistent and asymptotically normal parameter
estimates (see White 1994; Engle and Sheppard 2001, and in
particular Newey and McFadden 1994, Theorem 6.1). That is,
if we let θ̂MS-GMM≡ [φ̂

′
MS-GMM, γ̂

′
MS -GMM]′ denote the collection

of all estimated parameters, then
√
T
(
θ̂MS-GMM−θ∗) d→ N

(
0, V ∗

MS-GMM

)
as T → ∞. (10)

Consistent estimation of V ∗
MS-GMM is theoretically possible,

however in high dimensions it is not computationally feasi-
ble. Gonçalves et al. (2013) provided conditions under which
a block bootstrap may be used to obtain valid standard errors
on parameters estimated via multi-stage GMM. The resulting
standard errors are not higher-order efficient, like some boot-
strap inference methods, but they do enable us to avoid having
to handle Hessian matrices of size on the order of N ×N. Note
that sample rank correlations cannot in general be considered as
moment-based estimators, as they depend on the sample ranks



Oh and Patton: Time-Varying Systemic Risk 185

of the observed data, and studying their estimation properties
requires alternative techniques. However, we exploit the fact
that the marginal distributions of the data are known up to an
unknown parameter vector, and thus rank correlation can be
obtained as a sample moment of a nonlinear function of the
data.

2.4 Equidependence Versus Heterogenous
Dependence

To investigate whether we can further reduce the number of
free parameters in this model, we consider two restrictions of
the model in Equation (8), motivated by the “dynamic equicor-
relation” model of Engle and Kelly (2012). If we impose that
ωi = ω ∀ i, then the pair-wise dependence between each of the
variables will be identical, leading to a “dynamic equidepen-
dence” model. (The copula implied by this specification is
“exchangeable” in the terminology of the copula literature.)
In this case, we have only six parameters to estimate, inde-
pendent of the number of variables N, vastly reducing the
estimation burden, but imposing a lot of homogeneity on the
model.

An intermediate step between the fully flexible model and the
equidependence model is to group the assets using some ex ante
information (e.g., by industry) and impose homogeneity only
within groups. This leads to a “block equidependence” copula
model, with

Xit = λg(i),tZt + εit , i = 1, 2, . . . , N

log λg,t = ωg + β log λg,t−1 + αsg,t−1, g = 1, 2, . . . ,G,
(11)

where g (i) is the group to which variable i belongs, and G is
the number of groups. In this case, the number of parameters to
estimate in the copula model is G+ 5. In our empirical appli-
cation, we have N = 100 and we consider grouping variables
into G = 5 industries, meaning this model has 10 parameters
to estimate rather than 105. In our empirical analysis below, we
compare these two restricted models (G = 1 and G = 5) with
the “heterogenous dependence” model that allows a different
factor for each variable (and so G = N ).

2.5 Other Models for Dynamic, High-Dimensional
Copulas

As noted above, the literature contains relatively few models
for dynamic, high-dimensional, copulas. Exceptions to this are
discussed here. Lucas, Schwaab, and Zhang (2014) combined
GAS dynamics with a skewed t copula to model 10 sovereign
CDS spreads. A similar model, though with an alternative skew
t specification and with Engle’s (2002) DCC dynamics, is used
by Christoffersen et al. (2012, 2013). The former of these two ar-
ticles analyzes equity returns on up to 33 national stock indices,
while the latter studies weekly equity returns and CDS spreads
on 233 North American firms (and is the largest time-varying
copula model in the extant literature). Creal and Tsay (2015) pro-
posed a stochastic copula model based on a factor structure, and
used Bayesian estimation methods to apply it to an unbalanced
panel of CDS spreads and equity returns on 100 firms. Almeida,
Czado, and Manner (2012) used “vine” copulas to model the

dependence between 30 German stock return series, with dy-
namics captured through a stochastic volatility-type equation
for the parameters of the copula. Stöber and Czado (2012) also
used vine copulas, combined with a regime-switching model
for dynamics, to model dependence between 10 German stock
returns.

3. SIMULATION STUDY

This section presents an analysis of the finite sample proper-
ties of maximum likelihood estimation for factor copulas with
GAS dynamics. Factor copulas do not have a closed-form like-
lihood, and we approximate the likelihood using standard nu-
merical integration methods, details of which can be found in
the internet appendix.

We consider three different copula models for the Monte
Carlo simulation: a dynamic equidependence model (G = 1), a
dynamic block equidependence model (G = 10), and a dynamic
heterogenous dependence model (G = N ), all of them governed
by

Xit = λg(i),tZt + εit , i = 1, 2, . . . , N

log λg,t = ωg + β log λg,t−1 + αsg,t−1, g = 1, 2, . . . ,G

Z ∼ Skew t (νz, ψz)

εi ∼ iid t (νε) , and εi⊥⊥Z ∀ i .

(12)

We set N = 100 to match the number of series in our empirical
application below. For simplicity, we impose that νz = νε, and
we estimate ν−1 rather than ν, so that Normality is nested at
ν−1 = 0 rather than ν → ∞. Broadly matching the parameter
estimates we obtain in our empirical application, we set ω = 0,
β = 0.98, α = 0.05, ν = 5, and ψz = 0.1 for the equidepen-
dence model. The block equidependence model uses the same
parameters but sets ω1 = −0.03 and ω10 = 0.03, and with ω2

to ω9 evenly spaced between these two bounds, and the het-
erogenous dependence model similarly uses ω1 = −0.03 and
ω100 = 0.03, with ω2 to ω99 evenly spaced between these two
bounds. Rank correlations implied by these values range from
0.1 to 0.7. With these choices of parameter values and depen-
dence designs, various dynamic dependence structures are cov-
ered, and asymmetric tail dependence, which is a common fea-
ture of financial data, is also allowed. We use a sample size of
T = 500 and we repeat each simulation 100 times.

