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Abstract

This paper proposes a new class of copula-based dynamic models for high dimension conditional

distributions, facilitating the estimation of a wide variety of measures of systemic risk. Our proposed

models draw on successful ideas from the literature on modeling high dimension covariance matrices

and on recent work on models for general time-varying distributions. Our use of copula-based

models enables the estimation of the joint model in stages, greatly reducing the computational

burden. We use the proposed new models to study a collection of daily credit default swap (CDS)

spreads on 100 U.S. �rms over the period 2006 to 2012. We �nd that while the probability of distress

for individual �rms has greatly reduced since the �nancial crisis of 2008-09, the joint probability of

distress (a measure of systemic risk) is substantially higher now than in the pre-crisis period.

Keywords: correlation, tail risk, �nancial crises, DCC.

J.E.L. codes: C32, C58, G01.
�We thank Christian Brownlees, Drew Creal, Je¤ Russell, and seminar participants at Chicago, Duke,

Monash, Montréal, NYU, Sveriges Riksbank, Toulouse School of Economics, UNC-Chapel Hill, UNSW and
UTS for helpful comments. An appendix containing additional results for this paper is available at
http://www.econ.duke.edu/sap172/research.html.

yQuantitative Risk Analysis Section, Federal Reserve Board, Washington DC 20551. Email: donghwan.oh@frb.gov
zDepartment of Economics, Duke University, Box 90097, Durham NC 27708. Email: andrew.patton@duke.edu



1 Introduction

Systemic risk can be broadly de�ned as the risk of distress in a large number of �rms or institutions.

It represents an extreme event in two directions: a large loss (e.g., corresponding to a large left-tail

realization for stock returns), across a large proportion of the �rms. There are a variety of methods

for studying risk and dependence for small collections of assets (see Patton (2013) for a recent

review) but a paucity of methods for studying dependence between a large collection of assets,

which is required for a general analysis of systemic risk.

Some existing methods for estimating systemic risk simplify the task by reducing the dimension

of the problem to two: an individual �rm and a market index. The �CoVaR�measure of Adrian

and Brunnermeier (2009), for example, uses quantile regression to estimate a lower tail quantile

(e.g., 0.05) of market returns conditional on a given �rm having a returns equal to its lower tail

quantile. The �marginal expected shortfall�proposed by Brownlees and Engle (2011) estimates the

expected return on a �rm conditional on the market return being below some low threshold. These

methods have the clear bene�t of being parsimonious, but by aggregating the �non �rm i�universe

to a single market index, useful information about systemic risk may be missed. For example,

�rm i may impact a sizeable subset of the other �rms, but fall short of precipitating a market-wide

event. The objective of this paper is to provide models that can be used to handle large collections

of variables, and facilitate the estimation of a wider variety of systemic risk measures.

We use Sklar�s theorem (see Nelsen, 2006), with an extension to conditional distributions from

Patton (2006), to decompose the conditional joint distribution of a collection of N variables, Yt =

[Y1t; :::; YNt]
0 ; into their marginal distributions and a conditional copula:

YtjFt�1 s Ft = Ct (F1t; :::; FNt) (1)

We propose new models for the time-varying conditional copula, Ct; that can be used to link

models of the conditional marginal distributions (e.g., ARMA-GARCH models) to form a dynamic
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conditional joint distribution. Of central relevance to this paper are cases where N is relatively

large, around 50 to 250. In such cases, models that have been developed for low dimension problems

(say, N < 5) are often not applicable, either because no generalization beyond the bivariate model

exists, or because such generalizations are too restrictive (e.g., Archimedean copulas have just one

or two free parameters regardless of N; which is clearly very restrictive in high dimensions), or

because the obvious generalization of the bivariate case leads to a proliferation of parameters and

unmanageable computational complexity. In high dimension applications, the challenge is to �nd

a balance of �exibility and parsimony.

This paper makes two contributions. First, we propose a �exible and feasible model for capturing

time-varying dependence in high dimensions. Our approach draws on successful ideas from the

literature on dynamic modeling of high dimension covariance matrices and on recent work on

models for general time-varying distributions. In particular, we combine the �GAS� model of

Creal, et al. (2011, 2013) and the factor copula model of Oh and Patton (2012) to obtain a

�exible yet parsimonious dynamic model for high dimension conditional distributions. This model

is generally only estimable using numerical optimization techniques, and we propose a �variance

targeting� (Engle and Mezrich (1996) and Engle (2002)) type estimator to dramatically reduce

the dimension of the optimization problem. We show that this estimation method is a form of

(nonlinear) GMM, and thus can be treated as part of a multi-stage GMM estimation of the entire

model. A realistic simulation study con�rms that our proposed models and estimation methods

have satisfactory properties for relevant sample sizes.

Our second contribution is a detailed study of a collection of 100 daily credit default swap

(CDS) spreads on U.S. �rms. The CDS market has expanded enormously over the last decade,

growing 40-fold from $0.6 trillion of gross notional principal in 2001 to $25.9 trillion at the end of

2011 according to the International Swaps and Derivatives Association (ISDA), yet it has received

relatively little attention, compared with equity returns, in the econometrics literature. (Interest is

growing, however, see Conrad, et al. (2011), Creal, et al. (2012), Christo¤ersen, et al. (2013) and
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Lucas, et al. (2014) for recent work on CDS data.) We use our model of CDS spreads to provide

insights into systemic risk, as CDS spreads are tightly linked to the health of the underlying �rm.

We �nd that systemic risk rose during the �nancial crisis, unsurprisingly. More interestingly, we

also �nd that systemic risk remains high relative to the pre-crisis period, even though idiosyncratic

risk has fallen.

The remainder of the paper is structured as follows. Section 2 presents a dynamic copula

model for high dimension applications, and Section 3 presents a simulation study for the proposed

model and estimation method. In Section 4 we present estimation results for various models of

CDS spreads. Section 5 applies the model to estimate time-varying systemic risk, and Section 6

concludes. Technical details are presented in the appendix, and an internet appendix contains some

additional results.

2 A dynamic copula model for high dimensions

In this section we describe our approach for capturing dynamics in the dependence between a

relatively large number of variables. (A review of alternative methods from the small extant

literature on this topic is presented in Section 2.5.) We consider a class of data generating processes

(DGPs) that allow for time-varying conditional marginal distributions, e.g., dynamic conditional

means and variances, and also possibly time-varying higher-order moments:

Yt � [Y1t; :::; YNt]
0 (2)

where Yit = �it(�i;0) + �it(�i;0)�it, i = 1; 2; :::; N

�itjFt�1 s Fit(�i;0)

where �it is the conditional mean of Yit; �it is the conditional standard deviation, and Fit(�i;0) is

a parametric distribution with zero mean and unit variance. We will denote the parameters of the
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marginal distributions as � �
�
�01; :::;�

0
N

�0
; the parameters of the copula as 
; and the vector of

all parameters as � �
�
�0;
 0

�0
:We assume that Fit is continuous and strictly increasing, which �ts

our empirical application, though this assumption can be relaxed. The information set is taken to

be Ft = � (Yt;Yt�1; :::) : De�ne the conditional probability integral transforms of the data as:

Uit � Fit

�
Yit � �it(�i;0)
�it(�i;0)

;�i;0

�
, i = 1; 2; :::; N (3)

Then the conditional copula of YtjFt�1 is equal to the conditional distribution of UtjFt�1:

UtjFt�1 s Ct(
0) (4)

By allowing for a time-varying conditional copula, the class of DGPs characterized by equations

(2) to (4) is a generalization of those considered by Chen and Fan (2006), for example, however the

cost of this �exibility is the need to specify parametric marginal distributions. In contrast, Chen and

Fan (2006), Rémillard (2010) and Oh and Patton (2013) allow for nonparametric estimation of the

marginal distributions. The parametric margin requirement arises as the asymptotic distribution

theory for a model with nonparametric margins and a time-varying copula is not yet available in

the literature. We attempt to mitigate this requirement in our empirical work by using �exible

models for the marginal distributions, which are allowed to di¤er for each variable, and conducting

goodness-of-�t tests to verify that they provide a satisfactory �t to the data.