The results for the equidependence model presented in Panel
A of Table 1 reveal that the average estimated bias for all pa-
rameters is small, and the estimates are centered on true values.
The results for the block equidependence model, presented in
Panel B, are also satisfactory, and, as expected, the estimation
error in the parameters is generally slightly higher for this more
complicated model.

The heterogenous dependence model is estimated using the
variance targeting-type approach for the intercepts, ωi, de-
scribed in Section 2.3, combined with numerical optimization
for the remaining parameters. The internet appendix presents
simulation results that verify the applicability of Assumption 1
for this model, and complete simulation results for this model
are presented in Table A1 of the internet appendix. This table
confirms that the approach leads to estimators with satisfactory
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Table 1. Simulation results

Diff
(90%−10%)True Bias Std Median 90% 10%

Panel A: Equidependence

ω 0.000 0.005 0.015 0.001 0.027 −0.003 0.030
α 0.050 0.000 0.003 0.050 0.051 0.048 0.003
β 0.980 0.002 0.004 0.980 0.989 0.979 0.010
ν−1 0.200 0.001 0.006 0.200 0.206 0.195 0.010
ψz 0.100 0.005 0.017 0.100 0.118 0.097 0.021

Panel B: Block equidependence

ω1 −0.030 0.000 0.005 −0.030 −0.025 −0.035 0.010
ω2 −0.023 −0.001 0.004 −0.024 −0.020 −0.030 0.010
ω3 −0.017 0.000 0.005 −0.017 −0.011 −0.023 0.012
ω4 −0.010 0.000 0.004 −0.011 −0.005 −0.016 0.011
ω5 −0.003 0.001 0.004 −0.002 0.004 −0.007 0.011
ω6 0.003 0.001 0.004 0.004 0.009 0.000 0.009
ω7 0.010 0.002 0.005 0.012 0.018 0.007 0.012
ω8 0.017 0.001 0.005 0.017 0.025 0.012 0.013
ω9 0.023 0.001 0.005 0.024 0.030 0.018 0.012
ω10 0.030 0.003 0.006 0.033 0.040 0.024 0.015
α 0.050 0.001 0.005 0.051 0.057 0.045 0.012
β 0.980 −0.001 0.002 0.978 0.981 0.976 0.004
ν−1 0.200 −0.005 0.008 0.196 0.202 0.184 0.018
ψz 0.100 0.004 0.025 0.103 0.138 0.071 0.068

NOTES: This table presents results from the simulation study described in Section 3. The online appendix contains results for the “heterogenous dependence” model.

finite-sample properties. The standard errors on the estimated in-
tercept parameters are approximately twice as large, on average,
as in the block equidependence case, however this model has
seven times as many parameters as the block equidependence
(104 vs. 14) and so some loss in accuracy is inevitable. Impor-
tantly, all estimated parameters are approximately centered on
their true values, confirming that the assumptions underlying
Proposition 1 are applicable for this model.

4. DATA DESCRIPTION AND ESTIMATION RESULTS

4.1 CDS Spreads

We apply the new dynamic copula model proposed in the
previous section to daily credit default swap (CDS) spreads,
obtained from Markit. In brief, a CDS is a contract in which
the seller provides insurance to the buyer against any losses
resulting from a default by the “reference entity” within some
horizon. We focus on North American corporate CDS contracts,
and the reference entities are thus North American firms. The
CDS spread, usually measured in basis points and payable quar-
terly by the buyer to the seller, is the cost of this insurance.
See Duffie and Singleton (2003) and Hull (2012) for more de-
tailed discussions of CDS contracts, and see Barclays “CDS
Handbook” (2010) for institutional details.

A key reason for interest in CDS contracts is the sensitivity of
CDS spreads to changes in market perceptions of the probabil-
ity of default, see Conrad, Dittmar, and Hameed (2011), Creal,
Gramacy, and Tsay (2014), Christoffersen et al. (2013), and Liu
(2014) for recent empirical studies of implied default probabil-
ities. Under some simplifying assumptions (such as a constant
risk free rate and default hazard rate) see Carr and Wu (2011),

for example, it can be shown that the CDS spread in basis points
is

Sit = 1002P
Q
it Lit , (13)

where Lit is the loss given default (sometimes shortened to
“LGD,” and often assumed to equal 0.6 for U.S. firms) and
P

Q
it is the implied probability of default. The same formula can

also be obtained as a first-order approximation at PQ
it ≈ 0 for

other more complicated pricing equations. This expression can
be written in terms of the objective probability of default, P P

it :

Sit = 1002P P
itMitLit , (14)

where Mit is the market price of risk (stochastic discount fac-
tor). An increase in a CDS spread can be driven by an increase
in the LGD, an increase in the market price of default risk for
this firm, or an increase in the objective probability of default.
Any one of these three effects is indicative of a worsening of
the health of the underlying firm.

In the analysis below, we work with the log-difference of
CDS spreads, to mitigate their autoregressive persistence, and
under this transformation we obtain:

Yit ≡ � log Sit = � logP P
it +� logMit +� logLit . (15)

If the loss given default is constant then the third term above
vanishes, and if we assume that the market price of risk is con-
stant (as in traditional asset pricing models) or evolves slowly
(e.g., with a business cycle-type frequency) then daily changes
in CDS spreads can be attributed primarily to changes in the
objective probability of default. We will use this to guide our
interpretation of the empirical results below, but we emphasize
here that an increase in any of these three terms represents “bad
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news” for firm i, and so the isolation of the objective probability
of default is not required for our interpretations to follow.

4.2 Summary Statistics

Our sample period spans January 2006 to April 2012, a total
of 1644 days. We study the 5-year CDS contract, which is
the most liquid horizon (see Barclays Capital 2010), and we
use “XR” (“no restructuring”) CDS contracts, which became
the convention for North America following the CDS market
standardization in 2009 (the so-called “Big Bang”). To obtain
a set of active, economically interesting, CDS data, we took
all 125 individual firms in the CDS index covering our sample
period (CDX NA IG Series 17). Of these, 90 firms had data that
covered our entire sample period, and 10 firms had no more
than three missing observations. We use these 100 firms for
our analysis. (Of the remaining 25 firms, 6 are not U.S.-based
firms and 1 firm stopped trading because of a firm split. None
of the firms defaulted over this sample period.) We note here
that Markit selects CDS contracts for inclusion in CDX indices
based on their liquidity (Markit Group 2015) not on their broader
“representativeness,” in some sense, and so the results presented
below are representative of those for liquid CDS contracts, not
necessarily for all CDS contracts, or all firms.

A plot of the CDS spreads used in our analysis is presented in
Figure 1, which reveals that the average CDS spread was around
100 basis points (bps), and it varied from a low (averaged across
firms) of 24 bps on February 22, 2007, to a high of 304 bps on
March 9, 2009.

The levels of our CDS spread data are suggestive of a large
autoregressive root, with the median first-order autocorrelation
across all 100 series being 0.996 (the minimum is 0.990). Fur-
ther, augmented Dickey–Fuller tests reject the null hypothesis of
a unit root at the 0.05 level for only 12 series. Like interest rate
time series, these series are unlikely to literally obey a random
walk, as they are bounded below, however we model all series
in log differences to avoid the need to consider these series as
near unit root processes.

Table 2 presents summary statistics on our log-differenced
data. Of particular note is the positive skewness of the log-
differences in CDS spreads (average skewness is 1.087, and
skewness is positive for 89 out of 100 series) and the excess
kurtosis (25.531 on average, and greater than 3 for all 100
firms). Ljung–Box tests for autocorrelation at up to the tenth
lag find significant (at the 0.05 level) autocorrelation in 98 out
of 100 of the log-differenced CDS spreads, and for 89 series sig-
nificant autocorrelation is found in the squared log-differences.
This motivates specifying models for the conditional mean and
variance to capture this predictability.

4.3 Conditional Mean and Variance Models

Daily log-differences of CDS spreads have more autocorre-
lation than is commonly found for daily stock returns (e.g., the
average first-order autocorrelation is 0.161) and so the model
for the conditional mean of our data needs more structure than
the commonly used constant model for daily stock returns. We
use an AR(5) model, and augment it with a lag of the market
variable (an equal-weighted average of all 100 series) to capture

Figure 1. The upper panel plots the mean and 10%, 25%, 75%,
and 90% quantiles across the CDS spreads for 100 U.S. firms over the
period January 2006 to April 2012. The lower panel reports the average
(across firms) percent change in CDS spreads for the same time period.

any dynamic spillover effects. We show below that this model
passes standard specification tests:

Yit = φ0i +
5∑
j=1

φj,iYi,t−j + φm,iYm,t−1 + eit . (16)

For the market return, we use the same model (omitting, of
course, a repeat of the first lag of the market return). We need
a model for the market return as we use the residuals from the
market return model in our conditional variance specification.

Our model for the conditional variance is the asymmetric
volatility model of Glosten, Jagannathan, and Runkle (1993),
the “GJR-GARCH” model. The motivation for the asymmetry
in this model is that “bad news” about a firm increases its future
volatility more than good news. For stock returns, bad news
comes in the form of a negative residual. For CDS spreads, on
the other hand, bad news is a positive residual, and so we reverse
the direction of the indicator variable in the GJR-GARCH model
to reflect this. In addition to the standard GJR-GARCH terms,
we also include terms relating to the lagged market residual:

Vt−1 [eit ] ≡ σ 2
it = ωi + βiσ

2
i,t−1 + αie

2
i,t−1 + δie

2
i,t−11{ei,t−1 > 0}

+αm,ie2
m,t−1 + δm,ie

2
m,t−11{em,t−1 > 0}. (17)

Finally, we specify a model for the marginal distribution of the
standardized residuals, ηit . We use the skewed t distribution of
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Table 2. Summary statistics for log-differences of daily CDS spreads

Mean 5% 25% Median 75% 95%

Mean 5.589 −1.634 2.559 5.529 8.521 13.817
Std dev 378.892 308.636 347.627 373.460 400.385 476.533
1st-order autocorrel 0.161 0.030 0.121 0.164 0.217 0.267
Skewness 1.087 −0.285 0.354 0.758 1.488 3.629
Kurtosis 25.531 7.717 10.286 14.557 25.911 74.843
5% −514.574 −622.282 −551.334 −509.554 −474.027 −415.651
25% −144.195 −172.319 −155.635 −145.415 −134.820 −111.993
Median −2.324 −9.045 −3.644 −0.726 0.000 0.000
75% 132.127 95.168 120.514 131.019 144.363 174.645
95% 570.510 457.775 537.093 568.331 612.769 684.984

NOTES: This table presents summary statistics across the 100 marginal distributions of log-differences of daily CDS spreads measured in basis points. The columns present the mean
and quantiles from the cross-sectional distribution of the measures listed in the rows.

Hansen (1994), which allows for nonzero skewness and excess
kurtosis:

ηit ≡ eit

σit
∼ iid Skew t (νi, ψi) . (18)

Table 3 summarizes the results of estimating the above mod-
els on the 100 time series. For the conditional mean model,
we find strong significance of the first three AR lags, as well
as the lagged market return. The conditional variance models
reveal only mild statistical evidence of asymmetry in volatility,
however the point estimates suggest that “bad news” (a positive
residual) increases future volatility about 50% more than good
news. The average estimated degrees of freedom parameter is
3.6, suggestive of fat tails, and the estimated skewness parame-

ter is positive for 94 firms, and significantly different from zero
for 41 of these, indicating positive skewness.