2.1 Factor copulas

In high dimension applications a critical aspect of any model is imposing some form of dimension

reduction. A widely-used method to achieve this in economics and �nance is to use a factor

structure. Oh and Patton (2012) propose using a factor model with �exible distributions to obtain

a �exible class of �factor copulas.�A one-factor version of their model is the copula for the latent
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vector random variable Xt � [X1t; :::; XNt]0 implied by the following structure:

Xit = �it (
�)Zt + "it, i = 1; 2; :::; N (5)

where Zt s Fzt (
z) , "it s iid F"t (
") , Zt??"it 8 i

where Fzt (
z) and F"t (
") are �exible parametric univariate distributions for the common factor

and the idiosyncratic variables, and �it (
�) is a potentially time-varying weight on the common

factor. The collection of all copula parameters is 
 � [
 0z;
 0";
 0�]
0 : The conditional joint distribution

for Xt can be decomposed into its conditional marginal distributions and its conditional copula via

Sklar�s theorem (see Nelsen (2006)) for conditional distributions, see Patton (2006):

Xt s Gt= Ct (G1t (
) ; :::; GNt (
) ;
) (6)

Note only the copula of these latent variables, denoted Ct (
) ; is used as a model for the copula

of the observable data Yt; the marginal distributions of Xt need not be the same as the marginal

distributions of the observed data. (These marginals, Git; are e¤ectively discarded.) If we impose

that the marginal distributions of the observable data are also driven by the factor structure in

equation (5), then we would also use the implied marginal distributions, and this approach then

becomes a standard factor model for a vector of variables. However, Oh and Patton (2012) propose

imposing the factor structure only on the component of the multivariate model where dimension

reduction is critical, namely the copula, and allow the marginal distributions to be modeled using

a potentially di¤erent approach. In this case, the factor structure in equation (5) is used only for

the copula that it implies, and this becomes a �factor copula�model.

The copula implied by equation (5) is known in closed form for only a few particular combina-

tions of choices of Fz and F" (the most obvious example being where both of these distributions

are Gaussian, in which case the implied copula is also Gaussian). For general choices of Fz and
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F" the copula of X will not be known in closed form, and thus the copula likelihood is not known

in closed form. Numerical methods can be used to overcome this problem. Oh and Patton (2013)

propose simulated method of moments-type estimation of the unknown parameters, however their

approach is only applicable when the conditional copula is constant. A key objective of this paper

is to allow the conditional copula to vary through time and so an alternate estimation approach is

desirable. We use a simple numerical integration method, described in Appendix B, to overcome

the lack of closed-form likelihood. This numerical integration exploits the fact that although the

copula is N -dimensional, we need only integrate out the common factor, which is one-dimensional

in the structure above.

Dynamics in the factor copula model in equation (5) arise by allowing the loadings on the

common factor, �it; to vary through time, and/or by allowing the distributions of the common

factor and the idiosyncratic variables to change through time. For example, holding Fzt and F"t

�xed, an increase in the factor loadings corresponds to an increase in the level of overall dependence

(e.g., rank correlation) between the variables. Holding the factor loadings �xed, an increase in the

thickness of the tails of the distribution of the common factor increases the degree of tail dependence.

In the next section we describe how we model these dynamics.

2.2 Generalized autoregressive score dynamics

An important feature of any dynamic model is the speci�cation for how the parameters evolve

through time. Some speci�cations, such as stochastic volatility models (see Shephard (2005) for

example) and related stochastic copula models (see Hafner and Manner (2012) and Manner and

Segers (2011)) allow the varying parameters to evolve as a latent time series process. Others, such

as ARCH-type models for volatility (see Engle, 1982) and related models for copulas (see Patton

(2006), Jondeau and Rockinger (2006), and Creal, et al. (2013) for example) model the varying

parameters as some function of lagged observables. An advantage of the latter approach over the

former, especially for high dimension applications, is that it avoids the need to �integrate out�the
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innovation terms driving the latent time series processes.

Within the class of ARCH-type models (�observation driven�, in the terminology of Creal, et

al. (2013)), the question of which function of lagged observables to use as a forcing variable in

the evolution equation for the varying parameter arises. For models of the conditional variance,

an obvious choice is the lagged squared residual, as in the ARCH model, but for models with

parameters that lack an obvious interpretation the choice is less clear. We adopt the generalized

autoregressive score (GAS) model of Creal, et al. (2013) to overcome this problem. (Harvey (2013)

and Harvey and Sucarrat (2014) propose a similar method for modeling time-varying parameters,

which they call a �dynamic conditional score,� or �DCS,�model.) These authors propose using

the lagged score of the density model (copula model, in our application) as the forcing variable.

Speci�cally, for a copula with time-varying parameter �t; governed by �xed parameter 
; we have:

Let UtjFt�1 s C(�t (
))

then �t = ! +B�t�1 +Ast�1 (7)

where st�1 = St�1rt�1

rt�1 =
@ log c(ut�1; �t�1)

@�t�1

and St is a scaling matrix (e.g., the inverse Hessian or its square root).

While this speci�cation for the evolution of a time-varying parameter is clearly somewhat arbi-

trary, Creal, et al. (2013) motivate it by showing that it nests a variety of popular and successful

existing models: GARCH (Bollerslev (1986)) for conditional variance; ACD (Engle and Russell

(1998)) for models of trade durations (the time between consecutive high frequency observations);

Davis, et al.�s (2003) model for Poisson counts. In recent work, Blasques, et al. (2014) show that the

GAS model can be motivated information-theoretically, by showing that this approach minimizes

the local Kullback-Liebler divergence between the true conditional density and the model-implied

density, and Harvey (2013) motivates this speci�cation as an approximation to a �lter for a model
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driven by a stochastic latent parameter, or an �unobserved components�model. Finally, the re-

cursion above can also be interpreted as the steepest ascent direction for improving the model�s �t,

in terms of the likelihood, given the current value of the model parameter �t; similar to numerical

optimization algorithms such as the Gauss-Newton algorithm.

2.3 High dimension factor copulas with GAS dynamics

We employ the GAS model to allow for time variation in the factor loadings in the factor copula im-

plied by equation (5), but to keep the model parsimonious we impose that the parameters governing

the �shape�of the common and idiosyncratic variables (
z and 
") are constant. We use the skewed

t distribution of Hansen (1994) as the model for Fz: This distribution has two shape parameters,

a degrees of freedom parameter (�z 2 (2;1]) and an asymmetry parameter ( z 2 (�1; 1)) ; and it

simpli�es to the standardized t distribution when  = 0: We use the standardized t distribution as

the model for F" for simplicity.

The general GAS framework in equation (7) applied to the factor loadings (�it) in equation (5),

would imply N + 2N2 parameters governing their evolution, which represents an infeasibly large

number for even moderate values of N: To keep the model parsimonious, we adopt a simpli�cation

from the DCC model of Engle (2002), and impose that the coe¢ cient matrices (B and A) are

diagonal with a scalar parameter (� and � respectively) on the diagonal. To avoid the estimation

of an N �N scaling matrix we set St = I: This simpli�es our model to be (in logs):

log �it = !i + � log �i;t�1 + �si;t�1, i = 1; 2; :::; N (8)

where sit � @ log c(ut;�t; �z;  z; �")=@�it and �t � [�1t; :::; �Nt]0 :

The dynamic copula model implied by equations (5) and (8) contains N + 2 parameters for

the GAS dynamics, 3 parameters for the shape of the common and idiosyncratic variables, for a

total of N + 5 parameters. Numerically optimizing this model when N = 50 or 100 represents
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quite a computational challenge. We propose a method to overcome this challenge by adapting an

idea from the DCC model of Engle (2002), known as �variance targeting.�The nature of our GAS

speci�cation means that the variance targeting approach needs to be modi�ed for use here.

The evolution equation for �it in equation (8) can be re-written as

log �it = E [log �it] (1� �) + � log �i;t�1 + �si;t�1 (9)

using the result from Creal, et al. (2013) that Et�1 [sit] = 0, and so E [log �it] = !i= (1� �) : The

proposition below provides a method for using sample rank correlations to obtain an estimate of

E [log �it] ; which eliminates the need to numerically optimize over the intercept parameters, !i:

The proposition is based on the following assumption.

Assumption 1 (a) The conditional copula of YtjFt�1 is the time-varying factor copula given in

equations (5) and (8).

(b) The process f�tg generated by equation (8) is strictly stationary.

(c) Let �t;X � vech (RankCorrt�1 [Xt]) : Then log�t is a linear function of �t;X .

(d) Let �ij;X � RankCorr [Xi; Xj ] and �Lij;X � Corr [Xi; Xj ]. Then, for �xed values of (
z;
") ;

the mapping �ij = '(�Lij) is strictly increasing.