We now discuss goodness-of-fit tests for the marginal distri-
bution specifications. We first use the Ljung–Box test to check
the adequacy of these models for the conditional mean and vari-
ance, and we are able to reject the null of zero autocorrelation up
to the tenth lag for only nine of the residual series, and only two
of the squared standardized residual series. We conclude that
these models provide a satisfactory fit to the conditional means
and variances of these series. Next, we use the Kolmogorov–
Smirnov test to investigate the fit of the skewed t distribution
for the standardized residuals, using 100 simulations to obtain
critical values that capture the parameter estimation error, and
we reject the null of correct specification for 11 of the 100 firms.

Table 3. Marginal distribution parameter estimates

Cross-sectional distribution

Mean 5% 25% Median 75% 95%

φ0,i 3.029 −3.760 0.247 3.116 5.861 10.165
φ1,i 0.005 −0.179 −0.062 0.010 0.082 0.153
φ2,i 0.025 −0.039 −0.001 0.025 0.050 0.084
φ3,i −0.002 −0.058 −0.028 −0.004 0.021 0.064
φ4,i 0.006 −0.046 −0.014 0.006 0.033 0.054
φ5,i 0.004 −0.055 −0.022 0.005 0.027 0.060
φm,i 0.387 0.163 0.303 0.372 0.480 0.638

ωi × 104 5.631 1.401 3.111 5.041 7.260 13.381
βi 0.741 0.595 0.699 0.746 0.794 0.845
αi 0.114 0.052 0.087 0.106 0.141 0.181
δi 0.022 0.000 0.000 0.000 0.042 0.086
αm,i 0.223 0.037 0.137 0.206 0.297 0.494
δm,i 0.072 0.000 0.000 0.059 0.114 0.233

νi 3.620 2.877 3.293 3.571 3.921 4.496
ψi 0.043 −0.003 0.024 0.042 0.062 0.089

No. of rejections

LB test for standardized residuals 9
LB test for squared standardized residuals 2
KS test of skew t dist of standardized residuals 11

NOTES: The table presents summaries of the estimated AR(5)-GJR-GARCH(1,1)-Skew t marginal distribution models (Equations (16)–(18)) estimated on log-difference of daily CDS
spreads. The columns present the mean and quantiles from the cross-sectional distribution of the parameters listed in the rows. The bottom panel shows the number of rejections (at the
0.05 level) across 100 firms from Ljung–Box tests for serial correlation up to 10 lags. The first row is for standardized residuals of log-difference of daily CDS spreads and the second
row for squared standardized residuals. The bottom panel shows the number of rejections across 100 firms from the Kolmogorov–Smirnov test of the Skew t distribution used for the
standardized residuals.
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Table 4. Model estimation results

Equidependence Block equidependence Heterogenous dependence

Normal Factor Normal Factor Normal Factor

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

ω1→G −0.013
(0.047)

−0.027
(0.033)

0.005
(0.009)

−0.010
(0.017)

– – – – – – – –

αGAS 0.024
(0.009)

0.022
(0.003)

0.026
(0.003)

0.026
(0.003)

0.036
(0.015)

0.029
(0.001)

0.033
(0.011)

0.026
(0.010)

0.160
(0.064)

0.144
(0.062)

0.170
(0.022)

0.171
(0.015)

βGAS 0.988
(0.060)

0.847
(0.070)

0.994
(0.026)

0.907
(0.035)

0.996
(0.044)

0.976
(0.042)

0.998
(0.015)

0.992
(0.031)

0.994
(0.047)

0.975
(0.065)

0.994
(0.031)

0.982
(0.040)

ν−1
z – – 0.095

(0.025)
0.078
(0.031)

– – 0.010
(0.029)

0.010
(0.020)

– – 0.010
(0.027)

0.020
(0.021)

ν−1
ε – – 0.170

(0.009)
0.178
(0.010)

– – 0.206
(0.011)

0.190
(0.009)

– – 0.204
(0.014)

0.179
(0.010)

ψz – – −0.018
(0.049)

−0.015
(0.049)

– – 0.088
(0.093)

0.093
(0.056)

– – 0.091
(0.074)

0.124
(0.058)

log L 38,395 40,983 38,518 41,165 39,361 41,913
AIC −76,778 −81,942 −77,008 −82,290 −78,314 −83,406
BIC −76,771 −81,927 −76,991 −82,266 −78,066 −83,151

NOTES: This table presents parameter estimates for two versions of the factor copula (Normal and Skew t-t), each with one of three degrees of heterogeneity of dependence
(equidependence, block equidependence, and heterogenous dependence). Standard errors, which account for the multi-stage estimation, based on the stationary bootstrap of Politis and
Romano (1994) are presented below the estimated parameters. All models are allowed to have a structural break on April 8, 2009 (see Section 4.4), and we denote parameters from the
first and second subsamples as “Pre” and “Post.” The log-likelihood at the estimated parameters and the Akaike and Bayesian information criteria are presented in the bottom three rows.
The intercept parameters (ωi ) for the block equidependence and heterogenous dependence models are not reported to conserve space.

This is slightly higher than the level of the test (0.05), but we
do not pursue the use of a more complicated marginal distribu-
tion model for those 11 firms in the interests of parsimony and
comparability.

4.4 The CDS “Big Bang”

On April 8, 2009, the CDS market underwent changes driven
by a move toward more standardized CDS contracts. Details of
these changes are described in Markit Group (2009). It is plau-
sible that the changes to the CDS market around this so-called
“Big Bang” changed the dynamics and distributional features
of CDS time series, and we test for that possibility here. We
do so by allowing the parameters of the mean, variance, and
marginal distribution models to change on the date of the Big
Bang, and we test the significance of these changes. We have
591 prebreak observations and 1053 post-break observations. (It
is worth noting that the turmoil in financial markets in 2007–09
makes identifying any single event as a source of a structural
break almost impossible. We have good reason to suspect that
the Big Bang led to a structural break, but it is possible that a
better break date, in terms of model fit, is earlier or later than
the date we use.)