Part (a) of this assumption makes explicit that the copula of the data is the GAS-factor copula

model, and so the conditional copula of YtjFt�1 is the same as that of XtjFt�1: Blasques, et al.

(2012) provide conditions under which univariate GAS models satisfy stationarity conditions, and

Blasques, et al. (2014) provide results for GAS models with a vector dependent variable but a

scalar time-varying parameter; corresponding theoretical results for our multivariate case are not

yet available in the literature, and in part (b) we simply assume that stationarity holds. Part

(c) formalizes the applicability of a Taylor series expansion of the function mapping �t to �t: In

practice this assumption will hold only approximately, and its applicability needs to be veri�ed
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via simulation, which we discuss further in Section 3 and Appendix B. Part (d) enables us to map

rank correlations to linear correlations. Note that we can take (
z;
") as �xed, as we call this

mapping for each evaluation of the log-likelihood. Importantly, this mapping can be computed

prior to estimation, and then just called during estimation, rather than re-computed each time the

likelihood function is evaluated, which greatly speeds up estimation.

Proposition 1 Let Assumption 1 hold, and denote the vech of the rank correlation matrix of the

standardized residuals, �t; as ��� and its sample analog as �̂�: Then:

(i) E [log�t] = H
�
���
�
; where H is de�ned in equation (29).

(ii) dlog� = H
�
�̂�
�
is a GMM estimator of E [log�t].

Part (i) of the above proposition provides the mapping from the population rank correlation of

the standardized residuals to the mean of the (log) factor loadings, which is the basis for consid-

ering a variance-targeting type estimator. Part (ii) shows that the sample analog of this mapping

can be interpreted as a standard GMM estimator. This is useful as it enables us to treat the

estimation of the complete vector of distribution parameters as multi-stage GMM. Under standard

regularity conditions, multi-stage GMM estimation (which nests multi-stage MLE) can be shown

to yield consistent and asymptotically normal parameter estimates (see White (1994), Engle and

Sheppard (2001), and in particular Newey and McFadden, 1994, Theorem 6.1). That is, if we let

�̂MS-GMM� [�̂
0
MS-GMM ; 
̂

0
MS-GMM ]

0 denote the collection of all estimated parameters, then

p
T
�
�̂MS-GMM���

�
d! N (0; V �MS-GMM ) as T !1 (10)

Consistent estimation of V �MS-GMM is theoretically possible, however in high dimensions it is not

computationally feasible. Gonçalves et al. (2013) provide conditions under which a block bootstrap

may be used to obtain valid standard errors on parameters estimated via multi-stage GMM. The

resulting standard errors are not higher-order e¢ cient, like some bootstrap inference methods, but

they do enable us to avoid having to handle Hessian matrices of size on the order of N �N: Note
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that sample rank correlations cannot in general be considered as moment-based estimators, as they

depend on the sample ranks of the observed data, and studying their estimation properties requires

alternative techniques. However, we exploit the fact that the marginal distributions of the data are

known up to an unknown parameter vector, and thus rank correlation can be obtained as a sample

moment of a nonlinear function of the data.

2.4 Equidependence vs. heterogeneous dependence

To investigate whether we can further reduce the number of free parameters in this model we

consider two restrictions of the model in equation (8), motivated by the �dynamic equicorrelation�

model of Engle and Kelly (2012). If we impose that !i = ! 8 i; then the pair-wise dependence

between each of the variables will be identical, leading to a �dynamic equidependence�model. (The

copula implied by this speci�cation is �exchangeable�in the terminology of the copula literature.)

In this case we have only six parameters to estimate, independent of the number of variables N ,

vastly reducing the estimation burden, but imposing a lot of homogeneity on the model.

An intermediate step between the fully �exible model and the equidependence model is to group

the assets using some ex ante information (e.g., by industry) and impose homogeneity only within

groups. This leads to a �block equidependence�copula model, with

Xit = �g(i);tZt + "it, i = 1; 2; :::; N (11)

log �g;t = !g + � log �g;t�1 + �sg;t�1, g = 1; 2; :::; G

where g (i) is the group to which variable i belongs, and G is the number of groups. In this case

the number of parameters to estimate in the copula model is G+5: In our empirical application we

have N = 100 and we consider grouping variables into G = 5 industries, meaning this model has

10 parameters to estimate rather than 105. In our empirical analysis below, we compare these two

restricted models (G = 1 and G = 5) with the �heterogeneous dependence�model which allows a
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di¤erent factor for each variable (and so G = N).

2.5 Other models for dynamic, high dimension copulas

As noted above, the literature contains relatively few models for dynamic, high dimension, copulas.

Exceptions to this are discussed here. Lucas, et al. (2014) combine GAS dynamics with a skewed

t copula to model ten sovereign CDS spreads. A similar model, though with an alternative skew t

speci�cation and with Engle�s (2002) DCC dynamics, is used by Christo¤ersen, et al. (2012, 2013).

The former of these two papers analyzes equity returns on up to 33 national stock indices, while

the latter studies weekly equity returns and CDS spreads on 233 North American �rms (and is

the largest time-varying copula model in the extant literature). Almeida et al. (2012) use �vine�

copulas to model the dependence between 30 German stock return series, with dynamics captured

through a stochastic volatility-type equation for the parameters of the copula. Stöber and Czado

(2012) also use vine copulas, combined with a regime-switching model for dynamics, to model

dependence between ten German stock returns.

3 Simulation study

This section presents an analysis of the �nite sample properties of maximum likelihood estimation

for factor copulas with GAS dynamics. Factor copulas do not have a closed-form likelihood, and

we approximate the likelihood using standard numerical integration methods, details of which can

be found in Appendix B.

We consider three di¤erent copula models for the Monte Carlo simulation: a dynamic equide-

pendence model (G = 1), a dynamic block equidependence model (G = 10), and a dynamic hetero-
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geneous dependence model (G = N), all of them governed by:

Xit = �g(i);tZt + "it, i = 1; 2; :::; N (12)

log �g;t = !g + � log �g;t�1 + �sg;t�1, g = 1; 2; :::; G

Z � Skew t (�z;  z)

"i � iid t (�") ; and "i??Z 8 i

We set N = 100 to match the number of series in our empirical application below. For simplicity,

we impose that �z = �", and we estimate ��1 rather than �; so that Normality is nested at

��1 = 0 rather than � !1: Broadly matching the parameter estimates we obtain in our empirical

application, we set ! = 0, � = 0:98; � = 0:05; � = 5, and  z = 0:1 for the equidependence model.

The block equidependence model uses the same parameters but sets !1 = �0:03 and !10 = 0:03;

and with !2 to !9 evenly spaced between these two bounds, and the heterogeneous dependence

model similarly uses !1 = �0:03 and !100 = 0:03; with !2 to !99 evenly spaced between these two

bounds. Rank correlations implied by these values range from 0.1 to 0.7. With these choices of

parameter values and dependence designs, various dynamic dependence structures are covered, and

asymmetric tail dependence, which is a common feature of �nancial data, is also allowed. We use

a sample size of T = 500 and we repeat each simulation 100 times.

The results for the equidependence model presented in Panel A of Table 1 reveal that the average

estimated bias for all parameters is small, and the estimates are centered on true values. The results

for the block equidependence model, presented in Panel B, are also satisfactory, and, as expected,

the estimation error in the parameters is generally slightly higher for this more complicated model.

The heterogeneous dependence model is estimated using the variance targeting-type approach

for the intercepts, !i; described in Section 2.3, combined with numerical optimization for the

remaining parameters. Appendix B presents reports simulation results that verify the applicability

of Assumption 1 for this model, and the results presented in Panel C con�rm that the approach
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leads to estimators with satisfactory �nite-sample properties. (Panel C reports only every �fth

intercept parameter, in the interests of space. The complete set of results is available in the

internet appendix.) The standard errors on the estimated intercept parameters are approximately

twice as large, on average, as in the block equidependence case, however this model has seven times

as many parameters as the block equidependence (104 vs. 14) and so some loss in accuracy is

inevitable. Importantly, all estimated parameters are approximately centered on their true values,

con�rming that the assumptions underlying Proposition 1 are applicable for this model.

[INSERT TABLE 1 ABOUT HERE]

4 Data description and estimation results

4.1 CDS spreads

We apply the new dynamic copula model proposed in the previous section to daily credit default

swap (CDS) spreads, obtained from Markit. In brief, a CDS is a contract in which the seller provides

insurance to the buyer against any losses resulting from a default by the �reference entity�within

some horizon. We focus on North American corporate CDS contracts, and the reference entities

are thus North American �rms. The CDS spread, usually measured in basis points and payable

quarterly by the buyer to the seller, is the cost of this insurance. See Du¢ e and Singleton (2003)

and Hull (2012) for more detailed discussions of CDS contracts, and see Barclays �CDS Handbook�

(2010) for institutional details.

A key reason for interest in CDS contracts is the sensitivity of CDS spreads to changes in

market perceptions of the probability of default, see Conrad, et al. (2011), Creal, et al. (2012)

and Christo¤ersen, et al. (2013) for recent empirical studies of implied default probabilities. Under

some simplifying assumptions (such as a constant risk free rate and default hazard rate) see Carr
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and Wu (2011) for example, it can be shown that the CDS spread in basis points is:

Sit = 100
2PQit Lit (13)

where Lit is the loss given default (sometimes shortened to �LGD,� and often assumed to equal

0.6 for U.S. �rms) and PQit is the implied probability of default. The same formula can also be

obtained as a �rst-order approximation at PQit � 0 for other more complicated pricing equations.

This expression can be written in terms of the objective probability of default, P Pit :

Sit = 100
2P PitMitLit (14)

whereMit is the market price of risk (stochastic discount factor). An increase in a CDS spread can

be driven by an increase in the LGD, an increase in the market price of default risk for this �rm,

or an increase in the objective probability of default. Any one of these three e¤ects is indicative of

a worsening of the health of the underlying �rm.

In the analysis below we work with the log-di¤erence of CDS spreads, to mitigate their autore-

gressive persistence, and under this transformation we obtain:

Yit � � logSit = � logP Pit +� logMit +� logLit (15)

If the loss given default is constant then the third term above vanishes, and if we assume that the

market price of risk is constant (as in traditional asset pricing models) or evolves slowly (for example,

with a business cycle-type frequency) then daily changes in CDS spreads can be attributed primarily

to changes in the objective probability of default. We will use this to guide our interpretation of

the empirical results below, but we emphasize here that an increase in any of these three terms

represents �bad news�for �rm i; and so the isolation of the objective probability of default is not

required for our interpretations to follow.
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4.2 Summary statistics

Our sample period spans January 2006 to April 2012, a total of 1644 days. We study the 5-year

CDS contract, which is the most liquid horizon (see Barclays (2010)), and we use �XR� (�no

restructuring�) CDS contracts, which became the convention for North America following the CDS

market standardization in 2009 (the so-called �Big Bang�). To obtain a set of active, economically

interesting, CDS data, we took all 125 individual �rms in the CDS index covering our sample

period (CDX Series 17). Of these, 90 �rms had data that covered our entire sample period, and

ten �rms had no more than three missing observations. We use these 100 �rms for our analysis.

(Of the remaining 25 �rms, six are not U.S.-based �rms and one �rm stopped trading because of

a �rm split. None of the �rms defaulted over this sample period.) A plot of these CDS spreads

is presented in Figure 1, which reveals that the average CDS spread was around 100 basis points

(bps), and it varied from a low (averaged across �rms) of 24 bps on February 22, 2007, to a high

of 304 bps on March 9, 2009.

[INSERT FIGURE 1 ABOUT HERE ]

The levels of our CDS spread data are suggestive of a large autoregressive root, with the

median �rst-order autocorrelation across all 100 series being 0.996 (the minimum is 0.990). Further,

augmented Dickey-Fuller tests reject the null hypothesis of a unit root at the 0.05 level for only 12

series. Like interest rate time series, these series are unlikely to literally obey a random walk, as

they are bounded below, however we model all series in log di¤erences to avoid the need to consider

these series as near unit root processes.

Table 2 presents summary statistics on our data. Of particular note is the positive skewness of

the log-di¤erences in CDS spreads (average skewness is 1.087, and skewness is positive for 89 out of

100 series) and the excess kurtosis (25.531 on average, and greater than 3 for all 100 �rms). Ljung-

Box tests for autocorrelation at up to the tenth lag �nd signi�cant (at the 0.05 level) autocorrelation

in 98 out of 100 of the log-di¤erenced CDS spreads, and for 89 series signi�cant autocorrelation
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is found in the squared log-di¤erences. This motivates specifying models for the conditional mean

and variance to capture this predictability.

[ INSERT TABLE 2 ABOUT HERE ]

4.3 Conditional mean and variance models

Daily log-di¤erences of CDS spreads have more autocorrelation than is commonly found for daily

stock returns (e.g., the average �rst-order autocorrelation is 0.161) and so the model for the con-

ditional mean of our data needs more structure than the commonly-used constant model for daily

stock returns. We use an AR(5) model, and augment it with a lag of the market variable (an

equal-weighted average of all 100 series) to capture any dynamic spillover e¤ects. We show below

that this model passes standard speci�cation tests.

Yit = �0i +
5X
j=1

�jiYi;t�j + �miYm;t�1 + eit (16)

For the market return we use the same model (omitting, of course, a repeat of the �rst lag of the

market return). We need a model for the market return as we use the residuals from the market

return model in our conditional variance speci�cation.

Our model for the conditional variance is the asymmetric volatility model of Glosten, et al.

(1993), the �GJR-GARCH�model. The motivation for the asymmetry in this model is that �bad

news�about a �rm increases its future volatility more than good news. For stock returns, bad news

comes in the form of a negative residual. For CDS spreads, on the other hand, bad news is a positive

residual, and so we reverse the direction of the indicator variable in the GJR-GARCH model to

re�ect this. In addition to the standard GJR-GARCH terms, we also include terms relating to the

17



lagged market residual:

Vt�1 [eit] � �2it = !i + �i�
2
i;t�1 + �ie

2
i;t�1 + �ie

2
i;t�11 fei;t�1 > 0g (17)

+�ime
2
m;t�1 + �ime

2
m;t�11 fem;t�1 > 0g

Finally, we specify a model for the marginal distribution of the standardized residuals, �it: We

use the skewed t distribution of Hansen (1994), which allows for non-zero skewness and excess

kurtosis:

�it �
eit
�it

s iid Skew t (�i;  i) (18)

Table 3 summarizes the results of estimating the above models on the 100 time series. For

the conditional mean model, we �nd strong signi�cance of the �rst three AR lags, as well as the

lagged market return. The conditional variance models reveal only mild statistical evidence of

asymmetry in volatility, however the point estimates suggest that �bad news�(a positive residual)

increases future volatility about 50% more than good news. The average estimated degrees of

freedom parameter is 3.6, suggestive of fat tails, and the estimated skewness parameter is positive

for 94 �rms, and signi�cantly di¤erent from zero for 41 of these, indicating positive skewness.

We now discuss goodness-of-�t tests for the marginal distribution speci�cations. We �rstly use

the Ljung-Box test to check the adequacy of these models for the conditional mean and variance,

and we are able to reject the null of zero autocorrelation up to the tenth lag for only nine of the

residual series, and only two of the squared standardized residual series. We conclude that these

models provide a satisfactory �t to the conditional means and variances of these series. Next,

we use the Kolmogorov-Smirnov test to investigate the �t of the skewed t distribution for the

standardized residuals, using 100 simulations to obtain critical values that capture the parameter

estimation error, and we reject the null of correct speci�cation for eleven of the 100 �rms. This is

slightly higher than the level of the test (0.05), but we do not pursue the use of a more complicated
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marginal distribution model for those eleven �rms in the interests of parsimony and comparability.

[ INSERT TABLE 3 ABOUT HERE ]

4.4 The CDS �Big Bang�

On April 8, 2009, the CDS market underwent changes driven by a move towards more standardized

CDS contracts. Details of these changes are described in Markit (2009). It is plausible that

the changes to the CDS market around this so-called �Big Bang� changed the dynamics and

distributional features of CDS time series, and we test for that possibility here. We do so by

allowing the parameters of the mean, variance, and marginal distribution models to change on

the date of the Big Bang, and we test the signi�cance of these changes. We have 591 pre-break

observations and 1053 post-break observations.

We �nd that the conditional mean parameters changed signi�cantly (at the 0.05 level) for 39

�rms, and the conditional variance and marginal density shape parameters changed signi�cantly

for 66 �rms. In what follows, the results we report are based on models that allow for a structural

break in the mean, variance and distribution parameters. Given the prevalence of these changes,

all of the copula models we consider allow for a break at the date of the Big Bang.