We find that the conditional mean parameters changed sig-
nificantly (at the 0.05 level) for 39 firms, and the conditional
variance and marginal density shape parameters changed sig-
nificantly for 66 firms. In what follows, the results we report are
based on models that allow for a structural break in the mean,
variance, and distribution parameters. Given the prevalence of
these changes, all of the copula models we consider allow for a
break at the date of the Big Bang.

4.5 Comparing Models for the Conditional Copula

The class of high-dimensional dynamic copula models de-
scribed in Section 2 includes a variety of possible specifications:

static versus GAS dynamics; normal versus skew t-t factor cop-
ulas; equidependence versus block equidependence versus het-
erogenous dependence.

Table 4 presents results for six different dynamic models (a
corresponding table for the six static copula models is available
in the internet appendix). Bootstrap standard errors are presented
in parentheses below the estimated parameters. (We use the sta-
tionary block bootstrap of Politis and Romano (1994) with an
average block length of 120 days, applied to the log-difference
of the CDS spreads, and we use 100 bootstrap replications.) Sim-
ilar to other applications of GAS models (see Creal, Koopman,
and Lucas 2011, 2013), we find strong persistence, with the β
parameter ranging from 0.85 to 0.99. (Note that the β parameter
in GAS models plays the same role as α + β in a GARCH(1,1)
model, see Example 1 in Creal, Koopman, and Lucas 2013.)
We also find that the inverse degrees of freedom parameters
are greater than zero (i.e., the factor copula is not Normal),
which we test formally below. For the two more parsimonious
models, we do not find the common factor to be significantly
asymmetrically distributed, but for our preferred model based
on heterogenous dependence, we find that the asymmetry pa-
rameter for the common factor is positive, and significantly so
in the post-break period, indicating greater dependence for joint
upward moves in CDS spreads. This is consistent with finan-
cial variables being more correlated during bad times: for stock
returns bad times correspond to joint downward moves, which
have been shown in past work to be more correlated than joint
upward moves, while for CDS spreads bad times correspond to
joint upward moves.

Table 4 shows that the estimated degrees of freedom pa-
rameter for the common factor is larger than that for the id-
iosyncratic term. Oh and Patton (2016) showed that when
these two parameters differ the tail dependence implied by
this factor copula is on the boundary: either zero (νz > νε) or
one (νz < νε); only when these parameters are equal can tail
dependence lie inside (0, 1) . We test the significance of the
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Table 5. Model comparison results

Normal Factor (ν, ψz, ν) Factor (νz, ψz, νε)

Static GAS Static GAS Static GAS

No. of param 2 6 6 10 8 12
Equidependence log L 36,185 38,395 39,223 40,688 39,508 40,983

AIC −72,366 −76,778 −78,434 −81,356 −79,000 −81,942
BIC −72,364 −76,771 −78,427 −81,344 −78,990 −81,927

Block No. of param 10 14 14 18 16 20
equidependence log L 36,477 38,518 39,441 40,799 39,757 41,165

AIC −72,934 −77,008 −78,854 −81,562 −79,482 −82,290
BIC −72,922 −76,991 −78,837 −81,540 −79,463 −82,266

No. of param 200 204 204 208 206 210
Heterogenous log L 37,652 39,361 40,357 41,522 40,628 41,913

dependence AIC −74,904 −78,314 −80,306 −82,628 −80,844 −83,406
BIC −74,661 −78,066 −80,058 −82,375 −80,594 −83,151

NOTES: This table presents the log-likelihood at the estimated parameters, as well as the Akaike and Bayesian Information criteria, for a variety of copula models. The preferred model
according to each of these criteria is highlighted in bold. Also presented is the number of estimated parameters; note that this accounts for the fact that we allow for a structural break
in these parameters, and so the number reported is twice as large as it would be in the absence of a break. We consider models with three degrees of heterogeneity of dependence
(equidependence, block equidependence, and heterogenous dependence); with and without dynamics (static and GAS); and three versions of the factor copula (Normal, Skew t-t with a
common degrees of freedom parameter, and Skew t-t with separately estimated degrees of freedom parameters).

difference between these two parameters by estimating a model
with them imposed to be equal and then conducting a likeli-
hood ratio test, the log-likelihoods from these two models are
reported in Table 5. The results strongly suggest that νz > νε,

and thus that extreme movements in CDS spreads are uncor-
related. The average gain in the log-likelihood from estimat-
ing just this one extra parameter is around 200 points. This
does not mean, of course, that “near extreme” movements
must be uncorrelated, only that they are uncorrelated in the
limit.

Table 5 also presents a comparison of the Skew t-t factor cop-
ula with the Normal copula, which is obtained by using a Normal
distribution for both the common factor and the idiosyncratic
factor. We see very clearly that the Normal copula performs
worse than the Skew t-t factor copula, with the average gain in
the log-likelihood of the more flexible model being over 2000
points. This represents yet more evidence against the Normal
copula model for financial time series; the Normal copula is
simply too restrictive.

Finally, Table 5 can be used to compare the results from
models with three different degrees of heterogeneity: equide-
pendence versus block equidependence versus heterogenous
dependence. We see that the data support the more flexible
models, with the block equidependence model improving on the
equidependence model by around 200 points, and the heteroge-
nous model improving on the block equidependence model by
around 800 points. It should be noted that our use of industry
membership to form the “blocks” is just one method, and alter-
native grouping schemes may lead to better results. We do not
pursue this possibility here.