4.5 Comparing models for the conditional copula

The class of high dimension dynamic copula models described in Section 2 includes a variety of pos-

sible speci�cations: static vs. GAS dynamics; normal vs. skew t-t factor copulas; equidependence

vs. block equidependence vs. heterogeneous dependence.

Table 4 presents results for six di¤erent dynamic models (a corresponding table for the six static

copula models is available in the internet appendix). Bootstrap standard errors are presented in

parentheses below the estimated parameters. (We use the stationary block bootstrap of Politis

and Romano (1994) with an average block length of 120 days, applied to the log-di¤erence of
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the CDS spreads, and we use 100 bootstrap replications.) Similar to other applications of GAS

models (see, Creal et al. (2011, 2013)) we �nd strong persistence, with the � parameter ranging

from 0.85 to 0.99. (Note that the � parameter in GAS models plays the same role as � + � in a

GARCH(1,1) model, see Example 1 in Creal, et al. (2013)). We also �nd that the inverse degrees

of freedom parameters are greater than zero (i.e., the factor copula is not Normal), which we test

formally below. We further �nd that the asymmetry parameter for the common factor is positive,

indicating greater dependence for joint upward moves in CDS spreads. This is consistent with

�nancial variables being more correlated during bad times: for stock returns bad times correspond

to joint downward moves, which have been shown in past work to be more correlated than joint

upward moves, while for CDS spreads bad times correspond to joint upward moves.

[ INSERT TABLE 4 ABOUT HERE ]

Table 4 shows that the estimated degrees of freedom parameter for the common factor is larger

than that for the idiosyncratic term. Oh and Patton (2012) show that when these two parameters

di¤er the tail dependence implied by this factor copula is on the boundary: either zero (�z > �")

or one (�z < �"); only when these parameters are equal can tail dependence lie inside (0; 1) : We

test the signi�cance of the di¤erence between these two parameters by estimating a model with

them imposed to be equal and then conducting a likelihood ratio test, the log-likelihoods from

these two models are reported in Table 5. The results strongly suggest that �z > �"; and thus that

extreme movements in CDS spreads are uncorrelated. The average gain in the log likelihood from

estimating just this one extra parameter is around 200 points. This does not mean, of course, that

�near extreme�movements must be uncorrelated, only that they are uncorrelated in the limit.

Table 5 also presents a comparison of the Skew t-t factor copula with the Normal copula, which

is obtained by using a Normal distribution for both the common factor and the idiosyncratic factor.

We see very clearly that the Normal copula performs worse than the Skew t-t factor copula, with

the average gain in the log likelihood of the more �exible model being over 2000 points. This
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represents yet more evidence against the Normal copula model for �nancial time series; the Normal

copula is simply too restrictive.

[ INSERT TABLE 5 ABOUT HERE ]

Finally, Table 5 can be used to compare the results from models with three di¤erent degrees of

heterogeneity: equidependence vs. block equidependence vs. heterogeneous dependence. We see

that the data support the more �exible models, with the block equidependence model improving

on the equidependence model by around 200 points, and the heterogeneous model improving on

the block equidependence model by around 800 points. It should be noted that our use of industry

membership to form the �blocks� is just one method, and alternative grouping schemes may lead

to better results. We do not pursue this possibility here.

Given the results in Table 5, our preferred model for the dependence structure of these 100

CDS spread series is a skew t-t factor copula, with separate degrees of freedom for the common

and idiosyncratic variables, allowing for a separate loading on the common factor for each series

(the �heterogeneous dependence�model) and allowing for dynamics using the GAS structure de-

scribed in the previous section. Figure 2 presents the time-varying factor loadings implied by this

model, and Figure 3 presents time-varying rank correlations. To summarize these results, Figure

2 averages the loadings across all �rms in the same industry, and Figures 3 averages all pair-wise

correlations between �rms in the same pairs of industries. (Thus the plotted factor loadings and

rank correlations are smoother than any individual rank correlation plot.) Also presented in Figure

3 are 60-day rolling window rank correlations, again averaged across pairs of the �rms in the same

pair of industries. This �gure reveals a secular increase in the correlation between CDS spreads,

rising from around 0.1 in 2006 to around 0.5 in 2013. Interestingly, rank correlations do not appear

to spike during the �nancial crisis, unlike individual volatilities and probabilities of default; rather

they continue a mostly steady rise through the sample period.

[ INSERT FIGURES 2 AND 3 ABOUT HERE ]
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5 Time-varying systemic risk

In this section we use the dynamic multivariate model presented above to obtain estimates of

measures of systemic risk. A variety of measures of systemic risk have been proposed in the

literature to date. One in�uential measure is �CoVaR,� proposed by Adrian and Brunnermeier

(2009), which uses quantile regression to estimate the lower tail (e.g., 0.05) quantile of market

returns conditional on a given �rm having a return equal to its lower tail quantile. This measure

provides an estimate of how �rm-level stress spills over to the market index. An alternative measure

is �marginal expected shortfall�(MES) proposed by Brownlees and Engle (2011), which estimates

the expected return on a �rm conditional on the market return being below some low threshold.

Segoviano and Goodhart (2009) and Giesecke and Kim (2009) propose measuring systemic risk via

the probability that a �large�number of �rms are in distress, Lucas, et al. (2014) use the same

measure applied to European sovereign debt. Hartmann, et al. (2006) consider a measure based on

the probability of a large number of �rms being in distress conditional on a subset of �rms being

in distress. Huang, et al. (2009) suggest using the price of a hypothetical contract insuring against

system-wide distress, valued using a mix of CDS and equity data, as a measure of systemic risk.

Schwaab (2010) and Bisias et al. (2012) present reviews of these and other measures of systemic

risk.

We consider two di¤erent estimates of systemic risk, de�ned in detail in the following two sub-

sections. In all cases we use the dynamic copula model that performed best in the previous section,

namely the heterogeneous dependence factor copula model.

5.1 Joint probability of distress

The �rst measure of systemic risk we implement is an estimate of the probability that a large number

of �rms will be in distress, similar to the measure considered by Segoviano and Goodhart (2009),

Giesecke and Kim (2009) and Lucas, et al. (2014). We de�ne distress as a �rm�s one-year-ahead
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CDS spread lying above some threshold:

Di;t+250 � 1 fSi;t+250 > c�g (19)

We choose the threshold as the cross-sectional average of the 99% quantiles of the individual CDS

spreads:

c� =
1

N

NX
i=1

c�i (20)

where Pr [Sit � c�i ] = 0:99

In our sample, the 99% threshold corresponds to a CDS spread of 339 basis points. Using equation

(13) above, this threshold yields an implied probability of default (assuming LGD is 0.6) of 5.7%.

(The average CDS spread across all �rms is 97 basis points, yielding an implied probability of

default of 1.6%.) We also considered a threshold quantile of 0.95, corresponding to a CDS spread

of 245 basis points, and the results are qualitatively similar.

We use the probability of a large proportion of �rms being in distress as a measure of systemic

risk. De�ne the �joint probability of distress�as:

JPD t;k � Prt

" 
1

N

NX
i=1

Di;t+250

!
� k

N

#
(21)

where k is a user-chosen threshold for what constitutes a �large�proportion of the N �rms. We

use k = 30; and the results corresponding to k = 20 and k = 40 are qualitatively similar.

With a �xed threshold for distress, such as that in equation (20), the average individual prob-

ability of distress will vary through time. It may thus be of interest, given our focus on systemic

risk, to consider a scaled version of the JPD, to remove the in�uence of time variation in individual
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probabilities of distress. To this end, de�ne:

SJPDt;k � JPD t;k

AvgIPD t
(22)

where AvgIPD t � 1

N

NX
i=1

Et [Di;t+250] (23)

The JPD and SJPD estimates must be obtained via simulations from our model, and we obtain

these using 10,000 simulations. Given the computational burden, we compute estimates only every

20 trading days (approximately once per month).

The estimated joint probability of distress and scaled joint probability of distress are presented

in Figure 4. We see from the left panel that the JPD rose dramatically during the �nancial crisis of

late 2008�mid 2009, with the probability of at least 30 �rms being in distress reaching around 80%.

This panel also reveals that a large part of this increase in JPD is attributable to an increase in

the average individual probability of distress, which rose to nearly 50% in the peak of the �nancial

crisis.