Given the results in Table 5, our preferred model for the de-
pendence structure of these 100 CDS spread series is a skew
t-t factor copula, with separate degrees of freedom for the com-
mon and idiosyncratic variables, allowing for a separate loading
on the common factor for each series (the “heterogenous de-
pendence” model) and allowing for dynamics using the GAS
structure described in the previous section. Figure 2 presents

the time-varying factor loadings implied by this model, sum-
marized by averaging the loadings across all firms in the same
industry. Figure A2 in the internet appendix presents corre-
sponding averages of all pair-wise correlations between firms in
the same pairs of industries. (Thus, the plotted factor loadings
and rank correlations are smoother than any individual rank cor-
relation plot.) Also presented in Figure A2 are 60-day rolling
window rank correlations, again averaged across pairs of the
firms in the same pair of industries. This figure reveals a sec-
ular increase in the correlation between CDS spreads, rising
from around 0.1 in 2006 to around 0.5 in 2013. Interestingly,
rank correlations do not appear to spike during the financial
crisis, unlike individual volatilities and probabilities of default;
rather they continue a mostly steady rise through the sample
period.

Figure 2. This figure plots the estimated factor loadings (λt ) from
the heterogenous dependence factor copula model, averaged across
firms in the same industry.
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5. TIME-VARYING SYSTEMIC RISK

In this section, we use the dynamic multivariate model pre-
sented above to obtain estimates of measures of systemic risk.
In many recent studies, systemic risk is taken to refer to break-
downs of the financial system, but in this article we use a broader
definition in which systemic risks can afflict any given sys-
tem, including those that include both financial and nonfinancial
firms. Also note that while the factor structure employed in the
copula model in Equations (5) and (6) is similar to (and, indeed,
in part inspired by) common models for capturing systematic
risk, we use our model to study systemic risk by looking at its
implications for measures of the probability of large crashes
across a large proportion of the firms under analysis.

A variety of measures of systemic risk have been proposed in
the literature to date. One influential measure is “CoVaR,” pro-
posed by Adrian and Brunnermeier (2016), which uses quantile
regression to estimate the lower tail (e.g., 0.05) quantile of mar-
ket returns conditional on a given firm having a return equal to
its lower tail quantile. This measure provides an estimate of how
firm-level stress spills over to the market index. An alternative
measure is “marginal expected shortfall” (MES) proposed by
Brownlees and Engle (2016), which estimates the expected re-
turn on a firm conditional on the market return being below some
low threshold. Segioviano and Goodhart (2009) and Giesecke
and Kim (2011) proposed measuring systemic risk via the prob-
ability that a “large” number of firms are in distress. Lucas,
Schwaab, and Zhang (2014) used the same measure applied to
European sovereign debt. Hartmann, Straetmans, and de Vries
(2006) considered a measure based on the probability of a large
number of firms being in distress conditional on a subset of firms
being in distress. Huang, Zhou, and Zhu (2009) suggested using
the price of a hypothetical contract insuring against system-wide
distress, valued using a mix of CDS and equity data, as a mea-
sure of systemic risk. Schwaab (2010) and Bisias et al. (2012)
presented reviews of these and other measures of systemic risk.
Giglio, Kelly, and Pruitt (2016) considered a large collection
of systemic risk measures, and showed that an index based on
these measures can help to predict lower quantiles of shocks to
economic growth.

We consider two different estimates of systemic risk, defined
in detail in the following two subsections. In all cases, we use the
dynamic copula model that performed best in the previous sec-
tion, namely, the heterogenous dependence factor copula model.

5.1 Joint Probability of Distress

The first measure of systemic risk we implement is an estimate
of the probability that a large number of firms will be in distress,
similar to the measure considered by Segioviano and Goodhart
(2009), Giesecke and Kim (2011) and Lucas, Schwaab, and
Zhang (2014). We define distress as a firm’s 1 year-ahead CDS
spread lying above some threshold:

Di,t+250 ≡ 1
{
Si,t+250 > c∗i,t+250

}
. (19)

We choose the threshold as the 99% conditional quantiles of the
individual CDS spreads. In our sample, the average 99% thresh-
old corresponds to a CDS spread of 339 basis points. Using
Equation (13) above, this threshold yields an implied probability

of default (assuming LGD is 0.6) of 5.7%. (The average CDS
spread across all firms is 97 basis points, yielding an implied
probability of default of 1.6%.) We also considered a threshold
quantile of 0.95, corresponding to an average CDS spread of
245 basis points, and the results are qualitatively similar.

We use the probability of a large proportion of firms being
in distress as a measure of systemic risk. We define the “joint
probability of distress” as

JPDt,k ≡ Prt

[(
1

N

N∑
i=1

Di,t+250

)
≥ k

N

]
, (20)

where k is a user-chosen threshold for what constitutes a “large”
proportion of the N firms. We use k = 30, and the results cor-
responding to k = 20 and k = 40 are qualitatively similar. The
JPD is only estimable via simulations from our model, and we
obtain these using 10,000 simulations. Given the computational
burden, we compute estimates only every 20 trading days (ap-
proximately once per month).

The estimated joint probability of distress is presented in
Figure 3. For comparison, we also include the JPD implied by
a “baseline” copula model, the constant Normal copula. (This
copula allows for a break at the Big Bang, and so is constant
only within each subperiod.) We observe that the JPD implied
by the factor copula with GAS dynamics spikes up in late 2007,
roughly doubling in value. It rises even further in early 2008,
reaching a peak of around 1%. This implies that at the height
of the financial crisis, there was around a 1% chance that at
least 30 of these 100 firms would be simultaneously in distress,
defined as a CDS spread lying in its upper 1% tail. The joint
probability of distress declines in mid-2009, though remains
somewhat higher than before the crisis. This is consistent with
results for systemic sovereign default risk in the U.S. and Europe
reported in Ang and Longstaff (2013) and Lucas, Schwaab, and
Zhang (2014).