In the right panel we report the ratio of these two lines and obtain the scaled probability of

distress. This can be thought of as a �multiplier� of individual distress, as it shows the ratio of

joint distress to average individual distress. This ratio reached nearly two in the �nancial crisis.

Interestingly, while this ratio fell in late 2009, it rose again in 2010 and in late 2011, indicating that

the level of systemic risk implied by observed CDS spreads is substantially higher now than in the

pre-crisis period. This is consistent with results for systemic sovereign default risk in the U.S. and

Europe reported in Ang and Longsta¤ (2013) and Lucas, et al. (2014).

[ INSERT FIGURE 4 ABOUT HERE ]
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5.2 Expected proportion in distress

Our second measure of systemic risk more fully exploits the ability of our dynamic copula model

to capture heterogeneous dependence between individual CDS spread changes. For each �rm i; we

compute the expected proportion of stocks in distress conditional on �rm i being in distress:

EPDi;t � Et

24 1
N

NX
j=1

Dj;t+250

������Di;t+250 = 1
35 (24)

The minimum value this can take is 1=N; as we include �rm i in the sum, and the maximum is one.

A version of this measure was proposed in Hartmann, et al. (2006). We use the same indicator for

distress as in the previous section (equation (19)). This measure of systemic risk is similar in spirit

to the CoVaR measure proposed by Adrian and Brunnermeier (2009), in that it looks at distress

�spillovers�from a single �rm to the market as a whole. (Note that the summation sign in equation

(24) weights all �rms equally; a simple extension would allow �rms to be weighted by their market

capitalization, debt-to-equity ratio, or any other measurable characteristic of a �rm.)

In Figure 5 below we summarize the results from the EPD estimates, and present the average,

and 10% and 90% quantiles of this measure across the 100 �rms in our sample. We observe that

the average EPD is around 30% in the pre-crisis period, rising to almost 60% in late 2008, and

returning to around 40% in the last year of our sample. Thus this �gure, like the JPD and SJPD

plot in Figure 4, is also suggestive of a large increase in systemic risk around the �nancial crisis,

and higher level of systemic risk in the current period than in the pre-crisis period.

[ INSERT FIGURE 5 ABOUT HERE ]

The expected proportion in distress measure enables us to identify �rms that are more strongly

correlated with market-wide distress than others. When the EPD is low for a given �rm, it reveals

that distress for that �rm is not a signal of widespread distress, i.e., �rm i is more idiosyncratic.

Conversely, when the EPD is high, it reveals that distress for this �rm is a sign of widespread
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distress, and so this �rm is a �bellwether� for systemic risk. To illustrate the information from

individual �rm EPD estimates, Table 6 below presents the top �ve and bottom �ve �rms according

to their EPD on three dates in our sample period, the �rst day (January 2, 2006), a middle day

(January 26, 2009) and the last day (April 17, 2012). We note that SLM Corporation (�Sallie Mae�,

in the student loan business) appears in the �least systemic�group on all three dates, indicating

that periods in which it is in distress are, according to our model, generally unrelated to periods

of wider distress. Marsh and McLennan (which owns a collection of risk, insurance and consulting

�rms) and Baxter International (a bioscience and medical �rm) each appear in the �most systemic�

group for two out of three dates.

Table 6 also provides information on the spread of EPD estimates across �rms. At the start

of our sample the least systemic �rms had EPDs of 2 to 3, indicating that only one to two other

�rms are expected to be in distress when they are in distress. At the end of our sample the least

systemic �rms had EPDs of 8 to 12, indicating a wider correlation of distress even among the least

correlated. A similar �nding is true for the most systemic �rms: the EPDs for the most systemic

�rms rise from 48�53 at the start of the sample to 84�94 at the end. Thus there is a general increase

in the correlation between �rm distress over this sample period.

[ INSERT TABLE 6 ABOUT HERE]

6 Conclusion

Motivated by the growing interest in measures of the risk of systemic events, this paper proposes

new �exible yet parsimonious models for time-varying high dimension distributions. We use copula

theory to combine well-known models for univariate distributions with new models of the conditional

dependence structure (copula) to obtain dynamic joint distributions. Our proposed new dynamic

copula models can be applied in dimensions of 100 or more, which is much greater than commonly

considered in the literature. These models draw on successful ideas from the literature on dynamic
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modeling of high dimension correlation matrices, (e.g., Engle (2002)) and on recent work on models

for general time-varying distributions (Creal, et al. (2013)). We propose a �variance targeting�

type estimator for this class of dynamic copulas to dramatically reduce the number of parameters

to be estimated by numerical optimization.

We apply the our model to a detailed analysis of a collection of 100 credit default swap (CDS)

spreads on U.S. �rms. The CDS market has expanded rapidly in recent years, and yields a novel

view of the health of the underlying �rms. We use our model of CDS spreads to provide insights

into systemic risk, and we �nd, unsurprisingly, that systemic risk was highest during the �nancial

crisis of 2008�09. More interestingly, we also �nd that systemic risk has remained relatively high,

and is substantially higher now than in the pre-crisis period.

Appendix A: Proof of Proposition 1

Proof of Proposition 1. (i) The evolution equation for �it in equation (9) and stationarity

of f�tg ; which holds by assumption 1(b), implies

E [log �it] = !i + �E [log �i;t�1] =
!i
1� � (25)

So !i = E [log �it] (1� �) ; and we can re-write our GAS equation (9) in �variance targeting�form:

log �it = E [log �it] (1� �) + � log �i;t�1 + �si;t�1 (26)

The objective of this proposition is to �nd an estimate of E [log �it] based on observable data, thus

reducing the number of parameters to be estimated numerically. Next, note that linear correlations
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are given by:

�Lij;X � Corr [Xi; Xj ] =
�i�jq�

1 + �2i
� �
1 + �2j

� � g (�i; �j) (27)

and RLX � Corr [X] = G (�)

By assumption 1(a), this is an exactly- (N = 3) or over- (N > 3) identi�ed system, as we have

N parameters � � [�1; :::; �N ]
0 and N (N � 1) =2 correlations. By Assumption 1(d) we have a

corresponding exactly- or over-identi�ed system for the Spearman rank correlation matrix:

RX = '
�
RLX

�
= ' (G (�)) (28)

(In a slight abuse of notation, we let '
�
RLX

�
map the entire linear correlation matrix to the rank

correlation matrix.) De�ne the exponential of the inverse of the function ' � G as H; so that

log� = H (�X), where �X � vech (RX). The function H is not known in closed form but it can

be obtained by a simple and fast optimization problem:

H (�X) = argmina
(vech f' (G (expa))g � �X)0 (vech f' (G (expa))g � �X) (29)

Note that under Assumption 1(a), there is no error in this optimization problem; this is just a means

of recovering H from ' � G: This is the GMM analog to the usual method-of-moments estimator

used in variance targeting. Under Assumption 1(c) the function H (�X) is linear, so E [log�t] =

E[H(�t;X)] = H(��X); where ��X�E[�t;X ]: Finally, we exploit the fact that RankCorr [X] is iden-

tical to RankCorr [�] by Assumption 1(a) and Theorem 5.1.6 of Nelsen (2006). So we obtain

E [log�t] = H(��X) = H(���):

(ii) We use as our �VT estimator�the sample analog of the above expression:

[log� = H(�̂�) (30)
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First note that, since the marginal distributions of �t are known, sample rank correlations are a

linear functions of a sample moment, see Nelsen (2006, Chapter 5) for example:

�̂ij;� = �3 +
12

T

XT

t=1
Fi
�
�i;t
�
Fj
�
�j;t
�

(31)

Our estimate of E [log �it] is obtained in equation (29) as:

[log� = argmin
a

�mT (a)
0 �mT (a) (32)

where �mT (a) � vechf' (G (expa))g � �̂S�

The element of �mT corresponding to the (i; j) element of the correlation matrix is:

�m
(i;j)
T (a) = [' (G (expa))](i;j) + 3�

12

T

XT

t=1
Fi
�
�i;t
�
Fj
�
�j;t
�

(33)

Thus [log� is a standard GMM estimator for N � 3.