Comparing the estimates of JPD from the two copula mod-
els, we see that the constant normal copula estimate is almost
uniformly lower than that from the factor copula in the precri-
sis period, and substantially lower from mid-2007 until the Big

Figure 3. This figure shows the joint probability of distress (JPD),
for two copula models. Both models allow for a structural break on
April 8, 2009. Distress is defined using the 99% quantile, and we
consider the probability of k = 30 firms, out of 100, in distress. The
sample period is January 2006 to April 2012.
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Bang, when the copula parameter was allowed to change. In
the second sub-sample the two estimates are closer, although
the JPD implied by the normal copula is generally lower than
from the factor copula. These two estimates of JPD reveal the
large variation in estimates of systemic risk that can be obtained
depending on the assumed shape of the copula, and the assumed
form of the dynamics of the copula.

5.2 Expected Proportion in Distress

Our second measure of systemic risk more fully exploits the
ability of our dynamic copula model to capture heterogenous
dependence between individual CDS spread changes. For each
firm i, we compute the expected proportion of firms in distress
conditional on firm i being in distress:

EPDi,t ≡ Et

⎡⎣ 1

N

N∑
j=1

Dj,t+250

∣∣∣∣∣∣Di,t+250 = 1

⎤⎦. (21)

The minimum value this can take is 1/N, as we include firm i
in the sum, and the maximum is one. A version of this measure
was proposed in Hartmann, Straetmans, and de Vries (2006).
We use the same indicator for distress as in the previous section
(Equation (19)). This measure of systemic risk is similar in spirit
to the CoVaR measure proposed by Adrian and Brunnermeier
(2016), in that it looks at distress “spillovers” from a single
firm to the market as a whole. (Note that the summation sign
in Equation (21) weights all firms equally; a simple extension
would allow firms to be weighted by their market capitalization,
debt-to-equity ratio, or any other measurable characteristic of a
firm.)

In the upper panel of Figure 4, we summarize the results
from the EPD estimates, and present the average, and 20%
and 80% quantiles of this measure across the 100 firms in our
sample. We observe that the average EPD is around 30% in
the precrisis period, rising to almost 60% in late 2008, and
returning to around 40% in the last year of our sample. Thus, this
figure, like the JPD plot in Figure 3, is also suggestive of a large
increase in systemic risk around the financial crisis, and higher
level of systemic risk in the current period than in the precrisis
period.

The expected proportion in distress measure enables us to
identify firms that are more strongly correlated with market-
wide distress than others. When the EPD is low for a given firm,
it reveals that distress for that firm is not a signal of widespread
distress, that is, firm i is more idiosyncratic. Conversely, when
the EPD is high, it reveals that distress for this firm is a sign
of widespread distress, and so this firm is a “bellwether” for
systemic risk. To illustrate the information from individual firm
EPD estimates, Table 6 presents the top five and bottom five
firms according to their EPD on three dates in our sample pe-
riod, the first day (January 2, 2006), a middle day (January 26,
2009), and the last day (April 17, 2012). We note that SLM Cor-
poration (“Sallie Mae,” in the student loan business) appears
in the “least systemic” group on all three dates, indicating that
periods in which it is in distress are, according to our model, gen-
erally unrelated to periods of wider distress. Marsh and McLen-
nan (which owns a collection of risk, insurance, and consulting

Figure 4. This figure shows the expected proportion (in percent) of
firms in distress, given firm i in distress, averaged across firms. The up-
per panel covers all 100 firms, and reports the mean and cross-sectional
20% and 80% quantiles. The lower panel reports the proportion of 16
financial firms in distress given one financial or nonfinancial firm in
distress, and the proportion of 84 nonfinancial firms in distress given
one financial or nonfinancial firm in distress. The sample period is
January 2006 to April 2012.

firms) and Baxter International (a bioscience and medical firm)
each appear in the “most systemic” group for two out of three
dates.

Table 6 also provides information on the spread of EPD esti-
mates across firms. At the start of our sample the least systemic
firms had EPDs of 2 to 3, indicating that only one to two other
firms are expected to be in distress when they are in distress. At
the end of our sample, the least systemic firms had EPDs of 8
to 12, indicating a wider correlation of distress even among the
least correlated. A similar finding is true for the most systemic
firms: the EPDs for the most systemic firms rise from 48–53
at the start of the sample to 84–94 at the end. Thus, there is a
general increase in the correlation between firm distress over
this sample period.

A particular focus in the growing literature on systemic risk
is on spillovers of distress from the financial sector to the non-
financial, or “real,” sector, see Adrian and Brunnermeier (2016)
and Acharya et al. (2016), for example. Our collection of 100
firms contains 16 financial firms and 84 nonfinancial firms, and
we can examine the “expected proportion in distress” across
these two classifications. The lower panel of Figure 4 presents
estimates of the expected proportion of financial/nonfinancial
firms in distress, conditional on one financial/nonfinancial firm
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Table 6. Estimates of systemic risk

2 January 2006 26 January 2009 17 April 2012

EPD Firm EPD Firm EPD Firm

Most systemic 53 Marsh & McLennan 78 Lockheed Martin 94 Wal-Mart
2 50 Hewlett-Packard 77 Campbell Soup 88 Baxter Int’l
3 50 IBM 75 Marsh & McLennan 88 Walt Disney
4 49 Valero Energy 75 Baxter Int’l 87 Home Depot
5 48 Bristol-Myers Squibb 74 Goodrich 84 McDonald’s

96 3 Aetna 35 Vornado Realty 12 MetLife
97 3 Xerox 34 Gen Elec Capital 11 The GAP
98 3 Comp Sci Corp 34 Johnson Controls 11 Sallie Mae
99 3 Sallie Mae 34 Alcoa 11 Comp Sci Corp
Least systemic 2 Freeport-McMoRan 33 Sallie Mae 8 Pitney Bowes