Appendix B: Implementation details

B.1: Obtaining a factor copula likelihood

The factor copula introduced in Oh and Patton (2012) does not have a likelihood in closed

form, but it is relatively simple to obtain the likelihood using numerical integration. Consider the

factor structure in equation (5) and (6). Our objective is to obtain the copula density of Xt:

ct (u1; :::; uN ) =
gt
�
G�11t (u1) ; :::; G

�1
Nt (uN )

�
g1t
�
G�11t (u1)

�
� � � � � gNt

�
G�1Nt (uN )

� (34)

where gt (x1; :::; xN ) is the joint density ofXt; git (xi) is the marginal density ofXit; and ct (u1; :::; uN )

is the copula density. To construct copula density, we need each of the functions that appear on

the right-hand side above: git (xi) ; Git (xi) ; gt (x1; :::; xN ) and G
�1
it (ui) :
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The independence of Z and "i implies that:

fXijZ;t (xijz) = f"i (xi � �itz)

FXijZ;t (xijz) = F"i (xi � �itz) (35)

gXjZ;t (x1;:::;xN jz) =
NY
i=1

f"i (xi � �itz)

With these conditional distributions, one dimensional integration gives the marginals:

git (xi) =

Z 1

�1
fXi;Z;t (xi; z) dz =

Z 1

�1
fXijZ;t (xijz) dFZt (z) =

Z 1

�1
f"i (xi � �itz) dFZt (z) (36)

and similarly

Git (xi) =

Z 1

�1
F"i (xi � �itz) dFZt (z) (37)

gt (x1; :::; xN ) =

Z 1

�1

NY
i=1

f"i (xi � �itz) dFZt (z)

We use a change of variables, u � FZt (z) ; to convert these to bounded integrals:

git (xi) =

Z 1

0
f"i
�
xi � �itF�1Zt (u)

�
du

Git (xi) =

Z 1

0
F"i
�
xi � �itF�1Zt (u)

�
du (38)

fxt (x1; :::; xN ) =

Z 1

0

NY
i=1

f"i
�
xi � �itF�1Zt (u)

�
du

Thus the factor copula density requires the computation of just one-dimensional integrals. (For a

factor copula with J common factors the integral would be J-dimensional.) We use Gauss-Legendre

quadrature for the integration, using Q �nodes,�(see Judd (1998) for details) and we choose Q on

the basis of a small simulation study described below.

Finally, we need a method to invert Git (xi) ; and note from above that this is a function of both
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x and the factor loading �it; with Git = Gjs if �it = �js:We estimate the inverse of Git by creating

a grid of 100 points for x in the interval [xmin; xmax] and 50 points for � in the interval [�min; �max] ;

and then evaluating G at each of those points. We then use two-dimensional linear interpolation

to obtain G�1 (u;�) given u and �: This two-dimensional approximation substantially reduces the

computational burden, especially when � is time-varying, as we can evaluate the function G prior

to estimation, rather than re-estimating it for each likelihood evaluation.

We conducted a small Monte Carlo simulation to evaluate the accuracy of the numerical approx-

imations for G and G�1. We use quadrature nodes Q 2 f10; 50; 150g and [xmin; xmax] = [�30; 30],

[�min; �max] = [0; 6] for the numerical inversion. For this simulation, we considered the factor copula

implied by the following structure:

Xi = �0Zt + "i, i = 1; 2 (39)

where Zt s Skew t (�0;  0) , "it s iid t (�0) , Z??"i 8 i

where �0 = 1; ��10 = 0:25 and  0 = �0:5: At each replication, we simulateX = [X1; X2] 1000 times,

and apply empirical distribution functions to transform X to U = [U1; U2]. With this [U1; U2] we

estimate
�
�; ��1;  

�
by numerically approximated maximum likelihood method.

Table S3 in the internet appendix contains estimation results for 100 replications. We �nd that

estimation with only 10 nodes introduces a relatively large bias, in particular for ��1, consistent with

this low number of nodes providing a poor approximation of the tails of this density. Estimation

with 50 nodes gives accurate results, and is comparable to those with 150 nodes in that bias and

standard deviation are small. We use 50 nodes throughout the paper.

B.2: �Variance targeting�assumptions

We investigate the plausibility of Assumptions 1(c) and 1(d) via simulations. We use 50,000

observations to estimate the true (unknown) mappings. Note that while the copula is time-varying,
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we only need to study the mapping for a given day (set of shape parameters), and so we do

not consider dynamics in this simulation study. Moreover, the mappings are pair-wise, and so

we need only consider the (i; j) bivariate case. We consider three di¤erent factor copulas: (i)

�z = �" = 5;  = 0:1 (ii) �z = �" = 4;  = 0:25 (iii) �z = �" = 1;  = 0 (corresponding to the

Normal copula). We �x �i = �j = �; and let � vary so that the model-implied rank correlation

ranges from 0.1 to 0.7, which covers the range of pair-wise rank correlations we observe in our data.

The results are summarized in Figure 1 in the internet appendix. The left panel of this �gure

reveals that the mapping from rank correlation to linear correlation changes only slightly with

the shape parameters (�z; �";  ) ; and in all cases the function is strictly increasing, supporting

Assumption 1(d). In fact, we observe that for all cases the function is close to being the identity

function, and we invoke this approximation in our estimation to increase computational speed.

The right panel of the �gure plots the mapping from rank correlation to log factor loadings, and

shows that the true mapping is reasonably approximated by a straight line, particularly for values

of rank correlation near the sample average rank correlation in our application, which is around

0.4, supporting Assumption 1(c). Violations of either of these assumptions, if large relative to

sampling variability and other sources of estimation error, would manifest in poor performance of

the estimation of the �heterogeneous dependence�model. As discussed in Section 3, the simulation

results in Table 1 provide evidence that this estimation has good �nite-sample properties.
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Table 1: Simulation results

True Bias Std Median 90% 10% Di¤
(90% -10% )

Panel A: Equidependence
! 0.000 0.005 0.015 0.001 0.027 -0.003 0.030
� 0.050 0.000 0.003 0.050 0.051 0.048 0.003
� 0.980 0.002 0.004 0.980 0.989 0.979 0.010
��1 0.200 0.001 0.006 0.200 0.206 0.195 0.010
 z 0.100 0.005 0.017 0.100 0.118 0.097 0.021

Panel B: Block equidependence
!1 -0.030 0.000 0.005 -0.030 -0.025 -0.035 0.010
!2 -0.023 -0.001 0.004 -0.024 -0.020 -0.030 0.010
!3 -0.017 0.000 0.005 -0.017 -0.011 -0.023 0.012
!4 -0.010 0.000 0.004 -0.011 -0.005 -0.016 0.011
!5 -0.003 0.001 0.004 -0.002 0.004 -0.007 0.011
!6 0.003 0.001 0.004 0.004 0.009 0.000 0.009
!7 0.010 0.002 0.005 0.012 0.018 0.007 0.012
!8 0.017 0.001 0.005 0.017 0.025 0.012 0.013
!9 0.023 0.001 0.005 0.024 0.030 0.018 0.012
!10 0.030 0.003 0.006 0.033 0.040 0.024 0.015
� 0.050 0.001 0.005 0.051 0.057 0.045 0.012
� 0.980 -0.001 0.002 0.978 0.981 0.976 0.004
��1 0.200 -0.005 0.008 0.196 0.202 0.184 0.018
 z 0.100 0.004 0.025 0.103 0.138 0.071 0.068

Notes: This table presents results from the simulation study described in Section 3. Panel A
contains results for the equidependence model and Panel B for the �block equidependence�model.
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Table 1: Simulation results (continued)

True Bias Std Median 90% 10% Di¤
(90% -10% )

Panel C: Heterogeneous dependence

!1 -0.030 0.004 0.017 -0.022 -0.005 -0.052 0.047
!5 -0.028 0.004 0.016 -0.020 -0.005 -0.046 0.041
!10 -0.025 0.002 0.016 -0.019 -0.005 -0.041 0.036
!15 -0.022 0.002 0.013 -0.019 -0.004 -0.043 0.039
!20 -0.019 0.002 0.011 -0.015 -0.003 -0.033 0.030
!25 -0.016 0.000 0.010 -0.014 -0.003 -0.030 0.027
!30 -0.012 0.001 0.008 -0.010 -0.002 -0.022 0.020
!35 -0.009 0.000 0.008 -0.008 -0.002 -0.020 0.018
!40 -0.006 -0.001 0.005 -0.006 -0.002 -0.015 0.014
!45 -0.003 -0.001 0.005 -0.003 0.000 -0.010 0.010
!50 0.000 -0.002 0.004 -0.002 0.001 -0.007 0.008
!55 0.003 -0.001 0.004 0.001 0.007 -0.003 0.010
!60 0.006 -0.002 0.005 0.003 0.010 0.000 0.010
!65 0.009 -0.002 0.006 0.005 0.013 0.000 0.013
!70 0.012 -0.004 0.007 0.007 0.017 0.001 0.016
!75 0.015 -0.004 0.008 0.009 0.019 0.002 0.017
!80 0.018 -0.004 0.009 0.012 0.026 0.002 0.024
!85 0.021 -0.006 0.011 0.014 0.032 0.002 0.030
!90 0.024 -0.006 0.012 0.016 0.036 0.003 0.033
!95 0.027 -0.006 0.014 0.018 0.040 0.004 0.036
!100 0.030 -0.007 0.016 0.021 0.040 0.004 0.036
� 0.050 -0.006 0.015 0.045 0.062 0.023 0.039
� 0.980 0.002 0.012 0.983 0.997 0.966 0.031
��1 0.200 -0.002 0.009 0.199 0.209 0.186 0.023
 z 0.100 0.008 0.032 0.111 0.152 0.064 0.088

Notes: This table presents results from the simulation study described in Section 3. Panel C
contains results for the �heterogeneous dependence�model. In the interests of space, Panel C only
reports every �fth intercept parameter (!i) : A table with all 100 intercept parameters is available
in the internet appendix.

37



Table 2: Summary statistics for daily CDS spreads
and log-di¤erences of daily CDS spreads

Mean 5% 25% Median 75% 95%

Panel A: Cross-sectional distribution of CDS spreads

Mean 96.953 37.212 53.561 74.957 123.785 200.346
Std dev 69.950 17.344 27.245 47.508 84.336 180.618
1st-order autocorrel 0.996 0.992 0.995 0.997 0.998 0.998
Skewness 1.203 0.095 0.695 1.280 1.587 2.488
Kurtosis 5.113 2.198 2.943 4.937 6.477 9.486
5% 23.883 9.021 11.741 18.926 29.851 60.538
25% 42.274 20.373 25.212 35.314 47.473 104.704
Median 85.310 35.098 50.105 69.399 113.762 166.208
75% 122.061 46.250 65.862 93.622 154.729 251.112
95% 245.497 72.514 102.554 168.500 313.585 631.924
99% 338.676 80.414 122.885 231.295 435.224 827.098

Panel B: Cross-sectional distribution of log-di¤erences of CDS spreads

Mean 5.589 -1.634 2.559 5.529 8.521 13.817
Std dev 378.892 308.636 347.627 373.460 400.385 476.533
1st-order autocorrel 0.161 0.030 0.121 0.164 0.217 0.267
Skewness 1.087 -0.285 0.354 0.758 1.488 3.629
Kurtosis 25.531 7.717 10.286 14.557 25.911 74.843
5% -514.574 -622.282 -551.334 -509.554 -474.027 -415.651
25% -144.195 -172.319 -155.635 -145.415 -134.820 -111.993
Median -2.324 -9.045 -3.644 -0.726 0.000 0.000
75% 132.127 95.168 120.514 131.019 144.363 174.645
95% 570.510 457.775 537.093 568.331 612.769 684.984

Panel C: Autocorrelation in CDS spreads

# of rejections
Level Log-di¤ Squared log-di¤

ADF test of unit root 12 100 �
LB test for autocorrel � 98 89

Notes: Panels A and B of this table presents summary statistics across the N = 100 marginal
distributions of daily CDS spreads (Panel A) and the log-di¤erences of CDS spreads (Panel B),
measured in basis points in both cases. The columns present the mean and quantiles from the cross-
sectional distribution of the measures listed in the rows. Panel C shows the number of rejections
(at the 0.05 level) across the 100 �rms for augmented Dickey-Fuller tests of the null of a unit root,
as well as Ljung-Box tests for autocorrelation up to 10 lags.
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Table 3: Marginal distribution parameter estimates

Cross-sectional distribution

Mean 5% 25% Median 75% 95%

�0 3.029 -3.760 0.247 3.116 5.861 10.165
�1 0.005 -0.179 -0.062 0.010 0.082 0.153
�2 0.025 -0.039 -0.001 0.025 0.050 0.084
�3 -0.002 -0.058 -0.028 -0.004 0.021 0.064
�4 0.006 -0.046 -0.014 0.006 0.033 0.054
�5 0.004 -0.055 -0.022 0.005 0.027 0.060
�m 0.387 0.163 0.303 0.372 0.480 0.638

! � 104 5.631 1.401 3.111 5.041 7.260 13.381
� 0.741 0.595 0.699 0.746 0.794 0.845
� 0.114 0.052 0.087 0.106 0.141 0.181
� 0.022 0.000 0.000 0.000 0.042 0.086
�m 0.223 0.037 0.137 0.206 0.297 0.494
�m 0.072 0.000 0.000 0.059 0.114 0.233

� 3.620 2.877 3.293 3.571 3.921 4.496
 0.043 -0.003 0.024 0.042 0.062 0.089

# of rejections
LB test for standardized residuals 9
LB test for squared standardized residuals 2
KS test of skew t dist of standardized residuals 11

Notes: The table presents summaries of the estimated AR(5)-GJR-GARCH(1,1)-Skew t (�;  )
models estimated on log-di¤erence of daily CDS spreads. The columns present the mean and
quantiles from the cross-sectional distribution of the parameters listed in the rows. The bottom
panel shows the number of rejections (at the 0.05 level) across 100 �rms from Ljung-Box tests for
serial correlation up to 10 lags. The �rst row is for standardized residuals of log-di¤erence of daily
CDS spreads and the second row for squared standardized residuals. The bottom panel shows
the number of rejections across 100 �rms from the Kolmogorov�Smirnov test of the Skew t (�;  )
distribution used for the standardized residuals.
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Table 5: Model comparison results

Normal Factor (�;  z; �) Factor (�z;  z; �")

Static GAS Static GAS Static GAS

# param 2 6 6 10 8 12
Equi- log L 36,185 38,395 39,223 40,688 39,508 40,983
dependence AIC -72,366 -76,778 -78,434 -81,356 -79,000 -81,942

BIC -72,364 -76,771 -78,427 -81,344 -78,990 -81,927

Block # param 10 14 14 18 16 20
equi- log L 36,477 38,518 39,441 40,799 39,757 41,165
dependence AIC -72,934 -77,008 -78,854 -81,562 -79,482 -82,290

BIC -72,922 -76,991 -78,837 -81,540 -79,463 -82,266

# param 200 204 204 208 206 210
Heterogeneous log L 37,652 39,361 40,357 41,522 40,628 41,913
dependence AIC -74,904 -78,314 -80,306 -82,628 -80,844 -83,406

BIC -74,661 -78,066 -80,058 -82,375 -80,594 -83,151

Notes: This table presents the log-likelihood at the estimated parameters, as well as the Akaike
and Bayesian Information criteria, for a variety of copula models. The preferred model according to
each of these criteria is highlighted in bold. Also presented is the number of estimated parameters;
note that this accounts for the fact that we allow for a structural break in these parameters, and
so the number reported is twice as large as it would be in the absence of a break. We consider
models with three degrees of heterogeneity of dependence (equidependence, block equidependence,
and heterogeneous dependence); with and without dynamics (static and GAS); and three versions
of the factor copula (Normal, Skew t-t with a common degrees of freedom parameter, and Skew t-t
with separately estimated degrees of freedom parameters).
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Figure 1: The upper panel plots the mean and 10%, 25%, 75% and 90% quantiles across the CDS
spreads for 100 U.S. �rms over the period January 2006 to April 2012. The lower panel reports
the average (across �rms) percent change in CDS spreads for the same time period.
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Figure 2: This �gure plots the estimated factor loadings (�t) from the heterogeneous dependence
factor copula model, averaged across �rms in the same industry.
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Figure 4: The left panel shows the joint probability of distress (JPD) in a solid line and the average
individual probability of distress (Avg IPD) in a dashed line. The right panel shows the scaled joint
probability of distress (SJPD). Both panels cover the period January 2006 to April 2012.
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Figure 5: This �gure shows the expected proportion (in percent) of �rms in distress, given �rm
i in distress, averaged across all 100 �rms. The cross-sectional 10% and 90% quantiles are also
reported. The sample period is January 2006 to April 2012.
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