NOTE: This table presents the five firms with the largest estimated expected proportion in distress (EPD), defined in Equation (21), and the five firms with the smallest EPD, for three
dates in our sample period.

being in distress. This generates four time series of EPD, and
allows us to look at spillovers from one sector to the other, and
spillovers within a sector. This panel reveals substantial hetero-
geneity in the sensitivity of firms to other firms being in distress.
In particular, we see that a substantially higher proportion of fi-
nancial firms are expected to be in distress conditional on a
nonfinancial firm being in distress, than the other way around.
At the peak of the financial crisis, these proportions were 80%
and 40%, respectively, and more recently have averaged around
60% and 30%. This might be taken as somewhat reassuring, as
it indicates that while the probability of distress in the “real”
sector does increase conditional on distress in the financial sec-
tor, the sensitivity is strongest in the other direction. We also
note the relatively high sensitivity of financial firms to other
financial firms being in distress, indicating some intraindustry
contagion.

6. CONCLUSION

Motivated by the growing interest in measures of the risk
of systemic events, this article proposes new flexible yet par-
simonious models for time-varying high-dimensional distribu-
tions. We use copula theory to combine well-known models
for univariate distributions with new models of the conditional
dependence structure (copula) to obtain dynamic joint distri-
butions. Our proposed new dynamic copula models can be ap-
plied in dimensions of 100 or more, which is much greater
than commonly considered in the literature. These models draw
on successful ideas from the literature on dynamic modeling of
high-dimensional correlation matrices (e.g., Engle 2002) and on
recent work on models for general time-varying distributions
(Creal, Koopman, and Lucas 2013). We propose a “variance
targeting” type estimator for this class of dynamic copulas to
dramatically reduce the number of parameters to be estimated
by numerical optimization.

We apply our model to a detailed analysis of a collection
of 100 credit default swap (CDS) spreads on U.S. firms. The
CDS market has expanded rapidly in recent years, and yields
a novel view of the health of the underlying firms. We use
our model of CDS spreads to provide insights into systemic

risk, and we find, unsurprisingly, that systemic risk was highest
during the financial crisis of 2008–2009. More interestingly, we
also find that systemic risk has remained relatively high, and is
substantially higher now than in the precrisis period.

APPENDIX: PROOF OF PROPOSITION 1

Proof of Proposition 1.

(i) The evolution equation for λit in Equation (8) and station-
arity of {λt }, which holds by assumption 1(b), implies ωi =
E
[
log λit

]
(1 − β) , and we can rewrite our GAS Equation (8)

in “variance targeting” form:

log λit = E[log λit ] (1 − β) + β log λi,t−1 + αsi,t−1.

(A.1)

The objective of this proposition is to find an estimate of
E
[
log λit

]
based on observable data, thus reducing the number

of parameters to be estimated numerically. Next, note that linear
correlations are given by

ρLij,X ≡ Corr
[
Xi,Xj

] = λiλj√(
1 + λ2

i

) (
1 + λ2

j

) ≡ g
(
λi, λj

)
and RL

X ≡ Corr [X] = G (λ). (A.2)

By assumption 1(a), this is an exactly-(N = 3) or over-(N > 3)
identified system, as we have N parametersλ ≡ [λ1, . . . , λN ]′ and
N (N − 1) /2 correlations. By Assumption 1(d), we have a cor-
responding exactly- or over-identified system for the Spearman
rank correlation matrix:

RX = ϕ
(
RL
X

) = ϕ (G (λ)). (A.3)

(In a slight abuse of notation, we let ϕ(RL
X) map the entire linear

correlation matrix to the rank correlation matrix.) Define the
exponential of the inverse of the function ϕ ◦G as H, so that
log λ = H (ρX), where ρX ≡ vech (RX). The function H is not
known in closed form but it can be obtained by a simple and fast
optimization problem:

H (ρX) = arg min
a

(vech {ϕ (G (exp a))} − ρX)′

× (vech {ϕ (G (exp a))} − ρX). (A.4)

Note that under Assumption 1(a), there is no error in this opti-
mization problem; this is just a means of recovering H fromϕ ◦G.
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This is the GMM analog to the usual method-of-moments estima-
tor used in variance targeting. Under Assumption 1(c), the func-
tionH (ρX) is linear, soE[log λt ] = E[H (ρt,X)] = H (ρ̄X),where
ρ̄X≡E[ρt,X]. Finally, we exploit the fact that RankCorr [X] is
identical to RankCorr [η] by Assumption 1(a) and Theorem 5.1.6
of Nelsen (2006). So we obtain E[log λt ] = H (ρ̄X) = H (ρ̄η).

(ii) We use as our “VT estimator” the sample analog of the above

expression: ̂log λ = H (ρ̂η). Note that, since the marginal dis-
tributions of ηt are known, sample rank correlations are linear
functions of a sample moment, see Nelsen (2006, chap. 5), for
example,

ρ̂ij,η = −3 + 12

T

∑T

t=1
Fi
(
ηi,t
)
Fj
(
ηj,t
)
. (A.5)

Our estimate of E[log λit ] is obtained in Equation (A.4) as

̂log λ = arg min
a

m̄T (a)′ m̄T (a), (A.6)

where m̄T (a) ≡ vech{ϕ (G (exp a))} − ρ̂Sη .

The element of m̄T corresponding to the (i, j ) element of the
correlation matrix is

m̄
(i,j )
T (a) = [ϕ(G(exp a))](i,j ) + 3 − 12

T

T∑
t=1

Fi(ηi,t )Fj (ηj,t ).

(A.7)

Thus, ̂log λ is a standard GMM estimator for N ≥ 3. �

SUPPLEMENTARY MATERIALS

The supplemental appendix contains additional details on the im-
plementation of the models in this article, as well as some additional
simulation results.
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